

Easy to use flowchart

		es 🦵 Increase Fran		
ame ID(HEX): 47 Send Times: 1	Data(HEX): UI Send Interval(ms)): 0		
			®	
			-ulif	
			A OF	
Send	One Frame C	Send 10 Fra	mes 🥅 Increase Fram	
Frame ID	(HEX): 65	Data(HEX): 02 		
Sand	rimes. [-	Send Intervar("s'. [-	
Send '				
Send '				

1. Analysis of motor command format

1.1. Message format analysis

As shown in the figure, we first conduct a simple analysis of the message format.

Identifier: start frame: 0
Device address: 00000~11110 Broadcast address: 11111 (Default device address is: 00001)
Instruction address: 00000~11111
Reply flag: 0: No reply required, 1: Reply required
Example: When the ID is 1, 0 00001 00000 1 is converted into hexadecimal 0x41.
Start frame device address command address reply flag
Frame format: data frame
Frame type: standard frame

Based on the device address range, it can be concluded that the command can simultaneously control up to thirty motors, and the conversion process is as follows:

Online base conversion

Support arbitrary conversion between 2~36 decimal systems

onvert numbers	11110					
	Fill in th	ie value you want he	re, usually cho	ose the decimal sy	stem	

1.2. Motor instruction ID range

Based on the example of ID conversion, it can be concluded that the current valid instruction ID range for motor 1 is 41-69. The conversion process is as follows:

Online base conversion

Support arbitrary conversion between 2~36 decimal systems

	Fill in the value you wa	ant here, usually ch	nose the decimal syst		
			sooo alo ocolina oyot	em	
Binany			Hevadecim 3	2 hase Hexade	cin 🗸
Olinary		ening O base to	() Hexadecimity 5	12 Dase	

Emergency stop instruction address: 00000 Instruction ID is 41.

Binary	⊖ Baseling ⊖ Baseling	O Base 10 OHexadeci	m 32 base	Binary 🗸
Convert numbers	0001101001			
	Fill in the value you want h	ere, usually choose the decin	nal system	
		O Basa 10 @ Havadaali	m⊖ 32 base	Hexadecin 🗸
Binary	Baseling Baseling	O base IV Inexadeci		

Start OTA service instruction address: 10100 Instruction ID is 69.

From this, we can determine the ID range for motors with different serial numbers:

Motor Number	Frame ID(HEX)	Range
1	41-69	
2	81-A9	
3	C1-E9	
30	781-7A5	

2. The use of a single motor

2.1. Set motor operation mode

After powering the motor and connecting CANTest, the first step is to set the motor's operating mode (default to position mode, motor 1), as shown in the following command:

Frame ID(HEX) 47	Data(HEX)	02	Send
Send Times: 1	Send Int	erval(ms): 0	Stop

00 is set to torque mode, 01 is set to speed mode, here we send 02 to position mode.

Index	Direction	Time Sta	Frame ID	Format	Туре	Data Leng	Data(HEX)
00000000 00000001	Send Receive	10:53:38.3 10:53:38.3	0::00000047 0x00000047	Data Data	Standard Standard	0x01 0x00	02

If the response is 47, it indicates success.

2.2. Set motor ID

Then we can set the ID of the motor as needed, as shown in the following figure:

ame ID(HEX)	00000065	Data(HEX)	02	Send
Send Times:	1	Send Int	ormal(me); 0	Stop

00000000	ALCO ALCO ALCO	Terrore to the terror to the	A CARDICACIO CACADA IN		Caretinerenter	enere.	
00000002	Send	10:55:25.3	0x0000065	Data	Standard	0x01	02
00000003	Receive	10:55:25.4	0x000000a5	Data	Standard	0x01	02

You can see that the response here is A3, which is the instruction to set the ID corresponding to motor 2, indicating that we have successfully set it up

(It is recommended to set the motor mode first and then change the ID, so that the 47 command can be used to set the mode uniformly, and the 63 command can be used to change the ID. Otherwise, after the change is completed, setting the running mode again will require the corresponding command, such as 87 for number 2 and c7 for number 3.).

2.3. Run motor

For example, in position mode, when the motor needs to be moved 120 $^{\circ}$ at a speed of 5RPM, The input command is shown in the following figure:

Send Type:	Normal	•	Send One Frame	C Send	10	Frames 🥅 Increase Fra	me ID
Frame Type:	Standard	•	Frame ID(HEX): 57	Date	4(HEX):	00 00 FO 42 00 00 AO 40	Send
Frame Format:	Data	•	Send Times: 1	Se	end Inte	rval(ms): 0	Stop

The conversion method is shown in the following figure:

For positional data, the unit of decimal data is degrees (\circ)

For speed data, the units of decimal data are RPM

IEEE 754 floating-point hexadecimal conversion to each other

	32-bit four-byte single-precision
Base 10	120
	Fill in the value you want here, and click the hexadecimal button below to convert
lexadecima	1 42 F0 00 00
HIG	5H LOW This is the result of the conversion of the above values
Note	that there will be spaces in the middle of each byte and be removed when filling in the code
	IEEE 754 floating point hoved animal conversion to each other
	IEEE 754 hoating-point nexadecimal conversion to each other
	32-bit four-byte single-precision
Base 10	32-bit four-byte single-precision
Base 10	5 Fill in the value you want here, and click the hexadecimal button below to convert
Base 10 lexadecima	32-bit four-byte single-precision 5 Fill in the value you want here, and click the hexadecimal button below to convert 40 A0 00 00
Base 10 lexadecima H	32-bit four-byte single-precision 5 Fill in the value you want here, and click the hexadecimal button below to convert 40 A0 00 00 GH I OWThis is the result of the conversion of the above values

Therefore, the final instruction data sent is 00 00 F0 42 00 00 A0 40 $\,$

3. Use of multiple motors

3.1. Set motor operation mode

After powering the motor and connecting CANTest, the first step is to set the operating mode of each motor (default to position mode, motor 1), as shown in the following command:

ame ID(HEX) 47	Data(HEX) 02	Send
Send Times: 1	Send Interval(ms): 0	Stop

Index	Direction	Time Sta	Frame ID	Format	Туре	Data Leng	Data(HEX)
00000000 00000001	Send Receive	10:53:38.3 10:53:38.3	0x00000047 0x00000047	Data Data	Standard Standard	0x01 0x00	02

00 is set to torque mode, 01 is set to speed mode, here we send 02 to position mode.

If the response is 47, it indicates success.

3.2. Set motor ID

Then we can set the ID of the motor as needed, as shown in the following figure:

Send Interval(ms): 0		Stop		
number 2 here.	-oyte \	otanobro		
25.3 0x00000065	Data	Standard	0x01	02
25 25	1umber 2 here.	1umber 2 here. 	1umber 2 here. 	Number 2 here. 0.3 0x00000065 Data Standard 0x01 5.4 0x000000a5 Data Standard 0x01

You can see that the response here is A3, which is the instruction to set the ID corresponding to motor 2, indicating that we have successfully set it up

(It is recommended to set the motor mode first and then change the ID, so that the 47 command can be used to set the mode uniformly, and the 63 command can be used to change the ID. Otherwise, after the change is completed, setting the running mode again will require the corresponding command, such as 87 for number 2 and c7 for number 3.).

3.3. Run motor

The command for running multiple motors needs to be carried out during the task operation, and the interface is shown in the following figure:

~	Туре	Format	Frame ID	Data(HEX)	^ Sand Turne: Normal ▼ Data 十六进制▼
0	Standard	Data	57	00 00 c8 42 00 00 c8 42	
₽1	Standard	Data	97	00 00 c8 42 00 00 c8 42	Send Times: 1
2 🕅	Standard	Data	D7	00 00 c8 42 00 00 c8 42	Send Interval (ms): 10
₩3	Standard	Data	57	00 00 00 00 00 c8 42	Frame Interval(ms); 0
₩4	Standard	Data	97	00 00 00 00 00 00 c8 42	
₽5	Standard	Data	d7	00 00 00 00 00 00 c8 42	Send Stop Export list Import list
6	Standard	Data	00000000	00 01 02 03 04 05 06 07	v

(1) Firstly, add a task operation by issuing a few commands.

(2) Then write the motor ID, if you want the first motor to move, write 57, and the second motor write 97,

each of which is equivalent to a single motor operation command.

③ Write the corresponding single motor operation data, please refer to the example of a single motor for details

(4) Set the sending interval, which is the time difference between sending the instruction and sending the next instruction, in milliseconds (ms). If there is no need for a long delay, it is also best to add 10 milliseconds to avoid packet loss caused by encountering the next instruction during transmission and reception.

(5) Set the sending method. Sequential sending is to send all the instructions in the list in order once and then end. Loop sending is to send the instructions in the list from beginning to end, and then loop from beginning to end.

(6) After setting up all the above processes, click to send the run command.