
1/16/2018 H3LIS331DL Accelerometer Breakout Hookup Guide - learn.sparkfun.com

https://learn.sparkfun.com/tutorials/h3lis331dl-accelerometer-breakout-hookup-guide?_ga=2.255828235.2084638943.1516049849-204410570.150963… 1/7

Hardware Overview
The H3LIS331DL breakout is fairly simple.

H3LIS331DL Sensor IC - This is the sensor IC. Its operating voltage only extends up to 3.6V, so to use it with a 5V Arduino or
Arduino clone, you’ll need some kind of voltage translation! It is perfectly centered on the PCB.

I C Pull-up Resistors - The board includes pull-up resistor so you don’t need to add them externally.

I C Pull-up Resistor Isolation Jumper - If necessary, the I C pull-up resistors can be removed from the circuit by removing the
solder from this jumper.

SparkFun Standard I C Header - Most boards which can be communicated to via I C use this pinout, making it easy to stack
them or connect them in a daisy chain.

2

2 2

2 2

https://learn.sparkfun.com/tutorials/bi-directional-logic-level-converter-hookup-guide
https://cdn.sparkfun.com/assets/learn_tutorials/6/9/8/14480-02_H3LIS331DL_IC.png
https://cdn.sparkfun.com/assets/learn_tutorials/6/9/8/14480-02_H3LIS331DLPullUpResistors.png
https://cdn.sparkfun.com/assets/learn_tutorials/6/9/8/14480-02_H3LIS331DLPullUpResistorJumper.png

1/16/2018 H3LIS331DL Accelerometer Breakout Hookup Guide - learn.sparkfun.com

https://learn.sparkfun.com/tutorials/h3lis331dl-accelerometer-breakout-hookup-guide?_ga=2.255828235.2084638943.1516049849-204410570.150963… 2/7

SA0 Jumper - Closing this jumper changes the I C address of the sensor from 0x19 to 0x18.

CS Jumper - Removing the solder from this jumper enables SPI mode. When the part’s CS line is low at boot, it enables SPI
mode.

SA0 Pin - When the chip is in SPI mode, this goes from being the address select pin to being the MISO pin.

2

https://cdn.sparkfun.com/assets/learn_tutorials/6/9/8/14480-03_H3LIS331DLI2C.png
https://cdn.sparkfun.com/assets/learn_tutorials/6/9/8/14480-02_H3LIS331DLSA0Jumper.png
https://cdn.sparkfun.com/assets/learn_tutorials/6/9/8/14480-02_H3LIS331DLCSJumper.png
https://cdn.sparkfun.com/assets/learn_tutorials/6/9/8/14480-03_H3LIS331DLSA0Pin.png

1/16/2018 H3LIS331DL Accelerometer Breakout Hookup Guide - learn.sparkfun.com

https://learn.sparkfun.com/tutorials/h3lis331dl-accelerometer-breakout-hookup-guide?_ga=2.255828235.2084638943.1516049849-204410570.150963… 3/7

CS Pin - Chip select for SPI mode. Unused in I C mode.

Interrupt Pins - These pins are tied to interrupts that can be setup by the software library to trigger on various conditions.

Library Overview
Here’s a list of the functions supported by the Arduino library for the LIS331 family.

begin(comm_mode mode) - Sets the communications mode to be used by the library (LIS331::USE_I2C or LIS331::USE_SPI),
sets the power mode to normal, enables the axes, sets the sampling rate to 50Hz, and resets all the other registers to 0.

setI2CAddr(address) - Sets the I C address. By default this is going to be 0x19. If the SA0 jumper is soldered closed, it is
0x18. This function must be called before begin() so the library knows what address to use for communications.

setSPICSPin(pin) - Sets the SPI mode chip select pin. This function must be called before begin() so the library knows
which pin to use for communications.

axesEnable(bool enable) - Pass true to enable the axes or false to disable them.

setPowerMode(power_mode pmode) - Sets the power mode of the chip. This affects the data rate as well. Options are:

LIS331::POWER_DOWN - Minimizes chip power usage but no data or communications are possible
LIS331::NORMAL - Normal power mode. Data rate is set by the setODR() function.
LIS331::LOW_POWER_0_5HZ - Low power mode, 0.5Hz data rate.
LIS331::LOW_POWER_1HZ - Low power mode, 1Hz data rate.
LIS331::LOW_POWER_2HZ - Low power mode, 2Hz data rate.
LIS331::LOW_POWER_5HZ - Low power mode, 5Hz data rate.
LIS331::LOW_POWER_10HZ - Low power mode, 10Hz data rate.

setODR(data_rate drate) - Sets the data rate for the part, when in normal power mode only. Options are:

LIS331::DR_50HZ - Set the data rate to 50Hz.
LIS331::DR_100HZ - Set the data rate to 100Hz.
LIS331::DR_400HZ - Set the data rate to 400Hz.
LIS331::DR_1000HZ - Set the data rate to 1000Hz.

readAxes(int16_t &x, int16_t &y, int16_t &z) - Pass three int16_t variables to this function and those variables will be
populated with the appropriate value from the accelerometer.

2

2

https://cdn.sparkfun.com/assets/learn_tutorials/6/9/8/14480-03_H3LIS331DLCSPin.png
https://cdn.sparkfun.com/assets/learn_tutorials/6/9/8/14480-03_H3LIS331DLINTPins.png
https://github.com/sparkfun/SparkFun_LIS331_Arduino_Library

1/16/2018 H3LIS331DL Accelerometer Breakout Hookup Guide - learn.sparkfun.com

https://learn.sparkfun.com/tutorials/h3lis331dl-accelerometer-breakout-hookup-guide?_ga=2.255828235.2084638943.1516049849-204410570.150963… 4/7

convertToG(maxScale, reading) - Converts from raw data to an actual g-reading. The first parameter is the maximum reading for
the current mode, as set by the setFullScale() function. Options are 6/12/24g for the LIS331HH and 100/200/400g for the
H3LIS331DL.

setHighPassCoeff(high_pass_cutoff_freq_cfg hpcoeff) - Set the coefficient for the high pass filter. The actual cutoff frequency is
dependent upon the data rate set by setODR() . The cutoff frequency is (fs)/(6*Hpc), where fs is the sampling frequency and Hpc
is the high pass coefficient as set by these constants:

LIS331::HPC_8 - Sets coefficient to 8.
LIS331::HPC_16 - Sets coefficient to 16.
LIS331::HPC_32 - Sets coefficient to 32.
LIS331::HPC_64 - Sets coefficient to 64.

enableHPF(bool enable) - true to enable, false to disable.

HPFOOnIntPin(bool enable, intSource) - Does the high pass filter apply to the signal the interrupt is based on? true to
enable, false to disable, and the second parameter is 1 or 2 depending on which interrupt you wish to apply this setting to.

intActiveHigh(bool enable) - Pass true to set the interrupt pin to active high, false to set it as active low. Default value is
active high.

intPinMode(pp_od _pinMode) - Are the interrupt pins open-drain or push pull? Pass LIS331::PUSH_PULL or LIS331::OPEN_DRAIN .

intSrcConfig(int_sig_src src, pin) - What sort of thing triggers an interrupt, and which pin shows the interrupt. The options
are:

LIS331::INT_SRC - Interrupt source is the same as the pin number.
LIS331::INT1_2_SRC - Either interrupt will be reflected on the pin.
LIS331::DRDY - The “new data ready” signal will be reflected on the pin.
LIS331::BOOT - The boot mode status of the part is reflected on the pin.

setFullScale(fs_range range) - Sets the range of the part, as listed below:

LOW_RANGE - +/-6g for the LIS331HH or +/-100g for the H3LIS331DH.
MED_RANGE - +/-12g for the LIS331HH or +/-200g for the H3LIS331DH.
HIGH_RANGE - +/-24g for the LIS331HH or +/-400g for the H3LIS331DH.

bool newXData() - returns true if new X data is available since last read of X data register.

bool newYData() - same as newXData() for Y axis.

bool newZData() - same as newZData() for Z axis.

enableInterrupt(int_axis axis, trig_on_level trigLevel, interrupt, bool enable) - axis can
be LIS331::X_AXIS , LIS331::Y_AXIS , or LIS331::Z_AXIS . trigLevel can
be LIS331::TRIG_ON_HIGH or LIS331::TRIG_ON_LOW , interrupt can be 1 or 2, and enable is true to enable the interrupt
and false to disable it.

setIntDuration(duration, intSource) - duration can be any value from 0-127, and represents the time in number of samples
that the sensor must read above or below the threshold set by the user. intSource is 1 or 2.

setIntThreshold(threshold, intSource) - threshold is the absolute magnitude above or below which an interrupt will occur,
divided by 16. It can range from 0-127. intSource is 1 or 2.

Examples

Hardware Hookup
The H3LIS331DL supports I C, SPI, and three-wire SPI data transfer. The library supports I C and SPI mode. Obviously, since SPI
requires four wires and I C only requires two, there are different circuit configurations for each mode. Now would be a good time
to solder the female headers to the Arduino Pro 3.3V/8MHz and breakaway headers to the H3LIS331DL sensor before connecting
the boards together.

I C Mode
The board is labeled for I C mode. Here you can see it connected to a 3.3V Arduino Pro. Note that connecting the board to a 5V
Arduino can damage it.

2 2
2

2

2

https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering

1/16/2018 H3LIS331DL Accelerometer Breakout Hookup Guide - learn.sparkfun.com

https://learn.sparkfun.com/tutorials/h3lis331dl-accelerometer-breakout-hookup-guide?_ga=2.255828235.2084638943.1516049849-204410570.150963… 5/7

SPI Mode
In SPI mode, the SDA pin becomes MOSI, the SCL pin becomes clock, the address select pin SA0 become MISO, and the CS pin
is used for chip select.

https://cdn.sparkfun.com/assets/learn_tutorials/6/9/8/i2c_circuit.png

1/16/2018 H3LIS331DL Accelerometer Breakout Hookup Guide - learn.sparkfun.com

https://learn.sparkfun.com/tutorials/h3lis331dl-accelerometer-breakout-hookup-guide?_ga=2.255828235.2084638943.1516049849-204410570.150963… 6/7

COPY CODE

Example Code

Note: This example assumes you are using the latest version of the Arduino IDE on your desktop. If this is your first time
using Arduino, please review our tutorial on installing the Arduino IDE. If you have not previously installed an Arduino library,
please check out our installation guide.

You will also need FTDI drivers installed in order to upload code to the Arduino Pro. If this is your first time using an FTDI,
make sure to follow our tutorial: USB Serial Driver Quick Install.

To follow along with the examples, the code requires the LIS331 Arduino library. Make sure that the library has been installed.

SPARKFUN LIS331 ARDUINO LIBRARY

For the most part, the example code for SPI mode and I C mode is identical. The only part that differs is the intial setup where you
configure the pins to be used and the library’s settings.

I C Mode Setup
Here’s an example of the same section of code from an I C configured system. It’s important to note that order matters
here: Wire.begin() and xl.setI2CAddr() must be called before xl.begin() .

#include "SparkFun_LIS331.h"
#include <Wire.h>

LIS331 xl;

void setup()
{
 // put your setup code here, to run once:
 pinMode(9,INPUT); // Interrupt pin input
 Wire.begin();

2

2

2

https://cdn.sparkfun.com/assets/learn_tutorials/6/9/8/spi_circuit.png
https://learn.sparkfun.com/tutorials/installing-arduino-ide
https://learn.sparkfun.com/tutorials/installing-an-arduino-library
https://learn.sparkfun.com/tutorials/usb-serial-driver-quick-install-
https://github.com/sparkfun/SparkFun_LIS331_Arduino_Library

1/16/2018 H3LIS331DL Accelerometer Breakout Hookup Guide - learn.sparkfun.com

https://learn.sparkfun.com/tutorials/h3lis331dl-accelerometer-breakout-hookup-guide?_ga=2.255828235.2084638943.1516049849-204410570.150963… 7/7

 xl.setI2CAddr(0x19); // This MUST be called BEFORE .begin() so
 // .begin() can communicate with the chip
 xl.begin(LIS331::USE_I2C); // Selects the bus to be used and sets
 // the power up bit on the accelerometer.
 // Also zeroes out all accelerometer
 // registers that are user writable.

SPI Mode Setup
Here we have the first few lines of an SPI mode sketch. Again, order is important: pinMode() , SPI.begin() ,
and xl.setSPICSPin() functions must all be called before the xl.begin() function is called.

After this point, the code for either mode of operation is the same. Note that this example code includes only the second half of the
setup function, and if you’re copy/pasting from this example, you must copy the other half of the setup function from one of the
above code chunks.

After placing the code into the Arduino IDE, select the board definition and COM port to upload. Once compiled, check out the
sensor readings by opening up a serial monitor set to 115200 baud.

COPY CODE#include "SparkFun_LIS331.h"
#include <SPI.h>

LIS331 xl;

void setup()
{
 // put your setup code here, to run once:
 pinMode(9,INPUT); // Interrupt pin input
 pinMode(10, OUTPUT); // CS for SPI
 digitalWrite(10, HIGH); // Make CS high
 pinMode(11, OUTPUT); // MOSI for SPI
 pinMode(12, INPUT); // MISO for SPI
 pinMode(13, OUTPUT); // SCK for SPI
 SPI.begin();
 xl.setSPICSPin(10); // This MUST be called BEFORE .begin() so
 // .begin() can communicate with the chip
 xl.begin(LIS331::USE_SPI); // Selects the bus to be used and sets

COPY CODE // This next section configures an interrupt. It will cause pin
 // INT1 on the accelerometer to go high when the absolute value
 // of the reading on the Z-axis exceeds a certain level for a
 // certain number of samples.
 xl.intSrcConfig(LIS331::INT_SRC, 1); // Select the source of the
 // signal which appears on pin INT1. In
 // this case, we want the corresponding
 // interrupt's status to appear.
 xl.setIntDuration(50, 1); // Number of samples a value must meet
 // the interrupt condition before an
 // interrupt signal is issued. At the
 // default rate of 50Hz, this is one sec.
 xl.setIntThreshold(2, 1); // Threshold for an interrupt. This is
 // not actual counts, but rather, actual
 // counts divided by 16.
 xl.enableInterrupt(LIS331::Z_AXIS, LIS331::TRIG_ON_HIGH, 1, true);
 // Enable the interrupt. Parameters indicate
 // which axis to sample, when to trigger

https://learn.sparkfun.com/tutorials/terminal-basics/arduino-serial-monitor-windows-mac-linux

