Preface

About SunFounder

SunFounder is a technology company focused on Raspberry Pi and Arduino open source
community dev elopment. Committed to the promotion of open source culture, we strive fo
bring the fun of electronics making to people all around the world and enable everyone to
be a maker. Our products include learning kits, development boards, robots, sensormodules
and dev elopment tools. In addition to high quality products, SunFounder also offers video
tutorials to help your own project. If you have interestin open source or making something
cool, welcome to join us! Visit www.sunfounder.com for more!

About the Super Kit 3.0

This super kit is suitable for the Raspberry Pi B, model B+ and Raspberry Pi2 model B. It includes
various components and chips that can show different interesting phenomena. You can
make it happen by following the experiment instructions, and learn basic knowledge about

them. Also you can explore more application after mastering the principle and code. Now
geton the road!

In this book, we will show you circuits with both realistic illustrations and schematic diagrans.
You can go to our official website www .sunfounder.com to download the related code by
clicking LEARN --> Gettutorials and watchrelated videos by clicking VIDEO.

Free Support

If you hav e any TECHNICAL questions, add a topic under FORUM section onourwelbsite
and we'llreplyas soon as possible.

For NON-TECH questions like order and shipment issues, please send an email to
service@sunfounder.com. You're also welcomed to share your projects on FORUM.

http://www.sunfounder.com/
http://www.sunfounder.com/
mailto:support@sunfounder.com

Contents

COMPONENTS LIST ..ttt et e et e e et e e et e e e eaaeeeetaeeeeaaeeeeaseeeesseeeesseeenaseeenns 1
ComMPONENTS INTTOAUCTION ...ttt ettt et sae e enees 8
RS ISTON .ttt et et h bt e a e st h e bt et e eh e e bt e it e e at e bt e nbeebesaten 8
PO ENTIOMETEN ...ttt ettt ettt e bt e st e e bt e sabeesbeeeaeeas 10
LED ettt ettt h e h e bt bRt e a e a e e bt bt e h e st e st et et e b e ebeeheententebententens 11
RGB LED. ..ttt ettt ettt ettt st st ae e st e st et e st et e ebeene e st en b et e beebeebeeseeneeneensenbeeseas 12
JUMNPDET WITES .ottt ettt e e e et e e et e e ettt e e e eabee e st e e essaaeenssaeansaeeeassaeassseeensseessseeeasseennns 13
Bre QDO ... ittt et ettt et b e ae e e b narees 13
Gt STAMEA ettt ettt et e st e s te e oteebt e s ateesbee st e e saneens 16
PrE D ONOTION. .. ettt e e e et e e e aee e eteeeeassd e e R e e s s e e i e e eteeeetaeeeetreeeenraees 16
ACCESS 10 RASPDEITY Pi's CONSOIB.....uuveieeeeteeee et ettt e et e e eareeeeeeaneeeeas 16
Using Console in GUI (terminal, recommended for beginners).......c.ccccveeevveecveeecveecennee. 16
USING CONSOIE ONIY .ttt ettt et ettt et ettt esbeeeabe e taeesbeesseeensaeenseessseenseenns 18
INTrOAUCTION TO RASIDIDEITY Pl ittt ettt eaaa e e et e e e aaaaeeeeennees 22
RAB HOIGET ... e ittt ettt ettt ettt e st e a e e b st e e bt e saeeeneeeanees 22
ROSIIDEITY Pl et ettt e e e et e et e e e ae e e e ateeeeaaeeeetaeeeaasseeeasaeeessaeeesseeeesseeesseeas 24
RASPIEITY PiPIN INGIME ...ttt ettt e et e e e ettt e e e e eaaeeeeeesaeeeeeetrsaeeeeeaseeeeennns 24
EXTENSION BOGIT. ...ttt ettt st s b ettt sbe et et e saeenae e 25
GPIO LIDIQIES .ttt ettt ettt b e bt ettt e ebt e bt eatesae e bt eatesneenaeens 28
WINPT et e e e ettt e ettt e e e eaa e e e etaeeete e e e ataeeesaeeeessaeeeaeeeeeneseeeneeeenreeen 28
INTTOAUCTION ..ttt ettt ettt st eat e st beeteeatesbeeaesanenaeens 28
RPILGPIO ..ttt ettt st ettt et e st et e et e st e e be e st e st et et et e ebeeteeseeneeneenteeseeaeas 29
INTTOAUCTION ..ttt ettt et e bt e st e e bt e e bt e s st e e bt e sate e bt e snneeane 29
DOWNIOAA T COUE ...ttt ettt e 31
LESSON T BINKING LED ...ttt ettt et e et a e e aae e e aaeeeasaeeeasaeeeaseeeenreeenns 32
Lesson 2 Confrolling an LED DY A BUHON c...ecoeiieceeeeeeee e 4]

LesSON 3 FIOWING LED LIGNTS .ottt et e e etn e e evaeeeanee e 46

LeSSON 4 BreQtNING LED.....couiii ettt ettt ettt e ae e e aaaeesaseeesasaeesaseeennsaeenns 50

LESSON S RGB LED ...ttt ettt et ettt sttt be et s bt e nbe et esbe e b eaee 54
LESSON 6 BUZZET ...ttt ettt ettt et s e e st e et e e e eee 58
LESSON 7 REIAIY .ottt ettt e e et e et e e e e e e e eesatbaaaeeeeeeeeeeessatarraeeseeeeeeesnsreeeeees 63
LESSON 8 ANBS ...ttt ettt et ht ettt b ettt st b et et h et e sbe et enee 67
LESSON P INEOSES.......ee ettt st et et et et e e 71
LESSON TO SHAE SWITCI caeeee ettt sttt et st 75
Lesson 11 HOW 1O DIVE O DC MOTON..c..iiiiiiiiiiieniteiteeeteeit ettt sttt 79
LESSON 12 ROTANY ENCOUET ...ttt e e et e e e e e e e e e e araneeeas 84
Lesson 13 Driving LEDS DY 74HCS 95o ettt ettt et e e e e earae e 90
Lesson 14 Driving 7-Segment Display By 74HCSE95.......ooeiieee et 96
Lesson 15 Driving DOt-Matrix 0y 74HCSEDS ...ttt s astae e eeeee e evee e e eeanee s 104
LESSON T LCDTAD2 ..ttt sttt e 80 a s bt ettt ettt et et e nae e e 111

LESSON 17 ADXLBAS ...t et bt et 118

Components List

No. Name Quantity Component
] 1
555Timer IC

2 2 ,

Optocoupler (4N35) A f

y-&
3 . . 2
Shift Register (74HC595)

4 L293D]
5 1

Accelerometer ADXL345

Rotary Encoder

Button
8 Resistor (220Q) ury
(red, red, black, black, brown)
4 Resistor (1kQ) .
(brown, black, black, brown, brown)
10 Resistor (10kQ)
(brown, black, black, red, brown)
A Resistor (100kQ))
(brown, black, black, orange, brown)
12 Resistor (IMQ) (L
(brown, black, green, gold)
13 Resistor (5.1MQ) e
(green, brown, green, gold)
14

Diode Rectifier

Switch

16 Potentiometer (50k)
17
Power Supply Module
18 LCD1602
Vi w2 e o
oo
[X
[X
19 WG
Dot Matrix Display (8*8) ©e
[X
(@R
(X)
20 f

7-Segment Display

21

DC Motor n .E-—-
U_
-
22 RGB LED
23 LED (red)
N\
?" %
24 LED (white)
(f
2 LED (green) &Y
26 /

LED (yellow)

27

NPN Transistor (S8050)

28 PNP Transistor (S8550)

29 Capacitor Ceramic
100nF

30 Capacitor Ceramic
10nF

3 Breadboard

32

Active Buzzer

33

Relay
34 Fan 1
35 Male-to-Male 65
Jumper Wire
36 Female-to-Male 20
Dupont Wire
37 2

5-Pin Anti-reverse Cable

38 9V Battery Buckle]
39 M3*10 Screw 2
40 M2.5*6 Screw 4
4] M3*6 Screw)
42 RAB Holder]
43 T-Extension Board 1
44 40-Pin GPIO Cable 1
Notes:

After unpacking, please check that the number of components is correct and that all
components are in good condition.

Components Infroduction

Resistor

Resistor is an electronic element that can limit the branch current. A fixed resistorisone whose
resistance cannot be changed, when that of a potentiometer or v ariable resistor can be
adjusted.

The resistors in this kit are fixed ones. Itis essential in the circuit to protect the connected

components. Figure (a) below shows a 220Q resistor. Q is the unit of resistance and thelarger
includes KQ, MQ, etc. Their relationship can be shown as follows: 1 MQ=1000KQ , 1KQ=1000

Q, which means 1 MQ =1000,000 Q = 10A6 Q. Figure (b) and (c) show two generally used
circuit symbols for resistor. Normally, the resistance is marked oniit. So if you see these symbols

()

22082 2200
—AN—

(o) ()

The resistance can be marked directly, in color code, and by character. The resistors offered

in a circuit, it stands for a resistor.

in this kit are marked by different colors. Namely, the bands on the resistor indicate the
resistance.

When using a resistor, we need to know its resistance first. Here are two methods: you can
observe the bands on the resistor, or use a multimeter to measure the resistance. You are
recommended fo use the first method as it is more conv enient and faster. If you are not sure
about the value, usethe multimeter.

In the kit, a Resistor Color Code Calculator cardis provided as shown below:

[Coor _Tistgand | 2naBand | SrdBand | Mutpior | Toerance |
0 0 0 10
+ 1% (F)
(G)

+05% (D)
+025% (C)

+0.10% (B)
* %

As shownin the card, each color stands for a number.

Black | Brown| Red | Orange | Yellow | Green | Blue | Violet | Grey | White | Gold | Silver

0 1 2 3 4 5 6 7 8 9 0.1 0.01

The 4- and 5-bandresistors are frequently used, on which there are 4 and 5 chromatic bands.
Let's see how to read the resistance value of a 5-band resistor as shown below. Normally,
when you get aresistor, you may find it hard to decide which end to start for reading the
color. The tip is that the gap between the 4t and 5'h band will be comparatively larger.
Therefore, you can observ e the gap between the two chromatic bands at one end of the
resistor; if it's larger than any other band gaps, then you can read fromthe opposite side.

1st Band 3rd Band Tolerance

2nd Band Multiplier
(e)
So for this resistor, the resistance should be read fromleft to right. The v alue should be in this
format: st Band 2nd Band 3@ Band x 10™utislier ((Q) and the permissible error is tTolerance%. So
the resistance v alue of this resistoris 2(red) 2(red) O(black)x 10A0(black) Q =220 Q, and the
permissible erroris £ 1% (brown).

One more example. The resistance of the resistor below should be 1(brown) 0(black) Oblack)
x 10A 1 (brown) Q =100x10 Q = 1000 Q = 1KQ, and the permissible erroris + 1% (brown). Now try
it by yourself!

(f)
Now let's fry a 4-band resistor. There are two 4-band resistors in the kit: a TIMQ one and a
5.1MQ one. You may not use such a large resistor in the experiments of the kit but you can
use themin other projects. Unlike 5-bandresistors, the third band of a 4-band one is not the
3d band but the multiplier; its fourth band is Tolerance. So the resistance value of a 4-band
resistor should be 1st band 2nd band x 10AMultiplier (Q), and the permissible error is
tTolerance%.

1st Band Multiplier

2nd Band Tolerance
(9)

Read the resistance of the abov e resistor fromleft to right. The value is 1(brown) O(block) x
10N 5(green)=10x10A5Q=10N6Q=1MQ and the permissible erroris £5% (gold)

The resistance v alue of the resistor below is 5(green) 1(brown) x 10A5(green) =51 x 10A5Q =
5.1 x10N6 Q=5.1 MQ, and the permissible v alue is 5% (gold).

(h)

You can also use a multimeter to measure the resistance value of these resistors to double
check whether you've read it correctly or not.

Potentiometer

Potentiometer is also a resistance component with 3 terminals and its resistance value can
be adjusted according to some regular v ariation. Potentiometer usually consists of resistor
and mov able brush. When the brush is moving along the resistor, there is a certain resistance
or voltage output depending on the displacement. Figure (i) is the potentiometer and figure
(i) is the corresponding circuit symbol. The middle pin in figure (i), represented by the arrow
in Fig. (j) is the mov able brush.

(i) (1)
The functions of the potentiometer in the circuit are as follows:

1. Serving as avoltage divider

Potentiometer is a continuously adjustable resistor. When you adjust the shaft or sliding
handle of the potentiometer, the mov able contact will slide on the resistor. At this point,a
voltage can be output depending on the voltage applied onto the potentiometer and
the angle the mov able arm has rotated to or the fravelit has made.

2. Serving as arheostat

10

When the potentiometer is used as arheostat, connect the middle pin and one of the
other 2 pins in the circuit. Thus you can get a smoothly and continuously changed
resistance value within the travel of the moving contact.

3. Serving as acurrent controller

When the potentiometer acts as a current controller, the sliding contact terminal must be
connected as one of the output terminals.

LED

Semiconductor light-emitting diode is a type of component which can turn electric energy
into light energy via PN junctions. By wavelength, it can be categorized into laser diode,
infrared light-emitting diode and visible light-emitting diode which is usually known as light-
emitting diode (LED).

-
y 7
Anode Cathode

(k) (1)

See LEDin figure (k). Figure (I) is the circuit symbol. Diode has unidirectional conductivity, so
the current flow will be as the arrow indicates in figure (). You can only provide the anode
with a positive power and the cathode with a negative. Thus the LED will light up.

In this kit, LEDs of red, green, yellow and white are provided. An LED has tw o pins. The longer
one is the anode, and shorter one, the cathode. Pay attention not to connect theminversely.
There is fixed forw ard.voltage drop in the LED, so it cannot be connected with the circuit

directly because the supply voltage can outw eigh this drop and cause the LED to be burnt.

The forward voltage of the red, yellow, and green LEDis 1.8 V and that of the white one is

2.6 V. Most LEDs can withstand a maximum current of 20 mA, so we need to connect a

current limiting resistor in series.

The formula of the resistance value is as follows:
R= (Vsupply - \/D)/I

R stands for the resistance v alue of the current limiting resistor, Vsupply for v oltage supply, VD
for voltage drop and | for the working current of the LED.

If we provide 5 voltage for the red LED, the minimumresistance of the current limiting resistor
should be: (5V-1.8v)/20mA = 160Q. Therefore, you need a 160Q or larger resistor to protect
the LED. You are recommended to use the 220Q resistor offered in the kit.

11

RGB LED

AN RGB LED is provided in this kit. RGB LEDs emit light in v arious colors. An RGB LED packages
three LEDs of red, green, and blue into a fransparent or semitransparent plastic shell. It can
display v arious colors by changing the input v oltage of the three pins and superimpose them,
which, according to statistics, can create 16,777,216 different colors.

RGB LEDs can be categorized infto common anode and common cathode ones. In this
experiment, the latter is used. The common cathode, or CC, means to connect the cathodes
of the three LEDs. After you connect it with GND and plug in the three pins, the LED will flash
the corresponding color. Its circuit symbolis shown as figure (n).

N 7

Red N

e

Green N o GND

__—Blue /?

I \\ Green Blue N

Red GND
(m) (n)
An RGB LED has 4 pins: the longest one is GND; the others are Red, Green and Blue. Touchiits

plastic shell and you will find a cut. The pin closest to the cut is the first pin, marked as Red,
then GND, Green and Blue in turn.

¥,

(0)

Or you can distinguish them in another way. As GND is the longest one and can be defined

directly, you just need to confirmthe other three pins. You can testit by giving them a small
voltage. The forward voltage drop fromthe three pins to the GND are respectively 1.8V (red),
2.5V (blue), and 2.3V (green). Thus, when you connect the same current limiting resistor with
the three pins and supply themwith the same voltage, the red one is the brightest, and then

12

comes the green and the blue one. Therefore, you may need to add a current limitingresistor
with different resistances to the three pins for these colors.

Jumper Wires

Wires that connect two terminals are called jumper wires. There are v arious kinds of jumper
wires. Here we focus on those usedin breadboard. Among others, they are used to tfransfer
electrical signals from anywhere on the breadboard to the input/output pins of a
microcontroller.

Jumper wires are fitted by inserting their "end connectors" info the slots provided in the
breadboard, beneath whose surface there are a few sets of parallel plates that connectthe
slots in groups of rows or columns depending on the area. The "end connectors" are inserted
into the breadboard, without soldering, in the particular slots that need to be connectedin
the specific prototype.

There are three types of jumper wire: Female-to-Female, Male-to-Male, and M ale-to-Female.
The reasonwe callit Male-to-Female is because it has the outstanding tipin one end as well
as a sunk female end. Male-to-Male means both side are male and Female-to-Female

means both ends are female.

Male-to-Female Male-to-Male Female-to-Female

(P) () (r)

More than one type.of them may be used in a project. The colors of the jumper wires are
different but it doesn’t mean their functions are different accordingly; it's just designed so to
better identify the connection between each circuit. The Male-to-Male and M dle-to-Female
jumper wires are included in the kit. But actually only some Male-to-Male ones will be usedin
the experiments. You can use the Male-to-Female wires in other experiments.

Breadboard

A breadboardis a construction base for prototyping of electronics. Itis used to build andtest
circuits quickly before finalizing any circuit design. And it has many holes info which
components like ICs and resistors as well as jumper wires mentioned abov e can be inserted.
The breadboard allows you to easily plug in and remov e components. If there is going to be
many changes or if you just want to make a circuit quickly, it will be much quicker than

13

soldering up your circuit. Therefore, in lots of experiments, it is often used as a hub to connect
two or more devices.

Normally, there are two types of breadboard: full+ and half+. You can tell their difference
from the names. A half+ breadboardis half the size of a full+ one and their functions are the
same. Here take the full+ breadboard.

ooooooooooooooo e e o o e e o e

ooooooooooooooo @ e 0 0 0 08w e e e e
oooooooooooooooo @ e s s 8 0P e e s e e

® 8 5 5 5 50658 % s e s st s
® 8 8 0 8 ¢ @ s 080000 s

® @ % e 0 8 0 e s e e e e eSS e S S e e e e s e
® 68 8 9 6 ¢ 0 8 ST S S S S S S S S S S S S e S S e S e
® 68 60 ® o0 e e PP B e B S e e e O e e e e e e

L R A I S e 0 00 LI e e 0 0 0
LA B ¢ o e 00 e 0 0 LI A « e 0 0

fritzing

() Half+

This is the internal structure of a full+ breadboard. Although there are holes on the
breadboard, internally some of them are connected with metal strips. Those holes are to
insert pins of devices or wires. As shownin the fig. (t) below, there are four long metal strips
on the longsides; the blue and red lines are marked just for clear observ ation. But you can
take the blue line as the GND andred one as VCC for convenience. Every five holesin the
middle are vertically connected with metal strips internally which don’t connect with each
other. You can connect them horizontally with wires or components. A groov e is madeinthe
middle on the breadboard for | C chips.

14

RN A S R R N T S S D A O S S S e T A S I R A R R D R R D A I R ey

WA

A

(u) Internal structure of the full+

Now let's make some simple experiment with the breadboard. Turn on an LED as shown in
the figure below. You can have a try and the LED will light up. The breadboard makes it
possible for you to plug and pull components at any time without welding, which is very
conv enient for tests.

* s e e e 0 e
* e e e e 0 s

® s e e e e e e * e s e e e e e e LR B 3 ® e 0 e 8 e oe el
@ e e s e e e e e e e ® % s e e s e e s e e

wn Q

= wn o wn o wn
m wn I}

- n - - ~ ~ =
_0000'00’"..”’0."””"'OOOOOQQOOQCatbo‘d ® o 0 s 0 0 000
8 ® 8 8 s e s s s s seEs e seeseeee ® 8 s 0 8 00 ® s o 0 s 0 s 00 s e
. ® 8 8 8 8 s 0 s e s eSS e e e s 0 . .. 2 ® s o 9 s 0 s 00 s e
8 8 8 8 8 e s s e s s e s e e s ® s 8 s s 8 0 E s ® @ s 0 s 00 s e 00 s
. ® 8 8 8 8 6 8 s e s s s Es eSS S E e s s ® @ s 0 0 s e s s e e e e e

2200

L ® 8 8 8 8 8 8 6 5 S 6 S S S S S S S S S S S S S . e @ 8 8 8 5 8 5 8 s s s s s s e e e
. ® 8 8 8 8 8 8 S S S S S S S S S S S S S s S S e @ 8 8 8 8 5 8 8 s s s s s e e e S s e
8 8 8 8 e e e s e s e e s e s S e ® 8 8 8 8 8 8 s e s s e s e e S s eSS
8 8 8 e e e e s e e e eSS e s e e s 8 s . ® 8 8 8 8 8 8 s e s s e s eSS
8 8 8 e e e e s eSS E S eSS S .

= wn o wn o w a
- n wn v}

- n - -

s e s 8 s . .'I"'OOOO0.0.."OOOOOO‘<

e e e e S e e e e s e

|
. e 8 e s s s s s W " e s e e e e eEe s e
T e e e S e e e e e

8 e s e e s s ..'.O ® e e e e e e

External GND External VCC

fritzing

(v)

15

Get Started

Preparation

1. Prepare a MicroSD/TF card of no less than 8GB, a 5V 2A DC power adapter with a
MicroUSB port, and a network cable (to connect your router and Raspberry Pi, or plugin
the USB Wi-Fi adapter directly if you have one).

2. Download the image for the Raspbian system onto your computer. Refer to instructions
through DOWNLOADS->RASPBIAN on the official website raspberrypi.org:
https://www.raspberrypi.org/documentation/installation/installing-images/README.md.

Write the image into the microSD/TF card, and then plug the card into the slot on your
Raspberry Pi.

Note: For 2016-11-25 release or above, SSH (a protocol securing remote login session and
other network service) is Disabled by default. Therefore, when you needto log inremotely,
you need to create afile named "ssh" under /boot/ to enable it.

st Software () | | LICENCE.broadcom
—a Resource (E:) L4 | | LICEMSE.oracle
=a work (F) L | ssh
== boot (G:) || start.elf
|| start_cd.elf

-

Access to Raspberry Pi’'s Console

In the subsequent tutorials, the console will be used from time to time. It is platform for
interactions in Linux: Therefore, before starting the lessons, you may need to know how to
access to Raspberry Pi's.console.

Using Console in GUI (terminal, recommended for beginners)

Using console in GUI is of great help for the beginners. You can not only compile and run the
code interminal, but also be able to do some simple file operating, code-downloading, etc.
cooperating with GUI.

1. Preparations: ascreen monitor, an HDMI cable (if your monitor only support VGA, use a
VGA-HDMI converter), a USB mouse, a USB keyboard and a netw ork cable or a USB Wi-Fi
dongle.

2. Connect the monitor to power. Then connect it with the Raspberry Pivia the converter
cable (HDMI cable). Connect the Ethernet cable or the USB Wi-Fi dongle, and the mouse
and keyboard to USB ports. At last, connect a 5V 2A DC power to the RPi. Power on the
screen if needed. Then you cansee the display showing the Raspberry Piicon as shown
below.

16

https://www.raspberrypi.org/documentation/installation/installing-images/README.md

If the monitor displays colored texts with a black background after booting, and thatisin

console. You can just use this as a terminal (but notrecommend for beginners), or change

the option for automatically loading a graphic user interface (GUI). To activate GUI, you

can type in startx with the keyboard and press Enter, and to alw ays boot up to GUI, type

in sudo raspi-config and go through Boot Options > Desktop/Desk Autologin, and reboot.
W ait for a while and the GUI display will show up as below.

) TFT COLOR MONITOR

Note:

The screen monitor shown above is the 7inch one we're using, av ailable on our website
www.sunfounder.com and ourAmazon store. Check out now and use your Raspberry Pi
in a most convenient way.

3. Now click the icon of Terminal on the screen, or press CIRL+ALT+T simultaneously.

& venu| () = ’m @) | ss|orzs
=

Wastebasket

17

http://www.sunfounder.com/

4. Then aterminalwillpop up as follows:

l% Menu| Qb) = |)j @ ‘-pi@raspberrypi:»« ‘ Eﬁ i.w?‘_. 09:06
Wastebasket — pi@raspherrypi: ~ CIEIE]

File Edit Tabs Help
pi@raspberrypi: []

Here's the console we talk about before.

Using Console Only

There are severalways to use the console only and they can be divided into mainly twoways:
using directly and remotely.

A screenis needed when you use the console directly.

1. Preparations: ascreen monitor, an HDMI cable (if your monitor only support VGA, use a
VGA-HDMI converter), a USB keyboard and a network cable or a USB Wi-Fi dongle. Yes,
you don’'t need a mouse, or you cannot use mouse.

2. Connect the monitor to power. Then connect it with the Raspberry Pivia the converter
cable. Connect the Ethernet cable or the USB Wi-Fi dongle, and keyboard. At last,
connecta bV 2A DC power to the RPi. Power on the screenif needed. Then you can see
the console full screen. If you boot into GUI instead, Open a terminal, type in sudo raspi-
config and press enter, go through Boot Options > Console/Console Autologin, andreboot.

For three platforms: Windows, Mac and Linux, it might be a little bit different to do this.

Linux and Mac users can easily log into the Raspberry Piviassh.

On Linux or Mac, find Terminal and openiit.

18

o Utilities

< = [0 ol ZEv X Q. Search
" b - |
: M & =
@ Documents AirPort Utility Audio MIDI Setup Bluetooth File Boot Camp
0 Downloads Exchange Assistant
= Movies ‘ 7 ON.
2 A —
Pictures ” s ; 2
ColorSync Utility Console Digital Color Meter Disk Utility
72} solomen
Devices -'/_J, L‘\ '
[} Yosemite o) O.
5] !5% - ‘t .
= wi A \/ [/ ~
= Windows f
Q DATA Grab Grapher Keychain Access Migration Assistant

@ Remote Disc

. <)
Tags ’)
® Red \ . .

2 Orange Script Editor

System Information Termi VoiceOver Utility

Yellow
@ Green
& Rhia)(
Type in ssh pi@<ip_address>

— sshis the tool forremote login; pi, the username, and <ip_address> as the name suggests,
your RPi's IP address. For example:

AN

ssh pi@192.168.0.1

Press Enter to confirm.

If you get a prompt.thatno sshis found, you need to install a ssh tool like Ubuntu and Debian
by yourself:

sudo apt-get install ssh
For other platforms, please contact your supplier.
For Windows users, you may use a ssh tool to loginto Raspberry Piremotely, like PUTTY.

1. Similarly plug the TF card into the Raspberry Pi (RPi), power the RPiwith a 5V 2A DC power
and connect the Ethernet cable (Better not a USB Wi-Fi dongle). Now). Now the Raspberry
Piisready.

2. Then you needto know the IP address of the RPi. You can find it on the settings interface
of your router. For more details, please refer to your router provider's page.

3. Open PuTlYand click Session on the left free-alike structure (generally it's collapsed upon
PUTIY startup):

19

¥% PuTTY Configuration x
Cat
= | Basic options for your PuTTY session |
& _I_:"" : gfung Specify the destination you want to connect to
Tﬂ}é::bnard Host Name (or |P address) Port
Bl [192.168.0.147 |[22 |
- Features Connection type:
=1 Window (JRaw () Telnet () Rlogin @) 55H () Seral
?;EEE!EHCE Load, save or delete a stored session
- Behaviour
- Translation Saved Sessions
- Selection | |

4. Enter the IP address of the RPiyou just gotin the textbox under Host Name (or IP address)
and 22 under Port (by default it is 22)

ﬁ PuTTY Configuration P
Category:
[-Session | Easic options for your PuTTY session |
¢ Logging . L
& Terminal Specify the destination youwantto connect to
- Keyboard HostName (or [P address) Port
- Bell l1921680101 | 22
|:—j--'-.n;l;.i-nFc|eoTres Connection type: i i _
(T'Raw (")Telmet ()Rlogin @ SSH () Serial
--Appearance
- Behaviour Load. save ordelete a stored session
- Translation .
. Selection Saved Sessions
- Colours
= Connegiioh Default Settings
- Data b 9 Load
Toms T
ot
i | Deleie
- Senal
Close window on exit .
() Always (I Mever @) Only on clean exit

Open] [Cancel

5. Click Open. Note that whenyou first login to the Raspberry Piwith the IP address, you'll
be prompted with a security reminder. Just click Yes. When the PuTlY window prompts

login as: type in the user name of the RPi: pi, and password: raspberry (the default one, if
you haven't changed it).

20

Note: whenyou're typing the passwordin, the window shows nothing just null, but you're
in factis typing things in. So just focus on typing it right and press Enter. After you login the
RPi successfully, the window will display as follows.

&3 pi@raspberrypi: ~ ST

as: pi

Now, no matter what method you take, you can getin the console of your Raspberry Pi.

21

Infroduction to Raspberry Pi

RAB Holder

RAB Holder is a basic but indispensable component for your experiment. It makes your
experiment easier and can be used for fixing a bread board, an Arduino board like Uno
board or Mega2560, or a Raspberry Piboard.

Before starting the experiment, you need to fix the Raspberry Pi and the breadboard on the
RAB Holder first.

Remov e the sticker from the back of the breadboard first, and fix the breadboard on the
RAB Holder. Pay aftention to place it in such a position as shown in the figure below, so that
the 3.3V pin and 5V pin on the T-Extension Board align with the bus strips besides the twored
lines when we insert the T-Extension Board later.

Blue line

Red line

Then insert the T-Extension Board into the Breadboard, and insert the 40-pin GP1O Cable into
the board.

22

Then place the Raspberry Piin the holder, fasten it with M2.5x5 screws. Since it may be allittle
difficult to fastenit, be careful to operate.

Pay attention to the direction when plugging in the 40-pin GPIO Cable into the Raspberry Pi
pins. The black wire at the edge should be close to the TF card slot. DO NOT connectthem
inversely, or the Raspberry Piwil beshort'cut!

=B 2y O\wr"mlu »né"u"”uuvd‘"u‘u ol «’
The Black \ 1 ‘ _ [U

| 18

o =

TF Card Slot

23

Raspberry Pi

Raspberry Pi 3 Model B V1.2
© Raspberry Pi 2015

A Raspberry Piis an indispensable component for the kit, the control device. But it is not
includedin the kit and you need to prepare one yourself.

The Raspberry Pi is a kind of minicomputer for users like amateurs, teachers, students and
small businesses, etc. With a pre-installed Linux system, it is credit card-sized and equipped
with an ARM architecture processor, whose operational performance is similar to that of
smart phone. As for ports, the Raspberry Piprovides USB ports for mouse and keyboard. In
addition, there are also ports for the Fast Ethernet, SD card and HDMI display or TV's
connection. Being low cost and low consumption, the Raspberry Piis very suitable for
embedded projects. Many people hav e been able to apply the Pito a variety of projects
including some simple ones for children and complex ones with more adv anced functions.
You can apply it like a PC for spreadsheets-making, word-processing and games, or to play
HD videos of up to 1080p.

It can’t be better describing the Raspberry Pias "though small, perfectly formed". It has the
same ability compared with the PC and carries ports for the USB, Ethernet, HDMI, RCA, and
3.5mmstereo jack. Moreover, it can control GPIOs, while the PC cannot. Through this kit, you
willlearn how to use the GPIOsto make simple experiments and how to program.

The Raspberry Pi evolves through many versions including the latest (so far) Raspberry Pi 3
Model B, 2 model B, 1 Model B+, Zero, and 1 Model A+. Certainly, the newer, the more
pow erful. The 3model B now even supports Bluetooth and Wi-Fi. You can choose according
to actual needs.

Raspberry Pi Pin Name

There are no pins printed on the latest Raspberry Pi, which may bring v arious tfroubles to new
users. The following is the actual pins definition and form definition of the Raspberry Pi. The

24

actual pins are corresponding to the Physical on the right. There are 40 pins in total fromleft
to right. The columns near Physical are the V (voltage), Mode (Input or Output), Name
(original name), wPi (wiringPi, C language based on), BCM (Python based on) of the pins.

V | Physical
Sl ysjcal __, ___

[l
1 [
1 [l
0 | TxD
| RxD
| GPIO.
|| ov
| GPIO.
| GPIO.
[l ov
|| GPIO.
| CEQ
| CE1
| SCL.0
[l ov
| GPI0.26
[ov
| GPI0.27
| GPI0.28
[l

HWWWWWNNNNN PR FEOORNN
OO NO O RNO P NO

e

Besides the original name of the pins, there are other three ways of naming including physical,
wiringPi and BCM. If you see a pin being defined as 0in the C language, its original name is
GPIO 0. In Python code, it's 17 (BCM) or 11(physical). So you need to know the name,
physical, wiringPiand BCM of a pin.

Extension Board

The function of the extensionboard is to lead out pins of the Raspberry Pi to breadboard by
GPIO Extension Board to avoid GPIO damage caused by frequent plugging in or out. For
plugging convenience, we designed it in T-shape and name it T-Shape Extension Board.

40-pin GPIO Extension Board
\ “\‘\
\\ et

\
\
\
\
\ :

25

This is our 40-pin GPI1O Extension Board and GPIO cable for Raspberry Pimodel B+, 2 model B
and 3 model.

For your better understanding of every pins, we have drawn a table for you to know the
Name, BCM and wiring pi of each pin.

Name wiringPi BCM BCM wiringPi Name

T Extension

ID_SC GPIO0

ID_SDA 30 0 18 1 GPIO1
CEO 30 8 27 2 GPIO2
CEl 11 7 22 3 GPIO3
3.3V 33V 3.3V 23 4 GPIO4
ov GND GND 24 5 GPIOS
SCLK 14 11 25) 6 GPIO6
MOSI 12 10 4 7 GPIO7
MISO 13 9 3 21 GPIO21
3.3V 3.3V 3.3V 6 22 GPIO22
ov GND GND 13 23 GPIO23
SDA 8 2 19 24 GP1024
SCL 9 & 26 25 GPIO25
3.3V 3.3V 3.3V 12 26 GPIO2¢6
ov GND GND 16 27 GPIO27
RXD 16 15 20 28 GPI1O28
TXD 15 14 2] 29 GPIO29

26-pin GPIO Extension Board

26-pin GPIO Extension Board and GPIO cable for Raspberry Pi model B and Raspberry Pi
model A.

26

Also, we hav e drawn a table of the correspondingBCM, wiringPi and Name of each pins.

wiringPi BCM BCM wiringPi

Pin GPIO GPIO Pin N

Name

Raspberry-Pi-GPIO
Extension Board V2.2

CEl
CEO
SCLK

MISO

MOSI
RXD
TXD

SCL

SDA GND

27

GPIO Libraries
WiringPi
Infroduction

WiringPiis a GPIQO library for C applied to the Raspberry Pi. It complies with GUN Lv 3. The
functions in wiringPi are similar to those in the wiring system of Arduino. They enable the users
familiar with Arduino to use wiringPi more easily.

Now the Raspbian Jessie 2016-05-27 has wiringPi pre-installed, you can use it directly.
Test whetherwiringPiis installed or not.

WiringPiincludes lots of GPIO commands which enable you to control all kinds of interfaces
on Raspberry Pi. You can test whether the wiringPilibrary is installed successfully or notbythe
followinginstructions.

gpio -v

pi@raspberrypi:~ $ gpio -v

gpio version: 2.32

Copyright (c) 2012-2015 Gordon Henderson

This is free software with ABSOLUTELY NO WARRANTY.
For details type: gpio -warranty

Raspberry P1i Details:
Type: Pi1i 3, Revision: 02, Memory: 1024MB, Maker: Embest
* Device tree is enabled.
* This Raspberry Pi supports user-level GPIO access.
-> See the man-page for more details
-> le. export WIRINGPI GPIOMEM=1

If the message abov e appears, the wiringPiis installed successfully.

Use the command below to see the GPIO layout

gpio readall

28

pi@raspberrypi:~ % gpio readall

——-Pi 3---
Physical

GPIO. 7
av
GPIO. @
GPIO. 2
GPIO. 3
3.3v
MOSI

+
I
o
I
I
I
I
I
I
I
I
I
| P
MISO | 1
I
I
I
I
I
I
I
I
I
+
I
o

|

|

I

| TxD

| RxD

| GPIO. 1
| ov

| GPIO. 4
| 18 GPIO. 5
| 20 Ov

| 22 GPIO. 6
| 24 | CE®

| 26 | CE1

| 28 | SCL.®

| 30 Ov

| 32 GPIO0.26
| 34 ov

| GPIO.27
| 38 GPIO.28
| 40 GPI0.29
____++____

Physical

e o

Av
SDA.©
GPIO0.21
GPIO0.22
GPIO0.23
GPI0.24
GPI0.25

RPi.GPIO

If you are a Python user, you can program GPIOs with API provided by RPi.GPIO anduse BCM
numbering method to control the GPIOs of Raspberry Pi. Please note that it differs fromthe
way that using wiringPi numbering method to control the GPIO on a Raspberry Piin C
language.

Infroduction

RPi.GPIO is a module to control Raspberry Pi GPIO channels. This package provides a class
to control the GPIO on a Raspberry Pi. For examples and documents, visit
http://sourceforge.net/p/raspbermry-gpio-python/wiki/Home/.

Now the Raspbian Jessie 2016-05-27 has RPi.GPIO pre-instalLED, you can use it directly, too.
Test whetherRPi.GPIOis installed or not:

Type in python to python CLI:

pi@raspberrypi:~ $ python
Python 2.7.9 (default, Mar 8 2015, 00:52:26)
[GCC 4.9.2] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> |
In Python CLI, Type in:

import RPi.GPIOimport RPi.GPIO

29

http://sourceforge.net/p/raspberry-gpio-python/wiki/Home/

If no error prompts, it means RPi.GPIO is installed.

pi@raspberrypi:~ $ python
Python 2.7.9 (default, Mar 8 2015, ©0:52:26)
[GCC 4.9.2] on linux2

Type "help", "copyright™, "credits" or "license" for more information.
>>> import RPi.GPIO
S |

Then, typein
RPi.GPIO.VERSION

>>> RPi.GPIO.VERSION
'9.6.2"

>>>]

If it showsits version like above, your Piisready to go!

So in this kit, please note that the example code is ONLY test on Raspbian.

30

Download the Code

We provide two methods for download:

Method 1: Use git clone (Recommended)

Loginto Raspberry Pi's console, just as previously shown.

Change directory to /home/pi

cd /home/pi/

Note: cd to change to the intended directoryfrom the current path. Informally, here isto go to
the path /home/pi/.

Clone the repository from GitHub

git clone https://github.com/sunfounder/SunFounder_Super_Kit_V3.ij"LRaspberry_Pi.git

The advantage of this method is that, you can update the latestcode any time you want,
using git pull under the folder.

Method 2: Download the code.

Download the source code from our website. www.sunfounder.com

Click LEARN->Get Tutorials, find Super Kit V3.0 for Raspberry Pi and click to download the
Super Kitfor Raspberry Pi.zip file, unzip it, and then mov e the folder to the directory /home/pi/.

This is a simple way to do it.

31

http://www.sunfounder.com/

Lesson 1 Blinking LED

Infroduction

In this lesson, we willlearn how to program Raspberry Pi to make an LED blink. You can play
numerous tricks with an LED as you want. Now get to start and you will enjoy the fun of DI'Y
at oncel

Components

- 1 *Raspberry Pi

- 1 * Breadboard

- 1 * T-Extension Board
- 1 *40-Pin Cable
-1*LED

- 1 * Resistor (220Q)

- Jumper wires

Principle

In this experiment, connect a 220Q resistor to the anode (the long pin of the LED), then the
resistor to 3.3 V, and connect the cathode (the short pin) of the LED to B17 of Raspberry Pi.
We can see from the schematic diagram that the anode of LED connects to a current-
limiting resistor and then to 3.3V. Therefore, to furn on an LED, we need to make B17 low (0V)
level.lt can be realized by programming.

#e
3.3v| 1 N B17 |
2200 AN

Experimental Procedures

Step 1: Build the circuit

Vuuu

=
.©
w
c
[
&
=
Ll
-

|
® OGND

1 lgy

32

For C language users:

Step 2: Go to the folder of the code.

If you use a monitor, you're recommended to take the following steps.

Go to /home/pi/ and find the folder SunFounder_Super_Kit_V3.0_for_Raspberry_Pi .

Find C in the folder, right-click on it and select Openin Terminal.

‘[F:in LY Open in New Tab ‘
Ly Open in New Window ﬂ
. =L
iIs Help
Open With.

4+ Add to Bookmarks

.
o
3

Compress.

Deskio Documents Downloat §& Cut
@9 L

1
N
N

Public python_gam ® Move towastebasket
es N\ X o
a Copy Path(s)
PO S
Then a window will pop up as shawn below. So now you've entered the path of the code
01_blinkLed.c

- pi@raspberypi:~/Sunou der Super KILV3 0 for Raspbery.PilC HEE

File Edit Tabs#Help
pi@raspberrypit

Inthe lessons later, we willshow how to getinto the folder of the code in commandway, not
with the display. You only need to find out the code file andright click Openin Terminal. You
can back to lesson 1to check if you forgot. Certainly, the terminal can be opened if you're
using display, and then use cd command directly to go to the code path.

If you log into the Raspberry Piremotely, use “cd” to change directory:

cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry_Pi/C

Note: Change directory to the path of the code in this experiment via cd.

33

& pi@raspberrypi: ~/SunFounder Super Kit V3.0 for Raspberry Pi/C

login as: pi

pi@192.168.0.131"'s password:

Server refused to set all environment variables

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

Last login: Thu Jul 21 06:42:51 2016 from 192.168.0.130
pi@raspberrypi: cd ~/SunFounder Super Kit V3.0 for Raspberry Pi/C/
pi@raspberrypi:

In either way, you now are in the folder C. The subsequent procedures under the two
methods are the same. Let's move on.

Step 3: Compile the Code

gcc 01_blinkLed.c -0 01 blinkLed -lwiringPi

Note: gcc is GNU Compiler Collection. Here, it functions like compiling the C language file
01_blinkLed.c and outputting an executable file 01_blinkLed. In the command, means
outputtingand istoload the library wiringPi (I is short for library).If you want to write your
own C code and compile to runit, you need to master gcc.

Since the gcc command is too long, you can use make to test the experimental effect of the
kit to make the process quicker and more convenient.

make 01 blinkLed

Note: The make command will compile according to the rules in the Makefile. Two files will be
generated after compiling: "**.0” and an executable file.

We use makefile, in essence, is to write the compilation method of gcc into the automated
script. If you have written your own program in C language, you need to write and modify the
makefile so as to use make command to compile your C code.

Step 4: Run the executable file outputin the previousstep:
sudo ./01_blinkLed

Note: To control the GPIO, you need to access to led with the permission of superuser (sudo is
not needed to control the GPIO for the raspbian system after 2016-5-27), namely, by the
command sudo. In the command “./" indicates the current directory. The whole command is to
run the 01_blinkLed in the current directory.

34

If you want to view the code @1_blinkLed.c, press Ctrl + C to stop running the code. Then
type the following command to openit:

nano 01 blinkled.c

Note: nano is a text editor tool. The command is to open the code file 01_edblinkLed.c by this
tool.

nder_Super_Kit V3/0_for-Ra5nbe VPI/C BIEIE]

File: 01 blinkLed.c

Edit Tabs Help
nano 2.2.6

e
GNU

gpinclude <wiringPi.h>
#include <stdio.h>

ppdefine LedPin

main\

if(wirin tup() == -1){
‘setup wiringPi failed !");

OUTPUT) ;

Code Explanation

#include <wiringPi.h>

#include <stdio.h>

35

#tdefine LedPin 0

pinMode (LedPin, OUTPUT)
digitalWrite(LedPin, LOW)

Press Cirl+X to exit. If you hav e modified the code, there will be a prompt asking whether to
save the changesor not. Type in Y (save) or N (don'tsave). Then press Enter to exit. Repeat
Step 3 and Step 4 to see the effect after modifying.

Save modified buffer (ANSWERING "No" WILL DESTROY CHANGES) ?

For Python users

Step 2: Go to the folder of the code and runit.

Openthe downloaded folder SunFounder_Super_Kit. V3.0 for_Raspbery_Pi/Python and
you can see them.

If you use a monitor, you're recommended totake the following steps.

Find 01_blinkLed.py and double click it fo open. Now you're in the file.
; Dermy_Pi/Pytnon/01_blinkLed.py (2.7-3) DDD

[Ol DlinKled py = /Aome/D)/Si
File Edit Format Run. Options Windows Help

B! /usr/bin/env python A

£ RPi.GPIO da& GPIO
time
Set #17 as LED pin
LedpPin = 17
Define a function to print messags at the beginning
print_message () :
'"Program is rumming
'Please press Ctrl+C to end the program. .
pDefine a s=tup function for soms s=tup

setup () :
Set the GPIO modes to BCHM Numbsring
GPIO.setmods (GPIO.BCH
Set LedpPin’'s mods to output,
and initial lewvel to High(3.3v)
GPIO.setup (LedPin, GPIO.OUT, initial=GPIO.HIGH)
Define a main function for main procsss
main () :
Print messages
print_message ()
Trus:
I LED oOn'
Turn on LED
GPIO.output (LedPin, GPIO.LOW)
time.sleep (0.5

'LED OFF..."
Turn off LED
GRPTO Attt (TaedPin GRTO HTGHY A

Click Run->Run Module in the window and the following contents will appear.

36

= - = « INEDD

File Edit Shell Debug Options Windows Help

m' (j) - = ,* @ MF:J ‘-[p‘ e H & ‘ B = @ 1%(01:32
., +5ython 2.7.9 She

Python 2.7.9 (default, Mar 8 2015, 00:52:26)
[Gece 4.9.2] on linux2
Type "copyright", "credits" or "license()" for more information.

RESTART
arning (from warnings moduls) : AL . .
File "/home/pi/SunFounder_Super Kit_Vv3.0_for_Raspberry_Pi/Python/01_blinkLed.p USng p)’
", line 19
GPIO.setup (LedPin, GPIO.OUT, initial=GPIO.HIGH)
FuntimeWarning: This channsl is alrezady in use, continuing anyway. Uss GPIO.set
arnings (False) to disable warnings.

Program is running...

k‘l-,—a.s:—, 131—,35: Cctrl+C to end the program... ?C_segmen
...LED ON

LED OFF... tpy
...LED ON
LED OFF...
...LED ON
LED OFF...
...LED ON
LED OFF...

12C.pyc

To stop it fromrunning, just click the X button on the top right to close it and then you'll back

to the code details. If you modify the code, before clicking Run Module (F5) you need to
save it first. Then you can see the results.

If you want to log into the Raspberry Piremotely, type in the command:

cd /home/pi/SunFounder_Super Kit_V3.0 for_ Raspberry.Pi/Python

Run the code:

sudo python 01 _blinklLed.py

Note: Here sudo - superuser do, and python means to run the file by Python.

" pi@raspberrypi: ~/SunFounder Super Kit V3.0 for Raspberry_Pij n
pi@raspberrypi: cd ~/SunFounder Super Kit V3.0 for Raspberry Pi/Python/
pi@raspberrypi: sudo python 01 blinkLed.py
01 blinkLed.py:19: RuntimeWarning: This channel is already in use, continuing anyway. Use GPIO.setwarning
s(False) to disable warnings.
GPIO.setup(LedPin, GPIO.OUT, initial=GPIO0.HIGH)
Program is running...

Please press Ctrl+C to end the program...

If you want to view the code o1_blinkLed.py, press Ctrl + C to stop running the code. Then
type the following command to openit:

nano 01 blinkled.py

Nofe: nano is a text editor tool. The command is to open the code file 01 blinkLed.c
by this tool.

37

pi@raspberrypi: ~fSunFomlder;S|lper_Kil;V3.0_fox_Ka§pberry;P?]l’:y|hon
GNU nano 2.2.6 File: 01 blinkLed.py
! /usr/bin/env python
import RPi.GPIO as GPIO
import time

0:

print 'Program is running...'
print 'Please press Ctrl+C to end the program...'

[Read 51 lines (Converted from DOS format)]

g¢ Get Help R0 WriteOut @it Read File @] Prev Page @y Cut Text
W Justify gl Where Is &Y Next Page ¥ UnCut Text

Code Explanation

#!/usr/bin/env python:

import RPi.GPIO as GPIO PT 10 ckage
import time ackage, fo
LedPin = 17) ts to e

pt P i

def setup():
GPIO.setmode(GPIO.BCM)

GPIO.setup(LedPin, GPIO.OUT, initial=GPIO.HIGH)
def main():

print_message()

while True:

print '...LED ON'

GPIO.output(LEDPin, GPIO.LOW)

38

¥ Cur Pos

time.sleep(0.5)
print 'LED OFF...'

GPIO.output(LedPin, GPIO.HIGH)
time.sleep(0.5)

def destroy():

GPIO.output(LedPin, GPIO.HIGH)

GPIO.cleanup()

main ()

except KeyboardInterrupt:
destroy ()

£ pi@raspberrypi: ~/SunFounder Super Kit V3.0_for Raspberry Pi/Python i
GNU nano 2.2.6 File: @1 blinklLed.py

! /usr/bin/env python
import RPi.GPIO as GPIO
import time

0:
print ‘Program is running...'
print 'Please press Ctrl+C to end the program...’

Exit

E Get Help WriteOut X Read File Prev Page @ Cut Text Cur Pos
{ &Y

Justify Where Is Next Page @Y UnCut Text gl To Spell

Press Cirl+X to exit. If you have modified the code, there will be a prompt asking whether to
save the changes ornot.Type in Y (save) or N (don't save).

39

Then press Enter to exit. Type in nano ©1_blinkLed.py again to see the effect after the
change.

Run the code to make it work. It will be like below:

Further Exploration

If you want the LED to speed up the blinking, just change the delay time. For example,
change the time to delay (200) (for C) or time.sleep(0.2) (for python) in the program,
recompile andrun, and then you willsee the LED blink faster.

Summary

Raspberry Pipackages manylow-lev el detail designs, which ease your way to explore your
own apps. Maybe thatis the charm of Raspberry Pi. Now you hav e already learnthow touse
the Raspberry Pi GPIO to blink an LED. Keep moving to the next contents.

FAQ

If you haven't modified the code, you do not need torun make @1_blinkLed again.

make 01 _blinkLed

Or a message willappear: make: '01_blinkLed’ is up to date

It will not appear only when you run the make command after having changed the code

and savedit.

Tips: For any TECHNICAL guestions, add a topic under FORUMsecTion on our website
www.sunfounder.comand we'llreply as soon as possible.

40

http://www.sunfounder.com/

Lesson 2 Controlling an LED by a Button

Infroduction
In this lesson, we will learn how to turn an LED on or off by a button.

Components

- 1 *Raspberry Pi

- 1 * Breadboard

-1 *LED

- 1 * Button

- 1 * Resistor (220Q)

- Jumper wires

- 1 *T-Extension Board
- 1 * 40-Pin Cable

Principle

Button

Buttons are a common component used to control electronic devices. They are usualyused
as switches to connect or disconnect circuits. Although buttons come in a variety of sizes
and shapes, the one used here is a 6mm mini-button as shownin the following pictures. Pin
1is connected to pin 2 and pin 3 to pin 4. So youjust need to connect either of pin 1 and
pin 2 to pin 3 or pin 4.

The following is the internal structure of a button. Since the pin 1 is connected to pin
2, and pin 3 to pin 4. The symbol on the right below is usually used to represent a
buttonin circuits.

41

When the button is pressed, the 4 pins are connected, thus closing the circuit.

Use a normally open button as the input of Raspberry Pi, the detailed connectionis as shown
in the schematic diagrambelow. When the buttonis pressed, the B18 will turninto low level
(OV). We can detect the state of the B18 through programming. That is, if the B18 turns into
low level, it means the button is pressed. You can run the corresponding code when the
button is pressed, and then the LED will light up. Note: The longer pin of the LED is the anode
and the shorter one is the cathode.

Button
| a— .
GND -||I) o B18
e
3.3V} 1 N B17 |
220Q
LEDI

Experimental Procedures
Step 1: Build the circuit

3.3V @ @GND

B27 @

©@ID SDAB18 @
@CEO

c
e
%]
c
[}
+—
x
L
-

'5v@ @GND

42

For C language users:

Step 2: Open the code file:

Note: Change directory to the path of the code in this experiment via cd.

Step 3: Compile the Code

Step 4: Run the executable file above

Step 5: Check the code

Code Explanation

#tdefine LedPin @ Pin B17 in the T_Extension Bo G ‘:::'the GPIOO. GPIOO

corresponds to pin@ in the wiringPi pin figure. @‘ gram, LedPin is defined as ©.

#tdefine ButtonPin 1 Pin B18 in the T_Extensi d nnects to the GPIO8. GPIO8

in Q in C program, LedPin is defined as 1.
i 0 assign value to it.

in as input to read the value of ButtonPin.

pinMode (LedPin, OUTPUT) Set LedPi
pinMode (ButtonPin, INPUT) Set
pullUpDnControl(ButtonPin, "PUD_UP) t the ButtonPin as pull-up input. When the button
is not pressed, t 0 port .3V. When the button is pressed, the I/O port connects
to GND (OV). You c udge “the button status by reading the level value of the I/O port.
while(1){
// indicate that button has pressed down
if(digitalRead(ButtonPin) == 0){
// LED on
digitalWrite(LedPin, LOW);
printf("...LED on\n");
}
else{
// LED off
digitalWrite(LedPin, HIGH);
printf("LED off...\n");

43

digitalWrite (LedPin, HIGH) in while: close the LED. if (digitalRead (ButtonPin) ==
check whether the button has been pressed. Execute digitalWrite(LedPin, LOW) when

pressed to light up LED.

Press Ctrl+X to exit, if you have modified the code, there will be a prompt asking whether to
save the changes or not.Type in Y (save) or N (don'tsave). Then press Enter to exit. Repeat
Step 3 and Step 4 o see the effect after modifying.

For Python users:

Step 2: Openthe codefile

Step 3: Run the code

Step 4: Check the code

Code Explanation

LedPin = 17 # Set #17 as LED pin

BtnPin = 18 # Set #18 as button pin Q

Set up a falling detect on BtnPin, and k nction to swled
GPIO.add_event_detect(BtnPin, GP ALL 1llback=swLED)

Define a callback function for b ca ack, execute the function after the

callback of the interrupt.
def swLed(ev=None):
global Led_st
Switch Led status (on-->off; off-->on)
Led_status = not Led_status
GPIO.output(LedPin, Led_status)
if Led_status:
print 'LED OFF...'
else:

print '...LED ON'

Now, press the button, and the LED will light up; press the button again, and the LED will go
out. At the same time, the state of the LED will be printed on the screen.

44

T_Extension

Summary

Through this experiment, you have learnt how to control the GPIOs of the Raspberry Pi by
programming.

45

Lesson 3 Flowing LED Lights

Infroduction
In thislesson, we willlearn how to make eight LEDs blink in v arious effects as you wantbased
on Raspberry Pi.

Components

- 1 *Raspberry Pi

- 1 * Breadboard
-8*LED

- 8 * Resistor (220Q)
- Jumper wires

- 1 * T-Extension Board
- 1 * 40-Pin Cable

Principle

I:IZZOQ 20Q 20Q 20Q 20Q 20Q 20Q []2209

SN

B17
B18
B27

B22
B23

B24

B25

-+
jaal

Principle: Judging from the schematic diagram, we can know that a LED and a current-
limiting resistor hav e been connectedto B17,B18, B27, B22, B23, B24, B25, and B4 respectively.
The current-limiting resistor has been connected to the 3.3V power supply on other side.
Therefore, if we want to light up one LED, we only need to set the GPIO of the LED as low
level. Sointhis experiment, setB17, B18, B27, B22, B23, B24, B25, and B4 to low levelin turn by
programming, and then LEDO-LED7 will light up in turn. You can make eight LEDs blink in
different effects by conftrolling their delay time and the order of lighting up.

Experimental Procedures

Step 1: Build the circuit

46

es e
IR
ces e
cc e
ce s

T Extension
L OID SCLB17 @]

' 'sy@ @GND

For C language users:

Step 2: Open the code file

cd /home/pi/SunFounder_Super Kit V3.0 for_Raspberry Pi/C

Note: Use the cd command to switch to the code path of this experiment.

Step 3: Compile the Code

gcc 03_8lLed.c -o 03_8Led -lwiringPi
or
make @3 8Led

Note: is alinux command which canrealize compiling and generating the C language
programfile 03_8Led.c to the executable file 03_8Led.
is a linux command which can compiling and generating the executable file
according to the rule inside the makefile.
Step 4: Run the executadble file above
sudo ./0@3_8Led

Note: Here the Raspberry Pi will run the executable file 03_8Led compiled previously.

£ pi@raspberrypi: ~/SunFounder Super Kit V3.0 for Raspberry Pi/C

pi@raspberrypi: make 03_8Led
[cC] 03 _8led.c

[1link]

pi@raspberrypi: sudo ./03_8Led

LEDO cor ct to GPIO®Q
LED1 connect to GPIO1
LED2 connect to GPIO2
LED3 connect to GPIO3
LED4 connect to GPIO4
LED5 connect to GPIO5
LED6 connect to GPIO6
LED7 connect to GPIO7

Flow LED effect

From left to right.
From right to left.
From left to right.
From right to left.
From left to right.
From right to left.

47

Code Explanation

void Led_on(int channel): This is a subfunction with a formal parameter int channel for
importing the numbers of the controlled pins. Its function body is digitalWrite(channel,
LOW) ; Set the I/0 port of channel as low level(@V), the LED on this port lights up. void
led_off(int channel) is to turn off the LED. Setting function simplifies the input for
the repeated content.
for(i=0;i<8;i++){ //make 8 pins' mode is output

pinMode (i, OUTPUT);
}//The cathodes of the 8 LEDs connect to Bl17, B18, B27, B22, B23, B24, B25, and B4 of
the T-shape extension board respectively, corresponding to 0,1,2,3,4,5,6,7. It is to set
the 8 LEDs as output separately. Use for loop to make it more concise and efficient.

for(i=0;i<8;i++){ //make LED on from left to right
Led_on(i); // turn the LED i on
delay(100); // keep the LED i lighting for 1@0ms.
Led_off(i); // Turn the LED i off
} // Light up and turn off the LEDs in GPIOO~7 successd i ihcreases

progressively from © to 7, LED® to LED7 changes acc i king it like a flowing
LED light from left to right.
t

for(i=;i>=0;i--){ //make LED off from right 1
led_on(i); // turn the LED i o

delay(100); // keep the LED i Qightin 100ms

led_off(i); //turn the LE
}/ In this for loop, light d n off the LED in GPIO7 to GPIO® successively,
making a flowing ight eft to right.

For Python users:
Step 2: Open the code file

Step 3: Run

Code Explanation

LedPins = [17, 18, 27, 22, 23, 24, 25, 4] # The cathodes of the 8 LEDs connect to B17,
B18, B27, 22, 23, 24, 25, 4 of the T-shape extension board. In BCM, these pins are
corresponding to 17, 18, 27, 22, 23, 24, 25, and 4.

leds = ['-", '-", "-="', ‘'-', -ty ety -ty '-'] # the array to print out the status of

the 8 LEDs

for pin in LedPins # Assign the element in pins list to pin variable one by one. In
GPIO.setup (pin, GPIO.OUT), set the pins in list as output one by one.

GPIO.output(pin, GPIO.LOW) # Set each element in the pins list as low level to
light up the LEDs

leds[LedPins.index(pin)] = @ # Show which LED is on

time.sleep(0.1) # wait for ©.1s

GPIO.output(pin, GPIO.HIGH)) # After delaying, set it as high level to light up or
turn off the LED.

leds[LedPins.index(pin)] = "-"' # Show the led is off

You will see the eight LEDs lighten up one by one, and then dim in turn.

Further Exploration

You can write the blinking effects of LEDs in an array. If you want to use one of these effects,
you can callit in the main() function directly.

49

Lesson 4 Breathing LED

Infroduction

In this lesson, we will fry something interesting — gradually increase and decrease the
luminance of an LED with PWM, just like breathing. So we giv e it a magical name - Breathing
LED.

Components

- 1 *Raspberry Pi

- 1 * Breadboard

-1 *LED

- 1 * Resistor (220Q)

- Jumper wires

- 1 * T-Extension Board
- 1 *40-Pin Cable

Principle

PWM

Pulse Width Modulation, or PWM, is atechnique for getting analog results with digital means.
Digital controlis used to create a square wav.e, a signal switched between on and off. This
on-off pattern can simulate voltages in between full on (3.3 Volts) and off (0 Volts) by
changing the portion of the time the signal spends on versus the time that the signal spends
off. The duration of "on time" is called pulse width. To get v arying analog v alues, you change,
or modulate, that width. If you repeat this on-off pattern fast enough with some device, an
LED for example, theresult would be like this: the signal is a steady voltage between 0 and
3.3v controlling the brightness of the LED.

Duty Cycle
A duty cycleis the percentage of one periodin which asignal is active. A periodis the time
it takes for a signal to complete an on-and-off cycle. As a formula, a duty cycle may be

expressed as:

T

Where D) is the duty cycle, T’ is the time the signal is active, and P is the total period of the
signal. Thus, a 60% duty cycle means the signal is on 60% of the time but off 40% of the time.
The "ontime" for a 60% duty cycle could be a fraction of asecond, aday, oreven aweek,
depending on the length of the period.

50

http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Turn_(geometry)

Control signal, u

A
On U

Uonm
fmean value)

Ot -
(nd —»] t
Duty eyele, D [%]

>
Period, 7,

~100%

In this experiment, we use this technology to make the LED brighten and dimslowly so itlooks
like our breath.

7
B18 1 I ’IL
| g mi

LED
GND

Experimental Procedures
Step 1: Build the circuit

. e e e .. . e e e LR e e . LI
. U . . L UL L U
15
LI . ® 8 6 8 8 6 S S S S S S S e e e e
LI . I T R I I IR T T SR T I I I I I I I I)
e 0w . 8 P S S TSN Y Y
- 000 [~} .'.....I..ll..ll..lll.III.III
(o] L2383] ® 8 6 8 8 e e e e S E e e e e e
-G o [
= =33~ >
8 U%E“] m U S ST I I SR I I T I I I O I B O S A O
a o® o
Jj 000 [~} ® 8 8 8 0 8 S 0 S S S eSS eSS
LI . ® e e 8 8 e e e e e e e s e T e e e e e eSS BT
= LI . ® e oo 00 8 e 0 e e e s e e e e e e e e e e
e e . ® ® ° e P S S S T TS E YT
. e e o 0w e e o0 e o0 e LRI
LI s e 00w L A e s 0w LI

"™ '5ve @GND

For Clanguage users:

Step 2: Open the code file
cd /home/pi/SunFounder_Super_Kit_V3.0_for_Raspberry Pi/C

51

Step 3: Compile the Code

Step 4: Run the executabile file above

Code Explanation

pinMode (LedPin, PWM_OUTPUT); // Set the I/0 as pwn output

for(i=0;i<1024;i++){ // i,as the value of pwm, increases progressively during ©-1024.
pwmWrite(LedPin, i); // Write i into the LEDPin

delay(2); // wait for 2ms, interval time between the changes indicates the speed of

breathing.

} // the value of pwm add 1 every 2ms, when the value of pwm increases, the luminance of

the LED increases.

for(i=1023;i>=0;i--){ (
pwnWrite(LedPin, i);
delay(2);

} // the value of pwm minus 1 every 2ms, when t

ue pwm decreases, the luminance
of the LED decreases.

For Python users:
Step 2: Open the code file

Step 3: Run

Code Explanation

GPIO.setup(LedPin, GPIO.OUT, initial=GPIO.LOW) # Set LedPin as OUTPUT, initialize the
pin as low level.

pLED = GPIO.PWM(LedPin, 1000) # use PWM in the RPi.GPIO library. Set LedPin as analog
PWM output, the frequency as 1000Hz, assign these configurations to pLed.

pLed.start(0) # Start pLed with 0% pulse width

time.sleep(0.05)

while True:
Increase duty cycle from © to 100

for dc in range(©@, 101, step): # set dc from © to 100 in for loop. Set step to
cycle.

Change duty cycle to dc

52

pLed.ChangeDutyCycle(dc) # ChangeDutyCycle() function in pLED output
pulse width 0~100% according to the variable dc.

print " ++ Duty cycle: %s"%dc # print information

time.sleep(delay) # it will delay after changing the pulse width for

each time, this parameter can be modified to change the LED’s lighting and dimming

speed.

time.sleep (1)

decrease duty cycle from 100 to ©

for dc in range(100, -1, -step): # the luminance of the LED decreases with each
cycle.

Change duty cycle to dc
pLED.ChangeDutyCycle(dc) # same as the last for loop
print " -- Duty cycle: %s"%dc

time.sleep(delay)

Now you will see the gradual change of the LED luminance, betw een bright and dim.

ension

ST EXl

Summary
Through this experiment, you should have mastered the principle of PWM and how to

program Raspberry Pi with PWM. You can try to apply this technology to DC motor speed

regulation later.

53

Lesson 5 RGB LED

Infroduction

Previously we've used the PWM technology to control an LED brighten and dim. In thislesson,
we willuse it to control an RGB LED to flash v arious kinds of colors.

Components

- 1 *Raspberry Pi

- 1 * Breadboard

-1 *RGB LED

- 3 * Resistor (220Q)

- Severaljumper wires

Principle

In this experiment, we will use a RGB. For details of RGB, please refer to the introduction of
RGB LED in Components Infroduction.

_—Blue

\Green
Red GND
The three primary colors of the RGB LED can be mixed into v arious colors by brightness. The
brightness of LED can be adjusted with PWM. Raspberry Pi has only one channel forhardware
PWM output, but it needs three channels to control the RGB LED, which means it is difficultto
control the RGB LED with the hardware PWM of Raspberry Pi. Fortunately, the softPwmlibrary
simulates PWM (softPwm) by programming. You only need to include the header file
softPwm.h (for C language users), and then call the API it provides to easily control the RGB
LED by multi-channel PWM output, so as to display all kinds of color.

| BI7 1 R
220Q G
| BIS 1
220Q B
| B27 1

L
220Q

RGB

Experimental Procedures

54

Step 1: Build the circuit

3.3V @ @GND

. I I I I I O A I A A)
. . I I N T I)
. . LI I I I I I)
- oo [) I I I I I I A I A O A I A Y
o ==] I T I I I I T I I I I I I A B B I
o (==l o
2 23
% N, =
= oo : I I I I I I A I I)
L’,joE (-] ® 6 0 8 6 e s s s s e e e e e s e e e
= o . LI I I I I A I I)
.. . DI I I O I I I I I T O I I I I IO)
. . TR I I I S T T S S S T S S S Y
“e e s e S eees sSeeEe seeew
“e e s e Seeee eeeee seeee

™ 5@ @GND

For C language users:
Step 2: Open the code file

cd /home/pi/SunFounder_Super_Kit_V3.0_for_Ra spber‘r‘y_lmv

Step 3: Compile the Code

make ©5_rgb A \\ \v

Step 4: Run the executable file above

sudo ./05_rgb / ‘ \V

Code Explanation

#include <softPwm.h> // libRaryjpused for realizing the pwm function of the software.
void ledInit(void){ // defing)yfunction used for initializing I/O port to output for
pwm.

// LedPinX refers 0 one pin. @ is the minimum value and 100 is the maximum (as a
percentage). The function is to use software to create a PWM pin, set its value between
0-100%.

softPwmCreate (LedPinRed, ©, 100);

softPwmCreate (LedPinGreen,0, 100);

softPwmCreate (LedPinBlue, 0, 100);
void ledColorSet(uchar r_val, uchar g_val, uchar b_val){ // This function is to set the
colors of the LED. Using RGB, the formal parameter r_val represents the luminance of the
red one, g val of the green one, b_val of the blue one. The three formal parameters’
different values corresponds to various colors. You can modify the 3 formal parameters
randomly to verify.

softPwmWrite(LedPinRed, r_val);

softPwmWrite(LedPinGreen, g val);

55

softPwmWrite(LedPinBlue, b_val);
}
ledColorSet(0xff,0x00,0x00); // red calls the function defined before. Write oxff into
LedPinRed and ox@0 into LedPinGreen and LedPinBlue. Only the Red LED lights up after
running this code. If you want to light up LEDs in other colors, just modify the

parameters.

For Python users:
Step 2: Open the code file

Step 3: Run

Code Explanation

Set up a color table in Hexadecimal

COLOR = [OXFFOPPO, OXOOFFOO, OxPPOOFF, OXFFFFOO, OXFFOOFF @

Set pins' channels with dictionary

pins = {'Red':17, 'Green':18, 'Blue':27} Q

p_R = GPIO.PWM(pins['Red'], 2000) # e e last lesson, here we configure
the channels and frequencies of t P

p_G = GPIO.PWM(pins['Green'],

GPIO.PWM(pins['Blue’], (%]

p_B

p_R.start(0) ‘ #g as the last lesson, the PWM of the 3 LEDs begin with 0.

p_G.start(0)
p_B.start(0)

Define a MAP function for mapping values. Like from ©~255 to 0~100
def MAP(x, in_min, in_max, out_min, out_max):

return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min
def setColor(color): # configures the three LEDs’ luminance with the inputted

color value .

R_val (color & OxFF@OPO) >> 16# these three lines are used for analyzing the
col variables

G val

(color & Ox00FFO0) >> 8 # assign the first two values of the
hexadecimal to R, the middle two assigned to G
B_val = (color & Ox0000FF) >> @ # assign the last two values to B, please

refer to the shift operation of the hexadecimal for details.

56

R_val = MAP(R_val, @, 255, 0, 100) # use map function to map the R,G,B
value among 0~255 into PWM value among 0-100.

G_val = MAP(G_val, @, 255, 0, 100)

B_val = MAP(B_val, @, 255, @, 100)

p_R.ChangeDutyCycle(R_val) # Assign the mapped duty cycle value to the
corresponding PWM channel to change the luminance.
p_G.ChangeDutyCycle(G_val)
p_B.ChangeDutyCycle(B_val)
for color in COLOR: # Assign every item in the COLOR list to the color
respectively and change the color of the RGB LED via the setColor() function.
setColor(color) # change the color of the RGB LED
time.sleep(0.5) # set delay for 0.5s after each color changing. Modify this

parameter will changed the LED’s color changing rate.

Here you should see the RGB LED flash different colors in turn.

Further Exploratfion

You can modify the parameters of the functionledColorSet() by yourself, and then and
run the code to see the color changes of the RGB LED.

57

Lesson 6 Buzzer

Infroduction

In this lesson, we willlearn how to drive an active buzzer to beep with a PNP transistor.

Components

- 1 *Raspberry Pi

- 1 * Breadboard

- 1 * Buzzer (Active)

- 1 * PNP fransistor (8550)
- 1 * Resistor (1KQ)

- Jumper wires

Principle

Buzzer

As a type of electronic buzzer with integrated structure, buzzers, which are supplied by DC
power, are widely used in computers, printers, photocopiers, alarms and other electronic
products for voice devices. Buzzers can be categorized as active and passive ones (seethe
following picture). Turn the pins of two buzzers face up, and the one with a green circuit
boardis a passive buzzer, while the other enclosed with a black tape is an active one.

The difference between an active buzzer and a passive buzzer is: An active buzzer has a
built-in oscillating source, so it willmake sounds when electrified. But a passive buzzer does
not have such source, so it will not beep if DC signals are used; instead, you need to use
square waveswhose frequency is between 2K and 5K to drive it. The active buzzeris often
more expensiv e than the passive one because of multiple built-in oscillating circuits.

The followingis the electrical symbol of abuzzer. It has tw o pins with positive and negative
poles. With a + in the surface represents the anode and the otheris the cathode.

Buzzer

+

58

You can check the pins of the buzzer, the longer one is the anode and the shorter one is the
cathode. Please don't mix them up when connecting, otherwise the buzzer will not make
sound.

Transistor

The transistor is a semiconductor device that controls current by current. It functions by

amplifying weak signal to larger amplitude signal and is also used as a non-contact switch.

A transistor is a three-layer structure composed of P-type or N-type semiconductors. They

form the three regions internally. The thinner in the middle is the base region; the other two

are allN-type or P-type ones — the smaller region with intense majority . carriers is the emitter

region, when the other one is the collector region. This composition enables the transistor to

be an amplifier.

Fromthese three regions, three poles are generatedrespectively, which are base (b), emitter
(e), and collector (c). They form two P-N junctions, namely, the emitter junction and
collection junction. The arrow in the circuit symbolindicates the direction of emitter junction.
Transistors can be divided into two kinds: the NPN and PNP one. The former is made of two
N-type semiconductors and one P-type and that the latter is the opposite. See the figure
below.

C o Collector

N Collector-base junetion

b Base

Base

NPN

&g
h. 4
b o— pNp O
Base p i
) |

€ ~ Emitter

59

When a High lev el signal goes through an NPN fransistor, it is energized. But a PNP one needs
a Low levelsignal to manage it. Both types of transistor are frequently used for contactless
switches, just like in this experiment.

The schematic diagram:

Buzzer

i — & S8550

| I |
1KQ I]
GND

Principle: In this experiment, an active buzzer, a PNP fransistor and a 1k resistor are used
between the base of the fransistor and GPIO to protect the transistor. When the B17 of
Raspberry Pioutput is supplied with low lev el (OV) by programming, the transistor willconduct
because of current saturation and the buzzer will make sounds. But when high level is
supplied to the 1O of Raspberry Pi, the transistor will be cut off and the buzzer will not make
sounds.

Experimental Procedures

Step 1: Build the circuit (Pay attention to poles of the buzzer: The one with + label isthe positive
pole and the otheris the negative.)

60

..
e e 0 e o “ s o0 O e o * o000
. . ..1|£......I ® o 0 0 0 0 0 e 0 e e e
. U] (Y I I I I I I I I I I B O B A A)
. LI s IIIlTlTlTl"IIIIIID ® % & & 0 s s s e e s
c (-] 0 ® 8 5 8 5 8 S S P S S S
o] L= wJll geeos e esepeesssesssses s
— o oM m
%)
g = 29
= o &5 O LRI I A ® & 88 s s 080000808
L>lj "] [X"] e e e 0 e e s 0 0 00 ® ® 0 0 0 " e e e e e
. .. L B e * o 0 e ® & 8 0 0 0 8 00 E e
L . .. e e e e e s e e 0 0 e ® e e 0 00 e e 0 e e e e e e e e
. o e« s o e e s e s 000 ® ¢ e 06 0 0000000800000
“ o0 e 0 0 e 0 0 e e o e s e e e e e e o LI LI e o * e 00
o« o o 00 e 0 0 e o e s LR “ s s 00 L s 0 “ e 0 0. o000

™' '5ve eGND

For Clanguage users:
Step 2: Open the code file

cd /home/pi/SunFounder_Super_Kit_V3.0_for‘_Raspber‘r‘y_I~C D“
Step 3: Compile the Code

make 06 _beep A\)

Step 4: Run the executable file above.

sudo ./06 beep A A\ \‘

Code Explanation

digitalWrite(BeepPin, LOW); //f WeQuse)an active buzzer in this experiment, so it will
make sound automatically when cGenne€ting to the direct current. This sketch is to set
the I/0 port as low level(y(0V)y thus to manage the transistor and make the buzzer beep.
digitalWrite(BeepPin, HIGH); // To set the I/O port as high level(5V), thus the

transistor is not energized and the buzzer doesn’t beep.

For Python users:

Step 2: Open the code file
cd /home/pi/SunFounder_ Super Kit_ V3.0 for_Raspberry Pi/Python

Step 3: Run
sudo python 06_beep.py

Code Explanation

GPIO.output(BeepPin, GPIO.LOW)# Set the buzzer pin as low level.
time.sleep(0.1)# Wait for 0.1 second. Change the switching frequency by changing this
parameter. Note: Not the sound frequency. Active Buzzer cannot change sound frequency.

GPIO.output(BeepPin, GPIO.HIGH) # close the buzzer

61

time.sleep(0.1) Now, you should hear the buzzer make sounds.

N
— !)\

sion

)

nl

T_Exten

w
LS AR

Further Exploration
If you hav e a passive buzzer in hand, you canreplace the active buzzer with it. Now youcan

make a buzzer sound like “do re mi fa so la si do” with just some basic knowledge of

programming. Give afry!

62

Lesson 7 Relay

Infroduction

As we know relay is a device which is used to provide connection between two or more
points or device in response to the input signal applied. In another words relay provide
isolation between the controller and the device as we know devices mayworkonAC aswell
ason DC. However, theyreceiv e signals frommicrocontroller which works on DChencewe
require arelay to bridge the gap. Relay is extremely useful when you need to control alarge
amount of current or voltage with small electrical signal.

Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 *Relay

-1*LED

- 1 * Resistor (220Q)

- 1 * Resistor (1KQ)

- 1 *NPN Transistor

- 1 * Diode (Rectifier)
- Severaljumper wires

Principle
Relay
There are 5 partsineveryrelay:

1. Electromagnet — It consists of an iron core wounded by coil of wires. When electricity is
passed through, it becomes magnetic. Therefore, itis calLED electromagnet.

2. Armature — The mov able magnetic strip is known as armature. When current flow's through
them, the coilis it energized thus producing a magnetic field whichis used to make or break
the normally open (N/O) or normally close (N/C) points. And the armature can be moved
with direct current (DC) as well as alternating current (AC).

3.Spring — When no currents flow through the coil on the electromagnet, the spring pulls the
armature away so the circuit cannot be completed.

4, Set of electrical contacts — There are two contact points:

Normally open - connected when the relay is activated, and disconnected whenit
is inactive.

Normally close — not connected when the relay is activated, and connected when
itis inactive.

5. Molded frame - Relays are cov ered with plastic for protection.

63

Working of Relay

The working principle of relay is simple. When power is supplied to the relay, currents start
flowing through the control coil; as a result, the electromagnet starts energizing. Then the
armature is attracted to the coil, pulling down the moving contact together thus connecting
with the normally open contacts. So the circuit with the load is energized. Then breaking the
circuit would a similar case, as the moving contact will be pulled up to the normally closed
contacts under the force of the spring. In this way, the switching on and off of the relay can
conftrol the state of a load circuit.

Normally closed contacts

i Armature
[e o h:mmm:mE'Moving contact
: - 1) —
Normally(open|contacts
Spring Electromagnet
} T T
[|
E2
O ~ O—
E1
S
:: -
Schematic diagram:
vV
7 4 -
T~ 0|
diode
A 3
4 JE—
>
~
5 S 2200
Relny
\ L W
| B17 '_'Iﬁl e NPN N\
GND GND

Experimental Procedures

64

Step 1: Build the circuit

LI e 0 0. e e 00 LI A A A

o e e LI A e e 0 e LR
LA LN A e 0 0 o e 0o ® e 0

* s . . LI T O IR S B R I ® ¢ e e s e e e e e
. LI . odm'r——-'—------- ® ¢ s s s 888008080808
. L . ® s s e s s s s s InnmEETTTTIIIID ¢ e e ® ¢ s s s s s 8008080808088
C. XXX] [] ® 8 5 8 5 s 5 5 8 s s s s s e e s & & 5 5 5 5 s s 5 85 8 s s s s s s
o & w99 © DO DI .o “ s s s s s s s e e e s el
= o~ oo —
i o o
-
= inje)
) w, f"o"m> (=)
= 0O KUJIEE"T 5 e e o0 0 e o o0 0 .o R EEEE R E R R R
Lﬁi ...@ @ e e s e 0w ------------m--------.........
. * e e . e e 0o 00w * e o e 0o s I * e e e e e e eSS ST OSSO OETS
l_ . * e o . * e o o 00 L B R B DN D A D B B I B B I R B DR R D B D R BN B D D D I B
. * e e . e e o 00w * e o 0 00 e e s s e e L I I I I I I O I I O I)
[=]
G l l
... * e e 00 . e e o0 L B L B . lll.l . e 8 00 L B B L B B B L B
o LK “« s e 0. s e e DI I “ o 00 « o LI I LI LI I LR B
@
-
il
fritzing

For C language users:
Step 2: Open the code file

cd /home/pi/SunFounder Super Kit V3.0 for Ra spber“rmu

Step 3: Compile the Code

make ©7_relay _ A\ \‘

Step 4: Run the executable file above

sudo ./@7_relay Av \ 4

Code Explanation

digitalWrite(relayPin, LOW); Y% Sset the I/0 port as low level (@V) to energize the
transistor. The coil of The relay is powered and generate electromagnetic force, and the
relay closes.

digitalWrite(relayPin, HIGH); // Set the I/O port as high level (5V), thus the
transistor is not energized and the coil is not powered. There is no electromagnetic

force, so the relay opens.

For Python users:

Step 2: Open the code file
cd /home/pi/SunFounder_ Super Kit_V3.0 for_ Raspberry_ Pi/Python

Step 3: Run
sudo python ©7_relay.py

Code Explanation

65

GPIO.output(relayPin, GPIO.LOW) # Set the pins of transistor as low level to actuate
the relay.

time.sleep (1) # wait for 1 second. Change the switching frequency of the relay by
changing this parameter. Note: Relay is a kind of metal dome formed in mechanical
structure. So its lifespan will be shortened under high-frequency using.
GPIO.output(relayPin, GPIO.HIGH) # Set the pins of the transistor as low level to
let the relay open.

time.sleep (1)

Now, connect a device of high voltage, and the relay will close and the LED will light up;
connect one of low voltage, and it will open and the LED will go out. In addition, you can
hear a ticktock caused by breaking normally close contact and closing normally open
contfact.

o+ -
2614805002 131
0 ‘el 24

__----------r-
, AN ES & &
R

D
"e | g5mommomw
LR

L JCE

LR
amfgom e

LS

66

Lesson 8 4N35

Infroduction

The 4N35 is an optocoupler for general purpose application. It consists of gallium arsenide
infrared LED and a silicon NPN phototransistor. When the input signalis applied to the LED in
the input terminal, the LED lights up. After receiving the light signal, the light receiver then
converts it info electrical signal and outputs the signal directly or after amplifying it into a
standard digital level. Thus, the transition and fransmission of electricity-light-electricity is
completed. Since light is the media of the fransmission, meaning the input terminal and the
output one are isolated electrically, this process is also be known as electrical isolation.

Components

-1 * 4N35

-1 *LED

-1 *220 Ohm Resistor
- 1* Tk Ohm Resistor
- Some jump wires

Principle
4N35

The 4N35 is an optocoupler for general purpose application. It consists of gallium arsenide
infrared LED and a silicon NPN phototransistor.

What an optocoupler does is to break the connection between signal source and signal
receiver, so as to stop electrical interference. In other words, it is used to preventinterference
from external electrical signals. 4N35 can be usedin AV conv ersion audio circuits. Broadly it
is widely usedin electricalinsulation for a general optocoupler.

A [1] [6]B
c [Z}L [5]C

NC [3] (4]E

See the internal structure of 4N35 above. Pin 1 and 2 are connected to aninfraredLED. When
the LED s electrified, it'll emit infrared rays. To protect the LED from burning, usually aresistor
(about 1K) is connected to pin 1. Then the NPN phototransistor is power on whenreceiving
the rays. This can be done to control the load connected to the phototransistor. Even when

67

the load short circuit occurs, it won't affect the control board, thus realizing good electrical
isolation.

The schematic diagram:

|
)
1

I

1 = 6

| \:ALEDl
B17 2 \:‘ 2
3 4

Principle: In this experiment, use an LED as the load connected tothe NPN phototransistor.

Connectpin20of 4N35to pin B17, pin 1 connects a 1K current-limiting resistor and then a 3.3V.
Connect pin 4to GND, and pin 5 to the cathode of the LED. Then hook the anode of the LED

to 3.3V after connecting with a 220 Ohmresistor. When in program, a LOW levelis given to

pin B17, the infrared LED will emit infrared rays. Then the phototransistor receiv es infraredrays

and gefts electrified, and the LED cathode is LOW, thus turning on the LED. Also you can

control the LED by circuits only — connect pin2 to ground and it will brighten.

Step 1: Build the circuit

c
(=
wn
=
3]
&
=
w
'_

' 'sv@ @GND

fritzing

68

For C language users:

Step 2: Open the code file

Step 3: Compile the Code

Step 4: Run the executable file above.

Code Explanation

digitalWrite(_4N35Pin, LOW); // set the I/O port as low level (@V), thus the optocoupler
is energized, and the pin connected to LED conducts to the @V. Then the LED lights up.
delay(500); // optocoupler is a kind of electronic device and there is no limitation on
its on-off frequency.

digitalWrite(_4N35Pin, HIGH); // set I/0 port as high level () s the optocoupler

is not energized ,and the pin connected to LED cannot co t . Then the LED

goes out.

For Python users:
Step 2: Open the code file

Step 3: Run

Code Explanatio

GPIO.output(Pin_4N35, GPIO.LOW) # set the pins of optocoupler as low level, thus the

optocoupler is energi , and the pin connected to LED conducts to the @V.Then the LED
lights up.

time.sleep(0.5) #wait for 0.5 second. The on-off frequency of the
optocoupler can be changed by modifying this parameter.

GPIO.output(Pin_4N35, GPIO.HIGH) # set the pins of optocoupler as high level, thus the
optocoupler is disconnected, and the pin connected to LED break the connection to the
OV. Then the LED goes out.

time.sleep(0.5)

You will see the LED blinks.

69

Exploration

4N35 is an optocoupler that usually used for driving relay as well as motor circuits. As there is
no direct connection between theinput and output, evenif a short circuit at the outputend
occurs, the control board will not be burnt. Have atry!

70

Lesson 9 Neb55

Infroduction

If you ask anyone in the know to rank the most commonly and widely used IC, the famous
555 time base |C would certainly be at the top of the list. The 555 — a mixed circuit composed
of analog and digital circuits — integrates analogue and logical functions into an
independent IC, and hence tremendously expands the application range of analog
integrated circuits. The 555 is widely used in v arious timers, pulse generators, and oscillators.

Components

- 1 *Raspberry Pi

- 1 * Breadboard

- 1 * NE555

-2* 104 ceramic capacitor
- 1 * Potentiometer (50KQ)

- 1 * Resistor (10KQ)

-1 *USB cable

- Jumper wires

Principle

The 555 IC was originally used asa timer, hence the name 555 time base circuit. It is now
widely usedin various electronic products because of its reliability, convenience, and low
price. The 555 is a complex hybrid circuit with dozens of components such as a divider,
comparator, basic R-S trigger, discharge tube, and buffer.

555 chip pins are intfroduced as follows:

e

GND |I El Vee
TRIGGER [2 | | 7] biscHARGE
ouTPUT| 3 | | 6 | THRESHOLD
RESET[4 | | 5] coNTROL VOLTAGE

As shownin the picture, the 555 |C is dual in-line with the 8-pin package. Thus:

e Pin 1 (GND): the ground;

e Pin 2 (IRIGGER): the input of lower comparator;

e Pin 3 (OUTPUT): having two states of 0 and 1 decided by the input electricallevel;
e Pin 4 (RESET): outputlow levelwhen supplied alow one;

e Pin 5 (CONTROL VOLTAGE): changing the upper and lower level frigger values;

e Pin 6 (THRESHOLD): the input of upper comparator;

71

e Pin 7 (DISCHARGE): having two states of suspension and ground connection also
decided by input, and the output of the internal discharge tube;
e« Pin8 (VCC): the powersupply;

The schematic diagram

LI onp vee P8 ok |
2 7 ~sR2
3 TR DS r >R Iot
[BI8 T ouT TH —
RET cv
NESS55
—_Cl
104 —_——2
104
=
GND
Experimental Procedures
Step 1: Build the circuit
L] L
e e e LA N LI A . e s e LA LA I LA B A LR O
LB A LI % e oW . e e s 01‘ UL A LI I A LI A
RN\ c2
. e ® 8 8 @ s 0 0" P B e e e e e e .. LO@]‘F-.......::---
e e 0 c'.d.oo’c-%_...- ® ® 9 0 0 e e e e e e e e e
o o0 @ @ e ® e o o e e e e e s IIn'I'nh'hh'» ¢ s e ® ® ® 8 e e e s e e e e e e
[X X-) ® 8 8 8 8 e s e e S e e s e
‘E gﬁﬁ I I I T O I I O
7]
T 223
- ;ég ® e o 0606006060008
u><_| 000 A T T S
= cee ceeescescsscses

™! s\ @ @GND

For Clanguage users:
Step 2: Go to the folder of the code.

cd /home/pi/SunFounder_ Super_Kit V3.0 _for_Raspberry Pi/C
Step 3: Compile

make @9_ne555

Step 4: Run the executable file above.
sudo ./@9_ne555

72

Code Explanation

static volatile int globalCounter = @ ; // a static integer variable to store the pulse
count
void exInt®_ISR(void) { //GPIO® interrupt service routine

++globalCounter;
}
wiringPiISR(Pin@, INT_EDGE_FALLING, &exInt@_ISR); // set an interrupt here and the
signal is falling edge for Pin ©. When the interrupt happens, execute the function

exInt@® ISR(), and the pulse count will add 1.

while(1){ // if no interrupt happens, the pulse count will stay and just print it.

printf("Current pulse number is : %d\n", globalCounter);

For Python users:
Step 2: Getinto the folder of the code.
cd /home/pi/SunFou nder‘_Super‘_Kit_V3.G_for‘_Raspbw_\/Pmon

Step 3: Run

sudo python @9_ne555.py \ \\

Now you can see the number of square wav es printed. Spin the potentiometerandthe value
willdecrease or increase.

73

Code Explanation

g count =0 # a global variable used to store the pulse count
def count(ev=None): # Define a function to be run when an interrupt happens

global g count # this function will change the value of the global variable g count,
thus here we add global before it.

g count += 1

GPIO.add_event_detect(SigPin, GPIO.RISING, callback=count) # set an interrupt here and
the interrupt signal is a rising edge for Pin Sig. It will run the function count()
accordingly
while True: # wait for the interrupt

print 'g count = %d' % g_count # print the information

time.sleep(0.001)

74

Lesson 10 Slide Switch

Infroduction

In this lesson, we willlearn how to use a Slide Switch. Usually, the slide switchis soldered on
PCB as apower switch, but here we need to insert it into the breadboard, thus it may not be
tightened. And we use it on the breadboard is to show its function.

Components

- 1 * SunFounder Uno board
- 1 * Breadboard

- 1 *Slide Switch

-2*LED

- 2 * Resistors (220Q))

- 1 * Resistors (10kQ)
-1*USB cable

- Jumper wires

Principle
Slide Switch

Asslide switch, justas its name implies, is to slide the switch bar to connect or break the circuit,
and further switch circuits. The common-used types are SPDT, SPTI, DPDT, DPTT etc. The Slide

Switchis commonly used in low-v oltage circuit. It features flexibility and stability, and widely
appliesin electric instruments and electric toys.

How it works: Use the middle pin as the fixed one. When you pull the slide to the left, the left
two pins are connected; to the right, the right two pins connected. Thus, it connects and
disconnects circuits as a switch. See the figure below:

060 0o

The circuit symbol of the slide switchis as shown below. 2in the figure means the middle pin.

75

switch 3 []zzog []2209
B17 —o—zoh

7ot
||
I Red Green
- T T
1KQ
GND
B18
B27

Principle: Connect the middle pin of the Slide Switchito B17, and two LEDs to pin B18 and B27
respectively. Then when you pull the slide, you can see the two LEDs light up alternately.

Experimental Procedures
Step 1: Build the circuit

u.u.u.u
cogoififecege socees vovee
cevsssccsssecsMgecssclernsocs o I ZZZ!ZZZZZZZZZZZZZZZ
0 000000000000000 - W] RIS Nl s SR

T Extension

i
™! 5@ @GND
e o

For Clanguage users:
Step 2: Go to the folder of the code.

76

Step 3: Compile

Step 4: Run the executable file above.

Code Explanation

// When the slide is pulled to the left, the middle pin and left one are connected; the Raspberry
Pi reads a high level at the middle pin, so the LED1 is on and LED2 off
if(digitalRead(slidePin) == 1){
digitalWrite(ledl, LOW);
digitalWrite(led2, HIGH);
printf("LED1 on\n");
}
// When the slide is pulled to the right, the middle pin and right one ar nnected; the

Raspberry Pi reads a low, so the LED2 is on and LED1 off
if(digitalRead(slidePin) == 0){

digitalWrite(led2, LOW);

digitalWrite(ledl, HIGH); Q
printf(" LED2 on\n");

.....

-

For Python users:
Step 2: Getinto the

Step 3: Run

Code Explanation

When the slide is pulled to the left, the middle pin and left one are connected; the
Raspberry Pi reads a high level at the middle pin, so the LED1 is on and LED2 off.
if GPIO.input(slidePin) ==
print 'LED1 ON (High Value)'
GPIO.output(lediPin, GPIO.LOW)
GPIO.output(led2Pin, GPIO.HIGH)
When the slide is pulled to the right, the middle pin and right one are connected; the
Raspberry Pi reads a low, so the LED2 is on and LED1 off.
if GPIO.input(slidePin) ==
print 'LED2 ON (Low Value)'

77

GPIO.output(led2Pin, GPIO.LOW)

GPIO.output(lediPin, GPIO.HIGH)

Now pull the slide, and you can see the two LEDs light up alternately.

78

Lesson 11 How to Drive a DC Motor

Infroduction

In this lesson, we will learn to how to use L293D to drive a DC motor and make it rotate
clockwise and counterclockwise. Since the DC Motor needs a larger current, for safety
purpose, here we use the Power Supply Module to supply motors.

Components

- 1 *Raspberry Pi

- 1 * Breadboard

- 1*L293D

- 1*DC motor

- 1 *Power Module
-Jumper wires

Principle

L293D

L293D is a 4-channel motor driv er integrated by chip with high voltage and high current. I1's
designed to connect to standard DTL, TIL logic level, and driv e inductiv e loads (such asrelay
coils, DC, stepping motors) and pow er switching fransistors etc. DC Motors are devices that
turn DC electrical energy into mechanical energy. They are widely used in electrical drive
for their superior speed regulation performance.

See the figure of pins below. 1293D hastwo pins (Vcc1 and Vcc?2) for power supply. Vcc2is
used to supply power for the motor, while Vcc1 to supply for the chip. Since a small-sized DC
motor is used here, connect both pins to +5V. If you use a higher pow er motor, you need to
connect Vcc2to an external power supply.

1,2EN [] 1 ~ 16]] Veet
1Afl2 15[4A
1Y []3 14]] 4Y

HEAT SINK AND J [] 4 13]]> HEAT SINK AND
GROUND 7 []5 12[] | GROUND

2Y [|6 1] 3y
2A []7 10]] 3A

Veez [] 8 o[l 3,4EN

The following is the internal structure of L293D. Pin EN is an enable pin and only works with
high level; A stands forinput and Y for output. You can see the relationship among them at
the right bottom. When pin EN is High level, if A'is High, Y outputs high level; if A'is Low, Y
outputs Low level. When pin EN is Low level, the L293D does not work.

79

2
1_ 15 9
| .
! .
: 1 INPUTST
4
| |

e outPuT
s wi—t - EN
= ; H H H
| I L H L
|) o
:)fl_l'l 7 w0l X L Z
l—!_s _____ —r- H = high level, L = low level, X = irelevant,
" Z = high impedance (off)

In this experiment, it just needs to drive one motor, so here only half of the L293D will be used.

DC Motor

il

|

This is a 5V DC motor. It willrotate when you giv e the twoterminalsof the copper sheet one
high and one low level. For convenience, you can weld the pins to it.

Size: 25*20*15MM Operation Voltage: 1-6V
Free-run current (3V): 70m A Free-run speed (3V): 13000RPM
Stall current (3V): 800mA Shaft diameter: 2mm

Power Supply Module

In this experiment, it needslarge currents to drive the motor especially when it starts and
stops, which will severely interfere with the normal work of Raspberry Pi. Therefore, we
separately supply power for the motor by this module to make it run safely and steadily.

You canjust plugitinthe breadboard to supply power. It provides a voltage of 3.3V and 5V,
and you can connect either via a jumper cap included.
0/3.3/5V -~ ---GND

USB Output:5V - -~ N

Power LED -—---- <

Power Switch ------ P

80

Schematic diagram:

3V
B27 é 1,2EN Vel :g
B18 3 1A 4A S
7 1Y 4Y T
3 GND GND 1
(3 GND GND TR
M) 2Y Y p——
Motor 517 o At
Vee2 34EN ——
L293D

GND
Principle: Plug the power supply module in breadboard, and insert the jumper cap to pin of
5V, then it will output voltage of 5V. Connect pin 1 of L293D to B27, and set it as highlevel.
Connect pin2 to B18, and pin7 to B27, then set one pin high, while the other low. Thus you
can change the motor’s rotation direction.

Experimental Procedures

Step 1: Build the circuit. Since the power supply module and T-cable are incompatible, we
willnot use the T-Cable in this experiment.

Note: The power module can apply a9V batterywith.the @V Battery Buckle in the kit. Insert
the jumper cap of the powermodule into the 5V bus strips of the breadboard.

81

For C language users:
Step 2: Geftinfo the folder of the code

Step 3: Compile

Step 4: Run the executable file above.

Code Explanation

digitalWrite(MotorEnable, HIGH): // Enable the L239D

digitalWrite(MotorPinl, HIGH):) // Set a high level for 2A(pin 7); since 1,2EN(pin 1) is
in high level, 2Y will output high level

digitalWrite(MotorPin2, LOW): // Set a low level for 1A, then 1Y will output low level,

and the motor will rotate.
for(i=0;i<3;i++){
delay(1000);
} // this loop is to delay for 3*1000ms ‘

digitalWrite(MotorEnable, LOW) // If 1,2EN (pinl) l vel, L293D does not work.
Motor stops rotating.

digitalWrite(MotorPinl, LOW) Q

digitalWrite(MotorPin2, HIGH) // ent flow of the motor, then the motor

will rotate reversely.

For Python users:

Step 3: Run

Code Explanation

GPIO.setup(MotorPinl, GPIO.OUT) # Set pinl and pin2 for motor’s rotation direction
as output pin

GPIO.setup(MotorPin2, GPIO.OUT)

GPIO.setup(MotorEnable, GPIO.OUT) # Set pins for motor’s working condition as
output pin

GPIO.output(MotorEnable, GPIO.LOW) # Set the motor low level for initial state

GPIO.output(MotorEnable, GPIO.HIGH) # Set the motor in high level
GPIO.output(MotorPinl, GPIO.HIGH) # Set pinl in high level and pin2 in low level

82

GPIO.output(MotorPin2, GPIO.LOW) # Make the motor rotate clockwise

time.sleep(5) # rotate for 5 seconds
GPIO.output(MotorEnable, GPIO.LOW) # Stop the motor
time.sleep(5) #wait for 5 seconds

Code for motor counter-clockwise rotation is similar to sketch above

Now, you should see the motor blade rotating.

Further Exploration

You can use buttons to control the clockwise and counterclockwise rotation of the motor
blade based on the previous lessons. Also you can apply the PWM technology to confrolthe
rotation.

83

Lesson 12 Rotary Encoder

Infroduction

A rotary encoder is an electro-mechanical device that converts the angular position or
motion of a shaft or axle to analog or digital code. Rotary encoders are usually placed at
the side whichis perpendicular to the shaft. They act as sensors for detecting angle, speed,
length, position, and acceleration in automation field.

Components

- 1 *Raspberry Pi

- 1 * Breadboard

- 4* Jumper wires (Male to Male, 2red and 2 black)

- 1 *Network cable (or USB wireless network adapter)
- 1 * Rotary Encoder module

- 1 * 5-Pin anti-reverse cable

Experimental Principle
5

i :
|
. A}
__ s
€ &
R ¥
N | :
> I

3
1‘

A rotary encoder is an electronic switch with a set of regular pulses with strictly timing
sequence. When used with IC, it can achiev e increment, decrement, page turning, and
other operations such as mouse scrolling, menu selection, and so on.

There are mainly two types of rotary encoders: absolute and incremental (relative) encoders.
Here we use anincremental (relative) encoders.

Mostrotary encoders hav e 5 pins with three functions of turning left & rightand pressingdown.
Pin 1T and pin 2 are switch wiring terminals used to press. Pin 4 is generally connected to

ground. Pin 3 and pin 5 are first connected to pull-up resistor and connect to VCC. Pin 3 and

pin 5 generate two-phase square waves whose phase difference is 90°. Usually the two-
phase square waves are called channel A and channel B as shown below:

84

Splinigl

We cansee fromthe figure above:If channel Aisinlow level, and channel B conv erts from

high leveltolow, itindicates the Rotary Encoder has spun clockwise (CW). If channel Aisin
low level, and channel B converts fromlow levelto high, it indicates the Rotary Encoderhas
spun counter-clockwise (CCW). Thus when channel A is in lowlevel, we can know the
direction that Rotary Encoder spun by channel B.

The schematic diagram of the Rotary Encoder is shown as below. We can see that pin 3on
the Rotary Encoder is CLK of the module, while pin §.is DI. Then we can know the Rotary’s
rotating direction by the value of CLK and DT.

V_T_C
t PORT
3 Ul 2 I ark
10K 10K , |pr
; L3 CLK A ; lsw
SW 1 I:IR VCC
SW1 A R1 1K 4 —END
5 4 5
SW2 s 5 DT |10
w o
Ry
RotaryEncoder A
GND

It is summarized by using oscilloscope to observ e the output wav eform of CLK and DTand
operating the rotary encoder. You can try yourself.

Experimental Procedures

Step 1: Build the circuit

85

Rotary Encoder

.o ® 8 9 0 0 0 e 0 e s s e e e e e e e e e e G e e
. . e S 8 8 8 8 8 E S S S S BB S S e e
. .o ® 8 8 8 8 8 8 S S S S B B S e S e
:. o0 ® 9 9 8 S 8 S P S S PSS Y
DE gi LI BRI T T T T T SR IR R I T B I SR TN TR TR T B R A T T T A
|72
c O
n >0
Eg' ::5 ® 9 % 9 9 9 T T S S P P SIS
|_>|j. X} LI TR T T T T T T SR IR I O B B I SR TN TR TR T B B A T T T A
— . .o ® 6 8 8 6 0 0 0 0 0 s s S G G e e e s s G GG e s s e
. .. ® 8 S 5 8 8 6 6 S S S B S S eSS S e
. .. ® 8 8§ 8 8 S S S S S B S S S ee
. s s 0 o 0 0 0 ® s 0 00 e e s s 0 s s 0 e s 0
. LI O I LR LR A LI IO LI A e e 0w

-
™! 5y e eGND

For C language users:
Step 2: Getinto the folder of the code.

cd /home/pi/SunFounder_Super_Kit V3.0 for_Ras p&mw

Step 3: Compile
make 12_rotaryEncoder - \ \‘

Step 4: Run the executable file above

sudo ./12_rotaryEncoder vv

Code Explanation

#tdefine ROAPin © //VELK ‘cennects to B17, define B17 as © in wiring Pi.
#define RoBPin 1 //5DT connects to GPIO1l, define B18 as 1 in wiring Pi.
#define SWPin 2°9// SW connects to GPIO2
void rotaryDeal(void) : // Pi detects the pulse when spinning the rotary encoder, and
judge the spinning direction, then increase or decrease the value of globalCounter to
record the angular displacement.
Last_RoB_Status = digitalRead(RoBPin); // Read the value of DT
while(!digitalRead(RoAPin){ // If CLK is low, run the program below.
Current_RoB_Status = digitalRead(RoBPin); // Read the value of DT, and store it

in Current RoB_Status.

flag = 1;
}
if(flag == 1) // If CLK outputs low level, then flag=1
{flag = ©;

86

if((Last_RoB_Status == 0)&&(Current_RoB_Status == 1)){ // If DT value converts

from low to high, the globalCounter adds 1.

}
if((Last_RoB_Status == 1)&&(Current_RoB_Status

0)){ //If DT value converts
from high to low,
globalCounter --; // the globalCounter
decreases 1.
}

}
printf("globalCounter : %d\n",globalCounter); // Print the value of globaCounter.

void btnISR(void): // If the rotary encoder is pressed down, reset the value.

For Python users:
Step 2: Getinto the folder of the code.

Step 3: Run

Code Explanation

globalCounter = © # Set a_g iable to count
flag = © # Set a g fo spinning.
Last_RoB_Status = # Set a v 0 store the previous state of pinB

Current_RoB_Status = le to store the present state of pinB

Define a -Functl%gh rotary encoder

def rotaryDeal()
global counter
global Last_RoB_Status, Current_RoB_Status
flag =
Last_RoB_Status = GPIO.input(RoBPin) # Store channel B state
When RoAPin level changes

while(not GPIO.input(RoAPin)): # When channel A is not in low, exit the while
loop
Current_RoB_Status = GPIO.input (RoBPin)
flag =
if flag == 1: # If flag value is 1, the rotary encoder is CW rotating

Reset flag
flag =

87

if (Last _RoB_Status == ©) and (Current_RoB_Status == 1):
counter = counter + 1

if (Last_RoB_Status == 1) and (Current_RoB_Status == 0):
counter = counter - 1

print 'counter = %d' % counter

def clear(ev=None):
global counter

counter = @

Now, gently rotate the encoder to change the value of the v ariable in the abov e program,
and you will see the value printed on the screen. Rotate the encoder clockwise, the value
willincrease; or rotate it counterclockwise, the value will decrease.

£ pi@raspberrypi: ~/SunFounder Super. Kit V3.0 for_Raspberry Pi/C
pl@raspberrypi: / 7 = ‘ sudo ./O8_rotaryEncoder

Pin A connect to GPIO©
Pin B connect to GPIO1
Button Pin connect to GPIO 2

Use a Rotary Encoder
Rotary to add/minus counter
Press to set counter to 0

88

Further Exploration

In this experiment, the pressing down function of rotary encoder is not inv olv ed.Tryto explore

this function by yourself!

89

Lesson 13 Driving LEDs by 74HC595

Infroduction
In thislesson, we willlearn how to use 74HC595 to make eight LEDs blink regularly.

Components

- 1 *Raspberry Pi

- 1 * Breadboard
-1 *74HC595
-8*LED

- 8 * Resistor (220Q))
- Jumper wires

Principle
74HC595

The 74HCS595 consists of an 8—bit shift register and a storage register with three—state parallel
outputs. It converts serialinput into parallel output so that you cansave 1O ports of an MCU.
The 74HC595 is widely used to indicate multipath LEDs and drive multi-bit segment displays.
"Three-state" mentioned abov e refers to the fact that you can set the output pins as either
high, low or high impedance. With data latching, the instant output will not be affected
during the shifting; with data output, you can cascade 74HC595s more easily. Compatible
with low voltage TIL circuit, 74HCS595 can fransform serial input of 8-bit data into parallel
output of 8-bit data. So itis oftenused to extend GPIO for embedded system and driv e low
power devices.

— q Vcc+g
31 @ Q0 Iy
a2 2
= Q4 CE 3
TQSSTCpT
A RS T
—1 Q7 MR -
— 1 GND Q7' —=—

Pins of 74HC595 and their functions:

QO0-Q7: 8-bit parallel data output pins, able to control 8 LEDs or 8 pins of 7-segment display
directly.

Q7': Series output pin, connected to DS of another 74HC595 to connect multiple 74HC595s
in series

90

MR: Reset pin, active at low level; here it is directly connected to 5V to keep the chip from
resetting.

SH_CP: Time sequence input of shift register. On the rising edge, the data in shift register
mov es successively one bit, i.e. datain Q1 moves to Q2, and so forth. While on the faling
edge, the data in shift register remain unchanged.

ST_CP: Time sequence input of storage register. On the rising edge, datain the shift register
mov es info memory register.

OE: Output enable pin, active atlow level; here connected to GND to keep 74HC595 in
output enable state.

DS: Serial data input pin

VCC.: Positive supply voltage

GND: Ground

The schematic diagramis shown as below:

N LEDI —
—
% 220Q
N LED?2 —
— 5
p 220Q 2V
¥,
LED3 —
220Q
% L2 o1 vec ¢
LED4 — 2 15
LT | 3] @ Q0 —7
5 220Q a1 93 DS —3 BI7 |
LEDS P 2 5] CE5
{1 + Q5 STep 3 BI8 |
7 220Q —— Q6 SHep —p B27 |
LEDS6 == g Q7 MR
1 GND Q7
220Q
¥y 0 74HC595
N LED7 =
—
% 220Q
N LEDS —
b T
e % 220Q -4

- GND
GND

Principle: In this experiment, connect 74HC595’s ST_CP to Raspberry Pi's B18, SH_CP to B27,
and DS to B17; connect a current-limit resistor and then a LED to Q0-Q7 respectiv ely; connect
MR and VCC to 5V, CE and GND to GND. Input data in DS pin to the shift register whenSH_CP
(the clock input of the shift register) is at the rising edge, and to the memory register when
ST_CP (the clock input of the memory) is at the rising edge, and output to Q0-Q7. Then you
can control the states of SH_CP and ST_CP via Raspberry Pi GPIO to transform serial input
data into parallel output data so as to save Raspberry Pi GPIOs.

91

Experimental Procedures

Step 1: Build the circuit. If you want to take out the chip from the breadboard, DO NOTpull
it in one direction forcefully, for fear that the pins on it may be bent and you may get hurt.
Try to use a sharp tool to cross the notch of the breadboard to remov e the chip.

3.3V @ @GND

® 5 s e 088 e e
LRI B T O O O
CIRC IR R T O O O

T Extension
LN ©3.3V B23 @]

(I EOGND B24 O]
LEUIR N OSCLK B25 @ CICI

™! oy @ @GND

For Clanguage users:
Step 2: Getinto the folder of the code.

cd /home/pi/SunFounder‘_Superﬁt_ﬂ\FiRaspberry_Pi/C
Step 3: Compile

make 13_74HC595 LED “ \\

Step 4: Run the executable file above.

sudo ./13_74HMVv

Code Explanation

unsigned char LED[8] = {0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80}; // This array is to
store the output values of Q0-Q7. For example, 0x01 in binary format is 0000 0001, thus
Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q© are © © © © © © @ 1 respectively, that is Q0=1, and the LED
connected to Q0 will light up. Thus we can light up the eight LEDs separately in this
way.
void pulse(int pin){ // generate a rising edge

digitalWrite(pin, 0);

digitalWrite(pin, 1);
}
void SIPO(unsigned char byte){ // Assign the char byte to the SDI bit by bit

int i;

92

for (i=0;i<8; i++){
digitalWrite(SDI, ((byte & (0x80 >> i)) > @)); // Use the for loop to count 8
times in cycle, and write a 1-bit data to the SDI each time. The data is a result of the
AND operation. (©x80 >> i) is to implement the operation from left to right by bit, so
each time one of the eight bits in byte (0000 ©0001).
pulse(SRCLK); // the shift register generates a rising edge pulse, and data in

DS will shift to the shift register.

} // This part is to assign the data in byte to SDI(DS) by bits, thus when the shift
register generates a rising edge pulse, data in SDI(DS) will transfer to it by bits.
}
void init(void): // Set DS, ST_CP, SH CP as output, and low level as the initial state
for(i=0;i<8;i++){

SIPO(LED[i]); // Assign the value in the LED[i] array to SDI(DS). When i=1,
LED[@]=0x01 shifts to the shift register.

pulse(RCLK); // RCLK (ST_CP) generates a rising edge pu and\the data of the
shift register is stored in the RCLK (ST_CP) storage regi I d goutput at Q0-Q7.

delay(150);
} After 8 cycles, Q0-Q7 will output Ox01 to 0x10 se y that is to light up the
LEDs connected to Q0-Q7 in turn. \\

P

Sketch in later part not explained here is to light up 8 LEDs together, and dim them;
then light up LEDs connected to Q7-Q0 one by one, and all 8 LEDs light up, dim in the
end. Thus, a cycle completes. You can observe the LEDs' state.

For Python users:
Step 2: Getinto the folder of the code

Step 3: Run

Code Explanation

LEDO = [0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80] # Define some LED blinking
modes. Convert hexadecimal value to binary value will be more intuitionistic. For
instance, 0x01 is binary 00000001, meaning the last LED lighting up; ©x80 is binary
10000000, representing the first LED lighting up.

LED1 = [©x01,0x03,0x07,0x0f,0x1f,0x3f,0x7f,0xff] # blink mode 1
LED2 = [©x01,0x05,0x15,0x55,0xb5,0xf5,0xfb,0xff] # blink mode 2
LED3 = [©x02,0x03,0x0b,0x0f,0x2f,0x3f,0xbf,0xff] # blink mode 3

Shift the data to 74HC595

def hc595_shift(dat): # Shift the data to 74HC595
for bit in range(@, 8):
GPIO.output(SDI, ©x80 & (dat << bit)) # Assign dat data to SDI pins of HC595 by
bits
GPIO.output(SRCLK, GPIO.HIGH) # Every SRCLK adds one, the shift register moves
one bit.
time.sleep(0.001)
GPIO.output (SRCLK, GPIO.LOW)
GPIO.output(RCLK, GPIO.HIGH) # Everytime RCLK adds one, the HC595 updates output.
time.sleep(0.001)
GPIO.output(RCLK, GPIO.LOW)
leds = ['-", '-', "-', ‘"'=-', -ty t-ty -ty '-'"] # the array storing the LED state, used
for command line printing.
while True:
Change LED status from mode

print mode"
for onoff in mode: # Assign value to variable fenoffaby mode[] list
hc595_shift(onoff)

leds[mode. index(onoff)]

1 #e¢€howwhich led is on
print leds
time.sleep(sleeptime)

leds[mode. index(onoff)] '-' # Show the led is off

for loops in Mater part work similarly, lighting up LED by 1list.

Input a 2-bit hexadecimal parameter dat via hc595_in(dat) to control 8 LEDs state, and
hc595_out() will output state to 8 LEDs. In While True, the for loop will shift the LED blinking
list to the hc595_in(dat) function, thus we can see the LED light flowing.

9%

Here you should see eight LEDs light up one by one, and then all light up and dim after a
while; then eight LEDs will light up fromreverse direction one by one, and then all light up
and then dim after a while. This cycle will keep running.

Further Exploration

In this experiment, three Raspberry Pi GPIOs are used to separately control 8 LEDs based on
74HC595. In fact, 74HC595 has another pow erful function — cascade. With cascade, youcan
use a microprocessor to control more peripherals. We'll check more details later.

95

Lesson 14 Driving 7-Segment Display by 74HC595

Infroduction

Since we've got some knowledge of the 74HCS595 in the previous lesson, now let's fry to use
it and drive a 7-segment display to show a figure from0to 9 and A to F.

Components

- 1 *Raspberry Pi

- 1 *Breadboard

- 1 *74HCS595

- 1 *7-segment display
- 1 *Resistor (220Q)

- Jumper wires

Principle

7-Segment Display

A 7-segment display is an 8-shaped component which packages 7 LEDs. Each LED is called
a segment — when energized, one segment forms part of a numeral (both decimal and
hexadecimal) to be displayed. An additional 8th LED is sometimes used within the same
package thus allowing the indication of a decimal point (DP) when tw o or more 7-segment
displays are connected together todisplay numbers greater than ten.

Each of the LEDs in the display is given a positional segment with one of its connection pins
led out from the rectangular plastic package. These LED pins are labeled from"a" through
to "g"representing each individual LED. The other LED pins are connected together forming
acommon pin. So by forw ard biasing the appropriate pins of the LED segments in a particular
order, some segments will brighten and others stay dim, thus showing the corresponding
character on the display.

The common pin of the display generally tells its type. There are tw o types of pin connection:
a pin of connected cathodes and one of connected anodes, indicating Common Cathode
(CC) and Common Anode (CA). As the name suggests, a CC display has all the cathodes
of the 7 LEDs connected when a CA display has all the anodes of the 7 segments connected.

96

Common Cathode 7-Segment Display

g f—-ab
e L
co—H,— fI ’b
] 4, |:
£ 14 1,
g'—’i—'\ ®
bl o
e CC;Thnc:gg—’
ed =¢dp

In acommon cathode display, the cathodes of all the LED segments are connected to the

logic "0" or ground. Then an individual segment (a-g) is energized by a "HIGH", or logic "1
signal via a current limiting resistor to forward bias the anode of the segment.

Common Anode 7-Segment Display

g f+t% B
VCC p ﬁ “ ﬁ “ ‘i
—— ~ a
—pf—ec fI b
b e '
'1"/ . e c
"o g d D.P
\

Common
e
Anode

g

d +cdp
In acommon anode display, the anodes of all the LED segments are connected to the logic

"1". Then anindividual segment (a-qg) is energized by a ground, logic "0" or "LOW" signal via a
current limiting resistor to the cathode of the segment.

In this experiment, a common cathode 7-segment display is use. It should be connected to
ground. When the anode of an LED in a certain segment is at high lev el, the corresponding
segment willlight up; whenitis at low, the segment will stay dim.

The schematic diagram is shown as below:

97

|

QL VCC
Q2 Q0 =
Q3 DS B17 |
Q4 CE
Q5 STep
Q6 SHep —
Q7 MR

GND Q7' ——

T4he595

C*_
;

dn BIS |

B27

g
f
gnd
1
b
|ocqa~u-.z;wl\>~
=

Qﬂd
dp

Q
z
O

220

Q
Z
O

Principle: Connect pin ST_CP of 74HC595 to Raspberry PiB18, SH_CP to B27, DSto B17, parallel
output ports to 8 segments of the LED segment display. Input data in DS pin to shift register
when SH_CP (the clock input of the shift register) is at the rising edge, and to the memory
register when ST_CP (the clock input of the memory) is at the rising edge. Then you can
control the states of SH_CP and ST_CP via the Raspberry Pi GPIOs to transform serial data
input into parallel data output so as to save Raspberry Pi GPIOs and driv e the display.

Experimental Procedures
Step 1: Build the circuit

L L1}
OO

T Extension

5@ @GND

For C language users:
Step 2: Getinto the folder of the code.
cd /home/pi/SunFounder_Super_Kit_ V3.0_for_Raspberry Pi/C

Step 3: Compile

make 14 segment

98

Step 4: Run the executable file above.

Code Explanation

unsigned char SegCode[17] =
{0x3f,0x06,0x5b, 0x4f,0x66 ,0x6d, 0x7d,0Xx07 ,0x7f, Ox6F,0Xx77 ,0Xx7C, 0x39,0X5€,0x79,0x71,0x80};
// display array from @ to F.
void init(void){} // Initialize the function, set ds, st_cp, sh_cp three pins to low
level, and the initial state as o.
void hc595_shift(unsigned char dat){

int i;

for (i=0;1i<8;i++){

digitalWrite(SDI, Ox80 & (dat << i)); // Assign the dat data to SDI(DS) by

bits. Here we assume dat=0x3f(0011 1111, when i=0, Ox3f will shift right(<<) © bits,
ox3f & 0x80 = 1000 0000,

digitalWrite(SRCLK, 1); // SH_CP will convert frem 1 high, and generate a
rising edge pulse, then shift the DS date to shift regi @
delay(1);
digitalWrite(SRCLK, ©);
} // to assign 8 bit value to 74HC595’s if ister
digitalWrite(RCLK, 1); // ST CP c e rom low to high and generate a rising
edge, then shift data from shi ter to storage register.
delay(1);
digitalWrite(

LK, ©
}// Transfer data in shifit register to data register to update the displayed data.

For Python users:
Step 2: Getinfo the folder of the code.

Step 3: Run

Code Explanation

Define a segment code from © to F in Hexadecimal

Commen cathode

segCode =

[ex3f,0x06,0x5b, 0x4f,0x66 ,0x6d,0x7d,0Xx07 ,0x7f, Ox6F,0X77 ,0x7C, 0x39,0X5€e,0x79, Ox71]

Commen anode

segCode =
[0xc0,0xf9,0xa4, 0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88 ,0x83, OXC6,0xal,0x86,0x8¢e]
Shift the data to 74HC595
def hc595_shift(dat):
for bit in range(0, 8):
GPIO.output(SDI, 0x80 & (dat << bit))
GPIO.output (SRCLK, GPIO.HIGH)
time.sleep(0.001)
GPIO.output (SRCLK, GPIO.LOW)
GPIO.output(RCLK, GPIO.HIGH)
time.sleep(0.001)
GPIO.output(RCLK, GPIO.LOW)
for code in segCode: # Input item in segCode list to hc595 shift()function, to display
the character.

hc595_shift(code)

If you want to display a number, use the hc595_shift() function, segCode list and decimal
value xin the sketch:

hc595_shift(segCode[x]) # x is a number needs to be displayed ranging from 6~15, and it

will be coverted and displayed by O~F in_ hexadecimal.

Note: The hexadecimal format of hnumber0~15are (0, 1,2,3,4,5,6,7,8,9, A,B,C,D, E, F).

100

You should see the 7-segment display from0to 9 and Ato F.

2
e
FE e

® 0 0 0 0 0 000
.
.

® 0 0 0 0 0 0000
® e 0 0 0 0 0 0 0 0 e
® e 9 0 0 0 0 0 0 0 e
® oo 0o 0 000 0 0 0
® oo 0o 0 00 0 0 0 0
® oo 0o 0 00 0 0 0 0
® oo 0o 0 00 0 0 0 0
®© oo 0o 0 00 0 0 0 0

* e e e

A A S S & P

.
.
.
.

¢ ¢ ¢ ¢ D OI_".DOOOQQOCC

LR R N I R B R B B R B
®© o o 0o 0
o o 0o 0o 0

L R R R B R I N B B B B R B

o
o o o0
® e o 00

IrCVUIT:

LR R L R I B B R R R
® ® 9 9 0 o 9 0 0 00 0 0 00 00 GG e e e
® ® 9 ® 0 00 0 0000 0 00 0 0 0 e e e

ND@ @ AE'E UOISUDIXT | OND@ @AS, oy

ildthe c

You can slightly modify the hardw are and software based on this experiment to make adice.

For hardw are, add a button to the original board.

Further Exploration

Bu

101

Getinto the folder of the code.

Next, Compile the Code

Run

Code Explanation

void randomISR(void){ // An interrupt function, run when the interrupt happens
flag = 1; // flag represents the state of the button

}
if(wiringPiISR(TouchPin, INT_EDGE_FALLING, &randomISR)){ //Set an interrupt here as the

falling edge for TouchPin. When the interrupt happens, execute the function randomISR().

printf("Unable to setup ISR : %s\n", strerror(errno));

return 1;
} e
srand(time (NULL));

num = rand() % 6;

// Two functions here: One is the srand funcion,Qwhich is used before calling function

or; while the other is rand(),
ra ber. Usually, these two functions are used

r. Thus a random number of ©-6 will be displayed on

rand() and used as seed for the ran

which is a function to generate
together to generate the rando

the 7-segment display.

For Python users:

Step 2: Getinto the folder of the code.

Step 3: Run

Code Explanation

import random # use this function to generate the random number

SegCode = [0Ox@6, Ox5b, Ox4f, 0x66, Ox6d, Ox7d] # Define a segment code from 1 to 6
in Hexadecimal
GPIO.add_event_detect(TouchPin, GPIO.RISING, callback = randomISR, bouncetime = 20) #
Set an interrupt, and the rising edge for TouchPin. When the interrupt happens, execute
the function randomISR(). Set bouncetime for button to 20ms.

def randomISR(channel): # Interrupt calling the function

global flag

102

flag = 1
num = random.randint(1,6) # Generate a random number from 1~6.

hc595_shift(SegCode[num-11]) # Output the hexadecimal values in list by 74HC595.

Now you should see a number flashing between 0 and é quickly on the segment display.
Press the button on the breadboard, and the display will statically display a random number
between 0 and 6 for 2 seconds and then circularly flash randomly between 0 and é again.

Summary

Through this lesson, you may have mastered the basic principle and programming for 7-
segment display based on Raspberry Pi, as well as more knowledge about using 74HC595.
Now you can apply what you've learnt and put it into practice to create your own works!

103

Lesson 15 Driving Dot-Matrix by 74HC595

Infroduction

As the name suggests, an LED dot matrix is a matrix composed of LEDs. The lighting up and
dimming of the LEDs formulate different characters and patterns.

Components

- 1 *Raspberry Pi
- 1 * Breadboard
- 2*74HCS595

- 1 * Dot-Mafrix

- Jumper wires

Principle

Dot Matrix

Generally, dot matrix can be categorized into two types: common cathode (CC) and
common anode (CA). They look much alike, but internally the difference lies. You can tell by
test. A CA one is usedin this kit. You can see 788BS labeled at the side.

See the figure below. The pins are arranged at the two ends at the back. Take the label side
forreference: pins on this end are pin 1-8, and oh the other are pin 9-16.

The external view:
PIN 16 1

+
e
.+_
+
+
-+

00000000
00000000
OO0 0O

00000000z
00000000

OI0O00OQO0
OO0 0000TN

Label Side L PIN 8

Below the figures show theirinternal structure. You can see in a CA matrix, ROW represents
the anode of the LED, and COL is cathode; it's contrary for a CC one. One thing in common:
for both types, pin 13, 3, 4, 10, 6, 11, 15, and 16 are all COL, when pin 9, 14,8, 12, 1, 7, 2, and
5 are all ROW. If you want to turn on the first LED at the top left corner, for a CA matrix, just
set pin 9 as High and pin 13 as Low, and for a CC one, set pin 13 as High and pin 2 as Low . If

104

you want to light up the whole first column, for CA, set pin 13 as Low and ROW 9, 14, 8,12, 1,
7,2,and 5 as High, when for CC, set pin 13 as High andROW 9, 14,8,12, 1,7,2, and 5 as Low.
Consider the following figures for better understanding.

The internal view:

COL COL

ROW12345673ROW12345678
Aals s s aas | wleleielwvlely
, A AL ALK , VPV VY
 AEA A A AR A EF VIV
e SESESESESESESE SIS 20 2020 20 25 20 2R 2
NS ESESE e EE e SRR R R
 AEAA AL LR L | FF VIS
A A A A A A A K, HF P P V¥
ALk hhhkkk ([FVVIIVIVY

Common Anode Common Cathode

Pin numbering corresponding to the aboy e rows and columns:

CoL 1 2 3 4 5 6 7 8

PinNo. 13 3 4 10 6 11 15 16

ROW 1 2 3 4 5 6 7 8

PinNo. ¢ 14 8 12 1 7 2 5

In this experiment, a CA dot matrix is used. You can see the label ends with "BS". The wiring
and code are done for the CA matrix. Therefore, if you happen to have a CC matrix, you
need to change the wiring and code. In addition, two 74HC595 chips are used here. One is
to control the rows of the dot matrix w hile the other, the columns.

The schematic diagram

105

|n

02
o gon}s]
MR Q7 |~
[B27 5 Slep Q6 —
3 %“"83 1
[BIS Ul ps g tEEEEEEETE
6] Q@ Qi
Vee Q1 00000000
T4hc595 00000000
Q0000000
00000000
Q0000000
3 Q0000000
1 Qv anp 1 0000000
i g’ﬁ‘cpgz 5 Q0000000
12 5
— ii %CD §§ g = e = =] | | =| | Dot-mirix Display
o R
TAhca93
D

Experimental Procedures

Step 1: Build the circuit. Since the wiring is complicated, let's make it step by step. First, inset
the T-Cobbler and two 74HCS595 chips into breadboard. Connect the 5V and GND of the T-
Cobbler to holes on the two sides of the board, then hook up pin16 and 10 of the two
74HCS595 chips to VCC and pin 13 respectively, and pin 8 to GND.

v U

. . L LI ® e o0 ® e o0 oo e e e e e e 00 ® o0 0 LRI I
o . LR L U A) e e 0 0 e o 0 00 I.o-o ® o0 00 'co.. e e 0 00
® @ ® 0 0 0 0 0 e F 6 00 e e e e e e e e e e L * o G EEED °© ° ® © 9 9 0 0 ° 0 0 0 0 0 0 0 e 0 0 e
........ ® 9 9 0 0 9 9 0 O e e e 0 e e 0 L B ® 8 9 9 9 8 0 S P O O SO O eSO
e e L ® o e 00000000000 ® o e e e o I **®° e e e e
c 0 0 Q00 e o o 0 ® e o9 0 0 0 e ® 9 9 0 0 0 0 e e ® © 0 0o 0 0 0 0 0 0 0 0
o A b Tt R oo o o o . el eoe oo 00000000
ot Mmoo ooo
= = 74HC595 74HC595
Y LoEom 2EhzoohzZx oo o . eflececscccccscce
LL)j o0 o0 00 ® o o 0 ® o 0 0 0 0 0 0 ® % e 0 0 0 0 e 0o ® ® o ® 0 0 0 0 0 0 0
.o .. LI ® o 0 00 e 00000 0 LRI A I R O O ® 00090000000
= .. o o 00000 0 o 0000000 ® e 9 e 0 0000 ® o000 0000000
o o oo ® o o 00 R . e e 000000 . e 0000000000
. | I
Z
.. e o0 00 LR e o e e o o L LI e e e LI I e e e 00
[(] o o e e s 00 LI e e 000 oo o o o 00 LI e oo e oo o0 e s 000
>
2l

Step 2: Connect pin 11 of the two 74HC595 together, and then to GPIO27; then pin 12 of the
two chips, and to GPIO18; next, pin 14 of the 74HC595 on the left side to GPIO17 and pin 9
to pin 14 of the other 74HC595.

106

® & 9 9 9 P S P O N e eSS
L B B B B B B B BN L R R B R B B R
® o o 8 0 0 00 e ® o o 0 0 0 00 0 0 00

ooooo ® o 0 0 00 0 0
ooooo ® e 0 000 00
® e o 000 0 0

T Extension
1
1
2
2
2
v
2
1l
1
2
1
il
2
2
L] .
L] L]
. L]
L)
.
L]
L)
L)
L]
.
.
L
.
L]
L]

® o e e 0 0 0 . ® © o 0 00 00 0 0 0
o
>
O
[(] & o o o 0 0 o e 0 00 LI e e o0
[(] o o L LI A e o 0 0 e LI LI e o o o0 LI ® o o 0 0 e o e ® e 0o 0o
>
in

Step 3:Insert the dot matrix onto the breadboard. The 74HCS595 on the right side is to control
columns of the matrix. See the table below for the mapping. Therefore, Q0-Q7 pins of the
74HC595 are mapped withpin 13, 3, 4, 10, 6, 11, 15, and 16 respectively.

CoL 1 2 3 4 5 6 7 8

PinNo. 13 3 4 10 6 11 15 16

.
74HC5E95
.

..
® ® 0 00 0 00 ® o 0o 00 00 | . . 1 | I I LR o (e e
| I .

1

T Extension

' 'sy@ @GND
o
.
L]
o
.
.
o

Step 4: Now connect the ROWs of the dot matrix. The 74HC595 on the left controls ROW of
the matrix. See the table below for the mapping. We can see, Q0-Q7 of the 74HC595 on the
left are mapped withpin 9, 14, 8, 12, 1, 7, 2, and 5 respectively.

ROW 1 2 3 4 5 6 7 8
PinNo. ¢ 14 8 12 1 7 2 5

107

LR R I I O I O O
L
000000CO0COOCOOCOOO0OO
NOONNMTN T N0 o

N 00 0O M

. L B B B
. L I
- ® e s 00000

|| i BN
LRI LIk
S 0 —— ——

® 8 9 9 0 0 e e e e e e e e e
® 8 8 9 0 0 e e P e

Note: PLEASE connect devices correctly. DO NOT wire up insufficiently. DO NOTconnect to
the wrong side of the dot matrix. In the Fritzing image above, the side with label is at the
bottom.

For C language users:
Step 2: Getinto the folder of code

cd /home/pi/SunFounder‘_Super‘_ﬁc_praspber‘r'y_Pi/C
Step 3: Compile

make 15_dotMatrix \\ \‘

Step 4: Run \
sudo ./15_d01mv

Code Explanation
void hc595_in(unsigned char dat){ // Write an 8-bit data to the shift register of the
74HC595
int i;
for (i=0;1i<8; i++){
digitalWrite(SDI, ©x80 & (dat << i)); // Write the value of dat to pin SDI of
the HC595 bit by bit
digitalWrite(SRCLK, 1); // Everytime SRCLK adds one, the shift register moves 1
bit
delay(1);
digitalWrite(SRCLK, ©);

108

}
void hc595 out(){ // Update the output data of the 74HC596
digitalWrite(RCLK, 1); // Everytime RCLK adds 1, the HC595 updates the output.

delay(1);
digitalWrite(RCLK, ©);
}
while(1){

for(i=@;i<sizeof(code_H);i++){ // The data of ROW and COL table for the matrix adds

1 each time.

hc595_in(code_L[i]); // Write to the first data of the Row table

hc595_in(code_H[i]); // Write to the first data of the COL table, and the ROW
data previously goes to the other HC595.

hc595 out(); // Update the output of the 74HC595; output the data controlled

by both two HC595, and the dot matrix will show the pattern.
delay(100);

}
for (i=sizeof (code_H);i>=0;i--){ // The data of ROW @‘ le for the matrix
decreases by 1 each time.
hc595_in(code_L[i]); // Write to the fiwstWdata of the Row table
hc595_in(code_H[i]); // Wrate i data of the COL table, and the ROW
data previously goes to the othe 6

hc595_out(); // Upda output of the 74HC595; output the data controlled
by both two HC595, and theddo atrix

delay (100

-

For Python users:
Step 2: Getinto the folder of code

Step 3: Run

Code Explanation

We use a Common Anode matrix, so ROW pins are the common anode, and COL, the common
cathode.
row and column lists. When characters are displayed, an element in row and one in

column are acquired and assigned to the two HC595 chips respectively. Thus a pattern is

shown on the matrix.

109

ROW ++++

code H =
[ox01,0xff,0x80,0xff,0x01,0x02,0x04,0x08,0x10, 0x20,0x40,0x80, Oxff,0xff,0xff, oxff,0xff,0x
ff,0xff,oxff]

COL ----

code_L =

[0x00,0x7f,0%x00, Oxfe,0x00,0x00, 0x00,0x00 ,0x00, 0x00,0x00,0x00, Oxfe,0xfd,Oxfb, Oxf7,0xef,0x
df,0xbf,ox7f]

def get_matrix(row_buffer, col buffer, max_row=8, max_col=8): # The functions is to
print the pattern on the matrix by the 2D array on the command line interface (CLI).

matrix_msg = [[@ for i in range(max_row)] for i in range(max_col)] # Initialize a 2D
array

print "row_buffer = 0x%02x , col_buffer = 0x%02x"%(row_buffer, col_buffer)

for row_num in xrange(©,8):

for col_num in xrange(0,8):
if (((row_buffer >> row_num) & 0x01) - ((col buffer >> col num) & ©x01)): #
for Common Anode type matrix, when row is High andQcolumn “#s*low, the LED will light up.
matrix_msg[row_num][col_num]¢ 1 # Te turn on an LED at a certain row

and column, assign 1 to the corresponding elements/in the 2D array

print_matrix(matrix_msg) # Peint the)2D array on the CLI

matrix_msg = [[@ for i in pange(max_row)] for i in range(max_col)] # Reset the array

after one print

def hc595_shift(dat): # Shift the data to 74HC595
for bit in range(@, 8):
GPIO.output(SDI, 0x80 & (dat << bit)) # Write the value of dat bit by bit to pin
SDI of the HC595
GPIO.output (SRCLK, GPIO.HIGH) # Everytime SRCLK is High, the shift register
shifts one bit
time.sleep(0.001)
GPIO.output (SRCLK, GPIO.LOW)
GPIO.output(RCLK, GPIO.HIGH) # Everytime RCLK is high, HC595 updates its output.
time.sleep(0.001)
GPIO.output(RCLK, GPIO.LOW)
def main():
print_msg()

while True:

110

for i in range(®, len(code_H)): # Assign elements of the column table in
sequence
hc595_shift(code_L[i]) # Write to the first data of the Row table
hc595_shift(code_H[i]) # Write to the first data of the COL table, and the
ROW data previously goes to the other HC595.
get _matrix(code_ L[i], code H[i]) # Print the 2D array on the CLI
time.sleep(0.1)

for i in range(len(code_H)-1, -1, -1): # Assign elements of the column table
in inverse order
hc595 shift(code L[i])
hc595_shift(code H[i])
get_matrix(code_ L[i], code H[i])
time.sleep(0.1)

You should see LEDs light up as you control.

Summary

Through this lesson, you hav e got the basic principle of LED dot matrix and how to program
the Raspberry Pito drive an LED dot matrix based on 74HC595 cascade. With the knowledge
learnt, try more fascinating creations!

Further Exploration
If you want to display characters on the matrix, please refer to a python code:
https://qgithub.com/sunfounder/SunFounder Dot Matrix.

111

https://github.com/sunfounder/SunFounder_Dot_Matrix

Lesson 16 LCD1602

Infroduction
In this lesson, we willlearn how to use LCD1602 to display characters and strings.

M V 416090 %G00 20 1000 3 4 5 OAGOASSA .
' 1

i
s PAMNRRANNAA 4 o4

Components

- 1 *Raspberry Pi

- 1 *Breadboard
-1*LCD1602

- 1 * Potentiometer
- Jumper wires

Principle

LCD1602

Generally, LCD1602 has parallel ports, that is, it would confrol sev eral pins at the same time.

LCD1602 can be categorized into eight-port and four-port connections. If the eight-port

connection is used, then all the digital ports of the SunFounder Uno board are almost

completely occupied. If you want foconnect more sensors, there will be no ports av ailable.
Therefore, the four-port connectionis used here for better application.

LCD1602 uses the standard 16-pin port, among w hich:

Pin 1 (GND): connectedto Ground
Pin 2 (Vcc): connectedto 5V powersupply

Pin 3 (Vo): used to adjust the contrast of LCD1602; the levelis lowest whenit's connected to
a positive power supply, and highest when connected to ground (you can connecta
10K potentiometer to adjust its contrast when using LCD1602)

Pin 4 (RS): register select pin, controlling where in the LCD's memory you are writing data to.
You can select either the data register, which holds what goes on the screen, or an
instructionregister, where the LCD’s conftrollerlooks for instructions on what to do next.

Pin 5 (R/W): to read/write signals; it reads signals when supplied with high lev el (1), andwrites
when low level (0) (in this experiment, you only need to write data to LCD1602, so just
connect this pin to ground)

Pin 6 (E): An enable pin that, when low-level energy is supplied, causes the LCD module to
execute relevantinstructions

112

Pin 7 (DO-D7): pins that read and write data

A and K: controlling LCD backlight; K connects to GND, and A to 3.3V. Turn the backlight on
and you can see the characters displayed clear in a dim environment

LCD1602 has tw o operation modes: 4-bit and 8-bit. When the 10Os of the MCU are insufficient,

you can choose the 4-bit mode, under which only pins D4~D7 are used. After connecting
the circuit, you can operate LCD1602 by the Raspberry Pi.

LCD1602
a8
58
Q&h\omvmmﬂo = ja N
3.3V N RRAARARAmRESE > 2V
o4 Tt~ "3
[} o
m fai)
GND

Experimental Procedures

Step 1: Build the circuit (please be sure the pins are connected correctly. Otherwise,
characters will not be displayed properly):

LCD1602 T-Extension Board
VDD SV
VSS GND
OV Connect to the middle pin of potentiometer
RS B27
R/W GND
E B22
DO-D3 Not connected
D4 B25
D5 B24
Dé B23
D7 B18
A 3.3V
K GND

113

. (O
v see e
O DR
C.. 000000
~ o <0 S0
o == NN o@D oo
‘h o2 mmm
|
(=) A
g 292:-22383
1Z20 e y
‘;99 mER=ss O s o e O eeoecoolleflleoe
1 e®.® 00000 e e 0 0. U * e e 00 . ..
— b s s e e DRI .. so oo o llefllee
o s e e s oo e 0 O eeoecoollefllee
v * 00 0. s e e 0 0 O DY KR KX
. . ee oo fle
O s s e . . seoe oseslee

™ 5@ OGND

Note: Afteryou run the code, characters maynot appearon the LCD1602. You need
to adjust the contrast of the screen (the gradual change from black to white) by
spinning the potentiometer clockwise or anticlockwise, until the screen displays
characters clearly.

For Clanguage users:
Step 2: Getinto the folder of code g

cd /home/pi/SunFounder‘_Super‘_@_\ﬁ for_Raspberry Pi/C
Step 3: Compile

make 16_1cd1602 “ \‘

Step 4: Run

sudo . /16_1chVv

Code Explanation

#include <lcd.h> // includes the lcd library, containing some functions for the LCD1602
display for convenient use

const unsigned char Buf[] = "---SUNFOUNDER---"; // An array to store the characters to
be displayed on the LCD1602

const unsigned char myBuf[] sunfounder.com"; // Another array to store the
characters
fd = 1lcdInit(2,16,4, 2,3, 6,5,4,1,0,0,0,0); // Initialize the LCD display, see
/usr/local/include/1lcd.h

// lcdInit(rows, cols, bits, rs, strb, de, di, d2, d3, d4, d5, d6, d7) - LCD1602 shows

2 rows and 16 columns. If the initialization succeeds, it will return True.

lcdClear(fd); // Clear the screen

114

lcdPosition(fd, ©, ©); // Locate the position of the cursor at Row © and Col © (in fact
it's the first line and first column)

lcdPuts(fd, "Welcom To--->"); // Display the character "Welcom To--->"on the LCD1602
lcdPosition(fd, @, 1); // Place the cursor at Col @, Row ©.

lcdPuts(fd, " sunfounder.com");
while(1){
lcdClear(fd);

for(i=0; i<16; i++){ // i adds one in the loop. i means the number of columns, so i
adds to 16 at most.
lcdPosition(fd, i, @); // Place the cursor at the first row, and moves left to
right from the first character
lcdPutchar(fd, *(myBuf+i)); // *(myBuf+i) is a pointer that points to contents in
the myBuf[] array, and output the pointed data to lcd

delay(100);
}
for(i=0;i<sizeof (Buf)-1;i++){
lcdPosition(fd, i, 1); // Place the cursor at t %\ ow, moves from the

first character

lcdPutchar(fd, *(Buf+i)); // A pointer t ints to data in the Buf[] array;

output it to lcd
delay(200);
}
sleep(0.5);

}
For Python users

Step 2: Getinto the folder of code

Step 3: Run

Code Explanation

class LCD: # Write an LCD class
def __init_ (self, pin_rs=27, pin_e=22, pins_db=[25, 24, 23, 18], GPIO = None):
Initialization function for the class, run when an object is created of the class. A
parameter needs to be transferred to the object when it's created; otherwise, the

default value in __init__ will be assigned.

115

self.used_gpio = self.pins_db[:] # Note down the used gpio to easily clear
I0 setting after the stop. pins_db[:] writes all in the pins_db list to the used_gpio
list; if here use used_gpio = self.pins_db, it means used_gpio call pins_db, in other
words, any change of pins_db will affect used_gpio.

self.used _gpio.append(pin_e)

self.used _gpio.append(pin_rs)

self.write4bits(0x33) # initialization

self.writedbits(0x32) # initialization

self.writedbits(0x28) # 2 line 5x7 matrix

self.writedbits(@x@C) # turn cursor off OxOE to enable cursor

self.writedbits(0x06) # shift cursor right

Initialize to default text direction (for romance languages)
self.displaymode = self.LCD_ENTRYLEFT | self.LCD_ENTRYSHIFTDECREMENT
self.write4bits(self.LCD_ENTRYMODESET | self.displaymode) # Set the entry

mode

def begin(self, cols, lines): # Start the LCD

def setCursor(self, col, row): # Set the cursori.location

def message(self, text): # Send strings_ t@'theQLCD®W*The new line wraps to the
second 1line

def destroy(self): # Clean up the used gpio

lcd = LCD(O, 2) # Create amWlcd object
lcd. clear() # Clear the LCD display
for i in range(@,%len(lined)): # i adds 1 each time within the length of the
character line®
lcd.setCursor(iy 0) # Locate the cursor at character No. i, Row ©
lcd.message(line@[i]) # Display the character on the screen
sleep(0.1)
for i in range(@, len(linel)): # i adds 1 each time within the length of the
character 1line®
lcd.setCursor(i, 1) # Locate the cursor at character No. i, Row 1

lcd.message(linel[i]) # Display the character on the LCD

You should see two lines of characters displayed on the LCD1602: " Welcome to --->"
sunfounder.com " and"---SUNFOUNDER--- ".

116

Further Exploration
In this experiment, the LCD1602 is driven in the 4-bit mode. You can try programming by
yourself to driveitin the 8-bit mode.

117

Lesson 17 ADXL345

Infroduction
In this lesson, we willlearn how to use the acceleration sensor ADXL345.

Components

- 1 *Raspberry Pi

- 1 * Breadboard

- 1 * ADXL345 module
- Jumper wires

Principle
ADXL345

The ADXL345 is a small, thin, low power, 3-axis accelerometer with high resolution (13-bit)
measurement at up to £16 g. Digital output datais formatted as 16-bit two’'s complement
and is accessible through either an SPI (3- or 4-wire) or 12C digitalinterface.

The ADXL345 is well suited to measure the static acceleration of gravity in tilt-sensing
applications, as well as dynamic acceleration resulting from motion or shock. Its high
resolution (4 mg/LSB) enables the inclination change measurement by less than 1.0°. Andthe
excellent sensitivity (3.9mg/LSB @2g) provides a high-precision output of up to £16g.

In this experiment, 12C digital interface is used.

ADXL345 workslike this:

Ay

AV

Axes of detection by ADXL345

When you place the module face up, Z_OUT is at the maximum which is +1g; face down,
Z_OUT is at the minimum. No matter of face, as long as it's placed on a level surface, X_OUT
increases along the Ax axis direction, so does Y_OUT along the Ay axis. See the picture below.
Thus, when you rotate the module, you can see the changes of X_OUT, Y_OUT, andZ_OUT.

118

Xour =08
Your=-19
Zoyr=09

KQUT =+19
Your =09
Loyt =08

GRAVITY

'

Xgyr =09
:QUTfE;g YouT =09 YouT = 09
Egﬂl:ﬂg Zour =+19 Zour =-19

Relationship between output and gravity direction

Pin Function of ADXL345 Module:

Name Description
VS Supply Voltage
s Chip Select; 12C mode is enabled if it's tie-high to VDD
|/O(VDD1/O =1.8V).
SDO Serial Data Out, alternate [12C address select
INTI [nterrupt 1 Output
INT2 Interrupt 2 Output
3.3V 3.3V
SDA Serial Data (12C), Serial DataIn (SPI 4-Wire), Serial Data
In/Out (SPI 3-Wire)
SCL Serial Communications Clock
GND GND

119

602K 33
VEC 3 Vout 1
L == Vs
33V 0.1u 10u 1K
10u 0.1n
DO
“ Port i_ll.,‘_l.,‘
N 1 33
}_%__j‘
P i
i) s S BDA =
= '6(;:-. GND
33 GND 7 _BDhO
T zsmn
g 9 JINT2
R2 R3
10K 10K
|:.’l ADXL345
Lok — VDD SCLISCLK — 3 -
3 GND SDA/SDI/SDIO 12——5[)‘0
7 RESERVED SDOFALT/Addr —F————¢——
— GND RESERVED —q-
S =
Ty v INT2 =i |
Ccs INTIT ——
ADXL345 10K
GND
.
Experimental Procedures
Step 1: Build the circuit
TR
(=
=z
(Gl
-} .o “ o0 0 LI A ® e 000
o o e o e o e ® e 0 00
>
)
o
.. A] ® o 0 0 0 0 .
.. D A] U .
LN LA L O *® e e 00 .
c X)) * e o 0 0o 0 e e o 0 0 0 .
o & a8 e o 0 00 ® e e 0 00 e .
= @ o o
72 I
g 2 3
4_,9 UH ® & & & S 0 8 eSS
‘35. [X°] ® ® 8 8 8 8 0 0 e e B e e e e e e e e
L LI ® & & & 0 0 8 eSS
'_ L .. ® & & & 0 0 8 S eSS
. LN ® & & & 0 0 8 eSS
LN LN . L B B
LN L B B L B B e e 8 00

=)
Z
0
(]
[
=

_h’\

1

The 12C interface is used in the following program. Before running the program, please moke
sure the 12C driver module of Raspberry Pihas loaded normally.

For C language users:
Step 2: Getinto the folder of code

cd /home/pi/SunFounder_ Super_Kit V3.0 _for_Raspberry Pi/C
Step 3: Compile the Code

make 17_adx1345

Step 4: Run
sudo ./17_adx1345

120

Code Explanation

#include <wiringPiI2C.h>:> // Include functions and method for the IIC protocol
#tdefine DevAddr ©x53 // device address
struct acc_dat{ // a struct variable to store the value of x, y, and z

int x;

int y;

int z;
¥
fd = wiringPiI2CSetup(DevAddr); // This initialises the I2C system with your given
device identifier
void adx1345 init(int fd){ // Initialize the device by i2c

wiringPiI2CWriteReg8(fd, ©x31, ©x@b); // These write an 8-bit data value into the
device register indicated.

wiringPiI2CWriteReg8(fd, ©x2d, 0x08); // Write ©x08 to the addpesSs (0x21) of the i2c

device

}

struct acc_dat adx1345_read_xyz(int fd){ // a strudet functioh, returning a struct value
char x0, yo0, z0, x1, y1, z1;
struct acc_dat acc_xyz;
x0 = Oxff - wiringPiI2CReadReg8(fd, 0x32); /// These read an 8- or 16-bit value from
the device register indicated.
x1 = oxff - wiringPiI2CRe@adReg8(fd, ©x33); // Read an 8-bit data from the ©x33
register of the I2@ deviee fdj assign to x1
y0 = Oxff - wiringPiI2CReadReg8(fd, 0x34);
yl = Oxff - wiringPiI2CReadReg8(fd, 0x35);
z0 = Oxff - wiringPiI2CReadReg8(fd, ©x36);
z1 = Oxff - wiringPiI2CReadReg8(fd, 0x37);
%d \n",x1);
%d \n",yl);
%d \n",z1);

printf(" x0 = %d ",x0);printf("x1

printf(" yo = %d ",y0);printf("yl

printf(" z0 = %d ",20);printf("z1

acc_xyz.x = (int)(x1 << 8) + (int)x@; // Assign values to members of the struct; the
value of x consists of x1 (high 8 bits) and x0 (low 8 bits).

acc_xyz.y = (int)(yl << 8) + (int)ye;

acc_xyz.z = (int)(z1 << 8) + (int)zo;

if(acc_xyz.x > 32767){ // Set the value of x as no more than Ox7FFF

acc_xyz.x -= 65536;

121

if(acc_xyz.y > 32767){ // Set the value of y as no more than Ox7FFF
acc_xyz.y -= 65536;

}

if(acc_xyz.z > 32767){
acc_xyz.z -= 65536;

return acc_xyz; // The function ends, return to the acc_xyz struct
}
acc_xyz = adx1345 read_xyz(fd); // Call the function to read the data collected by the
accelerometer module
printf("x: %05d y: %05d z: %05d\n", acc_xyz.Xx, acc_Xxyz.y, acc_xyz.z); // Print the
data collected by the accelerometer; %05d means the printed data is a 5-bit one, and the

empty bit will be replaced by 0.

For Python users:
Step 2: Getinto the folder of the code

Step 3: Run

Code Explanation

class ADXL345(I2C): # Define agj%, and the class inheritance is I2C
def __init_ (self, busnum=-1, debug=False): # The initialize function of the
class, which is run em an nce is created of the class
o v

def setRa a # Read the data format register to preserve bits.
Update the data rate, m sure that the FULL-RES bit is enabled for range scaling
def getRange(self): # Read an 8-bit data from the device register
def setDataRate(self, dataRate): # Note: The LOW POWER bits are currently
ignored; we always keep the device in 'normal’' mode
def getDataRate(self): # get the rate from the register
def read(self): # Read data from the accelerometer
raw = self.accel.readlList(self.ADXL345 REG_DATAX®, 6) # Read 6 values from
the register, respectively equal to the high and low bits of the x, y, and z value
print raw
res = []
for i in range(0, 6, 2):
g = raw[i] | (raw[i+1l] << 8) # Combine the high 8 bits and low 8 bits

and obtain a measurement value

122

if g > 32767:
g -= 65535
res.append(g)
return res
accel = ADXL345() # Create an instance accel of class ADXL345
X, ¥, z = accel.read() # accel calls itself to measure x, y, and z and store

them in a list. Then assign the values measured to x, y, and z.

Now, rotate the acceleration sensor, and you should see the values printed on the screen
change.

® SEEEs sMEEE sEEEE sEEEE
#Es sEEEs sEEEE sEEEE mEEE. "SEEEE smmEEE =W

an|gemumne

All contents including but not limited to texts, images, and code in this manual are owned by
the SunFounder Company. You should only use it for personal study, inv estigation, enjoyment,
or other non-commercial or nonprofit purposes, under the related regulations and copyrights
laws, without infringing the legal rights of the author and relevant right holders. For any
individual or organization that uses these for commercial profit without permission, the

Company reserves the right to take legal action.

