Linker Hand L10
Product Manual

1. Product Overview

Product Overview

The Linker Hand L10 is a high-performance dexterous hand with 10 degrees of freedom. It
adopts a linkage transmission method and is driven by self-developed motors. While improving
the traction stability, it achieves precise control and excellent motion performance.

It is equipped with a variety of sensors, including force sensors, vision sensors, and tactile
sensors, which can realize multi-mode perception, and has stronger environmental adaptation
ability and intelligent interaction ability. It is compatible with ROS and QT applications, provides
ROS plugins, and supports users' secondary development, expanding more application
possibilities.

With its highly flexible, fast-responsive, and precisely controllable functions, the Linker Hand
L10 can be widely used in many fields such as education and scientific research, piano playing,
daily housework, elderly care, etc., and promotes the development of intelligent robot and
human-machine collaboration technologies.

Main Features
1. High Degree of Freedom

o Each finger independently has 4 degrees of freedom, meeting the needs of complex and
precise operations.

2. Multi-sensors
o Equipped with an advanced multi-sensor system, including cameras, electronic skin, etc.,

it constructs an all-round visual perception mode, realizes precise environmental
perception and interaction ability, and adapts to a variety of application scenarios.

3. Cloud-based intelligent

o With innovative cloud-based intelligent technology, users do not need to write code. They
can quickly deploy through the skill library cloud service, achieve efficient customized
operations, and reduce the difficulty of use.

2. Product Display

3. Example of Degrees of Freedom

L10 (10 active degrees of freedom, 10 passive degrees of freedom)

FINGERS

LF RF MF FF
Finger1 ())

Fingera (_J (C J (CJ (CJ

Finger3 () (_J () C)

Finger4 C‘ j f‘_j (_ b
LU-) U

Thumb3

Thumbs T1umb4 THUMB

Joints Min (°) Max (°) Note
LF3. RF3. MF3. FF3. THUMB3 0 LF3. RF3. MF3. FF3—>80
(Bending) THUMB3—>25
LF4. RF4. FF4. THUMB4 (Side 0 RF3. FF3—>15
swing) LF—>23

THUMB3—>80
THUMBS5 (Rotation) 0 88

4. Motion Space Range

Four-finger Structure

For the four-finger structure of the Linker Hand L10 dexterous hand, the second joint and the
first joint of the four fingers can be manually adjusted at an angle according to the shape of the
object to be grasped. The second joint and the third joint of the four fingers achieve coupled
linkage through the connection of linkages. The motion range diagram is as follows:

the first joint of the the second joint of the the third joint of the
four fingers four fingers four fingers

WETEN i
!
Middle finger side swing angle
unable to side swing

Little finger side swing angle Forefinger side swing angle Forefinger side swing angle
radius side 2° , ulna side 21° radius side 0° , ulna side 12° radius side 13° , ulna side 9°

Thumb Structure

For the thumb structure of the Linker Hand L10 dexterous hand, the third joint and the second
joint of the thumb achieve coupled linkage through the connection of linkages, and the first

joint of the thumb is independently driven by a rotating motor. The motion range diagram is as
follows:

First joint of thumb Second and third joints of thumb

Side swing thumb Rotating thumb

5. Scene Demostration

6. Sensor System

Tactile Sensing (Standard Configuration)

The Linker Hand L10 is equipped with fingertip sensors, which can predict and sense the
presence and distance of objects. When in contact, it can accurately capture three-dimensional
forces and identify changes in surface texture and temperature.

Fingertip Tactile Sensors

sampling frequency =50Hz
0-20N
force measurement 0.1N

application accuracy

measurement 0.5%FS
resolution

measurement 2%FS
precision

measurement 0.25N
accuracy

directional 45°
resolution

Miniature Three-dimensional Force Sensors Inside the Fingers

Measurement range 0-50N
maximum force endured 200N
measurement resolution 0.2N

fastest measurement 1KHz
rate

Vision (Optional Configuration)

The Linker Hand dexterous hand adopts the design method of high-sensitivity fingertip cameras
+ palm cameras + wrist cameras, enabling multi-visual fusion perception. The minimum remote
operation system is equipped with a depth camera on the arm.

Visual-tactile Perception (Optional Configuration)

The Linker Hand dexterous hand has a visual-tactile perception mode, which essentially
combines vision with a large deep learning model. The principle of this technical solution is to
use a high-precision camera to capture the deformation of variable flexible materials. When
subjected to force, the shape of the grid deforms, and our miniature binocular cameras record
this deformation. Then, based on the well-trained large deep learning model, the depth
information and movement trend of the object are mapped out.

-Hel-0-0

7. Product Parameters

Degrees of Freedom
Number of Joints
Transmission Mode
Drive Mode

Control Interface
Weight

Maximum Load
Operating Voltage
Static Current

Average Current during No-load
Movement

Maximum Current
Repeat Positioning Accuracy
Maximum Grip Force of the Thumb

Maximum Grip Force of the Four
Fingers

Maximum Lateral Rotation Range
of the Thumb

Bending Angle of the Four Fingers
Side Swing Speed of the Thumb
Bending Speed of the Four Fingers

Bending Speed of the Thumb

10
10 active, 10 passive

Linkage drive

Self-developed joint module

CAN/RS485
750g

5kg
DC24V=*10%
0.2A

0.5A

2A
+0.20mm
12N

12N

1.65rad (95°)

1.57rad (90°)
2.35rad/s135°/s)
2.60rad/s (150°/s)
2.6rad/s (150°/s)

8. Appearance Dimensions

86.50

L <
B o
© T i g

9. Communication Methods

All versions of the dexterous hand support the use of the CAN bus debugging port or EtherCAT.

50

EtherCAT (Ethernet for Control Automation Technology) is a fieldbus based on 100Mbps
Ethernet. Itis currently used in many systems, and the latest version of the Linker Hand can be
well compatible with both the EtherCAT and ROS systems. Using EtherCAT or CAN in
combination with ROS requires a multi-core PC with good performance or our Al-Box device, as
well as a standard Ethernet port. The EtherCAT protocol used by the Linker Hand mainly relies
on the upper host computer or Al-Box to complete this work.

Supported Functions
@ Enable and disable position control
@ Change the PID values for torque control
@ Perform restrictive operations, such as cutting off force, current, temperature, etc.
@ Reset the motor
@ Adjust the data transmission rate of the motor and tactile sensors
@ Track errors and status indicator lights in the components
@ Download the latest firmware to the motor module
@ Download the latest Skill function module to the hand controller

@ Obtain data from the vision sensor

Control Strategy

Under the default configuration, EtherCAT can rely on the host computer or Al-Box to implement
the position control strategy. More complex control algorithms can be used, which can integrate
the information of joint and tactile sensors, and even achieve the integration of visual signals
through ROS. The torque loop inside the motor unit closes at a frequency of 5kHz. The PID
settings of this loop can be changed in real time. If different control strategies are required, you
can purchase existing control strategies from the Skill Store cloud service and use them directly
without programming. It also supports downloading new firmware to the motor.

Microcontroller

The Linker Hand uses a self-developed microcontroller for the embedding of the entire robot
system. All microcontrollers are connected to the internal CAN bus and can be accessed through
the EtherCAT interface.

10. Code Examples

Examples of the Linker Hand ROS SDK program

examples

0000-linker_hand_pybullet (PyBullet Simulation example)

0001-get_linker_hand_state (Obtain the current status of the Linker hand)

e 0002-gui_control(control it through the graphical interface)

e 0003-get_linker_hand_force (obtain the data of the Linker hand force sensor)

e 0004-get_linker_hand_speed (Obtain the current speed of the Linker hand force)

e 0005-get_linker_hand_current (Obtain the current current of the Linker hand force)

e 0101-lipcontroller (The tactile sensor cooperates with the Linker hand to perform pinching
actions)

e 0102-gesture-Show-OK (Use Python to control the hand to make an "OK" gesture)

e 0103-gesture-Show-Surround-Index-Finger (Use Python to control the hand to rotate the
index finger)

e (0104-gesture-Show-Wave (Use Python to control the hand to make a wave motion)

e 0105-gesture-Show-Ye (Use Python to control the hand to perform a set of complex
demonstration actions)

e 1001-human-dex (Use the Linker Hand for imitation learning training and achieve
autonomous object grasping)

e 1002-linker_unidexgrasp (The Unidexgrasp dexterous hand grasping algorithm based on the
Linker Hand)

Instructions for the Linker Hand Configuration File

Whether it is the real LinkerHand or the simulated one, the parameter file needs to be
configured first. Modify the corresponding configuration parameters according to actual needs.

(1) Modify the configuration file and configure it for the physical LinkerHand or the simulation
environment.

1 $ cd Linker_Hand_SDK_ROS/src/linker_hand_sdk/linker_hand_sdk_ros/config
2 $ sudo vim setting.yaml

Since the graphical interface can only control one LinkerHand individually, corresponding
configurations need to be made in the configuration file to match the physical LinkerHand.

https://github.com/linkerbotai/linker_hand_sdk/blob/main/examples/README_CN.md
https://github.com/linkerbotai/linker_hand_sdk/tree/main/examples/linker_hand_pybullet/
https://github.com/linkerbotai/linker_hand_sdk/tree/main/examples/L20_get_linker_hand_state/
https://github.com/linkerbotai/linker_hand_sdk/tree/main/examples/gui_control/
https://github.com/linkerbotai/linker_hand_sdk/tree/main/examples/get_linker_hand_force/
https://github.com/linkerbotai/linker_hand_sdk/tree/main/examples/get_linker_hand_speed/
https://github.com/linkerbotai/linker_hand_sdk/tree/main/examples/get_linker_hand_current
https://github.com/linkerbotai/linker_hand_sdk/tree/main/examples/gesture-show/lipcontroller.py
https://github.com/linkerbotai/linker_hand_sdk/tree/main/examples/gesture-show/gesture-Show-OK.py
https://github.com/linkerbotai/linker_hand_sdk/tree/main/examples/gesture-show/gesture-Show-Surround-Index-Finger.py
https://github.com/linkerbotai/linker_hand_sdk/tree/main/examples/gesture-show/gesture-Show-Wave.py
https://github.com/linkerbotai/linker_hand_sdk/tree/main/examples/gesture-show/gesture-Show-Ye.py
https://github.com/linkerbotai/human-dex
https://github.com/linkerbotai/linker_unidexgrasp

Linker Hand Example 100

The LinkerHand Example 100 provides rich example cases and source code, fully demonstrating
the functions of the LinkerHand.

e Preparation
Start the SDK

2 S roscore

Open a new terminal and start ROS SDK

1 $ cd Linker_Hand_SDK_ROS/
2 $ source ./devel/setup.bash

3 S roslaunch linker_hand_sdk_ros linker_hand.launch

0000-PyBullet Simulation Example

Open a new terminal. The SDK can control the LinkerHand in the simulator.

1 $ cd Linker_Hand_SDK_ROS/
2 $ source ./devel/setup.bash
3 $ rosrun linker_hand_pybullet linker_hand_pybullet.py

Bullet Physics ExampleBrowser using OpenGL3+ [btgl] Release build - 0O x

Gle o fiew

Syplorer | Tast

~amTargetPos=-0,44,0,37,-0.40, dist=1.40, pitch=-35.00, yaw=50.00 Status: Ok

0001-Obtain the Current Status of the Linker Hand. The status values include range
values and radian values

Open a new terminal

$ cd Linker_Hand_SDK_ROS/

$ source ./devel/setup.bash

_If the loop parameter is True, the terminal will print the current status
values of the LinkerHand dexterous hand in a loop. If it is False, the
terminal will only print the current status values of the LinkerHand
dexterous hand once

N

$ rosrun L20_get_linker_hand_state L20_get_linker_hand_state.py _loop:=True

0002-Graphical Interface Control

The graphical interface control allows you to control the independent movement of each joint of
the LinkerHand L10 and L20 through sliders. You can also add buttons to record the values of all
current sliders and save the current movement status of each joint of the LinkerHand. Replay
actions through functional buttons.

Controlling LinkerHand using gui_control:

To control the dexterous hand through the gui_control interface, you need to start
linker_hand_sdk_ros and operate the LinkerHand in the form of a topic.

1 Open a new terminal Start ros
2 $ roscore

Open a new terminal start ROS SDK

1 $ cd Linker_Hand_SDK_ROS/
2 $ source ./devel/setup.bash
3 $ roslaunch linker_hand_sdk_ros linker_hand.launch

After a successful startup, there will be prompt information such as the SDK version, CAN
interface status, dexterous hand configuration information, and the current joint speed of the
Linker hand

Open a new terminal to start the gui control.

Copy the bash code

1 $ cd Linker_Hand_SDK_ROS/
2 $ source ./devel/setup.bash
3 $ rosrun gui_control gui_control.py

After starting, the Ul interface will pop up. You can control the movement of the corresponding
LinkerHand joints through the sliders. And you can save the current slider data by adding
buttons on the right side for reuse

0003-Obtain the data of the force sensor of the Linker Hand

Open a new terminal

$ cd Linker_Hand_SDK_ROS/

$ source ./devel/setup.bash

_If the oop parameter is True, the terminal will print the current status
values of the LinkerHand dexterous hand in a loop. If it is False, the
terminal will only print the current status values of the LinkerHand
dexterous hand once

4 $ rosrun get_linker_hand_force get_linker_hand_force.py _loop:=False

#2025-01-15 15:43:16 no data for the left hand#2025-01-15 15:43:16 The
normal force of the five fingers of the right hand: [0.0, 0.0, 0.0, 0.0,
0.0]#2025-01-15 15:43:16 The tangential force of the five fingers of the
right hand: [0.0, 0.0, 0.0, 0.0, 0.0]#2025-01-15 15:43:16 The direction of
the tangential force of the five fingers of the right hand: [255.0, 255.0,
255.0, 255.0, 255.0]#2025-01-15 15:43:16 The proximity sensing of the five
fingers of the right hand: [0.0, 0.0, 0.0, 0.0, 0.0]

0004-Obtain the current speed of the force of the Linker Hand

Open a new terminal

=

N

$ cd Linker_Hand_SDK_ROS/

$ source ./devel/setup.bash

_If the oop parameter is True, the terminal will print the current status
values of the LinkerHand dexterous hand in a loop. If it is False, the
terminal will only print the current status values of the LinkerHand
dexterous hand once

$ rosrun get_linker_hand_speed get_linker_hand_speed.py _loop:=False

0005 - Obtain the current current of the force of the Linker Hand

Open a new terminal

N

$ cd Linker_Hand_SDK_ROS/

$ source ./devel/setup.bash

_If the oop parameter is True, the terminal will print the current status
values of the LinkerHand dexterous hand in a loop. If it is False, the
terminal will only print the current status values of the LinkerHand
dexterous hand once

$ rosrun get_linker_hand_current get_linker_hand_current.py _loop:=False

0101-Pinch operation with the tactile sensor in cooperation with the Linker Hand

To use this example, you need to start linker_hand_sdk_ros

1

Open a new terminal Start ros

2 S roscore

Open a new terminal start ROS SDK

1 $ cd Linker_Hand_SDK_ROS/
2 $ source ./devel/setup.bash

3 S roslaunch linker_hand_sdk_ros linker_hand.launch

After a successful startup, there will be prompt information such as the SDK version, the status
of the CAN interface, the configuration information of the dexterous hand, and the current joint
speed of the dexterous hand.

Open a new terminal to use the demonstration example

1 python ./<Your file path>/lipcontroller.py

e If the terminal prints out "Start the demonstration", it means the normal operation. At this
time, if the hand settings are correct, the index finger and middle finger should start to
perform the pinching action. It will stop when pinching an object, and will continue to try to
pinch after the object is taken away until it pinches an object or reaches the limit. The limit
state is shown in the following figure

e lipcontroller.py This is a demonstration demo developed based on version 7. When applying
it to the demonstrations of other versions, you need to adjust the opposing posture of the
thumb and index finger. Otherwise, the action of "pinching the index finger and thumb
together" cannot be achieved.

http://lipcontroller.py/

0102- Use Python to control the hand to make an "OK" gesture

To use this example, you need to start linker_hand_sdk_ros

Copy the bash code

1 Open a new terminal Start ros
2 $ roscore

Open a new terminal start ROS SDK

1 $ cd Linker_Hand_SDK_ROS/
2 $ source ./devel/setup.bash
3 $ roslaunch linker_hand_sdk_ros linker_hand.launch

After a successful startup, there will be prompt information such as the SDK version, the status
of the CAN interface, the configuration information of the Linker hand, and the current joint
speed of the Linker hand.

1 python ./<Your file path>/gesture-Show-0K.py

0103- Use Python to control the hand to make the index finger rotate

To use this example, you need to start linker_hand_sdk_ros

1 Open a new terminal Start ros
2 $ roscore

Open a new terminal start ROS SDK

1 $ cd Linker_Hand_SDK_ROS/
2 $ source ./devel/setup.bash
3 $ roslaunch linker_hand_sdk_ros linker_hand.launch

After a successful startup, there will be prompt information such as the SDK version, the status
of the CAN interface, the configuration information of the Linker hand, and the current joint
speed of the Linker hand.

Open a new terminal to use the demonstration example

1 python ./<Your file path>/gesture-Show-Surround-Index-Finger.py

0104- Use Python to control the hand to make wave motion
To use this example, you need to start linker_hand_sdk_ros

Copy the bash code

1 Open a new terminal Start ros
2 $ roscore

Open a new terminal start ROS SDK

1 $ cd Linker_Hand_SDK_ROS/
2 $ source ./devel/setup.bash

3 $ roslaunch linker_hand_sdk_ros linker_hand.launch

After a successful startup, there will be prompt information such as the SDK version, the status
of the CAN interface, the configuration information of the Linker hand, and the current joint
speed of the Linker hand.

Open a new terminal to use the demonstration example

Copy the bash code

1 python ./<Your file path>/gesture-Show-Wave.py

0105- Use Python to control the hand to perform a set of complex demonstration
actions

To use this example, you need to start linker_hand_sdk_ros

1 Open a new terminal Start ros
2 $ roscore

Open a new terminal start ROS SDK

1 $ cd Linker_Hand_SDK_ROS/
2 $ source ./devel/setup.bash

3 $ roslaunch linker_hand_sdk_ros linker_hand.launch

After a successful startup, there will be prompt information such as the SDK version, the status
of the CAN interface, the configuration information of the Linker hand, and the current joint
speed of the Linker hand.

Open a new terminal to use the demonstration example

Copy the bash code

1 python ./<Your file path>/gesture-Show-Ye.py

-This example is a demonstration demo developed based on version 7. When applying it to the
demonstrations of other versions, you need to adjust the opposing posture of the thumb and
index finger. Otherwise, the action of "pinching or opposing the index finger and thumb
together" cannot be achieved.

1001- Use LinkerHand for imitation learning training

To use this example, you need to run the ROS Noetic system on Ubuntu 20.04. The hardware is
the LinkerRobot humanoid robot. You can also use other robotic arms or robots for imitation
learning training, provided that you modify the corresponding data topics

For detailed usage instructions, please refer to human-dex README.md

1. Configure the environment

https://github.com/linkerbotai/human-dex

1 cd human-dex
2 conda create -n human-dex python=3.8.10
3 conda activate human-dex
4 pip install torchvision
5 pip install torch
6 pip install -r requirements.txt
2. install
1 mkdir —-p your_ws/src
2 cd your_ws/src
3 git clone https://github.com/linkerbotai/human-dex.git
4 cd ..
5 catkin_make
6 source ./devel/setup.bash
3. run
1 collect data
2 roslaunch record_hdf5 record_hdf5.launch
3 open a new terminal to send the data collection command
4 rostopic pub /record_hdf5 std_msgs/String "data:
"{\"method\":\"start\",\"type\":\"humanplus\"}'"
4, Training
Copy the bash code

cd humanplus/scripts/utils/HIT

python3 imitate_episodes_hl_train.py —-task_name data_cb_grasp —--ckpt_dir
cb_grasp/ --policy_class HIT --chunk_size 50 --hidden_dim 512 --batch_size 48
--dim_feedforward 512 —-1r le-5 --seed O --num_steps 100000 --eval_every 1000
--validate_every 1000 --save_every 1000 --no_encoder --backbone resnetl8 --
same_backbones --use_pos_embd_image 1 --use_pos_embd_action 1 --dec_layers 6 -

-gpu_id 0 --feature_loss_weight 0.005 --use_mask --data_aug

5. Reproduce/Evaluate

Copy the bash code

1 cd humanplus/scripts

2 python3 cb.py

1002- The Unidexgrasp dexterous hand grasping algorithm based on LinkerHand

The original Unidexgrasp algorithm uses the shadowhand. The following provides the relevant
code for developing the Unidexgrasp algorithm on the linkerhand.

Part of Generating the Grasping Posture

For the part of the grasping posture, a mapping scheme is adopted. The hand posture of the
shadowhand output by the model is mapped to the hand posture of the LinkerHand L20 for
subsequent development.

1. Configure the environment

Copy the code in the command line

conda create —n unidexgrasp python=3.8
conda activate unidexgrasp
conda 1install -y pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0
cudatoolkit=11.3 -c pytorch -c conda-forge

4 conda 1install -y https://mirrors.bfsu.edu.cn/anaconda/cloud/pytorch3d/linux-
64 /pytorch3d-0.6.2-py38_cull3_pytl100.tar.bz2

5 pip install -r requirements.txt

6 cd thirdparty/pytorch_kinematics

7 pip install -e .

8 cd ../nflows

9 pip install -e .

10 cd ../

11 git clone https://github.com/wrc042/CSDF.git
12 cd CSDF

13 pip install -e .
14 cd ../../

2. Training
GrasplPDF

Copy the code in the command line

1 python ./network/train.py --config-name -ipdf_config \
-—exp-dir ./dipdf_train

GraspGlow

Copy the code in the command line

1 python ./network/train.py —--config-name glow_config \

2 -—exp-dir ./glow_train

3 python ./network/train.py --config-name glow_joint_config \

4 -—exp-dir ./glow_train
ContactNet

Copy the code in the command line

1 python ./network/train.py —-config-name cm_net_config \

-—exp-dir ./cm_net_train

3. Verification

Copy the code in the command line

1 python ./network/eval.py --config-name eval_config \
-—exp-dir=./eval

4. Mapping
Visualize the results

Copy the code in the command line

1 python ./tests/visualize_result_120_shadow.py --exp_dir 'eval' --num 3

Save the results for the subsequent development of the reinforcement learning algorithm.

Copy the code in the command line

1 python ./tests/data_for_RL.py

