
Servosila Device Reference
Device Type: Servo Drive (0xA020192)

Revision F (May 2024)

1 www.servosila.com

http://www.servosila.com/

Table of Contents
Configuration Parameters..4

Configuration - Datasheet..4
Configuration - Control Laws..12
Configuration - Features...21
Configuration - Motion Control...25
Configuration - Work Zone..26
Configuration - Fault Management..27
Configuration - Brake...27
Configuration - Peripheral: Hall Sensors...29
Configuration - Peripheral: Quadrature Encoder...29
Configuration - Peripheral: SSI/BISS-C Encoder..32
Configuration - Peripheral: SPI Encoder..37
Configuration - Peripheral: PWM Encoder..42
Configuration - Peripheral: RC PWM and Electronic Gearing..43
Configuration - Peripheral: GPIO..44
Configuration - Telemetry Mapping: TPDO Message 0..45
Configuration - Telemetry Mapping: TPDO Message 1..47
Configuration - Telemetry Mapping: TPDO Message 2..48
Configuration - Networking...50
Configuration - Inverter: ADC & PWM...51
Configuration - Product Activation..52

Telemetry Parameters..53
Telemetry - System Status..53
Telemetry - ADC..56
Telemetry - Field Oriented Control (FOC)...56
Telemetry - Direct Field Control..57
Telemetry - Sensorless Control..57
Telemetry - Hall Sensors Observer...58
Telemetry - Peripheral: Hall Sensors..60
Telemetry - Peripheral: Quadrature Encoder..60
Telemetry - Peripheral: SSI/BISS-C Encoder..61
Telemetry - Peripheral: SPI Encoder..62
Telemetry - Peripheral: PWM Encoder..63
Telemetry - Peripheral: RC PWM and Electronic Gearing..64
Telemetry - Peripheral: GPIO...66
Telemetry - Peripheral: Inverter...66
Telemetry - Peripheral: Gate Driver...67
Telemetry - Networking...67
Telemetry - Device Information...68

Commands...69
Command - Electronic Speed Control (ESC), Hz..69
Command - Electronic Speed Control (ESC), RPM..69
Command - Servo (Legacy Compatibility)..69
Command - Current Control / Field Oriented Control (FOC)..70
Command - Electronic Torque Control (ETC)...70
Command - Direct Field Control: Rotation..71

2 www.servosila.com

http://www.servosila.com/

Command - Direct Field Control: Electrical Position..71
Command - Kickstart...72
Command - Reset...72
Command - Reset Work Zone..73
Command - Brake..73
Command - Stop...74
Command - Off...74
Command - GPIO: PWM output..74
Command - Testing: Iq Current Step Response...74
Command - Testing: Field Oriented Control (FOC) Step Response..75
Command - Testing: Electronic Speed Control (ESC) Step Response..75
Command - Servo...76
Command - Servo: Modulo..76
Command - Servo: Turns and Modulo...77
Command - Servo: Linear Interpolation..77
Command - Brushed: Open Loop Control (1-2 motors)..78
Command - Testing: Servo Step Response...78
Command - Autoconfiguration: Brushless Motor..79
Command - Autoconfiguration (Advanced): Brushless Motor..80
Command - Autoconfiguration: Brushed Motor..81
Command - GPIO: Generic Output..82

Telemetry Mappings (TPDO)...83
Telemetry Message with COB-ID 0x180...83
Telemetry Message with COB-ID 0x280...83
Telemetry Message with COB-ID 0x380...83

3 www.servosila.com

http://www.servosila.com/

Configuration Parameters

Configuration - Datasheet

The "Datasheet" section contains parameters that characterize the key components of an electric drive: a motor,
encoder(s), Hall sensors and a gearbox. The information is either found in datasheets supplied by manufacturers of
those components, or measured using the controller's auto-configuration capabilities.

The "Datasheet" section is an input into computation of various parameters of control laws that determine performance
of the electric drive. Note that not all of the "Datasheet" parameters are mandatory for every configuration of electric
drives. Watch out for the units in which those parameters are defined since conversion of the units might be necessary
for proper configuration. Instead of filling out the "Datasheet" section directly, one might want to use a "Spreadsheet"
tool that comes with the accompanying software. The tool properly provisions the "Datasheet" parameters into the
controller while also computing parameters of various control laws.

Start configuring an electric drive by filling-out the "Datasheet" section, manually or using the "Spreadsheet" tool, or
by launching the controller's auto-configuration procedure that fills out much of the section automatically.

Parameter Units Description CANopen

1

Motor Type
(Brushless or
Brushed)

- • 0: Brushless
• 1: Brushed

UINT16,
0x2000,
0x01,
rw

2 Maximum
Limit on
Continuous
Current (Line-
to-Line)

A This is a maximum current the motor can handle indefinitely without over-
heating. Do not confuse this with a short-term peak current which could be much
higher. The "Maximum Limit on Continuous Current" is one of the most critical
performance and safety parameters in the "Datasheet" section. On one hand, the
parameter defines the maximum continuous torque the electric drive can
produce. The higher this limit is set, the more electric current is allowed to be
driven through the motor by the controller, the more torque the motor produces,
the better the dynamics of the electric drive is. On the other hand, driving more
current through the motor means generating more heat in the motor's winding.
The heat is what burns electric motors. This means that making a mistake and
setting this parameter too high might have fatal consequences for the motor.
Setting this parameter too low would mean that the motor is not used to its full
capacity in terms of torque. In short, it is important to set this parameter right.

However, this parameter is not what can be experimentally determined or
measured by the controller itself during an auto-configuration procedure. Such a
procedure would have to burn a few motors to figure out what maximum phase-
to-phase electric current a particular model of the motor can handle continuously
with a stalled shaft. Obviously, this is not a practical approach. If one has to
guess the limit, start from a very conservative low value, and gradually increase
it until the motor starts heating up too much. Some of the motors will burn
before showing any signs of heating up. This means that this parameter has to be
taken from a datasheet supplied by the motor's manufacturer.

FLOAT32,
0x2000,
0x02,
rw

4 www.servosila.com

http://www.servosila.com/

Note that if a particular application does not require all the torque the motor can
produce, it would be wise to set the limit lower than a nominal value suggested
by the manufacturer. This would establish a safety margin at the expense of
torque. If the design goal is to push the motor to its limit in terms of torque and
dynamics, it is still wise to start the commissioning procedure at a lower limit,
and gradually raise the limit while observing how the motor handles the heat,
particularly in stalled situations such as braking or servo modes. Note that a
motor is operating in its worse possible situation as far as heat dissipation is
concerned whenever the motor is producing maximum torque (=maximum
current) while stalled (=no motion), for example, in a braking mode or in a low-
speed direct drive mode.

Note a difference between a "maximum current" and a "nominal
current/maximum continuous current" characteristics of motors. Since
manufacturers of the motors use varying terminology, it is easy to get confused
and make a mistake. The term "maximum current" is what manufacturers often
use to define an electric current the motor can handle for relatively short periods
of time, typically a few seconds. This is not what needs to be configured here.
What we are looking for is a limit on "continuous" current, often defined as the
"nominal" or "rated" current in datasheets. This is a phase-to-phase electric
current that a stalled motor can handle indefinitely without any damage due to
heat. To summarize the point, be extra careful with datasheet entries called
"maximum current". Those entries might define a current that is way above a
"continuous current/nominal current" limit that we are looking for.

HINT: If a brushless motor's datasheet defines both "nominal power" and
"nominal voltage" parameters, it is possible to derive implied "nominal current"
using a formula given below. However, please do not confuse "maximum
power" with "nominal power" as those might differ by a factor of five or more.

Maximum Continuous Current (Line-to-Line) = Nominal Power (W) / Nominal
Voltage (V) * 1.414213562

3

Poles Number
(Rotor Poles)

- The Poles Number parameter should be taken from the motor's datasheet, or it
can be determined experimentally. Note that the number of rotor poles is always
an EVEN number since magnet poles always come in pairs.

Note that some motor manufacturers specify "Pole Pairs" instead of "Poles
Number" in their datasheets. However, it is easy to convert "pole pairs" to
"poles". Just multiply the number of pairs by 2 to get the number of poles. For
example, if a motor has 8 "Pole Pairs", then it means that Poles Number is
8*2=16 poles. There is a simple procedure that experimentally determines the
Poles Number. There is a video that explains how to commission an "Unknown
Motor".

UINT16,
0x2000,
0x03,
rw

4 Phase
Resistance
(Line-to-Line)

Ohm The phase-to-phase electrical resistance parameter should be taken from the
motor's datasheet, or it can be measured using the controller itself. Even if the
parameter is provided in the motor's datasheet, it is still recommended to

FLOAT32,
0x2000,
0x04,

5 www.servosila.com

http://www.servosila.com/

measure it and re-confirm the value.

Electrical resistance generally increases as the temperature of the motor
increases. As such, do not be surprised if the measured value differs from a value
taken from the datasheet.

The resistance is automatically measured by the controller during auto-
configuration procedure.

rw

5

Phase
Inductance
(Line-to-Line)

H The phase-to-phase inductance parameter should be taken from the motor's
datasheet, or it can be measured using the controller itself.

Even if the parameter is provided in the motor's datasheet, it is still
recommended to measure it and re-confirm the value for a given motor.

The inductance is automatically measured by the controller during auto-
configuration procedure.

FLOAT32,
0x2000,
0x05,
rw

6

Back-Emf
Constant (Ke)

V/
(rad/

s)

The Back-Emf Constant (Ke) parameter defines how much voltage a motor
generates whenever an external force spins its rotor thus turning the motor into
an electric generator.

Although not immediately apparent from the definition, the Back-Emf Constant
(Ke) also tells how much torque the motor produces given an electric current
that flows through the motor. There is a well-known relationship between an
electric current flowing through a motor and a torque produced by the motor.
The Ke constant plays a prominent role in a formula that details the relationship.

The Back-Emf Constant (Ke) should generally be MEASURED using the
controller itself. It is usually not a good idea to take the value of Ke straight from
a motor's datasheet as there are so many ways the value can be measured by the
manufacturer, and there are so many units the value can be expressed in, that it is
very easy to make a mistake when configuring the controller. It is better to allow
the controller to measure the constant, than risking to misconfigure it.

Many manufacturers of the motors provide alternative constants called Velocity
Constant (Kv) or Torque Constant (Kt) instead of the Back-Emf Constant (Ke)
that the controller expects. However, there is a simple way to convert one
constant into another (Ke, Kv, Kt). The configuration software comes with a tool
that performs the conversions. It is wise to first measure Ke using the controller,
and then compare it to a Ke value taken from a datasheet or derived from either
Kv or Kt constant, assuming that at least one of those constants is provided by
the manufacturer.

The controller expects that the Back-Emf Constant (Ke) is configured in units
called "V (peak, line-to-neutral) per electrical rad/s". The controller measures
Back-Emf Constant (Ke) in those units, so one do not have to worry about units
conversion. If one still wants to venture into converting between various units

FLOAT32,
0x2000,
0x06,
rw

6 www.servosila.com

http://www.servosila.com/

used to define the Back-Emf (Ke) constant, the software comes with a tool that
helps with that.

To summarize, as the Back-Emf Constant (Ke) is something that can be easily
misunderstood or misconfigured, it is better to rely on the controller's own
capabilities to properly measure and auto-configure the parameter.

The Back-Emf Constant (Ke) is automatically measured by the controller during
auto-configuration procedure.

7

Payload:
Viscous
Damping
Constant

Nm/
Hz

Viscous damping refers to forces of friction that are proportional to the motor's
speed of rotation. An example of viscous damping would be water giving
mechanical resistance to a pump's motor. Note that viscous damping refers to
forces originated in both the motor and its payload, rather than just in the motor.
This means that the parameter needs to be determined experimentally, rather
than taken from the motor's datasheet.

If Viscous Damping is not a concern, set the parameter's value to 0 or to a very
small value, and just proceed with commissioning the motor.

There is an experimental procedure that allows measuring the Viscous Damping
Constant using the controller's built-in capabilities.

The controller expects that the Viscous Damping Constant is provided in
"Newton-Meters per Electrical Revolution per Second (Hz)" units.

The Viscous Damping Constant is used by the controller in the following ways:

• Feed-Forward Optimization: Viscous Damping Compensation for
Electronic Speed Control and Servo Control.

• As an input into a procedure that measures "Moment of Inertia of Rotor
and Payload".

A Feed-Forward Optimization called "Viscous Damping Compensation"
improves the dynamics and efficiency of an electric drive in case the drive
experiences much viscous damping. The optimization can be enabled once the
Viscous Damping Constant has been measured using an experimental routine.
By default, the optimization is turned off, and thus the constant is not used for
anything other than as an input into a procedure that measures "Moment of
Inertia of Rotor and Payload".

To properly measure "Moment of Inertia of Rotor and Payload", another
parameter in this section, using the controller's built-in capabilities, one first
needs to properly measure "Viscous Damping Constant".

Typically, one would initially leave the Viscous Damping parameter as 0 or a
very small value, complete the first pass of the configuration, and later come
back to the parameter to measure it, refine the configuration, and enable an

FLOAT32,
0x2000,
0x07,
rw

7 www.servosila.com

http://www.servosila.com/

optimization feature that utilizes the parameter.

8

Moment of
Inertia of Rotor
and Payload

kg*m
2

The "Moment of Inertia of Rotor and Payload" parameter is used by the
controller to determine parameters of control laws related to Electronic Speed
Control (ESC) mode. Specifically, "ESC Kp" parameter of speed control loop is
proportional to the moment of inertia. If the moment of inertia is not measured
correctly, the electric drive might experience vibrations or noise whenever
operated in a speed-controlled mode or in a servo mode. It is generally not
required to be very precise in determining the moment of inertia. It is enough to
be "about right" since the control laws have significant stability margins.

The controller can measure the Moment of Inertia directly. Note that before
invoking the procedure, one might have to measure "Viscous Damping
Constant", another "Datasheet" section's parameter.

The moment of inertia is automatically measured by the controller during an
auto-configuration procedure. In many cases, it is sufficient to just launch the
auto-configuration procedure that figures everything out. However, the
procedure assumes that Viscous Damping is not present. If that turns out to be
not the case, the auto-configuration procedure overestimates the moment of
inertia. This overestimation might lead to vibrations or noise in the drive,
whenever the drive is operated under Electronic Speed Control (ESC). In that
case, please refer to a tutorial that explains how to measure both Moment of
Inertia and Viscous Damping Constant together, and then rectify control laws.
The Moment of Inertia is needed to estimate an "ESC Kp" parameter of a control
law for Electronic Speed Control (ESC).

An initial value for the Moment of Inertia can be taken from the motor's
datasheet. A challenge is that the datasheet provides the moment of inertia of the
motor's own rotor while what is needed is a combined moment of inertia of both
the rotor and its payload. Thus it is recommended to use the controller to directly
measure the combined moment of inertia instead of relying on the datasheet
value.

Typically, one would start commissioning a motor with a value taken from a
datasheet, and would come back later to refine the moment of inertia by
measuring it using the controller's built-in capabilities.

FLOAT32,
0x2000,
0x08,
rw

9

Hall Sensors 0 or 1 • 0: Sensorless
• 1: Sensored

The parameter "Hall Sensors" tells the controller whether or not the motor has
built-in Hall sensors. Many brushless motors come with Hall sensors. The
sensors enable the controller to maintain a stable torque at low or zero speeds.

Both this parameter and a corresponding section "Peripheral: Hall Sensors" are
automatically configured by the controller's auto-configuration procedure.
Typically, one would not edit these manually.

BOOL,
0x2000,
0x09,
rw

8 www.servosila.com

http://www.servosila.com/

An advantage of having Hall sensors is that the motor works in a much more
stable way at low or zero speeds as compared to "sensorless" motors. With Hall
sensors, the motor can produce torque at zero speed or whenever the motor is
stalled.

This is not the case with "sensorless" motors. If a motor does not have Hall
sensors or an encoder (or the sensors are not yet wired to the controller), the
controller operates the motor in a so-called "sensorless" mode. An issue with
"sensorless" mode is that it only works whenever the motor reaches a certain
speed. Getting a motor to that speed requires the controller to employ a special
technique called "Kickstart" (configured and enabled separately). The
"Kickstart" technique might cause ripples of torque at very low speeds, just like
a gasoline engine. The ripples at low speeds are not a problem in a wide range of
applications such as pumps, propellers, or electric scooters that do not need to
operate at very low speeds. Other applications warrant a use of "sensored"
motors or even better, motors with encoders. To summarize the point,
"sensorless" motors are cheaper and easy to use, but might face challenges
whenever operated at very low speeds. Motors with Hall sensors ("sensored")
have better performance at low speeds, produce torque at zero speeds, but might
cost a bit more, and require extra wiring as well as extra configuration on the
controller side.

Note that even if a brushless motor has built-in Hall sensors, it is absolutely legal
to initially run the motor as a "sensorless" one. The Hall sensors can be wired to
the controller later as a way to improve performance at low or zero speeds of an
already operational drive. In fact, it is recommended to do it that way since it
allows to gradually introduce complexity into the drive's wiring and
configuration.

The controller can also utilize an external encoder (a "Motor Encoder") instead
of Hall sensors when operating a "sensorless" motor. Such an encoder is even
better than Hall sensors, when it comes to performance at low or zero speeds. An
added benefit is that the encoder can be used for Servo/Direct Drive functions.
The issue is that an encoder is typically much more expensive than built-in Hall
sensors, and might require complicated mechanical installation, unless the
encoder is built into the motor itself. Set this parameter to "Sensorless" and
proceed to configuring the "Motor Encoder" parameter if you are commissioning
a drive with an encoder, but without Hall sensors.

The controller's auto-configuration procedure is capable of determining if the
motor has Hall sensors that are properly wired to the controller. If the sensors are
connected to the controller, but the auto-configuration procedure does not
identify the motor as a "Sensored" one, please check the cabling and connectors
between the controller and the Hall sensors of the motor.

10 Motor Encoder - • 0: No encoder
• 1: Quadrature Encoder
• 2: BISS-C/SSI Encoder

UINT16,
0x2000,
0x0A,

9 www.servosila.com

http://www.servosila.com/

• 3: SPI Encoder
• 4: PWM Encoder

The controller is designed to interface to up to two absolute encoders integrated
into the same electric drive. For configuration purposes, the encoders are
identified as a "Motor Encoder" and a "Servo Encoder". The encoders play
different roles as explained below:

• A "Motor Encoder" is an encoder rigidly connected to the motor's rotor
or built into the motor itself. The "Motor Encoder" is used to sense the
rotor's angular position in relation to the motor's stator. This
measurements are used by the controller for commutation of the stator's
windings to create torque and to measure speed. The place of mechanical
installation must be chosen in such a way that no gearbox or a belt could
introduce a backlash in the linkage between the rotor and the encoder.
When rigidly attached to the rotor, such an encoder can be used by the
controller to accurately measure the angular position of the rotor. The
angular position of the rotor is what the controller needs to manage
magnetic fields inside the motor in such a way that the motor generates
torque. An added benefit is that such an encoder can be used for
Servo/Direct Drive or Brake functions. The encoder could be of a
SINGLE-TURN or a MULTI-TURN type.

• A "Servo Encoder" on the other hand is a load-side encoder dedicated to
performing servo control functions, due to control issues related to
backlash of a gearbox/speed reducer. An encoder playing this role might
be linked to the rotor via backlash-introducing mechanisms, such as a
gearbox or a belt. The backlash implies that some other means (Hall
sensors, a motor encoder, or sensorless control) is to be used by the
controller to sense the angular position of the rotor. Thus the distinction
between the roles of a "Servo Encoder" and a "Motor Encoder". Note that
a "Servo Encoder" can be of a ROTARY SINGLE TURN, ROTARY
MULTI-TURN or a LINEAR type.

To summarize, a "Motor Encoder" is a functional substitute for Hall sensors or
sensorless control, with further benefits related to that it can be used for Direct
Drive Control, Servo Control, or Brake functions. Such an encoder is much
better than Hall sensors when it comes to controlling a brushless motor at low or
zero speeds, due to higher resolution of shaft position sensing, but is more
expensive in terms of hardware. Typical Direct Drive motor features such an
encoder employed for both spinning the motor and for servo positioning, thus
killing two birds with one stone.

Note that if an electric drive is equipped with Motor Encoder, it does not make
sense to use Hall Sensors since the encoder typically has a much better
resolution than Hall Sensors.

Besides a zero backlash requirement, the motor encoder's interface to the
controller must be of a low latency. This is especially true for encoders with

rw

10 www.servosila.com

http://www.servosila.com/

digital interfaces such as SPI or SSI. High latency or high backlash of an
encoder makes it difficult for the controller to use the encoder for the purpose of
spinning a brushless motor. In such a case, the controller shall be configured to
use Hall sensors (if present) or sensorless control instead.

Note that some types of encoders share pins and thus cannot be used together at
the same time.

After enabling an encoder here, proceed to configuring an associated encoder
peripheral in a corresponding section.

It usually makes sense to first run a brushless motor in a sensorless mode, and
only later connect an encoder to the controller. This approach helps gradually
introduce complexity into the controller's configuration. Note that even if a
motor is equipped with an encoder, it is possible to run it as a plain sensorless
brushless motor.

CAUTION: If you enable a "Motor Encoder" here, make sure the configuration
parameter "encoder bias vs. electrical position" of the corresponding encoder
peripheral is properly set. The parameter defines an angular offset of the rotor
vs. motor encoder readings. The parameter is important for proper positioning of
magnetic field inside the motor. Failing to do so may cause the motor to
unexpectedly accelerate out of control once given a motion command.

11

Servo Encoder - • 0: No encoder
• 1: Quadrature Encoder
• 2: BISS-C/SSI Encoder
• 3: SPI Encoder
• 4: PWM Encoder

A "Servo Encoder" is a load-side encoder dedicated to servo control function.
This encoder is allowed to be linked to the motor via backlash-introducing
mechanisms such as a gearbox or a belt. The implies that some other means
(Hall sensors, a "Motor Encoder", or Sensorless Control) shall be used by the
controller to sense the angular position of the rotor.

Note that a "Servo Encoder" can be of a ROTARY SINGLE-TURN, ROTARY
MULTI-TURN or a LINEAR type.

Note that some types of encoders share pins and thus cannot be used together at
the same time. After enabling an encoder here, proceed to configuring an
associated encoder peripheral in a corresponding section.

It usually makes sense to first run a brushless motor in a sensorless mode, and
only later connect an encoder to the controller. This approach helps gradually
introduce complexity into the controller's configuration. Note that even if a
motor is equipped with an encoder, it is possible to run it as a plain sensorless
brushless motor.

UINT16,
0x2000,
0x0B,

rw

11 www.servosila.com

http://www.servosila.com/

If "Feature: Use Servo Encoder for Speed Measurements" is enabled, then the
controller uses the "Servo Encoder" to also measure electrical speed instead of
relying on Hall Sensors or Sensorless Control for this purpose. In most cases, it
is beneficial to use Servo Encoder instead of Hall Sensors for speed
measurements, since Hall Sensors are not suitable for measuring very low
speeds. However, very high gearbox reduction ratios could dilute the advantages
of Servo Encoder when it comes to precision of measuring rotor's speed as
compared to measurements using Hall Sensors. Thus, this feature can be turned
on or off via the configuration parameter.

12

Rotary:
Gearbox
Reduction
Ratio

- The "Gearbox Reduction Ratio" parameter needs to be set whenever a servo
actuator is equipped with a gearbox, a belt, or any other type of a speed reducer.
Otherwise set this parameter to 1.0.

For ROTARY servos, set the parameter to match a reduction ratio of the servo
mechanism's gearbox or belt. For example, if the reduction ratio is 100:1, then
set this parameter to 100. If there is a multi-stage speed reducing mechanism
(such as a belt driving a harmonic gear set), make sure a combined reduction
ratio is used.

For LINEAR servo mechanisms, determine how many rotor revolutions it takes
the motor to move the linear encoder from its initial position (such as a leftmost
one) to the furthest end position (such as a rightmost one). It might turn out to be
a fractional number. Use this number as the reduction ratio here.

If an electric drive does not have a "Servo Encoder", a gearbox or a belt, just set
this parameter to 1.0.

FLOAT32,
0x2000,
0x0C,

rw

13

Linear: Ball
Screw Lead

mm/
rev

The "Ball Screw Lead" is a distance travelled by a ball screw of a linear actuator
per single revolution of the servo's output shaft.

This parameter is applicable to linear actuators only.

FLOAT32,
0x2000,
0x0D,

rw

Configuration - Control Laws

The "Control Laws" section defines settings for various control laws implemented in the firmware of the controller. The
"Control Laws" section defines how the drive responds to commands given by a parent control system. Note that the
parameters within this section are automatically computed by the "Spreadsheet" tool or by an auto-configuration
procedure of the controller. The parameters are automatically derived from parameters configured in the "Datasheet"
section. In most cases, one should not enter the "Control Laws" parameters manually, but instead use one of the
provided automated tools to generate the an initial set of parameters. After an initial set of control laws has been
generated by a tool, minor adjustments can be made manually for tuning purposes.

12 www.servosila.com

http://www.servosila.com/

Parameter Units Description CANopen
1 Speed Filter: T sec The "Speed Filter: T" parameter, a time constant, plays a role in determining

what perturbations in speed readings the electric drive needs to respond to.
Note that the speed perturbation might be caused by sudden changes in
payload characteristics ("bumps on the road"), or may turn out to be a noise
in speed measurements due discrete nature of an encoder or an ADC.

The speed filter smooths out speed readings, thus hiding some of the noise
coming to the control laws. The goal is to choose a value for the "Speed
Filter: T" parameter in such a way that the noise is removed, while relevant
information about changes in speed readings caused by payload forces, is
allowed to pass through the filter.

Shorter "Speed Filter: T" time generally increases overall dynamics of the
electric drive. However, the effect is indirect, but due to the fact that many
other parameters in "Control Laws" section are dependent on chosen value of
"Speed Filter: T". Always use "Spreadsheet" tool to modify the parameter,
since the tool keeps all the parameters in "Control Laws" section in sync.

The "Spreadsheet" tool and an auto-configuration routine of the controller
analytically compute a conservative value for this parameter by analyzing the
information provided in the "Datasheet" section. Nevertheless, a manual
adjustment might be required for performance optimization.

Tuning intuition:

• Higher-resolution encoders warrant for lower "Speed Filter: T" times.
The higher the resolution of an encoder, the more counts per second
the encoder feeds into the controller's speed-computing algorithm, the
less ripple of speed estimates the encoder causes, the less filtering is
required, the shorter "Speed Filter: T" time can be set. Remember to
always use "Spreadsheet" tool to modify the parameter, since many
other parameters in "Control Laws" section depend on chosen "Speed
Filter: T" and need to be kept in sync.

• DECREASING the time constant TOO MUCH causes the controller
to filter LESS noise in speed readings. This often manifests itself as
an audible "white" noise coming from the drive, as the drive starts
overreacting to unfiltered noise in speed readings.

• INCREASING the time constant TOO MUCH causes the drive to
filter out not just the noise, but also useful changes in speed readings
caused by external payload forces. This causes the drive to experience
difficulties in maintaining a commanded speed under an influence of
external forces. This might manifest itself in speed oscillations or in
longer times that take the drive to arrive to a commanded speed.

An initial conservative value for this parameter is automatically computed by
the "Spreadsheet" tool or by an auto-configuration procedure of the
controller. The initial value may turn out to be just right, or may require

FLOAT32,
0x2002,
0x02,
rw

13 www.servosila.com

http://www.servosila.com/

manual tuning during a drive commissioning process.

2

Field Oriented
Control: FOC Kp

V/A The term "Field Oriented Control (FOC)" refers to an efficient method of
controlling brushless motors. Search the Internet for background information
on the method. The controller uses the FOC method, when getting brushless
motors to produce a commanded torque.

The FOC Kp parameter is a proportional gain of two similar PI controllers
that manage Iq and Id electrical currents within a brushless motor under
Field-Oriented Control (FOC). The higher the gain, the stronger the
controller responds to perturbations in the electrical currents by managing Ud
and Uq output voltages.

The value for this parameter is automatically computed by the "Spreadsheet"
tool or by an auto-configuration procedure of the controller. Typically, it is
not required to manually change or set this parameter.

FLOAT32,
0x2002,
0x12,
rw

3

Field Oriented
Control: FOC T

sec The FOC T parameter is a time constant of Integral Terms of two similar PI
controllers that manage Iq and Id electrical currents within a brushless motor
under Field-Oriented Control (FOC).

The higher the time constant, the slower the PI controllers responds to
perturbations in the electrical currents.

The value for this parameter is automatically computed by the "Spreadsheet"
tool or by an auto-configuration procedure of the controller. Typically, it is
not required to manually change or set this parameter.

FLOAT32,
0x2002,
0x13,
rw

4

Field Oriented
Control: FOC
Lead Angle

-90 to
90 deg

This parameter should be kept at 0.0 degrees in most applications.

The capability to introduce a lead angle enables testing and experimentation.
However, it may introduce major inefficiencies into motor control laws.

The parameter defines an electrical lead angle (phase shift) that the control
system adds to a measured or an estimated electrical position of the rotor
when operating under Field Oriented Control (FOC).

Keep it as 0 most of the time.

FLOAT32,
0x2002,
0x14,
rw

5

Electronic Speed
Control: ESC Kp

A/Hz Electronic Speed Control (ESC) is a function of the controller that maintains
a constant speed of the motor by automatically increasing or decreasing
torque in response to changes in speed. Note that the speed readings are
filtered by Speed Filter prior to being processed by Electronic Speed Control
(ESC) function.

The ESC Kp parameter is a proportional gain of a PI controller that
commands torque to maintain a constant speed. The parameter defines how

FLOAT32,
0x2002,
0x22,
rw

14 www.servosila.com

http://www.servosila.com/

much electrical current needs to be driven through the motor to adjust torque
in order to compensate for a change in speed. The higher a combined
"Moment of Inertia of Rotor and Payload" is, the higher ESC Kp parameter
should be.

Tools:

• The "Spreadsheet" tool computes a correct value for this parameter,
whenever given a correct value of "Moment of Inertia of Rotor and
Payload".

• The controller automatically measures the "Moment of Inertia" during
an auto-configuration procedure, and uses the measurement to
compute a correct value for ESC Kp parameter.

Note that measuring the moment of inertia requires that "Viscous Damping
Constant" is measured first.

Since ESC Kp parameter depends on a combined "Moment of Inertia of
Rotor and Payload", it is important that the moment is properly measured,
estimated, or even guessed. Note that direct measurements of the moment of
inertia by the controller can be quite imprecise, especially when a complex
payload is connected to the electrical drive. As errors in the estimates directly
translate into errors in ESC Kp parameter, some manual adjustments to the
ESC Kp parameter might be required.

Tuning intuition:

• The higher a combined "Moment of Inertia of Rotor and Payload" is,
the higher ESC Kp parameter should be. ESC Kp is proportional to
the combined moment of inertia.

• INCREASING the parameter too much might causes the motor to
produce an audible "white" noise when running under Electronic
Speed Control (ESC).

• DECREASING the parameter too much causes the drive to arrive to a
commanded speed too slowly, or experience difficulties in
maintaining a constant speed.

If manual adjustments are to be performed, it is recommended to use the
"Spreadsheet" tool for this purpose.

Note that when using the tool, it is better to manually adjust the "Moment of
Inertia" and then re-compute the ESC Kp parameter, rather than adjusting the
ESC Kp parameter itself.

Note that the speed here is defined in electrical revolutions per second (Hz).
To convert Hz to motor shaft's revolutions per second, just divide it by the
number of pole pairs. For example, assuming the speed is 20 Hz (electrical),
and Poles Number is 8, then the corresponding speed in motor shaft's

15 www.servosila.com

http://www.servosila.com/

revolutions per second is 20 / (8/2)= 5.0 Hz (revolutions per second), which
is 5 * 60 = 300 RPM.

6

Electronic Speed
Control: ESC T

sec The "ESC T" parameter is a time constant of an Integral Term of a PI
controller that commands torque to maintain a constant speed.

The higher the time constant, the slower the ESC controller reacts to small
perturbations in speed readings.

This parameter should generally be computed using the "Spreadsheet"
software tool. The controller itself can also determine an appropriate value
for this parameter during an auto-configuration procedure. Typically, it is not
required to manually change or set this parameter.

FLOAT32,
0x2002,
0x23,
rw

7

Servo: Kp
(Proportional
Gain)

Hz/rad The "Servo: Kp" parameter defines a proportional relationship between a
speed of servo motion and a distance to a target position the servo is
commanded to move to. The closer the servo approaches the target position,
the slower it moves. This proportional relationship is governed by the
"Servo: Kp" parameter. The speed becomes 0.0 whenever the target position
is reached, and the motor stops.

Example: lets assume that "Servo: Kp" is configured as 20 Hz/rad. If the
current distance to the target is 2.0 rad, the servo starts traveling with a speed
of 20 * 2.0 = 40 Hz. As the servo's shaft travels along, the distance to the
target position eventually gets reduced to 0.5 rad, so the speed at that point
drops to 20 * 0.5 = 10 Hz. Whenever the servo reaches its destination, the
distance to the target becomes 0.0 rad, so the speed drops to 0.0 Hz, and the
motor stops.

The distance to the destination (measured in encoder counts), is first
normalized by dividing it by the encoder's resolution and then by multiplying
it by (2*PI) rad. This is done for both ROTARY and LINEAR encoders. For
example, if a servo encoder has a resolution of 65536 counts, and the
distance to the destination is 1000 counts, then the normalized distance
would be 1000 / 65536 * (2*PI) = 0.095873799 rad. This normalized
distance is multiplied by the pre-configured "Servo: Kp" factor to determine
the speed with which the servo should travel at that point (as explained
above).

The speed is then clamped by comparing it to "Servo: Speed Limit", another
configuration parameter. For example, if the "Servo: Speed Limit" is set to be
20Hz, then the speed with which the servo travels never gets higher than
20Hz. In fact, most of the time, the servo travels at this speed limit until the
speed starts dropping upon approaching a target.

All the speeds here are defined in electrical revolutions per second (Hz). To
convert the electrical revolutions per second to servo shaft's revolutions per
second, divide it by the number of pole pairs and then divide it by the

FLOAT32,
0x2002,
0x32,
rw

16 www.servosila.com

http://www.servosila.com/

gearbox's reduction ratio. For example, assuming the speed is 20 Hz
(electrical), Poles Number is 8, and the gearbox reduction ratio is 100, then
the corresponding speed in servo shaft's revolutions per second is 20 / (8/2) /
100 = 0.05 revolutions per second, which is 0.05 * 60 = 3.0 RPM.

8

Servo: T (Integral
Term)

sec The Integral Term is DISABLED by default. Enable it before use.

There are just a very few potential applications that may require use of the
Integral Term, such as "Electronic Gearing" function or "Servo Linear
Interpolation" command. Otherwise, keep it disabled.

The parameter "Servo: T" defines a time constant of an Integral Term of a
PID controller that manages servo position.

FLOAT32,
0x2002,
0x33,
rw

9

Servo: Kd
(Derivative Gain)

Hz/Hz The "Servo: Kd" parameter adds "virtual friction" that might reduce or
eliminate oscillations when operating under servo control.

Note that too much derivative gain might *cause* oscillations. Keep this
parameter as 0.0 (default) unless the payload has much moment of inertia.

FLOAT32,
0x2002,
0x38,
rw

10

Servo: Kff
(Velocity Feed-
Forward Gain)

0.0-
1.0

The "Servo: Kff" parameter is used with the following functions only:

• Electronic Gearing
• "Servo: Linear Interpolation" command

Otherwise, the parameter is not used.

The Servo Kff parameter defines a gain for a velocity feed-forward signal
within a closed-loop servo control algorithm. The feed-forward signal
improves velocity-tracking and responsiveness in servo control mode
whenever a position reference/target is continiously changing with a constant
speed.

The "good" Servo Kff values are in the range of [0.70-1.00]. Set the gain to
0.0 to turn off the velocity feed-forward feature.

If "Servo Kff" gain is set high (close to 1.00), then the other inter-related gain
"Servo Kp" will likely need to be reduced to remove speed oscillations.

FLOAT32,
0x2002,
0x37,
rw

11 Servo: Speed
Limit (Electrical
Frequency)

Hz The "Servo: Speed Limit" parameter sets a maximum speed with which the
servo travels to its target position. The servo moves at this speed limit most
of the time, only reducing the speed before arriving to its target destination.
The period when servo is moving with this maximum speed is called a
"constant speed" segment of the servo motion. The limit is used to clamp the
speed computed using "Servo: Kp" parameter. Note that the speed is defined
in electrical Hz (electrical revolutions per second).

FLOAT32,
0x2002,
0x34,
rw

17 www.servosila.com

http://www.servosila.com/

This parameter can be changed dynamically (e.g. via CANopen interface)
before executing a particular coordinated move.

12

Servo: Dead Zone
Radius

counts The "Servo: Dead Zone Radius" defines how close to a target position the
servo needs to attempt to arrive. This parameter is sometimes useful for
preventing oscillations around target positions in servo mode. Otherwise,
keep this parameter as 0 (default).

UINT32,
0x2002,
0x36,
rw

13

Micro-Speeding:
Speed Limit
(Electrical
Frequency)

Hz The "Micro-Speeding: Speed Limit" parameter defines a speed at which the
controller switches between Field Oriented Control (FOC) and Micro-
Speeding Control algorithms. If a commanded speed is less than the limit, the
controller uses Micro-Speeding Control algorithm. Otherwise, it uses Field
Oriented Control (FOC) method.

"Micro-Speeding" refers to a proprietary brushless motor control technique
devised for very low speed control. The reason this technique exists is that
Field Oriented Control (FOC) algorithm does not work well at low speeds
with Hall Sensors, and even more so with Sensorless Control. This is due to a
range of issues related to inaccuracies of measuring speed and rotor's
position at low speeds. Various control instabilities start manifesting
themselves whenever at low speeds. On the other hand, Micro-Speeding
Control works reliably at low speeds, but does not work well at high speeds.
Thus the need to switch between the control methods that compliment each
other.

However, Micro-Speeding Conrtol is far less energy efficient than Field
Oriented Control (FOC) in terms of heat generated by the motor. To enable
or disable Micro-Speeding, use a parameter named "Feature: Micro-
Speeding".

The value for this limit is automatically computed by the "Spreadsheet" tool
or by an auto-configuration procedure of the controller.

FLOAT32,
0x2002,
0x72,
rw

14

Sensorless: Kp
(Gain)

V/A This parameter controls precision with which "Sensorless Observer" method
tries to follow the angular position of the rotor. Increase this gain to improve
performance of the drive. Increasing this gain too much might cause the
motor to produce noise when running under Sensorless Control or even to
fail to run altogether.

It is better to use the "Spreadsheet" tool to increase this gain.

FLOAT32,
0x2002,
0x54,
rw

15 Sensorless:
Kickstart Speed
Limit (Electrical
Frequency)

Hz "Kickstart" refers to a method of starting sensorless brushless motors. The
term "sensorless" means that such a motor is not equipped with Hall Sensors
or a Motor Encoder.

The controller uses a clever mathematical method called "Sensorless
Observer" to deduce information about the rotor's position by sensing Back-

FLOAT32,
0x2002,
0x52,
rw

18 www.servosila.com

http://www.servosila.com/

Emf voltages produced by the motor. The "Sensorless Observer" method is
used whenever controlling a sensorless brushless motor, since no other
source of information about the rotor's position is available. Note that the
position of the rotor has to be known to the controller to properly position
magnetic fields inside the motor using Field Oriented Control (FOC) method,
so that the motor produces torque.

However, a magic behind the "Sensorless Observer" method works only
when the rotor is moving, since that's when the motor produces measurable
Back-Emf signals. If the rotor is not moving or not moving fast enough, the
controller does not know the position of the rotor, and thus cannot properly
position the magnetic fields inside the motor. The issue is a kind of a
"chicken or egg" problem. To move the rotor, the controller needs to know
the position of the rotor, but to know the position of the rotor, the rotor needs
to be already moving. This challenge only pertains to "sensorless" motors,
and does not apply to motors equipped with Hall sensors or encoders that
give the controller a usable reading of the rotor's position at any speed. That's
why the Hall sensors are used in the first place. The "Kickstart" method
solves the "chicken or egg" problem by initiating a motion of the rotor in a
way that does not require any knowledge of the rotor's position. Once the
rotor starts moving under Kickstart Control, then the physics behind the
"Sensorless Observer" method kicks in, and the controller switches into the
efficient Field Oriented Control (FOC) method to proceed with acceleration
of the rotor. It typically takes a fraction of a second for the Kickstart Control
to do its thing, and hand over the control to Field Oriented Control (FOC)
function. A side effect is that the "Kickstart" procedure might create ripples
of torque while accelerating the motor. As those start-up ripples are not a
problem for many applications, the sensorless motors are popular due to
simplicity and low cost, albeit at the expense of complexity of the controller.

The parameter "Kickstart: Speed Limit" defines a speed which the Kickstart
procedure accelerates the rotor to, before attempting to hand over control to
Field Oriented Control (FOC). An implied assumption is that the magic
behind the "Sensorless Observer" method starts producing reliable estimates
of the rotor's position at that speed, so that it becomes possible for Field
Oriented Control (FOC) to take over.

The value for this limit is automatically computed by the "Spreadsheet" tool
or by an auto-configuration procedure of the controller.

16 Sensorless:
Kickstart Time

sec The parameter "Kickstart Time" defines a timeframe within which the
"Kickstart" procedure accelerates a motor towards a pre-configured
"Kickstart Speed Limit". If the kickstart procedure does not succeed within
the given timeframe, the controller makes another attempt, and keeps making
attempts until it successfully hands over control of the motor to Field
Oriented Control (FOC).

FLOAT32,
0x2002,
0x53,
rw

19 www.servosila.com

http://www.servosila.com/

Tuning intuition:

• INCREASE the "Kickstart: T" parameter if the kickstart procedure
does not reliably start the sensorless motor each time. This might
happen, for example, if a payload attached to the motor has a moment
of inertia too large to be accelerated to "Kickstart: Speed Limit"
within the specified time.

• DECREASE the "Kickstart: T" parameter if a torque ripple caused by
the "Kickstart" procedure becomes a problem in a given application.
Shorter kickstart times makes the torque ripples shorter in time too.

The value for this parameter is automatically computed by the "Spreadsheet"
tool or by an auto-configuration procedure of the controller.

17

Sensorless: EMF
Zero Speed
Voltage (high
watermark)

V The "Sensorless Observer" method works by measuring voltages generated
by the motor. Whenever the rotor is moving, permanent magnets of the rotor
happen to interact with coils of the stator in such a way that measurable
voltages are generated on phase lines (just like in an electric generator). A
physical phenomena behind this effect is called "Back-Emf". The phenomena
is a foundation for the "sensorless" sensing of the rotor's position. The
controller continuously measures the Back-Emf voltages using its electronic
circuits, and applies some math to the measurements to derive a position of
the rotor. The math is what is actually called the "Sensorless Observer"
method.

The method works well at medium and high speeds. However, at low speeds,
the Back-Emf voltages turn out to be too low to be reliably separated from a
noise present in the electronic circuits. To counter the noise issue, the
"Sensorless Observer" method discards voltage readings that are lower than a
certain voltage threshold. Effectively, the "Sensorless Observer" is designed
to wait until the Kickstart procedure manages to accelerate the rotor to a
speed high enough for the voltages to be reliably separated from the noise.

The parameter "EMF Zero Speed Voltage (high watermark)", measured in
volts, specifies a threshold that the Back-Emf readings should reach in order
for "Sensorless Observer" method to start providing reliable estimates of the
rotor position. The threshold should be aligned with "Kickstart: Speed Limit"
parameter since at that speed limit the motor is supposed to generate Back-
Emf voltages that are higher than the noise.

The value for this parameter is automatically computed by the "Spreadsheet"
tool or by an auto-configuration procedure of the controller.

FLOAT32,
0x2002,
0x62,
rw

18 Sensorless: EMF
Zero Speed
Voltage (low
watermark)

V The parameter "EMF Zero Speed Voltage (low watermark)", measured in
volts, specifies a threshold that Back-Emf readings should drop to in order
for "Sensorless Observer" to declare that its rotor position estimates are no
longer reliable.

FLOAT32,
0x2002,
0x63,
rw

20 www.servosila.com

http://www.servosila.com/

The value for this parameter is automatically computed by the "Spreadsheet"
tool or by an auto-configuration procedure of the controller.

Configuration - Features

The "Features" section provides means to customize the motor control laws to meet requirements of a specific
application.

Parameter Units Description CANopen

1

Feature: Kickstart 0 or 1 "Kickstart" refers to a method of starting "sensorless" brushless motors, the
ones that do not have Hall sensors or encoders. Since the "Kickstart"
procedure might create ripples of torque at start-up, there is a way to disable
the function altogether by toggling the "Feature: Kickstart" parameter.

If the Kickstart function is disabled, but a "sensorless" motor is used, then an
external application-specific method of starting up the motor needs to be
employed (e.g. pushing an electric scooter to kickstart its motor).

The Kickstart function is generally not needed or used for motors with Hall
sensors or encoders, so disabling it does not change anything in that case.

An exception are drives equipped with absolute quadrature encoders. A
challenge with absolute quadrature encoders is that they use an INDEX signal
to identify a zero position each time the drive starts up. The controller uses the
same Kickstart routine to initially rotate such a motor until its quadrature
encoder stumbles upon an INDEX signal. The controller then switches to Field
Oriented Control (FOC) since the quadrature encoder is then providing an
absolute position of the rotor.

BOOL,
0x2004,
0x02,
rw

2 Feature: Micro-
Speeding

0 or 1 "Micro-Speeding" refers to a proprietary motor control technique devised for
very low speed control of brushless motors. The reason this technique exists is
that Field Oriented Control (FOC) algorithm does not work well at low speeds
with Hall Sensors, and even more so with Sensorless Control. This is due to a
range of issues related to inaccuracies of sensing speed or rotor position at low
speeds. Various control instabilities start manifesting themselves at low
speeds. On the other hand, Micro-Speeding works reliably at low speeds.
However, it may cause an excessive heating of the motor.

Enabling the "Micro-Speeding" feature changes the way the controller
manages motion at low speeds. The motion at low speeds becomes much more
precise, but at the same time not as energy efficient. Note that more heat is
generated by a motor under Micro-Speeding Control, than the same motor
under Field Oriented Control (FOC). This is not a problem in many
applications where energy efficiency can be traded for high precision and
mechanical simplicity of Micro-Speeding control.

If the feature is enabled, the controller begins to dynamically switch between
Field Oriented Control (FOC) and Micro-Speeding when executing commands

BOOL,
0x2004,
0x62,
rw

21 www.servosila.com

http://www.servosila.com/

coming from a parent control system. The controller automatically determines
which method of control is the most appropriate when executing a given
command. This switching behavior is influenced by a "Micro-Speeding: Speed
Limit" parameter, configured in the "Control Laws" section.

3

Feature: Gimbal
Control

0 or 1 "Gimbal Control" refers to a motor control technique specifically designed for
optical gimbals, telescope mounts, precision stepper machines, precision
rotary tables, direct drive fixtures and other similar devices actuated by gimbal
motors.

A typical gimbal motor has a relatively high phase resistance, high phase
inductance and is designed to move at relatively low speeds.

The "Gimbal Control" technique might dramatically improve resolution of
servo motion at low speeds with suitable motors. However, on the flip side,
this method of motor control is ineffective at higher speeds. Thus, use it in
applicable situations only.

BOOL,
0x2004,
0x44,
rw

4

Feature: Speed
Filter

0 or 1 Keep the "Speed Filter" turned on in most applications.

When using high-resolution encoders, disabling the low-pass Speed Filter
helps eliminate measurement latency. This improves servo performance at low
speeds near target positions.

Consider disabling the "Speed Filter" whenever the encoder's resolution is so
high that the encoder is capable of reporting motion within each sampling
period, so that no averaging over multiple sampling periods is required to
reliably measure speed. This situation is actually rarely the case unless a very
high resolution encoder is used or the sampling frequency is configured to be
low.

Otherwise, keep the "Speed Filter" turned on.

BOOL,
0x2004,
0x73,
rw

5 Feature: Use
Servo Encoder
for Speed
Measurements

0 or 1 Whenever this feature is enabled, the controller uses output of a Servo
Encoder to measure speed. Otherwise, the controller uses Hall Sensors, a
Motor Encoder or a sensorless technique to measure speed. This feature is
especially useful with Hall Sensors that have poor accuracy of speed
measurements at low speeds. Make sure that Servo Encoder, Poles Number
(Rotor Poles) and Gearbox Reduction Ratio are properly configured before
enabling this feature.

In most cases, it is beneficial to use Servo Encoder instead of Hall Sensors for
speed measurements, since Hall Sensors are not suitable for measuring very
low speeds. However, very high gearbox reduction ratios could dilute the
advantages of Servo Encoder when it comes to precision of measuring rotor's
speed as compared to measurements using Hall Sensors. Thus, this feature can
be turned on or off via the configuration parameter.

BOOL,
0x2004,
0x72,
rw

22 www.servosila.com

http://www.servosila.com/

If the following condition holds, then using Servo Encoder for speed
measurement is advantageous as compared to using Hall Sensors for speed
measurement:

6 * (Poles / 2) < [Servo Encoder's Counts per Revolution] / [Gearbox
Reduction Ratio]

6

Feature: Servo
Integral Term
(Servo: T)

0 or 1 The "Servo Integral Term" feature should generally be DISABLED in most
applications except a very few specific cases such as "Electronic Gearing" and
"Servo Linear Interpolation".

BOOL,
0x2004,
0x74,
rw

7

Feature: D-Q
Coupling
Compensation
(Feed-Forward)

0 or 1 "D-Q Coupling Compensation" is an advanced motor control technique that
facilitates smooth transitions between modes of operation of an electrical
drive.

For example, if an electric drive is running under Electronic Speed Control
(ESC), and then is given a command to switch to Electronics Torque Control
(ETC), such a transition might cause a sudden change in electric currents
flowing through the motor due to a difference in control laws. This change
might cause a ripple in torque, mechanically stress the drive, or produce an
audible jolt. The "D-Q Coupling Compensation" feature, when enabled,
facilitates a smooth transition between various modes of operation.

The reason the feature is not enabled by default is because the feature requires
that the speed of the motor is correctly measured by the controller. As that
might not be the case during initial phases of controller configuration, the
feature is disabled by default, so that it does not cause random oscillations or a
noise early on. The feature needs to be enabled at later phases to improve
performance of the electrical drive once an initial pass of configuring its
controller has been completed, and the drive is already operational.

Tuning intuition:

• If a drive starts experiencing speed oscillations under Electronic Speed
Control (ESC) whenever the feature is enabled, DECREASE "Speed
Filter: T" parameter using the "Spreadsheet" tool.

• If the drive starts producing excessive noise under Electronic Speed
Control (ESC) whenever the feature is enabled, INCREASE "Speed
Filter: T" parameter using the "Spreadsheet" tool.

BOOL,
0x2004,
0x42,
rw

8

Feature: Viscous
Damping
Compensation
(Feed-Forward)

0 or 1 The feature "Viscous Damping Compensation" improves dynamics and
efficiency of an electric drive if the drive experiences much viscous damping
in its payload such as the mechanical resistance of water to a pump's motor.

Note that "Viscous Damping Constant" needs to be experimentally measured
using the controller's means, and configured prior to enabling the feature.

BOOL,
0x2004,
0x52,
rw

23 www.servosila.com

http://www.servosila.com/

9

Feature: Phase
Resistance
Compensation
(Feed-Forward)

0 or 1 "Phase Resistance Feed-Forward is an advanced motor control technique
helpful when running motors with unusually high phase resistance under
Field-Oriented Control (FOC). This feature is especially helpful with gymbal
motors.

BOOL,
0x2004,
0x43,
rw

10 Feature: Field
Weakening

0 or 1 "Field Weakening" is an advanced motor control technique that allows
reaching speeds higher than a rated speed of a brushless motor. It is like
shifting the drive to a higher gear, but electromagnetically. Note that the higher
speeds are reached at the expense of energy efficiency of the electrical drive.

In normal circumstances, a maximum speed of a permanent magnet
synchronous motor (PMSM) is limited by the voltage of its power supply. The
higher the voltage of power supply is, the higher maximum speed a brushless
motor can reach. The permanent magnets of the rotor produce Back-Emf
voltage in stator coils (just like an electric generator). As the speed grows, the
generated Back-Emf voltage grows too. Whenever the Back-Emf voltage
matches the voltage of power supply, the brushless motor reaches its
maximum speed and cannot accelerate any further. It might be not
immediately obvious why it is so, but just know that it is so due to some laws
of physics: input voltage limits maximum reachable speed.

The permanent magnets of the rotor come with a magnetic field attached to
them, the one that interacts with coils and produces the Back-Emf voltage (as
well as torque). What "Field Weakening" technique does is that it drives an
additional electric current through the stator coils in such a way that it creates
a magnetic field in the coils that cancels out some of the magnetic field
attached to the permanent magnets of the rotor. In other words, the coils are
used as electromagnets to cancel out a portion of the permanent magnets' field.
The net effect is that the permanent magnets become "weaker". Weaker
magnets generate weaker Back-Emf voltage in coils. This means that higher
speeds can be reached before the "weaker" Back-Emf voltage matches the
voltage of a power supply and the motor stops accelerating.

To summarize, by enabling the Field Weakening feature, the permanent
magnets of the motor are instantly made "weaker" as some of their magnetic
field is canceled out by an opposing magnetic field generated by the coils.
This reduces the torque of the motor, but increases the maximum reachable
speed. This transformation is made instantly by toggling this configuration
parameter, just like shifting a gear in a car.

A drawback of Field Weakening is its energy inefficiency due excessive heat
generated by the coils. What happens is that the additional electric current
driven through the coils to weaken the field of permanent magnets, is not used
for producing useful torque, but instead is heating the motor. This wastes some
of the energy on heating rather than torque.

If higher speeds are needed for a particular application, it is might be a better
design decision to either increase the voltage of power supply, or swap the

BOOL,
0x2004,
0x22,
rw

24 www.servosila.com

http://www.servosila.com/

motor for one with a lower Back-Emf (Ke) constant. However, using the
"Field Weakening" technique is appropriate for many applications.

Configuration - Motion Control

Parameter Units Description CANopen

1

Stop Timeout sec This parameter defines behaviour of the "Stop" command. Upon receving a
"Stop" command, the device tries to stop the motor in a controllable way.
Sometimes, due to a hardware fault or due to an invalid configuration, the drive
is not capable of stopping the motor. In such a case, upon reaching the
predefined "time "Stop Timeout" period, the drive gives up trying, and simply
de-energizes the motor, allowing it to spin freely in a hope that the motor
eventually stops on its own.

FLOAT32,
0x2048,
0x03,
rw

2

Feature:
Acceleration/De
celeration
Control

0 or 1 This feature enforces a pre-configured acceleration or deceleration rates
whenever the device operates under Electronic Speed Control (ESC) or under
Servo Control. The feature is used to limit dynamic stresses applied on attached
payloads or gearbox, or to improve controllability of servo mechanisms with
complex payloads that have time- or angle-varying external torques e.g.
pendulum-like payloads.

After enabling this feature and thus specifying paerticular
acceleration/deceleration rates, whenever Servo Control is used, it is usually
required to reduce the value of "Servo Kp" parameter in the "Control Laws"
configuration section. Otherwise, oscillations of the servo motor may happen
around target positions. Note that reducing the acceleration rates is somewhat
similar to increasing the moment of inertia of the payload. Thus, there is a need
to re-tune the "Servo Kp" parameter which is dependent on the apparent moment
of inertia.

BOOL,
0x2048,
0x04,
rw

3

Acceleration Hz/s2 Set this to 0.0 to disable acceleration rate control.

The acceleration value is defined in "electrical Hz per second squared".

Useful formula:

"Hz/s2" = "RPM/s2" / 60 * (Poles / 2),

where Poles is the number of Rotor Poles the motor has.

FLOAT32,
0x2048,
0x05,
rw

4 Deceleration Hz/s2 Set this to 0.0 to disable deceleration rate control.

The deceleration value is defined in "electrical Hz per second squared".

Useful formula:

FLOAT32,
0x2048,
0x06,
rw

25 www.servosila.com

http://www.servosila.com/

"Hz/s2" = "RPM/s2" / 60 * (Poles / 2),

where Poles is the number of Rotor Poles the motor has.

Configuration - Work Zone

The term "Work Zone" defines a multi-turn range which a servo actuator's output is expected to move within. This is
applicable to ROTARY, LINEAR or MULTI-TURN ROTARY encoders.

The work zone is a "multi-turn" one when a ROTARY encoder is used. In other words, the work zone is not limited to
just 360 degrees of the rotary encoder's resolution. Instead, it logically spans in both positive or negative directions as
many encoder counts as needed. Both Servo Control and Direct Drive Control use the logical work zone's counts at
their references instead of a physical servo encoder's readings. This makes it easier to develop "multi-turn" servo
applications.

If "Work Zone Limits" are enabled, the controller makes an effort to prevent the servo's output from leaving the "Work
Zone" even if an erroneous command is given by a parent control system. The "Work Zone Limits" are meant to define
boundaries of safe operation of a servo mechanism, so that the mechanism does not hit itself or anything else. The
"Work Zone Limits" is applicable to both ROTARY and LINEAR servo actuators.

Parameter Units Description CANopen

1

Work Zone:
zero offset

counts The "Work Zone: zero offset" parameter defines a bias measured in servo
encoder's counts, that is subtracted from a servo encoder's readings to determine
a position within the work zone. This parameter is used to correct for an offset in
the Servo Encoder's mechanical installation.

INT32,
0x2034,
0xB0,

rw

2

Feature:
Enforce Work
Zone Limits

0 or 1 The feature forces the controller to stop the motion of a servo actuator whenever
the servo is about to leave the boundaries of the work zone.

BOOL,
0x2034,
0xB1,

rw

3

Work Zone:
Limit in
Negative
Direction

counts This parameter, measured in Servo Encoder's counts, defines a software-
controlled limit of the work zone in NEGATIVE speed direction.

Note that there are hardware limit switches that work in parallel with the
software ones.

INT32,
0x2034,
0xB2,

rw

4

Work Zone:
Limit in
Positive
Direction

counts This parameter, measured in Servo Encoder's counts, defines a software-
controlled limit of the work zone in POSITIVE speed direction.

Note that there are hardware limit switches that work in parallel with the
software ones.

INT32,
0x2034,
0xB3,

rw

5

Feature:
Customized
Work Zone
Dimension

0 or 1 This parameter forces the controller to use a user-defined "Work Zone:
Dimension" instead of using Servo Encoder's "counts per revolution" parameter
for this purpose. This might be useful in servo application development. For
example, for a CNC machine, this value can be set to match a size of the CNC
machine's actual work zone measured in Servo Encoder counts.

BOOL,
0x2034,
0xC1,

rw

26 www.servosila.com

http://www.servosila.com/

• 0: Default
• 1: Customized

6

Work Zone:
Dimension

counts This parameter specifies is a size of Work Zone defined in Servo Encoder
counts. Usually, this size equals the value of "counts per revolution", a parameter
of a Servo Encoder. However, it can be configured to be an arbitrary number to
simplify application development. For example, for a CNC machine, this value
can be set to match a size of the CNC machine's actual work zone measured in
Servo Encoder counts.

UINT32,
0x2034,
0xC2,

rw

Configuration - Fault Management

The controller automatically stops the electric drive whenever a hardware problem (a fault) is detected. After stopping
the drive, the controller latches one or more "Fault Bits" flags in telemetry, and waits for a "Reset" command to come
from an a parent control system. The controller keeps the motor powered off until the "Reset" command comes that
resets the fault latches.

Parameter Units Description CANopen

1

Hide Faults bitmask The bit mask hides selected faults thus preventing the faults bits from latching
and stopping the electric drive whenever the faults occur. Use this feature with
high care since ignored faults might cause troubles. Look for a description of
parameter "Fault Bits" in the telemetry section to know meanings of each of the
bits.

UINT16,
0x2044,
0x02,
rw

2

Overcurrent
Limit: Factor

- The controller raises an Overcurrent Fault signal whenever electric current in
any of the motor's phases exceeds a pre-configured "Maximum Limit on
Continuous Current (Line-to-Line)" by "Overcurrent Limit: Factor".

This is a software-enforced limit. It complements hardware-enforced limits.

For example, if the "Maximum Limit on Continuous Current (Line-to-Line)"
parameter is 7 A, and the "Overcurrent Limit: Factor" is 4.0, the controller raises
an Overcurrent Fault signal in "Fault Bits" whenever electrical current in any of
the phases reaches 7A*4=28A.

FLOAT32,
0x2044,
0x04,
rw

Configuration - Brake

The "Brake" function uses a drive's own electric motor to prevent a motion of the drive's shaft under influence of
external forces. The controller dynamically positions electromagnetic fields inside the motor in such a way that any
significant motion of the shaft is countered by an electromagnetic force working in the opposite direction. This is like
applying a brake to the shaft, but without an actual physical braking device. If there is no external force, the "Brake"
function does not trigger any countering electromagnetic forces, and thus does not draw energy from the power supply.

Note that the "Brake" function allows for an amount of "backlash" of the shaft. The backlash helps reduce consumption
of energy. Consider using Servo Control function if the goal is to firmly hold the shaft at a given position. For the

27 www.servosila.com

http://www.servosila.com/

"Brake" function to work efficiently, the controller uses Hall sensors or a "Motor Encoder" to detect that the shaft is
moving due to external forces, and to dynamically apply a countering electromagnetic force.

Note that if a motor does not have Hall sensors or a "Motor Encoder", then the controller defaults to using a statically
positioned magnetic field when holding the shaft of the motor. The statically positioned magnetic field requires an
electric current to be continuously driven through the coils of the motor regardless of the presence of any external
forces. This electric current might cause excessive heating of the sensorless motor, and cause a continuous drain of
energy from its power supply. In short, special care needs given to heat management when using the "Brake" function
with sensorless motors.

Parameter Units Description CANopen

1

Brake:
Backlash
Threshold

rad The controller applies a countering force that is proportional to displacement of the
shaft from a braking position. The "Brake: Backlash Threshold" parameter,
expressed in electrical radians, specifies how far the shaft of the motor is allowed
move under the influence of external forces before the controller applies a
maximum countering electromagnetic force to bring the shaft back to its original
braking position.

Note that the backlash value is no less than (2*PI / 6) radians (electrical) for motors
with Hall sensors as this is the finest angular resolution the sensors are capable of.

Tuning intuition:

• REDUCE this value to reduce backlash of the motor when on a "Brake".
• INCREASE the parameter to reduce power consumption in the "Brake"

mode.

FLOAT32,
0x2024,
0x03,
rw

2

Brake: T
rising

sec The parameter "Brake: T rising" specifies how quickly the motor responds to
sudden increases in external disturbing forces that move the shaft.

Tuning intuition:

• DECREASE the parameter to improve responsiveness of the "Brake"
function to sudden jolts of external forces.

• INCREASE the parameter to reduce power consumption in the "Brake"
mode.

FLOAT32,
0x2024,
0x04,
rw

3

Brake: T
falling

sec The parameter "Brake: T falling" defines how quickly the motor reduces a
countering electromagnetic force once an external disturbing force disappears.

Tuning intuition:

• DECREASE the parameter to reduce power consumption in the "Brake"
mode.

• INCREASE the parameter if shaft oscillations or an excessive noise are
observed in the "Brake" mode.

FLOAT32,
0x2024,
0x05,
rw

28 www.servosila.com

http://www.servosila.com/

4

Feature:
Brake on Idle

0 or 1 The parameter "Feature: Brake on Idle" instructs the controller to automatically
apply the "Brake" function whenever the motor is in the "Idle" mode.

This feature helps prevent the force of gravity from moving the joints of machines
in an event of a sudden loss of connectivity with a parent control system.

BOOL,
0x2024,
0x10,
rw

Configuration - Peripheral: Hall Sensors

Many brushless motors come with built-in Hall sensors. The sensors help the controller improve the electric drive's
efficiency at low or zero speeds. With Hall sensors, the motor produces a reliable torque at zero speed or whenever the
motor is stalled.

Note that the controller automatically configures this section when an appropriate auto-configuration procedure is
launched. Typically, one would not edit this section manually.

Parameter Units Description CANopen

1

physical sensor for
logical sensor 0

0/1/2 If phase "A" is positively energized, and phases "B" and "C" are negatively
energized, this logical sensor reads as "1", while others read as "0".

UINT16,
0x3004,
0x06,
rw

2

physical sensor for
logical sensor 1

0/1/2 If phase "B" is positively energized, and phases "A" and "C" are negatively
energized, this logical sensor reads as "1", while others read as "0".

UINT16,
0x3004,
0x07,
rw

3

physical sensor for
logical sensor 2

0/1/2 If phase "C" is positively energized, and phases "A" and "B" are negatively
energized, this logical sensor reads as "1", while others read as "0".

UINT16,
0x3004,
0x08,
rw

4

Hall signals inverted 0 or 1 This parameter instructs the controller to invert readings of all Hall sensors
before mapping them to logical sensors.

BOOL,
0x3004,
0x05,
rw

Configuration - Peripheral: Quadrature Encoder

This section needs to be configured only if either "Motor Encoder" or "Servo Encoder" parameter in the "Datasheet"
section is set to "Quadrature Encoder". Otherwise, leave this section unchanged. The controller comes with dedicated
hardware, a silicon peripheral, for interfacing quadrature encoders. The peripheral has peculiarities of configuration that
are addressed in this section.

A challenge with absolute quadrature encoders is that they need to use an INDEX signal to search for a zero position
each time the drive is powered up. The controller uses the "Kickstart" procedure to initially rotate such a motor until its
quadrature encoder stumbles upon the INDEX signal. The controller then switches to Field Oriented Control (FOC)
until it gets powered off again. The search is commenced upon receiving the first motion command from a parent
control system. The direction of search is derived from the received command.

29 www.servosila.com

http://www.servosila.com/

Note that hardware interface to quadrature encoders allows the controller to measure not just shaft position, but also
speed. This feature can be turned on or off. There are two distinct methods of how the controller's hardware (silicon)
computes the speed:

1. Method #1 "UNIT DISTANCE": The controller records how much time it takes the quadrature encoder's disk to
travel a pre-configured UNIT DISTANCE measured in encoder counts (quadrature edges). By dividing the
UNIT DISTANCE by the recorded time, the controller arrives to the first estimate of speed. The parameter
UNIT DISTANCE is configured in this section. However, at higher speeds the recorded time becomes too short
thus creating a quantization issue.

2. Method #2 "UNIT TIME": The controller records a distance (measured in encoder counts) that the encoder
travels in a UNIT TIME period. By dividing the recorded distance by the UNIT TIME, the controller arrives to
the second estimate of speed. The parameter UNIT TIME is configured in this section. However, at lower
speeds the number of edges counted within the UNIT TIME could be too small thus creating a quantization
issue.

3. Since Method #1 gives reliable estimates at lower speeds, while Method #2 gives reliable estimates at higher
speeds, the controller chooses one estimate or the other by comparing the estimates to a SPEED SELECTION
THRESHOLD configured in this section.

Parameter Units Description CANopen

1

counts per
revolution

counts The parameter defines a maximum resolution of the quadrature encoder. The
resolution is defined in quadrature edge counts per revolution. This parameter
is to be taken from the encoder's datasheet.

For example, 4000 counts per revolution.

UINT32,
0x3011,
0x02,
rw

2

encoder bias vs.
electrical
position

counts This parameter needs to be set only if the encoder is used for motor control (a
"Motor Encoder"). Otherwise, keep this parameter as 0.

This parameter specifies a zero offset of the encoder's mechanical installation
vs. an electrical position defined by an order in which the motor's phase lines
are connected to the controller.

The bias can be experimentally determined as the following:

• Positively energize phase "A".
• Negatively energize both phases "B" and "C".
• This can be done by issuing a "Direct Field Control: Electrical

Position" command with command parameter 0 rad and a small
voltage (e.g. 0.5V).

• Let the motor's rotor settle at a position.
• The encoder's reading at that position is the bias.

The procedure needs to be performed after correcting for a possible inversion
of a mechanical installation of the encoder (see "inverted installation"
parameter in this section).

UINT32,
0x3011,
0x03,
rw

30 www.servosila.com

http://www.servosila.com/

3

inverted
installation
(swap A and B
signals)

0 or 1 The direction of the motor's rotation should match the direction of the
encoder's rotation. If that's not the case due to an inverted way the encoder is
mechanically installed, this parameter helps correct the mismatch.

BOOL,
0x3011,
0x04,
rw

4

polarity
inversion

0 or 1 This parameter causes the electronic circuits of the controller to invert A, B,
and I signals of the quadrature encoder before feeding the signals into the
software for analysis.

BOOL,
0x3011,
0x11,
rw

5

incremental
encoder

0 or 1 • 0: an absolute encoder with an index signal ("I" or "Z" signal is
present)

• 1: an incremental encoder (no index signal)

BOOL,
0x3011,
0x16,
rw

6

Feature:
hardware-
accelerated speed
measurement

0 or 1 • 1: use hardware to measure speed via UNIT DISTANCE and UNIT
TIME methods

• 0: use firmware to measure speed by counting pulses

Before enabling this feature, please configure hardware-related parameters
UPPS, CCPS, UNIT TIME, speed selection threshold.

BOOL,
0x3011,
0x17,
rw

7

UNIT
DISTANCE:
UPPS

0-15 This parameter is used in "UNIT DISTANCE" method of computing speed.
The controller records how much time it takes the encoder to travel a pre-
configured UNIT DISTANCE measured in encoder counts (quadrature
edges). By dividing the UNIT DISTANCE by the recorded time, the
controller arrives to an estimate of speed. This method of computing speed
gives reliable results at lower speeds. However, at higher speeds the recorded
time becomes too short thus creating a quantization issue.

The UNIT DISTANCE is configured as the following silicon-specific way:

UNIT DISTANCE = 2^UPPS

For example, if UPPS is 4, then UNIT DISTANCE is 2^4 = 16 (counts).

Note that increasing UNIT DISTANCE too much introduces latency in speed
measurement since the controller has to wait longer before it can compute
speed.

UINT16,
0x3011,
0x13,
rw

8 UNIT
DISTANCE:
Divider CCPS

0-7 This parameter is used in "UNIT DISTANCE" method of computing speed.
When computing speed using the UNIT DISTANCE method, the controller
has to precisely measure time as explained above. The way the controller's
silicon peripheral measures the time is by counting ticks of the CPU clock
using a 16bits counter. The ticks arrive at the frequency of CPU which is 90
MHz (double-check this for your controller). The frequency is then divided by
a prescaler circuit configured here in the following silicon-specific way:

PRESCALER = 2^CCPS

UINT16,
0x3011,
0x14,
rw

31 www.servosila.com

http://www.servosila.com/

For example, if CCPS is 7, then PRESCALER is 2^7 = 128. This translates to
counter's frequency of 90 000 00 / 128 = 703125 Hz.

The reason the pre-scaler is needed is because the 16bit counter in silicon that
measures time might overflow if the CPU ticks are routed to it at the full CPU
frequency. Note that if the encoder's speed is too low, it takes the encoder
longer time to travel the UNIT DISTANCE, thus there is a risk that the
counter might overflow within that longer time. Thus the need for this pre-
scaler parameter.

9

UNIT TIME sec This parameter is used in "UNIT TIME" method of computing speed. The
controller records a distance (measured in encoder counts) that the encoder
travels in a UNIT TIME period. By dividing the recorded distance by the
UNIT TIME, the controller arrives to an estimate of speed. This method of
computing speed gives reliable results at higher speeds. However, at lower
speeds the number of edges counted within the UNIT TIME could be too
small thus creating a quantization issue.

ATTENTION: UNIT TIME must be equal or less than 1/Max_speed, where
Max_speed is the maximum expected speed to be measured by the encoder,
expressed in revolutions per second.

FLOAT32,
0x3011,
0x12,
rw

10

speed selection
threshold

RPS The threshold tells when to dynamically switch from UNIT DISTANCE
("lower speeds") to UNIT TIME ("higher speeds") method.

• If the speed is lower than the threshold, then the controller uses the
"UNIT DISTANCE" method.

• If the speed is higher than the threshold, then the controller uses the
"UNIT TIME" method.

FLOAT32,
0x3011,
0x15,
rw

Configuration - Peripheral: SSI/BISS-C Encoder

This section needs to be configured only if either "Motor Encoder" or "Servo Encoder" parameter in the "Datasheet"
section is set to "SSI/BISS-C Encoder". Otherwise leave this section unchanged.

The controller reads out data from an SSI/BISS-C encoder by sending a train of pulses via CLOCK line. The encoder
sends back a single bit of data to the controller via DATA line each time it receives a pulse from the controller. By
sending the train of pulses, the controller reads out all the data bits (a packet) from the encoder.

If an encoder puts a CRC field into the packet, then the controller can be configured to use a CRC verification function
to detect and discard corrupted packets. If the CRC verification fails, the controller discards the packet as a corrupted
one, but DOES NOT raise a "Fault Bits" flag. The controller supports a limited number of CRC formulae. If an encoder
implements a CRC formula that is not supported by the controller, then the CRC verification feature needs to be turned
off.

If the encoder sends an ERROR bit in a data packet, the controller stops the motor and latches a corresponding "Fault
Bits" flag. The motor remains powered off until the controller receives a "Reset" command from a parent control

32 www.servosila.com

http://www.servosila.com/

system. A WARN bit can also be extracted from the packet for telemetry purposes. However, the WARN bit is not used
by the controller itself, and does not trigger any fault-handling logic. The WARN bit is only used for telemetry
purposes.

Parameter Units Description CANopen

1

counts per
revolution

counts The parameter defines a maximum resolution of the encoder. This parameter
is to be taken from the encoder's datasheet.

For example, for a 20-bit encoder, this value is 2^20=1048576 counts per
revolution.

UINT32,
0x3013,
0x02,
rw

2

encoder bias vs.
electrical position

counts This parameter needs to be set only if the encoder is used for motor control
(a "Motor Encoder"). Otherwise keep this parameter as 0.

This parameter specifies a zero offset of the encoder's mechanical
installation vs. an electrical position defined by an order in which the motor's
phase lines are connected to the controller.

The bias can be experimentally determined as the following:

• Positively energize phase "A".
• Negatively energize both phases "B" and "C".
• Let the motor's rotor settle at a position.
• This can be done by issuing a "Direct Field Control: Electrical

Position" command with command parameter 0 rad and a small
voltage (e.g. 0.5V).

• The encoder's reading at that position is the bias.

The procedure needs to be performed after correcting for a possible
inversion of the mechanical installation of the encoder (see "inverted
installation" parameter in this section).

UINT32,
0x3013,
0x03,
rw

3

inverted
installation

0 or 1 The direction of the motor's rotation should match the direction of the
encoder's rotation. If that's not the case due to a way the encoder is
mechanically installed, this parameter helps correct the mismatch.

BOOL,
0x3013,
0x04,
rw

4 request frequency:
divider

- The parameter defines how often the controller reads out data from the
encoder. Specifically, this parameters specifies how often pulse trains are
sent by the controller to the encoder via CLOCK line. Note that the encoder
sends a single bit of data back to the controller via DATA line each time it
receives a pulse from the controller. By sending a train of pulses, the
controller reads out all the data bits (a packet) from the encoder.

The parameter specifies a divider for the controller's sampling frequency.

For example:

UINT16,
0x3013,
0x10,
rw

33 www.servosila.com

http://www.servosila.com/

The controller has a sampling frequency of 15 kHz or 15 000 samples per
second (check this for your controller in "Device Information" telemetry
section). If the divider is specified as 4, then the request frequency is 15
000 / 4 = 3750 Hz = 3.75kHz. This means that the controller reads out the
data from the encoder 3750 times a second.

Note that the request frequency should be aligned with a maximum request
frequency specified in the encoder's datasheet.

5

clock frequency:
divider

- This parameter characterizes pulses within a train of pulses that are sent by
the controller to the encoder via CLOCK line to read out a data packet. The
pulses are generated by a silicon peripheral that has peculiarities of
configuration as explained below.

The parameter specifies a divider for CPU frequency of the controller. The
formula for the pulse's frequency is the following:

clock frequency = [Half of CPU frequency] / (divider + 1)

Example:

If the controller's CPU frequency is 90 MHz, and "clock frequency: divider"
is configured as 89, then this results in the following clock frequency: 90
MHz / 2 / (89 + 1) = 45 Mhz / 90 = 500kHz.

Intuition for selecting the clock frequency:

• The clock frequency should not be higher than a maximum clock
frequency defined in the encoder's datasheet.

• On the other hand, the clock frequency should be high enough, so
that the entire pulse train fits in a time window between subsequent
data reads. Note that the frequency of data reads is defined by
"request frequency: divider" parameter in this section.

• Note that the encoder may require a timeout period at the end of each
pulse train. This period shall also fit in the time window between
subsequent data reads in addition to the pulse train itself.

• The higher the frequency, the better (lower latency).

UINT16,
0x3013,

0x11,
rw

6

clock polarity 0 or 1 The parameter tells the controller to electrically invert output signals on the
CLOCK line. The parameter is rarely changed. Leave the default setting
unless an application-specific need arises.

UINT16,
0x3013,
0x12,
rw

7

clock phase 0 or 1 The parameter tells the controller to delay the moment when the DATA line
is sampled vs. output pulse on the CLOCK line. The parameter is rarely
changed. Leave the default setting unless an application-specific need arises.

UINT16,
0x3013,
0x13,
rw

8 total number of 1-64 The parameter specifies the number of pulses the controller clocks out via UINT16,

34 www.servosila.com

http://www.servosila.com/

bits in packet the CLOCK line each time the controller reads the a data packet from the
encoder. This parameter should be taken from the encoder's datasheet. The
number of pulses matches the number of bits read out from the encoder.

Note that there are 2 "empty" bits at the beginning of every SSI packet
followed by an encoder-specific number of ACK bits as well as Start and
CDS bits. Those empty bits, the ACK bits as well as the Start and CDS bits
should be included when counting the total number of pulses to be clocked
out via the CLOCK line.

Furthermore, due to peculiarities of a silicon peripheral, the number of
clocked out pulses is rounded up to the nearest 16. For example, if this
parameter is set as 25 bits (16+9), the actual number of clocked out pulses is
going to be 32 (16+16).

0x3013,
0x14,
rw

9

POSITION field
(count): start bit

- This parameter defines a format of the data packet. The parameter needs to
be taken from the encoder's datasheet.

UINT16,
0x3013,
0x20,
rw

10

POSITION field
(count): length

- This parameter defines a format of the data packet. The parameter needs to
be taken from the encoder's datasheet.

UINT16,
0x3013,
0x21,
rw

11

POSITION field
(count): bit
inversion

0 or 1 This parameter defines a format of the data packet. The parameter needs to
be taken from the encoder's datasheet.

BOOL,
0x3013,
0x22,
rw

12

MULTI-TURN
field (count):
enable

0 or 1 This parameter enables or disables parsing of multi-turn counter. Enable this
feature if the encoder is a multi-turn one.

Set this to 0 if the encoder is not a multi-turn one.

BOOL,
0x3013,
0x30,
rw

13

MULTI-TURN
field (count): start
bit

- This parameter defines a format of the data packet. The parameter needs to
be taken from the encoder's datasheet.

UINT16,
0x3013,
0x31,
rw

14

MULTI-TURN
field (count):
length

- This parameter defines a format of the data packet. The parameter needs to
be taken from the encoder's datasheet.

UINT16,
0x3013,
0x32,
rw

15

MULTI-TURN
field (count): bit
inversion

0 or 1 This parameter defines a format of the data packet. The parameter needs to
be taken from the encoder's datasheet.

BOOL,
0x3013,
0x33,
rw

16 MULTI-TURN
Count Limit
(count)

turns The parameter defines a maximum number of turns supported by a multi-
turn encoder. This parameter is to be taken from the encoder's datasheet.

UINT32,
0x3013,
0x34,

35 www.servosila.com

http://www.servosila.com/

Set this to 0 if an encoder does not support multi-turn functionality. rw

17

ERROR bit:
enable

0 or 1 This parameter specifies if the controller should analyze and react to an
ERROR bit in received packets. If the parameter is enabled, the controller
stops the motor and raises a "Fault Bits" flag upon receiving an ERROR bit.
The motor remains powered off until the controller receives a "Reset"
command from a parent control system.

BOOL,
0x3013,
0x2A,

rw

18

ERROR bit: bit
position

- This parameter defines a format of the data packet. UINT16,
0x3013,
0x2B,

rw

19

ERROR bit: bit
inversion

0 or 1 This parameter defines a format of the data packet. BOOL,
0x3013,
0x2C,

rw

20

WARN bit: enable 0 or 1 The WARN bit can be extracted from the data packet. However, it is not
used for anything other than telemetry.

BOOL,
0x3013,
0x2D,

rw

21

WARN bit: bit
position

- This parameter defines a format of the data packet. The parameter needs to
be taken from the encoder's datasheet.

UINT16,
0x3013,
0x2E,

rw

22

WARN bit: bit
inversion

0 or 1 This parameter defines a format of the data packet. The parameter needs to
be taken from the encoder's datasheet.

BOOL,
0x3013,

0x2F,
rw

23

CRC field: enable 0 or 1 This parameter enables or disables CRC verification for received packets.
Note that the controller supports a limited number of CRC formulae. If an
encoder implements a CRC formula that is not supported by the controller,
then the CRC verification function has to be turned off. Note that if CRC
verification fails, the controller discards the packet as a corrupted one, but
DOES NOT raise a "Fault Bits" flag.

BOOL,
0x3013,
0x23,
rw

24

CRC field: start bit - This parameter defines a format of the data packet. The parameter needs to
be taken from the encoder's datasheet.

UINT16,
0x3013,
0x24,
rw

25

CRC field: length - This parameter defines a format of the data packet. The parameter needs to
be taken from the encoder's datasheet.

UINT16,
0x3013,
0x25,
rw

26 CRC field: bit
inversion

0 or 1 This parameter defines a format of the data packet. The parameter needs to
be taken from the encoder's datasheet.

BOOL,
0x3013,
0x26,

36 www.servosila.com

http://www.servosila.com/

rw

27

CRC input: start
bit

- The CRC is computed over a particular portion of the packet as specified in
the encoder's datasheet. For the purpose of this configuration procedure, the
portion is called "CRC input". The CRC input may span multiple data fields
across the packet.

This parameter defines a format of the data packet. The parameter needs to
be taken from the encoder's datasheet.

UINT16,
0x3013,
0x27,
rw

28

CRC input: length - This parameter defines a format of the data packet. The parameter needs to
be taken from the encoder's datasheet.

UINT16,
0x3013,
0x28,
rw

29

CRC input: bit
inversion

0 or 1 This parameter defines a format of the data packet. The parameter needs to
be taken from the encoder's datasheet.

BOOL,
0x3013,
0x29,
rw

Configuration - Peripheral: SPI Encoder

This section needs to be configured only if either "Motor Encoder" or "Servo Encoder" parameter in the "Datasheet"
section is set to "SPI Encoder". Otherwise leave this section unchanged.

The controller reads out data from the encoder by sending a train of pulses via SCK line. This line is sometimes called
SCLK or CLOCK. The encoder sends a single bit of data back to the controller via MISO line each time it receives a
pulse from the controller. By sending a train of pulses, the controller reads out all the data bits (a packet) from the
encoder.

If an encoder puts a CRC field into the packet, then the controller uses a CRC verification function to detect and
discard corrupted packets. If the CRC verification fails, the controller discards the packet as a corrupted one, but DOES
NOT raise a "Fault Bits" flag. The controller supports a limited number of CRC formulae. If an encoder implements a
CRC formula that is not supported by the controller, then CRC verification feature needs to be turned off.

If the encoder sends an ERROR bit in a data packet, the controller stops the motor and raises a corresponding "Fault
Bits" flag. The motor remains powered off until the controller receives a "Reset" command from a parent control
system. A WARN bit can also be extracted from the packet for telemetry purposes, but the bit is not used by the
controller, and does not trigger any fault-handling logic. The WARN bit is only used for telemetry purposes.

Parameter Units Description CANopen

1

counts per
revolution

counts The parameter defines a maximum resolution of the encoder. This parameter
is to be taken from the encoder's datasheet.

For example, for a 20-bit encoder, this value is 2^20=1048576 counts per
revolution.

UINT32,
0x3014,
0x02,
rw

2 encoder bias vs.
electrical position

counts This parameter needs to be set only if the encoder is used for motor control
(a "Motor Encoder"). Otherwise, keep this parameter as 0.

UINT32,
0x3014,
0x03,

37 www.servosila.com

http://www.servosila.com/

This parameter specifies a zero offset of the encoder's mechanical installation
vs. an electrical position defined by an order in which the motor's phase lines
are connected to the controller.

The bias can be experimentally determined as the following:

• Positively energize phase "A".
• Negatively energize both phases "B" and "C".
• This can be done by issuing a "Direct Field Control: Electrical

Position" command with command parameter 0 rad and a small
voltage (e.g. 0.5V).

• Let the motor's rotor settle at a position.
• The encoder's reading at that position is the bias.

The procedure needs to be performed after correcting for a possible inversion
of the mechanical installation of the encoder (see "inverted installation"
parameter in this section).

rw

3

inverted
installation

0 or 1 The direction of the motor's rotation should match the direction of the
encoder's rotation. If that's not the case due to a way the encoder is
mechanically installed, this parameter helps correct the mismatch.

BOOL,
0x3014,
0x04,
rw

4

request frequency:
divider

- The parameter defines how often the controller reads out data from the
encoder. Specifically, this parameters specifies how often pulse trains are
sent by the controller to the encoder via SCK line. This line is sometimes
called SCLK or CLOCK. Note that the encoder sends a single bit of data
back to the controller via MISO line each time it receives a pulse from the
controller. By sending a train of pulses, the controller reads out all the data
bits (a packet) from the encoder.

The parameter specifies a divider for the controller's sampling frequency.

For example:

The controller has a sampling frequency of 15 kHz or 15 000 samples per
second (check this for your controller in "Device Information" telemetry
section). If the divider is specified as 4, then the request frequency is 15
000 / 4 = 3750 Hz = 3.75kHz. This means that the controller reads out the
data from the encoder 3750 times a second.

Note that the request frequency should be aligned with a maximum request
frequency specified in the encoder's datasheet.

UINT16,
0x3014,
0x10,
rw

5 clock frequency:
divider

- This parameter characterizes pulses within a train of pulses that are sent by
the controller to the encoder via SCK line to read out a data packet. This line
is sometimes called SCLK or CLOCK. The pulses are generated by a silicon
peripheral that has peculiarities of configuration as explained below.

UINT16,
0x3014,

0x11,
rw

38 www.servosila.com

http://www.servosila.com/

The parameter specifies a divider for CPU frequency of the controller. The
formula for the pulse's frequency is the following:

clock frequency = [Half of CPU frequency] / (divider + 1)

Example:

If the controller's CPU frequency is 90 MHz, and "clock frequency: divider"
is configured as 89, then this results in the following clock frequency: 90
MHz / 2 / (89 + 1) = 45 Mhz / 90 = 500kHz.

Intuition for selecting the clock frequency:

• The clock frequency should not be higher than a maximum clock
frequency defined in the encoder's datasheet.

• On the other hand, the clock frequency should be high enough, so that
the entire pulse train fits in a time window between subsequent data
reads. Note that the frequency of data reads is defined by "request
frequency: divider" parameter.

• The higher the frequency, the better (lower latency).

6

clock polarity 0 or 1 The parameter tells the controller to electrically invert output signals on the
SCK line. This line is sometimes called SCLK or CLOCK.

Leave the default setting unless an application-specific need arises.

UINT16,
0x3014,
0x12,
rw

7

clock phase 0 or 1 The parameter tells the controller to delay the moment when the MISO line
is sampled vs. output pulse on the SCK line.

Leave the default setting unless an application-specific need arises.

UINT16,
0x3014,
0x13,
rw

8

total number of
bits in packet

1-64 The parameter specifies the number of pulses the controller clocks out via
the SCK line each time the controller reads a data packet from the encoder.
This line is sometimes called SCLK or CLOCK. The number of pulses
matches the number of bits read out from the encoder. This parameter should
be taken from the encoder's datasheet.

Furthermore, due to peculiarities of a silicon peripheral, the number of
clocked out pulses is rounded up to the nearest 16. For example, if this
parameter is set as 25 bits (16+9), the actual number of clocked out pulses is
going to be 32 (16+16).

UINT16,
0x3014,
0x14,
rw

9

POSITION field
(count): start bit

- This parameter defines a format of the data packet. The parameter needs to
be taken from the encoder's datasheet.

UINT16,
0x3014,
0x20,
rw

10 POSITION field - This parameter defines a format of the data packet. The parameter needs to UINT16,

39 www.servosila.com

http://www.servosila.com/

(count): length be taken from the encoder's datasheet. 0x3014,
0x21,
rw

11

POSITION field
(count): bit
inversion

0 or 1 This parameter defines a format of the data packet. The parameter needs to
be taken from the encoder's datasheet.

BOOL,
0x3014,
0x22,
rw

12

MULTI-TURN
field (count):
enable

0 or 1 This parameter enables or disables parsing of multi-turn counter. Enable this
feature if the encoder is a multi-turn one.

Set this to 0 if the encoder is not a multi-turn one.

BOOL,
0x3014,
0x30,
rw

13

MULTI-TURN
field (count): start
bit

- This parameter defines a format of the data packet. The parameter needs to
be taken from the encoder's datasheet.

UINT16,
0x3014,
0x31,
rw

14

MULTI-TURN
field (count):
length

- This parameter defines a format of the data packet. The parameter needs to
be taken from the encoder's datasheet.

UINT16,
0x3014,
0x32,
rw

15

MULTI-TURN
field (count): bit
inversion

0 or 1 This parameter defines a format of the data packet. The parameter needs to
be taken from the encoder's datasheet.

BOOL,
0x3014,
0x33,
rw

16

MULTI-TURN
Count Limit
(count)

turns The parameter defines a maximum number of turns supported by a multi-
turn encoder. This parameter is to be taken from the encoder's datasheet.

Set this to 0 if an encoder does not support multi-turn functionality.

UINT32,
0x3014,
0x34,
rw

17

ERROR bit:
enable

0 or 1 This parameter specifies if the controller should analyze and react to an
ERROR bit in received packets. If the parameter is enabled, the controller
stops the motor and raises a "Fault Bits" flag upon receiving an ERROR bit.
The motor remains powered off until the controller receives a "Reset"
command from a parent control system.

BOOL,
0x3014,
0x2A,

rw

18

ERROR bit: bit
position

- This parameter defines a format of the data packet. The parameter needs to
be taken from the encoder's datasheet.

UINT16,
0x3014,
0x2B,

rw

19

ERROR bit: bit
inversion

0 or 1 This parameter defines a format of the data packet. The parameter needs to
be taken from the encoder's datasheet.

BOOL,
0x3014,
0x2C,

rw
20 WARN bit: enable 0 or 1 The WARN bit can be extracted from the data packet. However, it is not used

for anything other than telemetry.
BOOL,
0x3014,
0x2D,

40 www.servosila.com

http://www.servosila.com/

rw

21

WARN bit: bit
position

- This parameter defines a format of the data packet. The parameter needs to
be taken from the encoder's datasheet.

UINT16,
0x3014,
0x2E,

rw

22

WARN bit: bit
inversion

0 or 1 This parameter defines a format of the data packet. The parameter needs to
be taken from the encoder's datasheet.

BOOL,
0x3014,

0x2F,
rw

23

CRC field: enable 0 or 1 This parameter enables or disables CRC verification for received packets.
Note that the controller supports a limited number of CRC formulae. If an
encoder implements a CRC formula that is not supported by the controller,
then the CRC verification function has to be turned off. Note that if CRC
verification fails, the controller discards the packet as a corrupted one, but
DOES NOT raise a "Fault Bits" flag.

BOOL,
0x3014,
0x23,
rw

24

CRC field: start
bit

- This parameter defines a format of the data packet. The parameter needs to
be taken from the encoder's datasheet.

UINT16,
0x3014,
0x24,
rw

25

CRC field: length - This parameter defines a format of the data packet. The parameter needs to
be taken from the encoder's datasheet.

UINT16,
0x3014,
0x25,
rw

26

CRC field: bit
inversion

0 or 1 This parameter defines a format of the data packet. The parameter needs to
be taken from the encoder's datasheet.

BOOL,
0x3014,
0x26,
rw

27

CRC input: start
bit

- The CRC is computed over a particular portion of the packet as specified in
the encoder's datasheet. For the purpose of this configuration procedure, the
portion is called "CRC input". The CRC input may span multiple data fields
across the packet.

This parameter defines a format of the data packet. The parameter needs to
be taken from the encoder's datasheet.

UINT16,
0x3014,
0x27,
rw

28

CRC input: length - This parameter defines a format of the data packet. The parameter needs to
be taken from the encoder's datasheet.

UINT16,
0x3014,
0x28,
rw

29

CRC input: bit
inversion

0 or 1 This parameter defines a format of the data packet. The parameter needs to
be taken from the encoder's datasheet.

BOOL,
0x3014,
0x29,
rw

41 www.servosila.com

http://www.servosila.com/

Configuration - Peripheral: PWM Encoder

This section needs to be configured only if either "Motor Encoder" or "Servo Encoder" parameter in the "Datasheet"
section is set to "PWM Encoder". Otherwise leave this section unchanged.

Absolute encoders with PWM output deliver position information to the controller by increasing or decreasing duty
cycle of continuously sent PWM pulses. The duty cycle changes in a linear proportion to the measured position. The
pulses are sent at a constant frequency, but the pulses' duty cycle changes along with absolute position measured by the
encoder. The controller on its end measures the duty cycle of received pulses and knowing the resolution of the
encoder, uses a mathematical proportion to extract the absolute position readings.

Parameter Units Description CANopen

1

counts per
revolution

counts The parameter defines a maximum resolution of the encoder. This parameter
is to be taken from the encoder's datasheet.

UINT32,
0x3012,
0x02,
rw

2

encoder bias vs.
electrical position

counts This parameter needs to be set only if the encoder is used for motor control
(a "Motor Encoder"). Otherwise keep this parameter as 0.

This parameter specifies a zero offset of the encoder's mechanical
installation vs. an electrical position defined by an order in which the
motor's phase lines are connected to the controller.

The bias can be experimentally determined as the following:

• Positively energize phase "A".
• Negatively energize both phases "B" and "C".
• This can be done by issuing a "Direct Field Control: Electrical

Position" command with command parameter 0 rad and a small
voltage (e.g. 0.5V).

• Let the motor's rotor settle at a position.
• The encoder's reading at that position is the bias.

The procedure needs to be performed after correcting for a possible
inversion of mechanical installation of the encoder (see "inverted
installation" parameter).

UINT32,
0x3012,
0x03,
rw

3

inverted
installation

0 or 1 The direction of the motor's rotation should match the direction of the
encoder's rotation. If that's not the case due to a way the encoder is
mechanically installed, this parameter helps correct the mismatch.

BOOL,
0x3012,
0x04,
rw

4

PWM capture
interface

0 or 1 • 0: ENCODERS connector (DEFAULT)
• 1: D-HALL connector

The controller has two different hardware interfaces for capturing input
PWM signals. This parameters tells the controller which of the interfaces the
encoder is connected to.

UINT16,
0x3012,

0x0F,
rw

42 www.servosila.com

http://www.servosila.com/

5

pulse period sec or
clocks

This parameter specifies the period of the PWM pulses sent by the encoder
to the controller. The period should be taken from the encoder's datasheet.

FLOAT32,
0x3012,
0x10,
rw

6

max pulse width
(angle=360 deg)

sec or
clocks

This parameter specifies the duty cycle that corresponds to MAXIMUM
position reported by the encoder. This parameter should be taken from the
encoder's datasheet.

FLOAT32,
0x3012,

0x11,
rw

7

min pulse width
(angle=0 deg)

sec or
clocks

This parameter specifies the duty cycle that corresponds to ZERO position
reported by the encoder. This parameter should be taken from the encoder's
datasheet.

FLOAT32,
0x3012,
0x12,
rw

8

polarity inversion 0 or 1 The parameter tells the controller to electrically invert the input PWM
signal. Leave the default setting unless an application-specific need arises.

BOOL,
0x3012,
0x13,
rw

Configuration - Peripheral: RC PWM and Electronic Gearing

This is a configuration section for RC PWM interface towards RC radio receivers (Futaba, etc) and for Electronic
Gearing function.

Parameter Units Description CANopen

1

enable 0 or 1 Turns on the RC PWM control interface or Electronic Gearing
interface. Note that both CAN and USB interfaces stop processing
commands whenever RC PWM is enabled.

BOOL,
0x3015,
0x01,
rw

2

Function 0,1,2 • 0: RC ESC
• 1: RC Servo
• 2: Electronic Gearing

This parameter defines what function the PWM interface performs.

UINT16,
0x3015,
0x05,
rw

3

PWM capture
interface

0 or 1 • 0: ENCODERS connector
• 1: D-HALL connector (DEFAULT)

The controller has two different hardware interfaces for capturing input
PWM signals. This parameters tells the device which of the interfaces
the RC PWM signal is connected to.

UINT16,
0x3015,

0x0F,
rw

4

polarity inversion 0 or 1 The parameter tells the device to electrically invert the input PWM
signal. Leave the default setting unless an application-specific need
arises.

BOOL,
0x3015,
0x13,
rw

5
RC PWM: pulse
period

sec or
clocks

This parameter specifies the period of the PWM pulses sent to the
controller.

FLOAT32,
0x3015,
0x10,

43 www.servosila.com

http://www.servosila.com/

rw

6

RC PWM: max pulse
width (angle=360
deg)

sec or
clocks

This parameter specifies the duty cycle that corresponds to
MAXIMUM input.

FLOAT32,
0x3015,

0x11,
rw

7

RC PWM: min pulse
width (angle=0 deg)

sec or
clocks

This parameter specifies the duty cycle that corresponds to ZERO
input.

FLOAT32,
0x3015,
0x12,
rw

8

RC PWM: inverted
installation

0 or 1 Swap the way the device interprets the max pulse width and min pulse
width.

BOOL,
0x3015,
0x04,
rw

9

RC ESC:
bidirectional speed

0 or 1 This setting is applicable to Electronic Speed Control (ESC) mode of
operation. This settings is ignored in Servo Control mode.

• 0: unidirectional speed
• 1: bidirectional speed

BOOL,
0x3015,
0x0E,

rw

10

Electronic Gearing:
multiplier

- The parameters defines how much FASTER the SLAVE motor moves
in relation to a MASTER motor.

UINT32,
0x3015,
0x20,
rw

11

Electronic Gearing:
divider

- The parameters defines how much SLOWER the SLAVE motor moves
in relation to a MASTER motor.

UINT32,
0x3015,
0x21,
rw

Configuration - Peripheral: GPIO

Parameter Units Description CANopen

1

Emergency Stop
Switch

GPIO This parameter specifies which GPIO pin is to be used as an Emergency Stop
input.

Refer to datasheet for a list of available input GPIO pins. If this parameter is
set to 0, this means Emergency Stop function is disabled.

UINT16,
0x3020,
0x10,
rw

2

Limit Switch:
Negative Speed

GPIO This parameter specifies which GPIO pin is connected to a limit switch acting
in NEGATIVE speed direction.

Refer to datasheet for a list of available input GPIO pins. If this parameter is
set to 0, this means the function is disabled.

UINT16,
0x3020,

0x11,
rw

3 Limit Switch:
Positive Speed

GPIO This parameter specifies which GPIO pin is connected to a limit switch acting
in POSITIVE speed direction.

UINT16,
0x3020,
0x12,
rw

44 www.servosila.com

http://www.servosila.com/

Refer to datasheet for a list of available input GPIO pins. If this parameter is
set to 0, this means the function is disabled.

4

Switch Type GPIO • 0: Normally Open
• 1: Normally Closed

This setting applies to both Limit Switches as well as to the Emergency Stop
Switch.

BOOL,
0x3020,
0x19,
rw

5

Generic Output GPIO This parameter tells which GPIO pin is to be used to output command-
controlled discrete or PWM signal. This signal is typically used to control a
solenoid of a brake.

Refer to datasheet for a list of available output GPIO pins. If this parameter is
set to 0, this means the function is disabled.

UINT16,
0x3020,
0x20,
rw

6

Generic Input GPIO This parameter tells which GPIO pin is to be used as a general-purpose input
that can be read out via a telemetry interface.

Refer to datasheet for a list of available input GPIO pins. If this parameter is
set to 0, this means the function is disabled.

UINT16,
0x3020,
0x30,
rw

Configuration - Telemetry Mapping: TPDO Message 0

This section defines which telemetry parameters are included into a TPDO message.

• TPDO Message 0: COB ID is 0x180
• TPDO Message 1: COB ID is 0x280
• TPDO Message 2: COB ID is 0x380

Parameter Units Description CANopen
1 Parameter

0
bits • 0: Not used

• Non-zero: Telemetry Mapping Code

Telemetry Mapping Code is a decimal number that is formed from hexadecimal Index
and Sub-Index values of a telemetry parameter.

First, identify a telemetry parameter to be included into the telemetry message. Note
hexadecimal Index and Sub-Index of the telemetry parameter. For example,
Index=0x4000 and Sub-Index=0x14. Next, concatenate the hexadecimal numbers to
form a single hexadecimal code. In the example, the code is hexadecimal 400014,
which is 4000 concatenated with 14. Finally, convert the hexadecimal number into a
corresponding decimal number. For example, hexadecimal 400014 is decimal
4194324.

Hint: Just right-click on a telemetry parameter on the telemetry screen to quickly get

UINT32,
0x1A00,

0x01,
rw

45 www.servosila.com

http://www.servosila.com/

the parameter's Telemetry Mapping Code and avoid doing the manual computations.

2

Parameter
1

bits • 0: Not used
• Non-zero: Telemetry Mapping Code

Telemetry Mapping Code is a decimal number that is formed from hexadecimal Index
and Sub-Index values of a telemetry parameter.

First, identify a telemetry parameter to be included into the telemetry message. Note
hexadecimal Index and Sub-Index of the telemetry parameter. For example,
Index=0x4000 and Sub-Index=0x14. Next, concatenate the hexadecimal numbers to
form a single hexadecimal code. In the example, the code is hexadecimal 400014,
which is 4000 concatenated with 14. Finally, convert the hexadecimal number into a
corresponding decimal number. For example, hexadecimal 400014 is decimal
4194324.

Hint: Just right-click on a telemetry parameter on the telemetry screen to quickly get
the parameter's Telemetry Mapping Code and avoid doing the manual computations.

UINT32,
0x1A00,

0x02,
rw

3

Parameter
2

bits • 0: Not used
• Non-zero: Telemetry Mapping Code

Telemetry Mapping Code is a decimal number that is formed from hexadecimal Index
and Sub-Index values of a telemetry parameter.

First, identify a telemetry parameter to be included into the telemetry message. Note
hexadecimal Index and Sub-Index of the telemetry parameter. For example,
Index=0x4000 and Sub-Index=0x14. Next, concatenate the hexadecimal numbers to
form a single hexadecimal code. In the example, the code is hexadecimal 400014,
which is 4000 concatenated with 14. Finally, convert the hexadecimal number into a
corresponding decimal number. For example, hexadecimal 400014 is decimal
4194324.

Hint: Just right-click on a telemetry parameter on the telemetry screen to quickly get
the parameter's Telemetry Mapping Code and avoid doing the manual computations.

UINT32,
0x1A00,

0x03,
rw

4 Parameter
3

bits • 0: Not used
• Non-zero: Telemetry Mapping Code

Telemetry Mapping Code is a decimal number that is formed from hexadecimal Index
and Sub-Index values of a telemetry parameter.

First, identify a telemetry parameter to be included into the telemetry message. Note
hexadecimal Index and Sub-Index of the telemetry parameter. For example,
Index=0x4000 and Sub-Index=0x14. Next, concatenate the hexadecimal numbers to
form a single hexadecimal code. In the example, the code is hexadecimal 400014,
which is 4000 concatenated with 14. Finally, convert the hexadecimal number into a
corresponding decimal number. For example, hexadecimal 400014 is decimal

UINT32,
0x1A00,

0x04,
rw

46 www.servosila.com

http://www.servosila.com/

4194324.

Hint: Just right-click on a telemetry parameter on the telemetry screen to quickly get
the parameter's Telemetry Mapping Code and avoid doing the manual computations.

Configuration - Telemetry Mapping: TPDO Message 1

This section defines which telemetry parameters are included into a TPDO message.

• TPDO Message 0: COB ID is 0x180
• TPDO Message 1: COB ID is 0x280
• TPDO Message 2: COB ID is 0x380

Parameter Units Description CANopen

1

Parameter
0

bits • 0: Not used
• Non-zero: Telemetry Mapping Code

Telemetry Mapping Code is a decimal number that is formed from hexadecimal Index
and Sub-Index values of a telemetry parameter.

First, identify a telemetry parameter to be included into the telemetry message. Note
hexadecimal Index and Sub-Index of the telemetry parameter. For example,
Index=0x4000 and Sub-Index=0x14. Next, concatenate the hexadecimal numbers to
form a single hexadecimal code. In the example, the code is hexadecimal 400014,
which is 4000 concatenated with 14. Finally, convert the hexadecimal number into a
corresponding decimal number. For example, hexadecimal 400014 is decimal
4194324.

Hint: Just right-click on a telemetry parameter on the telemetry screen to quickly get
the parameter's Telemetry Mapping Code and avoid doing the manual computations.

UINT32,
0x1A01,

0x01,
rw

2

Parameter
1

bits • 0: Not used
• Non-zero: Telemetry Mapping Code

Telemetry Mapping Code is a decimal number that is formed from hexadecimal Index
and Sub-Index values of a telemetry parameter.

First, identify a telemetry parameter to be included into the telemetry message. Note
hexadecimal Index and Sub-Index of the telemetry parameter. For example,
Index=0x4000 and Sub-Index=0x14. Next, concatenate the hexadecimal numbers to
form a single hexadecimal code. In the example, the code is hexadecimal 400014,
which is 4000 concatenated with 14. Finally, convert the hexadecimal number into a
corresponding decimal number. For example, hexadecimal 400014 is decimal
4194324.

Hint: Just right-click on a telemetry parameter on the telemetry screen to quickly get
the parameter's Telemetry Mapping Code and avoid doing the manual computations.

UINT32,
0x1A01,

0x02,
rw

47 www.servosila.com

http://www.servosila.com/

3

Parameter
2

bits • 0: Not used
• Non-zero: Telemetry Mapping Code

Telemetry Mapping Code is a decimal number that is formed from hexadecimal Index
and Sub-Index values of a telemetry parameter.

First, identify a telemetry parameter to be included into the telemetry message. Note
hexadecimal Index and Sub-Index of the telemetry parameter. For example,
Index=0x4000 and Sub-Index=0x14. Next, concatenate the hexadecimal numbers to
form a single hexadecimal code. In the example, the code is hexadecimal 400014,
which is 4000 concatenated with 14. Finally, convert the hexadecimal number into a
corresponding decimal number. For example, hexadecimal 400014 is decimal
4194324.

Hint: Just right-click on a telemetry parameter on the telemetry screen to quickly get
the parameter's Telemetry Mapping Code and avoid doing the manual computations.

UINT32,
0x1A01,

0x03,
rw

4

Parameter
3

bits • 0: Not used
• Non-zero: Telemetry Mapping Code

Telemetry Mapping Code is a decimal number that is formed from hexadecimal Index
and Sub-Index values of a telemetry parameter.

First, identify a telemetry parameter to be included into the telemetry message. Note
hexadecimal Index and Sub-Index of the telemetry parameter. For example,
Index=0x4000 and Sub-Index=0x14. Next, concatenate the hexadecimal numbers to
form a single hexadecimal code. In the example, the code is hexadecimal 400014,
which is 4000 concatenated with 14. Finally, convert the hexadecimal number into a
corresponding decimal number. For example, hexadecimal 400014 is decimal
4194324.

Hint: Just right-click on a telemetry parameter on the telemetry screen to quickly get
the parameter's Telemetry Mapping Code and avoid doing the manual computations.

UINT32,
0x1A01,

0x04,
rw

Configuration - Telemetry Mapping: TPDO Message 2

This section defines which telemetry parameters are included into a TPDO message.

• TPDO Message 0: COB ID is 0x180
• TPDO Message 1: COB ID is 0x280
• TPDO Message 2: COB ID is 0x380

Parameter Units Description CANopen

1

Parameter
0

bits • 0: Not used
• Non-zero: Telemetry Mapping Code

Telemetry Mapping Code is a decimal number that is formed from hexadecimal Index
and Sub-Index values of a telemetry parameter.

UINT32,
0x1A02,

0x01,
rw

48 www.servosila.com

http://www.servosila.com/

First, identify a telemetry parameter to be included into the telemetry message. Note
hexadecimal Index and Sub-Index of the telemetry parameter. For example,
Index=0x4000 and Sub-Index=0x14. Next, concatenate the hexadecimal numbers to
form a single hexadecimal code. In the example, the code is hexadecimal 400014,
which is 4000 concatenated with 14. Finally, convert the hexadecimal number into a
corresponding decimal number. For example, hexadecimal 400014 is decimal
4194324.

Hint: Just right-click on a telemetry parameter on the telemetry screen to quickly get
the parameter's Telemetry Mapping Code and avoid doing the manual computations.

2

Parameter
1

bits • 0: Not used
• Non-zero: Telemetry Mapping Code

Telemetry Mapping Code is a decimal number that is formed from hexadecimal Index
and Sub-Index values of a telemetry parameter.

First, identify a telemetry parameter to be included into the telemetry message. Note
hexadecimal Index and Sub-Index of the telemetry parameter. For example,
Index=0x4000 and Sub-Index=0x14. Next, concatenate the hexadecimal numbers to
form a single hexadecimal code. In the example, the code is hexadecimal 400014,
which is 4000 concatenated with 14. Finally, convert the hexadecimal number into a
corresponding decimal number. For example, hexadecimal 400014 is decimal
4194324.

Hint: Just right-click on a telemetry parameter on the telemetry screen to quickly get
the parameter's Telemetry Mapping Code and avoid doing the manual computations.

UINT32,
0x1A02,

0x02,
rw

3

Parameter
2

bits • 0: Not used
• Non-zero: Telemetry Mapping Code

Telemetry Mapping Code is a decimal number that is formed from hexadecimal Index
and Sub-Index values of a telemetry parameter.

First, identify a telemetry parameter to be included into the telemetry message. Note
hexadecimal Index and Sub-Index of the telemetry parameter. For example,
Index=0x4000 and Sub-Index=0x14. Next, concatenate the hexadecimal numbers to
form a single hexadecimal code. In the example, the code is hexadecimal 400014,
which is 4000 concatenated with 14. Finally, convert the hexadecimal number into a
corresponding decimal number. For example, hexadecimal 400014 is decimal
4194324.

Hint: Just right-click on a telemetry parameter on the telemetry screen to quickly get
the parameter's Telemetry Mapping Code and avoid doing the manual computations.

UINT32,
0x1A02,

0x03,
rw

4 Parameter
3

bits • 0: Not used
• Non-zero: Telemetry Mapping Code

UINT32,
0x1A02,

0x04,

49 www.servosila.com

http://www.servosila.com/

Telemetry Mapping Code is a decimal number that is formed from hexadecimal Index
and Sub-Index values of a telemetry parameter.

First, identify a telemetry parameter to be included into the telemetry message. Note
hexadecimal Index and Sub-Index of the telemetry parameter. For example,
Index=0x4000 and Sub-Index=0x14. Next, concatenate the hexadecimal numbers to
form a single hexadecimal code. In the example, the code is hexadecimal 400014,
which is 4000 concatenated with 14. Finally, convert the hexadecimal number into a
corresponding decimal number. For example, hexadecimal 400014 is decimal
4194324.

Hint: Just right-click on a telemetry parameter on the telemetry screen to quickly get
the parameter's Telemetry Mapping Code and avoid doing the manual computations.

rw

Configuration - Networking

Parameter Units Description CANopen

1

CAN: bitrate kbps • 1000
• 500
• 250
• 125
• 100
• 50

The parameter defines bitrate in kbps for the CAN interface of the controller.
This bit rate should match the bitrates of other devices on the same CAN
network.

UINT16,
0x3000,
0x02,
rw

2

CANopen: Node
ID

1-126 The parameter defines the controller's Node ID on a CANopen network. Valid
Node IDs range from 1 to 127 (11 bits only).

An initial Node ID is automatically generated. The value can be changed here
to ensure uniqueness of the Node ID within a CANopen network.

UINT32,
0x3000,
0x03,
rw

3

CANopen:
heartbeat timeout

sec If the controller does not receive any messages via either CAN or USB
interfaces within this time period, the device assumes that there is a problem
with a parent control system. Upon detecting a heartbeat timeout event, the
controller executes the following actions:

1. The controller automatically issues a "Stop" command to itself,
2. ... that stops the motor,
3. ... and depending on the configuration, might enable the "Brake"

function.

FLOAT32,
0x3000,
0x04,
rw

4
CANopen:
telemetry
frequency

Hz The parameter specifies how often the controller sends telemetry messages
(CANopen TPDO packets) to a parent control system. The controller sends a
single TPDO message at a time, looping across the messages with a frequency

FLOAT32,
0x3000,
0x05,

50 www.servosila.com

http://www.servosila.com/

defined by this parameter. rw

5

Feature:
USB2CAN
routing

0 or 1 This feature turns the device into a USB-to-CAN gateway ("USB2CAN
dongle" function).

Note that enabling the function puts a performance penalty on the controller.

BOOL,
0x3000,
0x10,
rw

6

USB2CAN:
support 29bit ID
frames

0 or 1 The parameter enables support for routing of 29bit frames between USB and
CAN. If the feature is turned off, the built-in USB-to-CAN gateway routes
11bit frames only.

BOOL,
0x3000,
0x12,
rw

7

USB: serial
number

- The USB serial number is visible to host computers and can be used to identify
the device among multiple devices connected to a host. The serial number is
automatically generated, but can be changed here if needed.

UINT32,
0x3000,
0x20,
rw

Configuration - Inverter: ADC & PWM

Parameter Units Description CANopen

1

ADC:
Amplifier Gain
Selector

0 or 1 • 0: Amplifier gain = 10
• 1: Amplifier gain = 40

Use ADC Amplifier to match dynamic range of ADC to the range of the motor's
phase currents. This increases effective resolution of the ADC output, improves
performance of the drive and reduces energy losses due to heating in the motor.

If a particular motor has a lower Maximum Continuous Current rating vs. that of
the drive, then the dynamic range of the drive's ADC module is not be fully
utilized. This under-utilization of the dynamic range creates discretization errors
when measuring phase currents. The discretization errors reduces efficiency of
the electrical drive when controlling small motors.

To counter this issue, increase the gain of the amplifier whenever the motor's
"Maximum Continuous Current" rating is 4 times less than the Amps rating of
your controller. Re-confirm this threshold for your particular model of the
controller.

For example, if your controller has a nominal current rating of 60A, then by
increasing the gain, you reduce the rating to 60A / 4 = 15A and thus improving
resolution of the ADC when controlling a low-Amps motor.

If your controller is a 25A device, then by enabling the amplifier, you get 25A/4
= 6.25A nominal current range.

UINT16,
0x3002,
0x03,
rw

2 ADC: Shunt
Resistor in
Phase A

Ohm This is a nominal resistance of a shunt resistor soldered to the PCB. There are
just a few cases when this configuration parameter needs to be changed.

• whenever a different shunt resistor is soldered to the PCB for circut

FLOAT32,
0x3002,
0x0A,

rw

51 www.servosila.com

http://www.servosila.com/

optimization purposes,
• for calibration purposes to fine-tune current sensing,
• when re-flashing the firmware.

3

ADC: Shunt
Resistor in
Phase B

Ohm This is a nominal resistance of a shunt resistor soldered to the PCB. There are
just a few cases when this configuration parameter needs to be changed.

• whenever a different shunt resistor is soldered to the PCB for circut
optimization purposes,

• for calibration purposes to fine-tune current sensing,
• when re-flashing the firmware.

FLOAT32,
0x3002,
0x0B,

rw

4

ADC: Shunt
Correction
Factor

Ohm/
Ohm

This is an experimentally determined calibration parameter that helps account for
non-linearities of phase current measurements.

Keep this parameter at its default value.

FLOAT32,
0x3002,
0x10,
rw

5

PWM: Period
(Inverter
Resolution)

CPU
ticks

This parameter defines a period of the inverter's PWM signal. This parameter
indirectly defines "inverter resolution". The higher the parameter is, the more
precise the inverter is capable of positioning the stator's magnetic field, the lower
PWM frequency is, the lower ADC sampling frequency is, and the lower the
current control loop's frequency is.

Changing this parameter causes obscure side effects. Do not change this
parameter unless you know what you are doing.

UINT32,
0x3002,
0x30,
rw

6

PWM: ADC
Decimation
Factor

- This parameter defines how often ADC sampling takes place in relation to the
inverter's PWM frequency. This also affects current control loop's frequency.

Do not change this parameter unless you know what you are doing.

UINT16,
0x3002,
0x32,
rw

7

PWM: Dead
Ticks

CPU
ticks

This parameter is dependent on datasheet of MOSFET transistors soldered to the
board. Do not change this parameter unless a different set of transistors is
soldered to the board.

Do not change this parameter unless specifically advised to do so.

UINT16,
0x3002,
0x31,
rw

Configuration - Product Activation

Parameter Units Description CANopen

1

Activation
Key

- The activation key is provided by technical support team to the buyer of this device.
Follow instructions from technical support team to obtain the activation key.

UINT32,
0x20FF,

0x02,
rw

52 www.servosila.com

http://www.servosila.com/

Telemetry Parameters

Telemetry - System Status

Parameter Units Description CANopen

1

Fault Bits bits • 0: No fault
• 1: Driver Chip Protection
• 2: Driver Chip Overcurrent
• 3: =1+2
• 4: Overheating Protection
• 8: Overcurrent Protection
• 9: =1+8
• 16: Thermistor Overheating
• 32: Hall Sensors Fault
• 64: Quadrature Encoder Fault
• 128: SSI Encoder Fault
• 256: SPI Encoder Fault
• 512: PWM Encoder Fault
• 1024: RC PWM Input Fault
• 16384: Emergency Stop
• 32768: Activation Key is Missing

Whenever a fault is detected, the controller powers off the motor, latches one
or more "Fault Bits" flags, and starts waiting for a "Reset" command to come
from a parent control system. Until a "Reset" command comes, the controller
ignores all other commands received from the parent control system. Note that
all configuration management functions (CANopen SDO functionality) keep
working as usual.

The parent control system is expected to continuously monitor the "Fault Bits"
parameter delivered to it via CANopen TPDO mechanism. If the "Fault Bits"
parameter is 0 (all bits are clear), then nothing needs to be done. Whenever
one or more bits of the "Fault Bits" value indicate a fault, the parent control
system is supposed to issue a "Reset" command. The "Reset" command needs
to be issued once the fault is corrected, and the drive is ready to re-start
operation.

UINT16,
0x4000,
0x03,

ro

2

Operation Mode - • 0: Idle
• 1: Off
• 2: Fault
• 3: Autoconfiguration
• 4: Field Oriented Control (FOC)
• 6: Electronic Speed Control (ESC)
• 8: Servo Control
• 9: Kickstart
• 10: Brake
• 11: Direct Field Control - Rotation

UINT16,
0x4000,
0x02,

ro

53 www.servosila.com

http://www.servosila.com/

• 12: Direct Field Control - Electrical Position
• 15: Testing - FOC Step Response
• 16: Testing - Speed Step Response
• 17: Testing - Servo Step Response
• 19: Brushed Motor or Solenoid Control (1-2 motors)
• 20: Testing - Iq Current Step Response

This parameter tells what control law the controller is currently using to drive
the motor.

3

Commutation
Mode

- • 1: None (Kickstart)
• 2: Sensorless
• 3: Hall Sensors
• 4: Motor Encoder

This parameter tells which method the controller is currently using to
determine electrical position of the rotor.

UINT16,
0x4000,
0x15,

ro

4

Kickstart needed 0 or 1 This telemetry parameter tells if the motor needs a kickstart at its current state.
A kickstart is needed if a sensorless motor is not yet moving or moving
slowly, or if a Motor Encoder with Quadrature interface is yet to find its Index
position.

BOOL,
0x4000,
0x14,

ro

5

Electrical
Position

rad This telemetry parameter tells the position of the rotor in relation to the stator.

This position is measured using Hall sensors or a motor encoder, or estimated
by "Sensorless Observer" method.

FLOAT32,
0x4000,

0x11,
ro

6

Speed (Electrical
Frequency)

Hz This telemetry parameter tells the speed of the motor's rotor.

The speed is defined in electrical revolutions per second (Hz). To convert
electrical revolutions per second (Hz) to motor shaft's revolutions per second,
just divide it by the number of pole pairs.

For example, assuming the speed is 20 Hz (electrical), and Poles Number is 8,
then the corresponding speed in motor shaft's revolutions per second is 20 /
(8/2) = 5.0 (revolutions per second), which is 5 * 60 = 300 RPM.

FLOAT32,
0x4000,
0x10,

ro

7

Work Zone:
Speed

RPS This is the speed of rotation of payload measured using a Servo Encoder or
estimated using a Motor Encoder, Hall Sensors or via a sensorless technique.

FLOAT32,
0x4000,
0x16,

ro

8

Work Zone:
Count

counts The "Work Zone: Count" telemetry is the same as "Servo Encoder Counts"
except that it continuously spans in both positive and negative directions. This
telemetry output is affected by "Work Zone: zero offset" setting as well as by
"inverted installation" and "encoder bias vs. electrical position" parameters of
the encoder's configuration.

INT32,
0x4000,
0x19,

ro

54 www.servosila.com

http://www.servosila.com/

The "Work Zone Count" is not limited to Servo Encoder's resolution. Instead,
it logically spans in both positive or negative directions as many encoder
counts as needed. Both Servo Control and Direct Drive Control use the logical
work zone's counts at their references instead of the physical servo encoder's
readings. This makes it easier to develop "multi-turn" servo applications.

9

Work Zone: Turn
Count

turns This telemetry parameter counts full revolutions using the following formula:

"Work Zone: Turn Count" = "Work Zone: Count" div "Work Zone:
Dimension".

INT32,
0x4000,
0x1B,

ro

10

Work Zone:
Modulo Count

counts This is a measurement of a partial revolution as computed using the following
modulo division formula:

"Work Zone: Modulo" = "Work Zone: Count" mod "Work Zone: Dimension".

UINT32,
0x4000,
0x1A,

ro

11

Work Zone:
Dimension

counts This is a size of Work Zone defined in Servo Encoder counts. The value is
used for computing "Work Zone: Modulo" and "Work Zone: Turn Count".
Usually, this size equals the value of "counts per revolution", a parameter of a
Servo Encoder. However, it can be configured to be an arbitrary number to
simplify application development. For example, for a CNC machine, this
value can be set to match a size of the CNC machine's actual work zone
measured in Servo Encoder counts.

UINT32,
0x4000,
0x1C,

ro

12

Motor Encoder:
Counts

counts This is an ABSOLUTE POSITION read out from an encoder that plays the
"Motor Encoder" role.

UINT32,
0x4000,
0x33,

ro

13

Servo Encoder:
Counts

counts This is an ABSOLUTE POSITION read out from an encoder that plays the
"Servo Encoder" role.

UINT32,
0x4000,
0x32,

ro

14

Reference:
Current

A This is the currently active reference, a commanded target, for current flowing
through the motor.

FLOAT32,
0x4000,
0x20,

ro

15

Reference:
Speed (Electrical
Frequency)

Hz This is the currently active reference, a commanded target, for the motor's
speed.

FLOAT32,
0x4000,
0x21,

ro

16

Reference: Work
Zone Count

counts This is the currently active reference, a commanded target, for the servo
actuator.

INT32,
0x4000,
0x23,

ro
17 Target Reached 0 or 1 • 0: Not reached BOOL,

0x4000,

55 www.servosila.com

http://www.servosila.com/

• 1: Reached

This indicator tells if a reference servo position has been reached. This
indicator does not latch.

0x41,
ro

18

Sample Number - This is a continuously incremented counter of samples taken by an ADC
module of the controller. The counter is incremented with the sampling
frequency of the controller.

UINT32,
0x4000,
0x04,

ro

Telemetry - ADC

Parameter Units Description CANopen

1

Voltage: DC bus (Udc) V Measured voltage of input power supply. FLOAT16,
0x5001,
0x04,

ro

2

Current: Phase A (Ia) A Measured electric current flowing through phase A. FLOAT32,
0x5001,
0x05,

ro

3

Current: Phase B (Ib) A Measured electric current flowing through phase B. FLOAT32,
0x5001,
0x06,

ro

4

Current: Phase C (Ic) A Measured electric current flowing through phase C. FLOAT32,
0x5001,
0x07,

ro

5

CPU Temperature C Measured temperature of the controller's CPU. INT16,
0x5001,
0x0C,

ro

6

ADC mode 0 or 1 • 0: Calibration is ongoing
• 1: Operational

BOOL,
0x5001,
0x03,

ro

Telemetry - Field Oriented Control (FOC)

Parameter Units Description CANopen

1

Torque N*m This is an estimate of TORQUE that the motor is currently generating. Note that
this estimation is only available whenever the motor runs under Field Oriented
Control (FOC).

FLOAT32,
0x4001,
0x02,

ro

2 FOC: Iq
Current

A This is an estimate of Iq current derived from phase currents measured by the
ADC.

FLOAT32,
0x4001,
0x03,

56 www.servosila.com

http://www.servosila.com/

ro

3

FOC: Id
Current

A This is an estimate of Id current derived from phase currents measured by the
ADC.

FLOAT32,
0x4001,
0x04,

ro

4

FOC: Id
Reference

V This is a currently commanded Id reference. This telemetry parameter is useful for
tuning "Feature: Field Weakening".

FLOAT32,
0x4001,
0x09,

ro

5

FOC: Uq
Voltage

V This is a Uq voltage, an output of a FOC control law. FLOAT32,
0x4001,
0x05,

ro

6

FOC: Uq
Integral

V This is an integral sum of a PI controller that commands Uq voltage to stabilize Iq
current.

FLOAT32,
0x4001,
0x07,

ro

7

FOC: Ud
Voltage

V This is a Ud voltage, an output of a FOC control law. FLOAT32,
0x4001,
0x06,

ro

8

FOC: Ud
Integral

V This is an integral sum of a PI controller that commands Ud voltage to stabilize Id
current.

FLOAT32,
0x4001,
0x08,

ro

Telemetry - Direct Field Control

Parameter Units Description CANopen

1

Direct Field Control:
Electrical Position

rad This telemetry parameter tells an estimate of position of the rotor in
relation to the stator.

FLOAT32,
0x4008,
0x03,

ro

2

Direct Field Control:
Speed (Electrical
Frequency)

Hz This telemetry parameter tells an estimate of speed of the motor.

The speed is defined in electrical revolutions per second (Hz). To convert
electrical revolutions per second (Hz) to motor shaft's revolutions per
second, just divide it by the number of pole pairs.

For example, assuming the speed is 20 Hz (electrical), and Poles Number
is 8, then the corresponding speed in motor shaft's revolutions per second
is 20 / (8/2) = 5.0 Hz (revolutions per second), which is 5 * 60 = 300
RPM.

FLOAT32,
0x4008,
0x04,

ro

Telemetry - Sensorless Control

Parameter Units Description CANopen

57 www.servosila.com

http://www.servosila.com/

1

Sensorless: mode - • 0: Undefined state
• 1: Zero speed
• 2: Operational speed

UINT16,
0x4007,
0x02,

ro

2

Sensorless: Speed
(Electrical
Frequency)

Hz This telemetry parameter tells an estimated speed of the "sensorless" motor.

The speed is defined in electrical revolutions per second (Hz). To convert
electrical revolutions per second (Hz) to motor shaft's revolutions per
second, just divide it by the number of pole pairs.

For example, assuming the speed is 20 Hz (electrical), and Poles Number is
8, then the corresponding speed in motor shaft's revolutions per second is 20
/ (8/2) = 5.0 Hz (revolutions per second), which is 5 * 60 = 300 RPM.

FLOAT32,
0x4007,
0x03,

ro

3

Sensorless:
Electrical Position

rad This telemetry parameter tells an estimated position of the rotor in relation
to the stator.

FLOAT32,
0x4007,
0x04,

ro

4

Sensorless: Emf
alpha

V This is an estimate of Back-Emf voltage (the "sine" component). FLOAT32,
0x4007,
0x05,

ro

5

Sensorless: Emf
beta

V This is an estimate of Back-Emf voltage (the "cosine" component). FLOAT32,
0x4007,
0x06,

ro

6

Sensorless: Back-
Emf Constant (Ke)

V/
(rad/s)

This is an estimate of "Back-Emf Constant (Ke)" measured in V (peak, line-
to-neutral) per electrical rad/s.

FLOAT32,
0x4007,
0x07,

ro

7

Sensorless:
Technical Speed
Limit

Hz This is an estimate of MAXIMUM speed the "Sensorless Observer" method
is capable of measuring. The limit is caused by finite performance of CPU,
and a finite sampling frequency of ADC.

FLOAT32,
0x4007,
0x09,

ro

8

Sensorless: Zero
Speed Threshold

Hz This is an estimate of MINIMUM speed at which the "Sensorless Observer"
method is still capable of sensing Back-Emf voltages in the presence of
background noise.

FLOAT32,
0x4007,
0x08,

ro

Telemetry - Hall Sensors Observer

Parameter Units Description CANopen

1

Hall Observer:
mode

- • 0: Zero speed
• 1: Low speed
• 2: Operational speed

UINT16,
0x4002,
0x02,

ro

58 www.servosila.com

http://www.servosila.com/

2

Hall Observer: Hall
code

- Hall sensors generate 6 codes (counts) per electrical revolution. This
telemetry parameter tells the current Hall code.

UINT16,
0x4002,
0x03,

ro

3

Hall Observer:
Speed (Electrical
Frequency)

Hz This telemetry parameter tells an estimated speed of the motor.

The speed is defined in electrical revolutions per second (Hz). To convert
electrical revolutions per second (Hz) to motor shaft's revolutions per
second, just divide it by the number of pole pairs.

For example, assuming the speed is 20 Hz (electrical), and Poles Number
is 8, then the corresponding speed in motor shaft's revolutions per second
is 20 / (8/2) = 5.0 Hz (revolutions per second), which is 5 * 60 = 300
RPM.

FLOAT32,
0x4002,
0x04,

ro

4

Hall Observer:
Electrical Position

rad This telemetry parameter tells an estimated position of the rotor in
relation to the stator.

FLOAT32,
0x4002,
0x05,

ro

5

Hall Observer:
between codes
counter

samples This is a counter that is reset each time a Hall code changes. UINT32,
0x4002,
0x07,

ro

6

Hall Observer: Hall
errors counter

- This telemetry parameter counts occurrences of erroneous combinations
of Hall sensors' readings. Note that the combinations with all "ones" or
all "zeros" correspond to faulty or disconnected Hall sensors.

UINT32,
0x4002,
0x08,

ro

7

Hall Observer:
positioning error
estimate

rad Whenever a Hall code changes, an electrical position that corresponds to
the code is compared to an estimate of the electrical position made by the
Observer, and the difference is shown here. The smaller the difference,
the better.

FLOAT32,
0x4002,
0x09,

ro

8

Hall Observer:
count

- Hall sensors generate 6 counts per electrical revolution. This telemetry
parameter tells the current count as if Hall Sensors were an absolute
encoder.

UINT16,
0x4002,
0x0B,

ro

9

Hall Observer:
Technical Speed
Limit

Hz This is an estimate of MAXIMUM speed the Hall Observer is capable of
measuring. The limit is caused by finite performance of CPU, and a finite
sampling frequency of ADC.

FLOAT32,
0x4002,
0x06,

ro

10

Hall Observer: Zero
Speed Threshold

Hz This is an estimate of MINIMUM speed the Hall Observer is capable of
measuring. The limit is caused by a low resolution of Hall Sensors that
generate just 6 counts per electrical revolution.

FLOAT32,
0x4002,
0x0A,

ro

59 www.servosila.com

http://www.servosila.com/

Telemetry - Peripheral: Hall Sensors

Parameter Units Description CANopen

1

Hall Sensor #0 - Reading of physical Hall sensor 0 UINT16,
0x5005,
0x03,

ro

2

Hall Sensor #1 - Reading of physical Hall sensor 1 UINT16,
0x5005,
0x04,

ro

3

Hall Sensor #2 - Reading of physical Hall sensor 2 UINT16,
0x5005,
0x05,

ro

4

Hall Sensors
Fault

0 or 1 Note that combinations with all "ones" or all "zeros" correspond to faulty or
disconnected Hall sensors.

BOOL,
0x5005,
0x02,

ro

Telemetry - Peripheral: Quadrature Encoder

Parameter Units Description CANopen

1

Quadrature: count counts The encoder's ABSOLUTE POSITION expressed in counts (quadrature
edge counts).

UINT32,
0x500A,

0x06,
ro

2

Quadrature: direction 0 or 1 The direction of the rotation of the encoder's disk BOOL,
0x500A,

0x05,
ro

3

Quadrature: index
detected

0 or 1 This bit latches whenever the quadrature encoder detects its INDEX
position for the first time. Until the INDEX signal is detected, the
encoder cannot measure an absolute position of the shaft since it does
not have a reference point that corresponds to a zero position.

BOOL,
0x500A,
0x0A,

ro

4

Quadrature: signal A 0 or 1 Reading of signal "A" BOOL,
0x500A,

0x02,
ro

5

Quadrature: signal B 0 or 1 Reading of signal "B" BOOL,
0x500A,

0x03,
ro

6
Quadrature: signal I 0 or 1 Reading of INDEX signal BOOL,

0x500A,
0x04,

60 www.servosila.com

http://www.servosila.com/

ro

7

Quadrature: phase
errors counter

- This is a counter of phase errors in quadrature signals. UINT32,
0x500A,

0x0B,
ro

8

Quadrature: encoder
speed

RPS The speed of quadrature disk rotation expressed in revolutions per
second (Hz). This speed is estimated using "UNIT TIME" or "UNIT
DISTANCE" method (see "Peripheral: Quadrature Encoder"
configuration section for details).

FLOAT32,
0x500A,

0x08,
ro

9

Quadrature: encoder
speed via UNIT
DISTANCE method

RPS The speed of quadrature disk rotation computed using "UNIT
DISTANCE" method.

FLOAT32,
0x500A,

0x0C,
ro

10

Quadrature: encoder
speed via UNIT TIME
method

RPS The speed of quadrature disk rotation computed using "UNIT TIME"
method.

FLOAT32,
0x500A,
0x0D,

ro

11

Quadrature: time to
travel UNIT
DISTANCE

sec This parameter helps monitor performance of UNIT DISTANCE speed
computation method.

FLOAT32,
0x500A,

0x0F,
ro

12

Quadrature: distance
traveled in UNIT
TIME

counts This parameter helps monitor performance of UNIT TIME speed
computation method.

FLOAT32,
0x500A,

0x0E,
ro

Telemetry - Peripheral: SSI/BISS-C Encoder

Parameter Units Description CANopen

1

SSI/BISS-C Encoder: packets
counter

- This is a counter of data packets received by the controller from
the encoder.

UINT32,
0x5008,
0x02,

ro

2

SSI/BISS-C Encoder: count counts This is the latest ABSOLUTE POSITION reported by the
encoder.

UINT32,
0x5008,
0x03,

ro

3

SSI/BISS-C Encoder: is count
valid

0 or 1 This bit tells if the latest absolute position is valid, meaning
there is no ERROR bit and no CRC error.

BOOL,
0x5008,
0x04,

ro

4

SSI/BISS-C Encoder: turn
count

turns This is the latest MULTI-TURN count reported by the encoder. UINT32,
0x5008,
0x0B,

ro

5 SSI/BISS-C Encoder: is turn 0 or 1 This bit tells if the latest MULTI-TURN count is valid. BOOL,

61 www.servosila.com

http://www.servosila.com/

count valid 0x5008,
0x0C,

ro

6

SSI/BISS-C Encoder: error bit 0 or 1 This is a value of latest ERROR bit reported by the encoder. BOOL,
0x5008,
0x05,

ro

7

SSI/BISS-C Encoder: warn bit 0 or 1 This is a value of latest WARN bit reported by the encoder. BOOL,
0x5008,
0x06,

ro

8

SSI/BISS-C Encoder:
extracted CRC

- This is a value of latest CRC field reported by the encoder. UINT16,
0x5008,
0x07,

ro

9

SSI/BISS-C Encoder:
computed CRC

- This is the latest CRC value computed by the controller. UINT16,
0x5008,
0x08,

ro

10

SSI/BISS-C Encoder: CRC
mismatch error

0 or 1 This bit is raised whenever CRC verification fails. BOOL,
0x5008,
0x09,

ro

11

SSI/BISS-C Encoder: CRC
mismatch counter

- This counter is increased each time CRC verification fails. UINT32,
0x5008,
0x0A,

ro

Telemetry - Peripheral: SPI Encoder

Parameter Units Description CANopen

1

SPI Encoder: packets
counter

- This is a counter of data packets received by the controller from the
encoder.

UINT32,
0x5006,
0x02,

ro

2

SPI Encoder: count counts This is the latest ABSOLUTE POSITION reported by the encoder. UINT32,
0x5006,
0x03,

ro

3

SPI Encoder: is count valid 0 or 1 This bit tells if the latest absolute position is valid, meaning there is
no ERROR bit and no CRC error.

BOOL,
0x5006,
0x04,

ro

4

SPI Encoder: turn count turns This is the latest MULTI-TURN count reported by the encoder. UINT32,
0x5006,
0x0B,

ro

62 www.servosila.com

http://www.servosila.com/

5

SPI Encoder: is turn count
valid

0 or 1 This bit tells if the latest MULTI-TURN count is valid. BOOL,
0x5006,
0x0C,

ro

6

SPI Encoder: error bit 0 or 1 This is a value of latest ERROR bit reported by the encoder. BOOL,
0x5006,
0x05,

ro

7

SPI Encoder: warn bit 0 or 1 This is a value of latest WARN bit reported by the encoder. BOOL,
0x5006,
0x06,

ro

8

SPI Encoder: extracted
CRC

- This is a value of latest CRC field reported by the encoder. UINT16,
0x5006,
0x07,

ro

9

SPI Encoder: computed
CRC

- This is the latest CRC value computed by the controller. UINT16,
0x5006,
0x08,

ro

10

SPI Encoder: CRC
mismatch error

0 or 1 This bit is raised whenever CRC verification fails. BOOL,
0x5006,
0x09,

ro

11

SPI Encoder: CRC
mismatch counter

- This counter is increased each time CRC verification fails. UINT32,
0x5006,
0x0A,

ro

Telemetry - Peripheral: PWM Encoder

Parameter Units Description CANopen

1

PWM Encoder: state - • 0: Undefined
• 1: No interrupts
• 2: Operational
• 3: Fault - No Pulse
• 4: Fault - PWM Duty Out of Range

UINT16,
0x5007,
0x02,

ro

2

PWM Encoder: count counts This is the latest ABSOLUTE POSITION reported by the encoder. UINT32,
0x5007,
0x08,

ro

3

PWM Encoder: ratio 0 to 1 Received signal as a value in the range [0:1]. FLOAT32,
0x5007,

0x0F,
ro

4 PWM Encoder: Hz Measured frequency of the received PWM signal. FLOAT32,

63 www.servosila.com

http://www.servosila.com/

frequency 0x5007,
0x0E,

ro

5

PWM Encoder: pulse
period

sec Measured period of the latest pulse FLOAT32,
0x5007,
0x0B,

ro

6

PWM Encoder: pulse
width

sec Measured duty cycle (in seconds) of the latest pulse FLOAT32,
0x5007,
0x0A,

ro

7

PWM Encoder: pulse
period (CAP2)

CPU
ticks

A silicon-specific value UINT32,
0x5007,
0x05,

ro

8

PWM Encoder: pulse
width (CAP1)

CPU
ticks

A silicon-specific value UINT32,
0x5007,
0x04,

ro

9

PWM Encoder: pulse
period (CAP4)

CPU
ticks

A silicon-specific value UINT32,
0x5007,
0x07,

ro

10

PWM Encoder: pulse
width (CAP3)

CPU
ticks

A silicon-specific value UINT32,
0x5007,
0x06,

ro

11

PWM Encoder: fault
detected

0 or 1 A silicon-specific value BOOL,
0x5007,
0x09,

ro

12

PWM Encoder: event
counter

- This counter is incremented each time a pair of pulses is sampled or a
pulse timeout occurs.

UINT32,
0x5007,
0x03,

ro

13

PWM Encoder: pulse
counter

- This counter is incremented each time a pulse is detected. INT32,
0x5007,
0x0D,

ro

14

PWM Encoder: pulse
timeout counter

- This counter is incremented each time a period of a pulse cannot be
measured due to a timeout while waiting for a pulse's edge.

UINT32,
0x5007,
0x0C,

ro

Telemetry - Peripheral: RC PWM and Electronic Gearing

Parameter Units Description CANopen

64 www.servosila.com

http://www.servosila.com/

1

RC PWM Input: state - • 0: Undefined
• 1: No interrupts
• 2: Operational
• 3: Fault - No Pulse
• 4: Fault - PWM Duty Out of Range

UINT16,
0x500B,

0x02,
ro

2

RC PWM Input: ratio 0 to 1 Received signal as a value in the range [0:1]. FLOAT32,
0x500B,

0x0F,
ro

3

RC PWM Input:
frequency

Hz Measured frequency of the received PWM signal. FLOAT32,
0x500B,

0x0E,
ro

4

RC PWM Input: pulse
period

sec Measured period of the latest pulse FLOAT32,
0x500B,
0x0B,

ro

5

RC PWM Input: pulse
width

sec Measured duty cycle (in seconds) of the latest pulse FLOAT32,
0x500B,
0x0A,

ro

6

RC PWM Input: pulse
period (CAP2)

CPU
ticks

A silicon-specific value UINT32,
0x500B,

0x05,
ro

7

RC PWM Input: pulse
width (CAP1)

CPU
ticks

A silicon-specific value UINT32,
0x500B,

0x04,
ro

8

RC PWM Input: pulse
period (CAP4)

CPU
ticks

A silicon-specific value UINT32,
0x500B,

0x07,
ro

9

RC PWM Input: pulse
width (CAP3)

CPU
ticks

A silicon-specific value UINT32,
0x500B,

0x06,
ro

10

RC PWM Input: fault
detected

0 or 1 A silicon-specific value BOOL,
0x500B,

0x09,
ro

11

RC PWM Input: event
counter

- This counter is incremented each time a pair of pulses is sampled or a
pulse timeout occurs.

UINT32,
0x500B,

0x03,
ro

65 www.servosila.com

http://www.servosila.com/

12

RC PWM Input: pulse
counter

- This counter is incremented each time a pulse is detected. INT32,
0x500B,
0x0D,

ro

13

RC PWM Input: pulse
timeout counter

- This counter is incremented each time a period of a pulse cannot be
measured due to a timeout while waiting for a pulse's edge.

UINT32,
0x500B,
0x0C,

ro

Telemetry - Peripheral: GPIO

Parameter Units Description CANopen

1

Emergency Stop Switch 0 or 1 Status of Emergency Stop Signal UINT16,
0x5009,
0x04,

ro

2

Limit Switch: Negative Speed 0 or 1 Status of Limit Switch in NEGATIVE speed direction. UINT16,
0x5009,
0x05,

ro

3

Limit Switch: Positive Speed 0 or 1 Status of Limit Switch in POSITIVE speed direction. UINT16,
0x5009,
0x06,

ro

4

Generic Input 0 or 1 Latest value read out from a dedicated GPIO input. UINT16,
0x5009,
0x10,

ro

Telemetry - Peripheral: Inverter

Parameter Units Description CANopen

1

Inverter mode 0 or 1 • 0: Inverter PWM is OFF
• 1: Inverter PWM is ON

BOOL,
0x5002,
0x02,

ro

2

CMPR A CPU ticks A silicon-specific value UINT16,
0x5002,
0x03,

ro

3

CMPR B CPU ticks A silicon-specific value UINT16,
0x5002,
0x04,

ro

4

CMPR C CPU ticks A silicon-specific value UINT16,
0x5002,
0x05,

ro

66 www.servosila.com

http://www.servosila.com/

Telemetry - Peripheral: Gate Driver

Parameter Units Description CANopen

1

driver: mode 0 or 1 • 0: Gate Driver is OFF
• 1: Gate Driver is ON

BOOL,
0x5004,
0x02,

ro

2

driver: fault 0 or 1 This is a latest reading of the "FAULT" signal coming from the Gate
Driver chip.

BOOL,
0x5004,
0x03,

ro

3

driver: overcurrent or
overtemperature

0 or 1 This is a latest reading of the "OVERCURRENT or
OVERTEMPERTATURE" signal coming from the Gate Driver chip.

BOOL,
0x5004,
0x04,

ro

Telemetry - Networking

Parameter Units Description CANopen

1

CAN: received packets - This counter is incremented each time the device receives a CAN packet. UINT32,
0x5010,
0x02,

ro

2

CAN: sent packets - This counter is incremented each time the device sends a CAN packet. UINT32,
0x5010,
0x03,

ro

3

USB: status 0 or 1 • 0: Disconnected
• 1: Connected

BOOL,
0x5010,
0x12,

ro

4

USB: received packets - This counter is incremented each time the device receives a USB packet. UINT32,
0x5010,
0x13,

ro

5

USB: sent packets - This counter is incremented each time the device sends a USB packet. UINT32,
0x5010,
0x14,

ro

6

USB: sending errors - This counter is incremented each time the device is not able to send a
USB packet for any reason.

UINT32,
0x5010,
0x15,

ro

7

USB2CAN: can->usb
packets

- This counter is incremented each time a packet received from CAN is
forwarded to a USB host.

UINT32,
0x5010,
0x17,

ro

67 www.servosila.com

http://www.servosila.com/

8

USB2CAN: usb->can
packets

- This counter is incremented each time a USB packet is forwarded via
CAN.

UINT32,
0x5010,
0x18,

ro

Telemetry - Device Information

Parameter Units Description CANopen

1

Device Type - The value is used when ACTIVATING the device. Please send this number
to technical support team to obtain an activation key.

UINT32,
0x5000,

0x9F,
ro

2

Device Serial
Number

- The serial number is used when ACTIVATING the device. Please send this
number to technical support team to obtain an activation key.

UINT32,
0x5000,
0xA0,

ro

3

Firmware Serial
Number

- The serial number is used when ACTIVATING the device. Please send this
number to technical support team to obtain an activation key.

UINT32,
0x5000,
0xA1,

ro

4

Firmware Version - Firmware release date.

For example: 20151230 means 2015-12-30.

UINT32,
0x5000,
0xA7,

ro

5

Sampling Frequency Hz This is the sampling frequency as well as the control loop frequency of the
servo drive.

FLOAT32,
0x5000,
0xA2,

ro

6

CPU Frequency Hz Clock frequency of the main CPU of the device. FLOAT32,
0x5000,
0xA8,

ro

7

ADC ISR Execution
Time

CPU
ticks

Measured performance of an ADC interrupt servicing routine UINT32,
0x5000,
0xA4,

ro

8

Timer ISR
Execution Time

CPU
ticks

Measured performance of a Timer interrupt servicing routine UINT32,
0x5000,
0xA5,

ro

9

USB RX ISR
Execution Time

CPU
ticks

Measured performance of a USB interrupt servicing routine UINT32,
0x5000,
0xA6,

ro

68 www.servosila.com

http://www.servosila.com/

Commands

Command - Electronic Speed Control (ESC), Hz

The "Electronic Speed Control (ESC), Hz" command instructs the controller to drive a brushless/brushed motor at a
constant speed. The controller automatically increases or decreases torque to maintain the constant speed.

Note that the speed here is defined in electrical revolutions per second (Hz). To convert the electrical revolutions per
second (Hz) to motor shaft's revolutions per second, just divide it by the number of pole pairs. For example, assuming
the speed is 20 Hz (electrical), and Poles Number is 8, then the corresponding speed in motor shaft's revolutions per
second is 20 / (8/2) = 5.0 Hz (revolutions per second), which is 5 * 60 = 300 RPM.

Parameter Units Description Data type
Position in

Payload

1
Speed (Electrical
Frequency)

Hz This is a speed reference defined in electrical
revolutions per second.

FLOAT32 4

The Function Code for COB-ID is 0x200.

The Command Code is 0x20.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

Command - Electronic Speed Control (ESC), RPM

The "Electronic Speed Control (ESC), RPM" command instructs the controller to drive a brushless/brushed motor at a
constant speed defined in motor shaft's revolutions per minute (RPM). The controller automatically increases or
decreases torque to maintain the constant speed.

Under the hood the controller converts the RPM reference into an electrical revolutions per second (Hz), and issues
itself an "Electronic Speed Control (ESC)" command. Properly set the "Poles Number" parameter in the "Datasheet"
section before using this command, since the configuration parameter is used to perform the conversion.

Parameter Units Description Data type
Position in

Payload

1
Speed (Revolutions per
Minute)

RPM This is a speed reference defined in motor shaft's
revolutions per minute.

FLOAT32 4

The Function Code for COB-ID is 0x200.

The Command Code is 0x24.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

Command - Servo (Legacy Compatibility)

This command is the same as the "Servo" command except that it takes a FLOAT32 as a parameter rather than an
INT32. This command works with servo encoders that have resolution equal or less than 20bit only. This command is
maintained for compatibility with legacy systems. Consider using the "Servo" command instead.

69 www.servosila.com

http://www.servosila.com/

Parameter Units Description Data type
Position in

Payload

1

Work Zone
Position

counts This parameter specifies a target position the servo actuator is going to
move to. Note that the position is defined in Work Zone "multi-turn"
counts meaning that the servo might make multiple revolutions to reach
the target position. The position can be a positive or a negative value.

FLOAT32 4

The Function Code for COB-ID is 0x200.

The Command Code is 0x30.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

Command - Current Control / Field Oriented Control (FOC)

This command instructs the controller to drive a constant electrical current through a brushless/brushed motor. Use this
command to directly control electrical current flowing through a motor. The constant electrical current means a
constant torque generated by the motor. The command might causes the motor to continuously accelerate.

Parameter Units Description Data type
Position in

Payload

1

Current A The "Current" parameter is the commanded electrical current to be driven
through the brushless/brushed motor. This value should be equal or less
than the "Maximum Continuous Current" configuration parameter.

FLOAT32 4

The Function Code for COB-ID is 0x200.

The Command Code is 0x10.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

Command - Electronic Torque Control (ETC)

This commands instructs the controller to drive a brushless motor in such a way that the motor generates a specific
constant torque. Use this command to directly control torque of a brushless motor. Note that the command might cause
the motor to continuously accelerate.

Under the hood the controller converts the torque reference into an electrical current reference, and issues itself a "Field
Oriented Control (FOC)" command. Properly set the "Back-Emf Constant (Ke)" and "Poles Number" parameters in the
"Datasheet" section before using this command since the parameters are needed when converting the torque reference
to an electrical current reference.

Parameter Units Description Data type
Position in

Payload

1
Torque N*m The "Torque" parameter is the constant torque that the brushless

motor is commanded to produce.
FLOAT32 4

The Function Code for COB-ID is 0x200.

70 www.servosila.com

http://www.servosila.com/

The Command Code is 0x14.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

Command - Direct Field Control: Rotation

The "Direct Field Control: Rotation" command instructs the controller to use the coils of a brushless motor to create a
magnetic field inside the motor, and then ROTATE the magnetic field with a given speed. What happens next is that
permanent magnets of the rotor get attracted to the rotating magnetic field of the coils. The rotor starts following the
rotation of the magnetic field. Note that this way of moving the rotor is inefficient from energy point of view as
compared to Field Orieted Control (FOC), and can lead to heating the motor. However this mode of operation is useful
in some practical applications such as gyro-stabilization of optical payloads.

Parameter Units Description Data type
Position

in
Payload

1

Voltage V This parameter specifies a voltage that the controller applies to the coils of
the stator to create a magnetic field inside the motor. The higher the
voltage is, the stronger the electric current in the coils is, the stronger the
rotor is attracted to the rotating magnetic field.

ATTENTION: Wrong voltage burns brushless motors. The coils of
brushless motors tend to have low electrical resistance. Even a small
voltage (0.20-0.30 V) can create an electric current strong enough to burn
the coils. If you are not sure what a safe voltage is, start with a small
voltage (0.10 V), and gradually raise it, while observing electrical currents
flowing through the motor's phases using the controller's telemetry screen.
The electrical currents should not be stronger than "Maximum Continuous
Current" limit of the motor, a datasheet value.

FLOAT16 2

2
Speed
(Electrical
Frequency)

Hz This parameter defines a speed with which the controller rotates the
magnetic field created inside the motor using the coils of the motor.

FLOAT32 4

The Function Code for COB-ID is 0x200.

The Command Code is 0x40.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

Command - Direct Field Control: Electrical Position

The "Direct Field Control: Electrical Position" command instructs the controller to use the coils of a brushless motor to
create a STATIC magnetic field inside the motor. The rotor of the motor aligns itself with such a static magnetic field.
Note that this way of positioning the rotor is inefficient from the energy point of view, and can lead to heating the
motor. However this mode of operation is useful any many practical applications such as gyro-stabilization of optical
payloads.

71 www.servosila.com

http://www.servosila.com/

Parameter Units Description Data type
Position

in
Payload

1

Voltage V This parameter specifies a voltage that the controller applies to the coils of
the stator to create a STATIC magnetic field inside the motor. The higher
the voltage is, the stronger the electrical current in the coils is, the stronger
the rotor is attached to the static magnetic field.

ATTENTION: Wrong voltage burns brushless motors. The coils of
brushless motors tend to have low electrical resistance. Even a small
voltage (0.20-0.30 V) can create an electric current strong enough to burn
the coils. If you are not sure what a safe voltage is, start with a small
voltage (0.10 V), and gradually raise it, while observing electrical currents
flowing through the motor's phases using the controller's telemetry screen.
The electrical currents should not be stronger than "Maximum Continuous
Current" limit of the motor, a datasheet value.

FLOAT16 2

2
Electrical
Position

rad This parameter specifies an electrical position of the static magnetic field to
be created using the coils of the stator.

FLOAT32 4

The Function Code for COB-ID is 0x200.

The Command Code is 0x44.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

Command - Kickstart

The "Kickstart" command accelerates a "sensorless" brushless motor to a target speed using a control technique that
that does require any knowledge of the rotor's position. This command is intended for use with "sensorless" brushless
motors. Note the "Kickstart" procedure is configured in "Control Laws" section.

Parameter Units Description Data type
Position in

Payload

1
Speed (Electrical
Frequency)

Hz This parameter defines a target speed. The speed is expressed
in electrical revolutions per second (Hz).

FLOAT32 4

The Function Code for COB-ID is 0x200.

The Command Code is 0x58.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

Command - Reset

The command clears "Fault Bits" latches, powers off the motor, resets the inverter circuitry, and resets the Work Zone
multi-turn position. Use this command to clear fault flags whenever Fault Bits telemetry indicates a fault, to reset servo
position within the work zone, or as a "panic button" to power off the motor in an emergency.

72 www.servosila.com

http://www.servosila.com/

Whenever a fault is detected, the controller powers off the motor, latches one or more "Fault Bits" flags, and starts
waiting for a "Reset" command to come from a parent control system. Until a "Reset" command comes, the motor
ignores all other commands received from the parent control system. Note that all configuration management functions
(CANopen SDO functionality) keep working as usual. The parent control system is expected to continuously monitor
the "Fault Bits" parameter streamed to it via CANopen TPDO mechanism. If the "Fault Bits" parameter is 0 (all bits are
clear), then nothing needs to be done. Whenever one or more bits of the "Fault Bits" telemetry indicate a fault, the
parent control system is supposed to issue a "Reset" command once the fault is addressed, and the drive is ready to re-
start operation.

This command does not have parameters.

The Function Code for COB-ID is 0x200.

The Command Code is 0x01.

It is generally not required to continuously send this command to the device.

Command - Reset Work Zone

The command programmatically resets the multi-turn Work Zone position counter back to the zero turn.

This command does not have parameters.

The Function Code for COB-ID is 0x200.

The Command Code is 0xE0.

It is generally not required to continuously send this command to the device.

Command - Brake

The "Brake" command instructs the controller to start using the drive's electric motor to prevent motion of the drive's
shaft under influence of external forces. The controller starts dynamically positioning electromagnetic fields inside the
motor in such a way that any significant motion of the shaft is countered by an electromagnetic force working in the
opposite direction. This is like applying a brake to the shaft, but without an actual physical braking device. If there is no
external force, the "Brake" command does not trigger any countering electromagnetic forces, and thus does not draw
energy from the power supply.

For the braking function to work efficiently, the controller uses Hall sensors or a "Motor Encoder" to detect that the
shaft is moving due to external forces, and to dynamically apply a countering electromagnetic force. Note that if a
motor does not have Hall sensors or a "Motor Encoder", then the controller defaults to using a statically positioned
magnetic field when holding the shaft of the motor. The statically positioned magnetic field requires an electric current
to be continuously driven through the coils of the motor regardless of the presence of external forces. This electric
current might cause excessive heating of the sensorless motor, and cause a continuous drain of energy from its power
supply. In short, special care needs to be taken when using the "Brake" command with sensorless motors.

This command does not have parameters.

The Function Code for COB-ID is 0x200.

The Command Code is 0x50.

73 www.servosila.com

http://www.servosila.com/

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

Command - Stop

This command instructs the controller to stop a running motor in a controllable way.

This command does not have parameters.

The Function Code for COB-ID is 0x200.

The Command Code is 0x04.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

Command - Off

This command powers off the inverter circuitry which means all connected motors or solenoids are powered off.

This command does not have parameters.

The Function Code for COB-ID is 0x200.

The Command Code is 0x06.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

Command - GPIO: PWM output

This command increases or decreases duty cycle of a PWM signal on a dedicated GPIO output pin. The command is
typically used to control solenoids/brakes connected via the GPIO output pin.

Parameter Units Description Data type
Position in

Payload

1

Duty Cycle 0.0-
1.0

This parameter specifies a duty cycle of the PWM signal. The value must
be a real number between 0.0 (fully open) and 1.0 (fully closed). For
example, Duty Cycle=0.40 means 40% duty cycle of the output PWM
signal.

FLOAT32 4

The Function Code for COB-ID is 0x200.

The Command Code is 0xA4.

It is generally not required to continuously send this command to the device.

Command - Testing: Iq Current Step Response

This command initiates a load test of PI controller of Iq current. The load test is typically run to verify that the relevant
control laws are configured properly. The load test routine continuously changes commanded CURRENT reference ("Iq
current") according to a SQUARE WAVE profile. Note that the motor may produce clicking sounds while the test is
running. Use "Stop" or "Reset" command to terminate the testing procedure.

Parameter Units Description Data type Position in

74 www.servosila.com

http://www.servosila.com/

Payload

1
Period sec The parameter specifies a period of a SQUARE WAVE that

produces an "Iq current" reference for the testing procedure.
FLOAT16 2

2
Amplitude: Iq
current

A The parameter specifies an amplitude of a SQUARE WAVE that
produces an "Iq current" reference for the testing procedure.

FLOAT32 4

The Function Code for COB-ID is 0x200.

The Command Code is 0xBC.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

Command - Testing: Field Oriented Control (FOC) Step Response

This command initiates a load test of "Field Oriented Control (FOC)" function of the controller. The load test is
typically run to verify that the relevant control laws are configured properly. The load test routine continuously changes
commanded CURRENT reference ("Iq current") according to a SQUARE WAVE profile. Note that the motor
accelerates and decelerates repeatedly while the test is running. Use "Stop" or "Reset" command to terminate the
testing procedure.

Parameter Units Description Data type
Position in

Payload

1
Period sec The parameter specifies a period of a SQUARE WAVE that

produces an "Iq current" reference for the testing procedure.
FLOAT16 2

2
Amplitude: Iq
current

A The parameter specifies an amplitude of a SQUARE WAVE that
produces an "Iq current" reference for the testing procedure.

FLOAT32 4

The Function Code for COB-ID is 0x200.

The Command Code is 0xB0.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

Command - Testing: Electronic Speed Control (ESC) Step Response

This command initiates a load test of "Electronic Speed Control (ESC)" function of the controller. The load test is
typically run to verify that the relevant control laws are configured properly. The load test routine continuously changes
commanded SPEED reference according to a SQUARE WAVE profile. Note that the motor accelerates and decelerates
repeatedly while the test is running. Use "Stop" or "Reset" command to terminate the testing procedure.

Parameter Units Description Data type
Position in

Payload

1
Period sec The parameter specifies a period of a SQUARE WAVE that

produces an SPEED reference for the testing procedure.
FLOAT16 2

2 Amplitude: Hz The parameter specifies an amplitude of a SQUARE WAVE that FLOAT32 4

75 www.servosila.com

http://www.servosila.com/

Speed produces an SPEED reference for the testing procedure.

The Function Code for COB-ID is 0x200.

The Command Code is 0xB4.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

Command - Servo

The "Servo" command instructs the controller to move the output of a servo actuator to a specified target position
defined in Work Zone Counts, and keep that position upon reaching it. Note that a speed with which the servo actuator
moves is defined by "Servo: Speed Limit" configuration parameter that can be changed in runtime if needed.

Parameter Units Description
Data
type

Position in
Payload

1

Target: Work
Zone Count

counts This parameter specifies a target position the servo actuator is going to
move to. Note that the position is defined in Work Zone "multi-turn"
counts meaning that the servo might make multiple revolutions to reach
the target position. The position can be a positive or a negative value.

INT32 4

The Function Code for COB-ID is 0x300.

The Command Code is 0x31.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

Command - Servo: Modulo

This command moves the output shaft of a servo actuator to a specified target position defined in Work Zone Modulo
Counts. This command is similar to the "Servo" command except that it takes a single-turn rotary target position.

Parameter Units Description
Data
type

Position in
Payload

1
Target: Work Zone
Modulo

counts This parameter specifies a target cyclical position the servo
actuator is going to move to.

INT32 4

2

Direction 0,1,2,3 • 0: NORMAL, similar to linear actuator, same as
"Servo" command

• 1: motion in NEGATIVE direction
• 2: motion in POSITIVE direction
• 3: take a SHORTEST way (optimized)

INT16 2

The Function Code for COB-ID is 0x300.

The Command Code is 0x32.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

76 www.servosila.com

http://www.servosila.com/

Command - Servo: Turns and Modulo

This command moves the output shaft of a servo actuator to a specified target position defined in Work Zone Turns and
Modulo Counts. This command is similar to the "Servo" command.

Parameter Units Description
Data
type

Position in
Payload

1
Target: Work Zone
Modulo

counts This parameter specifies a target cyclical position the servo
actuator is going to move to.

INT32 4

2
Target: Work Zone
Turns

turns Multi-turn target position. INT16 2

The Function Code for COB-ID is 0x300.

The Command Code is 0x34.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

Command - Servo: Linear Interpolation

This command moves the output shaft of a servo actuator to a specified target position defined in Work Zone Counts.
The motion is performed by gradually interpolating the servo position at a given Feed Rate.

Parameter Units Description
Data
type

Position in
Payload

1

Target: Work
Zone Count

counts This parameter specifies a target position the servo actuator is going to
move to. Note that the position is defined in Work Zone "multi-turn"
counts meaning that the servo might make multiple revolutions to
reach the target position. The position can be a positive or a negative
value.

INT32 4

2

Feed Rate counts/
sec

Speed of the linearly interpolated motion. The units are Servo
Encoder's counts per second.

0 means "no interpolation". The behaviour in the case is the same as
with the regular "Servo" command.

The value must be in the range of [1:65535]. Use an additional
command parameter "Feed Rate (Extra Bits)" to define higher speeds.

Furthermore, the Feed Rate must not be higher than a speed limit
prescribed by "Servo: Speed LImit" paramteter.

UINT16 2

3

Feed Rate
(Extra Bits)

0-255 Keep this parameter as 0 unless the Feed Rate is higher than 65535
counts/sec (16bit). Otherwise, use these additional 8 bits to define a
Feed Rate higher than 65535 counts/sec (up to 24bits in total or up to
16777215 counts/sec).

UINT8 1

The Function Code for COB-ID is 0x300.

77 www.servosila.com

http://www.servosila.com/

The Command Code is 0x38.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

Command - Brushed: Open Loop Control (1-2 motors)

The purpose of this command is to control 1-2 brushed motors or solenoids in an open-loop way. The motors/solenoids
are independently controlled. Both direct and reverse directions of speed are supported.

The brushed motors/solenoids need to be connected to the controller in the following way:

• Brushed Motor #1 shall be connected to terminals "A" and "B".
• Brushed Motor #2 (if exists) shall be connected to terminals "C" and "B".
• Note that both motors/solenoids share the terminal "B".

Parameter Units Description Data type Position in Payload

1
Voltage: Channel #1 V A commanded output voltage for channel #1 FLOAT16 2

2
Voltage: Channel #2 V A commanded output voltage for channel #2 FLOAT16 4

The Function Code for COB-ID is 0x300.

The Command Code is 0x90.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

Command - Testing: Servo Step Response

This command initiates a load test of "Servo" function of the controller. The load test is typically run to verify that the
relevant control laws are configured properly. The testing procedure forces the output shaft of a servo actuator to
continuously transit back-and-forth between two discrete Work Zone positions, a positive one and a negative one. Use
"Stop" or "Reset" command to terminate the testing procedure.

Parameter Units Description Data type
Position in

Payload

1
Period sec This parameter specifies a time period between transitions of the

servo actuator's position.
FLOAT16 2

2

Amplitude:
Work Zone
Counts

counts This parameter defines an amplitude of servo transitions. For
example, if the amplitude is 1000, the servo transits between the
positions [-1000] and [1000]. The positions are defined in Work
Zone counts.

INT32 4

The Function Code for COB-ID is 0x300.

The Command Code is 0xB8.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

78 www.servosila.com

http://www.servosila.com/

Command - Autoconfiguration: Brushless Motor

Use this command when commissioning a new brushless motor. The command launches an auto-configuration
procedure that automatically measures various characteristics of a brushless motor, computes optimal parameters for
relevant control laws, and updates stored configuration of the controller. The updated configuration is saved to a
persistent storage of the controller (Flash).

ATTENTION: The brushless motor makes various moves while the procedure is ongoing, including a rapid
acceleration. The beginning and an end of the procedure are indicated by "beep" sounds produced by the motor.

Note that in order to launch the auto-configuration procedure, the user needs to have prior knowledge of "Maximum
Continuous Current" and "Poles Number" characteristics of the brushless motor. Those characteristics has to be taken
from the motor's datasheet or determined experimentally prior to launching the auto-configuration procedure. Read
descriptions of the parameters "Maximum Continuous Current" and "Poles Number" in the "Datasheet" section for
details about the parameters.

The auto-configuration procedure does the following:

1. Measures "Phase Resistance (Line-to-Line)" of the brushless motor
2. Measures "Phase Inductance (Line-to-Line)" of the brushless motor
3. Measures "Back-Emf Constant (Ke)" of the brushless motor
4. Measures "Moment of Inertia of Rotor and Payload"
5. Detects if Hall sensors are properly wired to the controller, and updates the "Hall Sensors" configuration

parameter in the "Datasheet" section accordingly. If Hall sensors have been detected, the procedure
automatically configures the section "Peripheral: Hall Sensors"

6. Writes all the measured parameters to the "Datasheet" section
7. Computes optimal parameters for various control laws, and writes the parameters to "Control Laws" section
8. Save to Flash: all the updated configuration parameters are automatically saved to a persistent storage of the

controller

The parameter "Moment of Inertia of Rotor and Payload" is automatically measured by the controller during the auto-
configuration procedure. However, the procedure assumes that Viscous Damping is not present. If that turns out to be
not the case, the auto-configuration procedure overestimates the moment of inertia which might lead to vibrations or
noise in the drive whenever the drive is operated under Electronic Speed Control (ESC).

Parameter Units Description Data type
Position

in
Payload

1 Maximum Limit
on Continuous
Current (Line-
to-Line)

A This is a maximum current the motor can handle indefinitely
without over-heating. Do not confuse this with a short-term peak
current which could be much higher. The "Maximum Limit on
Continuous Current (Line-to-Line)" is one of the most critical
performance and safety parameters. This parameter should be found
in the motor's datasheet.

On one hand, the parameter defines the maximum torque the electric
drive can produce. The higher this limit is set, the more electric

FLOAT32 4

79 www.servosila.com

http://www.servosila.com/

current is allowed to be driven through the motor by the controller,
the more torque the motor produces, the better the dynamics of the
electric drive is. On the other hand, driving more current through the
motor means generating more heat in the motor's winding. The heat
is what burns electric motors. This means that making a mistake and
setting this parameter too high might have a fatal consequences for
the motor. Setting this parameter too low would mean that the motor
is not used to its full capacity in terms of torque. In short, it is
important to set this parameter right.

Note that if a particular application does not require all the torque
the motor can produce, it would be wise to set the limit lower than a
nominal value suggested by the manufacturer. This would establish a
safety margin at the expense of torque.

2

Poles Number
(Rotor Poles)

an even
number

The Poles Number parameter should be taken from the motor's
datasheet, or it can be determined experimentally. Note that the
number of rotor poles is always an EVEN number since magnet
poles always come in pairs.

There is a simple procedure that experimentally determines the
Poles Number. There is a video that explains how to commission an
"Unknown Motor".

UINT16 2

The Function Code for COB-ID is 0x400.

The Command Code is 0xD0.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

Command - Autoconfiguration (Advanced): Brushless Motor

This command is the same as "Autoconfiguration: Brushless Motor" command except that it has an additional
parameter called "General System Dynamics".

Use this version of the command to autoconfigure the system for special cases such as high-bandwith direct drive
servos or low-inductance high-speed motors.

Parameter Units Description Data type
Position

in
Payload

1

Maximum Limit
on Continuous
Current (Line-to-
Line)

A Refer to "Autoconfiguration: Brushless Motor" command. FLOAT16 6

2
Poles Number
(Rotor Poles)

an even
number

Refer to "Autoconfiguration: Brushless Motor" command. UINT16 2

3 General System 1.1-15.0 This parameter hints at what kind of an electric drive the system is FLOAT16 4

80 www.servosila.com

http://www.servosila.com/

Dynamics being configured for. This qualitative piece of information helps the
autoconfiguration procedure avoid runtime issues such as
overcurrent or overheating as well as choose a proper configuration
of Control Laws parameters. The higher this value is, the more
"aggressive" the control system is going to be and the more likely
protection mechanisms to kick in during run time. Use this
parameter to autoconfigure the system for special cases such as
high-bandwith direct drive servos or low-inductance high-speed
motors.

• 1.5-3.5 : Direct Drive Servo (3.16 is the default)
• 3.5-5.0 : Servo with Gearbox or Traction Motors
• 5.0-15.0 : High-Speed Low Inductance Motors
• 12.0-32.0: try these if nothing else works

The Function Code for COB-ID is 0x400.

The Command Code is 0xD1.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

Command - Autoconfiguration: Brushed Motor

Use this command when commissioning a new brushed motor. The command launches an auto-configuration procedure
that automatically measures various characteristics of a brushed motor, computes optimal parameters for relevant
control laws, and updates stored configuration of the controller. The updated configuration is saved to a persistent
storage of the controller (Flash).

Parameter Units Description Data type
Position

in
Payload

1

Maximum Limit
on Continuous
Current (Line-
to-Line)

A The "Maximum Limit on Continuous Current" is one of the most
critical performance and safety parameters in the "Datasheet"
section. This parameter should be found in the motor's datasheet.

On one hand, the parameter defines the maximum torque the electric
drive can produce. The higher this limit is set, the more electric
current is allowed to be driven through the motor by the controller,
the more torque the motor produces, the better the dynamics of the
electric drive is. On the other hand, driving more current through the
motor means generating more heat in the motor's winding. The heat
is what burns electric motors. This means that making a mistake and
setting this parameter too high might have a fatal consequences for
the motor. Setting this parameter too low would mean that the motor
is not used to its full capacity in terms of torque. In short, it is
important to set this parameter right.

Note that if a particular application does not require all the torque
the motor can produce, it would be wise to set the limit lower than a

FLOAT32 4

81 www.servosila.com

http://www.servosila.com/

nominal value suggested by the manufacturer. This would establish
a safety margin at the expense of torque.

2

Poles Number
(Rotor Poles)

an even
number

The Poles Number parameter should be taken from the motor's
datasheet. Note that the number of rotor poles is always an EVEN
number since magnet poles always come in pairs.

UINT16 2

The Function Code for COB-ID is 0x400.

The Command Code is 0xD4.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

Command - GPIO: Generic Output

This command sets output (0 or 1) on a dedicated GPIO output pin.

Parameter Units Description
Data
type

Position in
Payload

1
Output 0 or 1 This parameter provides a value (0 or 1) to be set as an output on a

dedicated GPIO output pin.
UINT16 2

The Function Code for COB-ID is 0x400.

The Command Code is 0xA0.

It is generally not required to continuously send this command to the device.

82 www.servosila.com

http://www.servosila.com/

Telemetry Mappings (TPDO)

Telemetry Message with COB-ID 0x180

Name Units Position in Payload (byte #) Data type Index Subindex
1 Fault Bits bits 0 UINT16 0x4000 0x03

2 Voltage: DC bus (Udc) V 2 FLOAT16 0x5001 0x04
3 Speed (Electrical Frequency) Hz 4 FLOAT32 0x4000 0x10

Telemetry Message with COB-ID 0x280

Name Units Position in Payload (byte #) Data type Index Subindex

1 Operation Mode - 0 UINT16 0x4000 0x02
2 Commutation Mode - 2 UINT16 0x4000 0x15

3 Work Zone: Count counts 4 INT32 0x4000 0x19

Telemetry Message with COB-ID 0x380

Name Units Position in Payload (byte #) Data type Index Subindex
1 Current: Phase A (Ia) A 0 FLOAT32 0x5001 0x05

2 Current: Phase B (Ib) A 4 FLOAT32 0x5001 0x06

83 www.servosila.com

http://www.servosila.com/
ServosilaDevice-Reference-0xA020192.html#sdo-5001-06
ServosilaDevice-Reference-0xA020192.html#sdo-5001-05
ServosilaDevice-Reference-0xA020192.html#sdo-4000-19
ServosilaDevice-Reference-0xA020192.html#sdo-4000-15
ServosilaDevice-Reference-0xA020192.html#sdo-4000-02
ServosilaDevice-Reference-0xA020192.html#sdo-4000-10
ServosilaDevice-Reference-0xA020192.html#sdo-5001-04
ServosilaDevice-Reference-0xA020192.html#sdo-4000-03

	Configuration Parameters
	Configuration - Datasheet
	Configuration - Control Laws
	Configuration - Features
	Configuration - Motion Control
	Configuration - Work Zone
	Configuration - Fault Management
	Configuration - Brake
	Configuration - Peripheral: Hall Sensors
	Configuration - Peripheral: Quadrature Encoder
	Configuration - Peripheral: SSI/BISS-C Encoder
	Configuration - Peripheral: SPI Encoder
	Configuration - Peripheral: PWM Encoder
	Configuration - Peripheral: RC PWM and Electronic Gearing
	Configuration - Peripheral: GPIO
	Configuration - Telemetry Mapping: TPDO Message 0
	Configuration - Telemetry Mapping: TPDO Message 1
	Configuration - Telemetry Mapping: TPDO Message 2
	Configuration - Networking
	Configuration - Inverter: ADC & PWM
	Configuration - Product Activation

	Telemetry Parameters
	Telemetry - System Status
	Telemetry - ADC
	Telemetry - Field Oriented Control (FOC)
	Telemetry - Direct Field Control
	Telemetry - Sensorless Control
	Telemetry - Hall Sensors Observer
	Telemetry - Peripheral: Hall Sensors
	Telemetry - Peripheral: Quadrature Encoder
	Telemetry - Peripheral: SSI/BISS-C Encoder
	Telemetry - Peripheral: SPI Encoder
	Telemetry - Peripheral: PWM Encoder
	Telemetry - Peripheral: RC PWM and Electronic Gearing
	Telemetry - Peripheral: GPIO
	Telemetry - Peripheral: Inverter
	Telemetry - Peripheral: Gate Driver
	Telemetry - Networking
	Telemetry - Device Information

	Commands
	Command - Electronic Speed Control (ESC), Hz
	Command - Electronic Speed Control (ESC), RPM
	Command - Servo (Legacy Compatibility)
	Command - Current Control / Field Oriented Control (FOC)
	Command - Electronic Torque Control (ETC)
	Command - Direct Field Control: Rotation
	Command - Direct Field Control: Electrical Position
	Command - Kickstart
	Command - Reset
	Command - Reset Work Zone
	Command - Brake
	Command - Stop
	Command - Off
	Command - GPIO: PWM output
	Command - Testing: Iq Current Step Response
	Command - Testing: Field Oriented Control (FOC) Step Response
	Command - Testing: Electronic Speed Control (ESC) Step Response
	Command - Servo
	Command - Servo: Modulo
	Command - Servo: Turns and Modulo
	Command - Servo: Linear Interpolation
	Command - Brushed: Open Loop Control (1-2 motors)
	Command - Testing: Servo Step Response
	Command - Autoconfiguration: Brushless Motor
	Command - Autoconfiguration (Advanced): Brushless Motor
	Command - Autoconfiguration: Brushed Motor
	Command - GPIO: Generic Output

	Telemetry Mappings (TPDO)
	Telemetry Message with COB-ID 0x180
	Telemetry Message with COB-ID 0x280
	Telemetry Message with COB-ID 0x380

