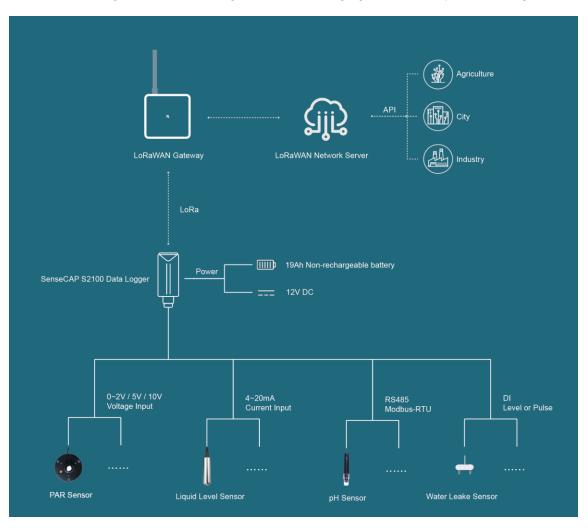


THE NEW GENERATION LORAWAN SENSORS OF SENSECAP

S2100 LoRaWAN Data Logger User Guide

Table of Contents


1.	Prod	uct Introduction	1
2.	Part I	List	5
3.	Quicl	k Start	3
3.1	Senso	or Configuration Example	3
4.	Hook	up the Sensor Probe	7
4.1	l Prepa	ration7	7
	.1.1	Sensor Probe	
4	.1.2	Tools	
4.2	2Conne	ect the Sensor Probe	3
4	.2.1	Disassemble the Data Logger	3
4	.2.2	Power supply options of sensor	
4	.2.3	How to install external 12V DC	C
5.	LED	of Sensor Working Status14	1
6.	Sens	eCAP Mate App16	ŝ
		load App16	
		o connect sensor to App17	
-	5.2.1	Create a New Account	
	5.2.2	Connect to Sensor to App	
	-	gure basic parameters through App20	
	5.3.1	Select the Platform and Frequency	
	5.3.2	Set the Interval	
	5.3.3	Set the EUI and Key	
	5.3.4	Set the Packet Policy	
	5.3.5	Set the Activation Type	
	5.3.6	Restore Factory Setting	
		gure Level or Pulse Sensor via App27	
	5.4.1	Set the level sensor	
	5.4.2	Set the pulse (counter) sensor	
		gure Analog Sensor via App31	
	5.5.1	Set the 4~20mA sensor	
6	5.5.1	Set the 0~10V Voltage sensor	3

6.6Con	figure RS485 Modbus-RTU Sensor via App	
7. Con	nect to the SenseCAP Portal	40
7.1Sen	seCAP Portal	40
7.1.1	Create a New Account	40
7.1.2	Other Functions	41
7.1.3	API Instruction	
7.2Con	nect to SenseCAP with Helium Network	42
7.2.1	Quick Start	
7.2.2	Preparation	
7.2.3	Bind Sensor to SenseCAP Portal	43
7.2.4	Setup the Sensor	45
7.2.5	Set Frequency of Sensor via SenseCAP Mate App	
7.2.6	Check Data on SenseCAP Portal	
7.3Con	nect to SenseCAP with private TTN	49
7.3.1	Quick Start	
7.3.2	Preparation	49
7.3.3	Bind Sensor to SenseCAP Portal	50
7.3.4	Setup the Sensor	50
7.3.5	Set Frequency of Sensor via SenseCAP Mate App	
7.3.6	Check Data on SenseCAP Portal	51
8. Con	nect to Helium Network	52
9. Con	nect to The Things Network	52
10. Pay	load Decoder	53
10.1 C	Decoder Code	53
10.2 F	Packet Parsing	
10.2.1	Packet Initialization	
10.3 C	Data Parsing Example	
10.3.1	Measurements List	
10.3.2		
10.4 E	Battery Information	
	aWAN Downlink Command	
	Set the Data Uplink Interval	
	Reboot the device	
11.2 F		

11.3	How to send downlink	61
12. De	evice Installation	62
12.1	Check the waterproof performance of the device	62
12.1	.1 Data logger connection port	62
12.1	.2 The connection port of the junction box	62
12.2	Installing Sensor	62
12.2	.1 Installing the Sensor Bracket	62
12.2	.1 Mount on Pole and Wall	63
12.3	Replace the Battery	65
12.3	.1 How to Buy the Battery	65
12.3	.2 How to Replace a New Battery	66
13. Tr	ouble Shooting	68
13.1	Sensors can't join LoRa network, how to do?	68
13.2	Why is the new sensor's battery not 100%?	68
13.3	Support	68
13.4	Document Version	68

1. Product Introduction

S2100 LoRaWAN Data Logger can collect data from different types of sensors and transfer the data through LoRaWAN network. If you have deployed sensors that are not based on the LoRaWAN network, then with our LoRaWAN data logger, you can change them into LoRaWAN-based sensors and use the LoRaWAN network to transfer data. You can easily enjoy the advantages of LoRaWAN technology such as low power consumption and long transmission range, without affording the cost of changing the sensors you are using.

Ĭ

2. Part List

Before installing, please check the part list to ensure nothing is missing.

Picture	Name	Quantity
the second	Data Logger	1
	Bracket	1
Quite Reserve	Quick Start Guide	1
1111	KA4*20mm Self-drilling Screw	4

A junction box accessory kit is available as an additional option:

Picture	Name	Quantity
	Junction box	1
	8 pin wire (40cm)	1

3. Quick Start

Refer to the following steps for quick configuration with SenseCAP server.

Step	Description	Section
1	Hook up the sensor probe	Section 4
2	Download SenseCAP Mate App	Section 6.1
3	Configure the LoRaWAN parameters	Section 6.3
4	Configure the sensor protocol	Section 6.4 for level / pulse sensor Section 6.5 for analog sensor Section 6.6 for RS485 sensor
5	Join LoRaWAN network server	Section 7.2 or 7.3
6	Check the data from SenseCAP Dashboard or App	Section 7.2.6
7	Deploying sensors	Section 12

3.1 Sensor Configuration Example

- 1) Configure a 0-2V voltage pH sensor: TBD
- 2) Configure a 4~20mA current sensor: TBD
- 3) Configure a level sensor: TBD
- 4) Configure a pulse sensor: TBD

4. Hook up the Sensor Probe

4.1 Preparation

4.1.1 Sensor Probe

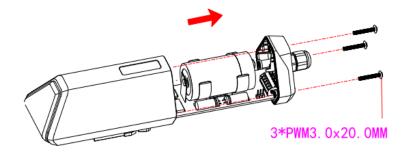
Get one of these sensors ready:

Туре	Sensor wire pin
RS485 Modbus-RTU	1 x A, 1 x B, 1 x GND, 1 x VCC
4~20 mA	1 or 2 x signal pin
0~10V	1 or 2 x signal pin
Level	1 x signal pin
Pulse Count	1 x signal pin

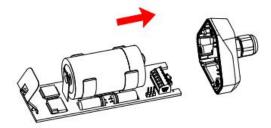
Each Data logger can only be connected to one type of sensor. For example

- 1. a RS485 sensor with one address
- 2. a 4~20mA sensor with 1or 2 measurements
- 3. a 0~10V (Less than 10v) sensor with 1or 2 measurements
- 4. a pulse or level sensor with 1 measurement

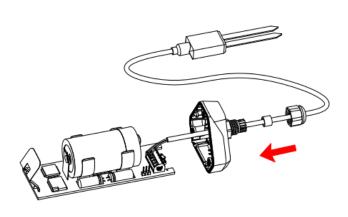
4.1.2 Tools


Туре	Description
Cross screwdriver	Cross recess No.2

7


4.2 Connect the Sensor Probe

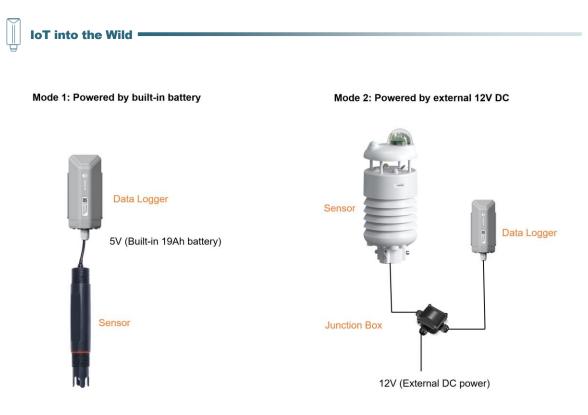
4.2.1 Disassemble the Data Logger


1. Unscrew three screws.

2. Take down the cover.

3. Remove the thread cap and pass it through the cable of the sensor, pass it through the bottom cover, and connect it to the wiring terminal.

IoT into the Wild =

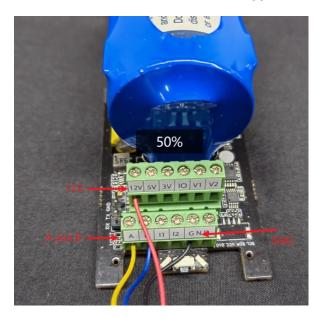

Ĭ

No.	Pin	Description
1	12V	External 12V input voltage. The Data Logger can be powered by an external 12V DC power supply.
		When using 12V power supply, the battery will serve as backup power supply.
2	5V	5V output voltage, providing 5V voltage to the sensor.
3	3V	3V output voltage, providing 3V voltage to the sensor.
4	Ю	Acquisition level or pulse input
5	V1	The voltage input of 0 to 10V is collected
6	V2	The voltage input of 0 to 10V is collected
7	А	RS485 A/+
8	В	RS485 B/-
9	11	Collect the current input from 4 to 20mA
10	12	Collect the current input from 4 to 20mA
11	GND	Ground pin
12	GND	Ground pin

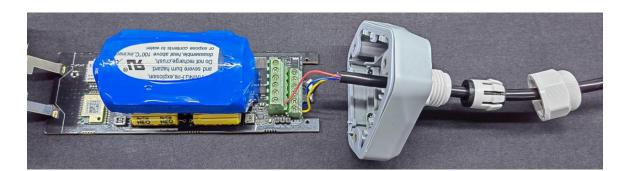
4.2.2 Power supply options of sensor

Data Logger supports two power supply modes:

Description	
The Data Logger and sensors are powered by batteries. In this case, the datalogger can be connected to a 5V or 3V sensors.	
Supply power to Data Logger and sensor through external 12V power supply. When the external 12V is disconnected, the system switches to battery power. When using external 12V power supply, use it together with the junction box to ensure the waterproof performance of the device.	



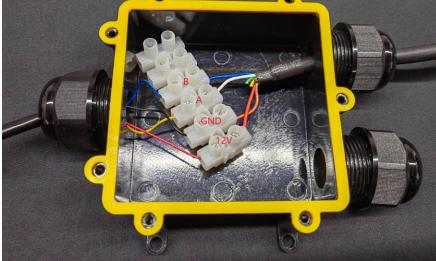
4.2.3 How to install external 12V DC


When your sensor needs 12V power, the battery will not be able to drive the sensor. Therefore, an external 12V power supply is required.


The SenseCAP ONE Weather Station is used as an example.

- 1) Prepare the following items: 12V DC adapter, Junction box, and 4-pin wire.
- 2) Wire to the terminal of the Data Logger.

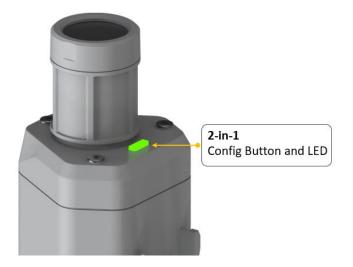
Connect the cover, rubber ring and screw cap in turn.


3) Wire to the terminal of the junction box.

IoT into the Wild

4) Connect the sensor wire to the junction box.

- 5) Connect the 12V DC adapter to the power supply.
- 6) To complete the assembly.



7) **Tighten the screws and screw caps to check the waterproofing**. If the wire diameter is too thin, add waterproof tape for winding.

5. LED of Sensor Working Status

You can refer to the LED indicator for the Sensor Node for its working status. Please see the status explanations in the chart below:

Actions	Description	Green LED Status
First power up, press and hold for 3s	Power on and activate the Bluetooth	Green LED flashes at 1s frequency, waiting for Bluetooth connection. If Bluetooth not connected within 1 minute, the device would shut down again.
Press once	Reboot device and join LoRa network	 The green LED will be on for 5 seconds for initialization. Waiting for join LoRa network: red breathing light flashing Join LoRa network success: green LED flashes fast for 2s LoRa network join failure: red LED suddenly stop.

Press and hold for 3s	Activate Bluetooth again	 Waiting for Bluetooth connection: green LED flashes at 1s frequency Enter configuration mode after Bluetooth connection is successful: green LED flashes at 2s frequency If Bluetooth is not connected within 1 minute, the device will reboot and join LoRa network.
Press and hold for 9s	Power off	In the 3rd seconds will start flashing at 1s frequency, until the light is steady on, release the button, the light will go out.

<u>Mote:</u>

1. After power off, you need to **reconfigure the frequency band.** Power off is recommended when not deployed.

2. If the frequency is not configured after power on, the device will be power off again.

6. SenseCAP Mate App

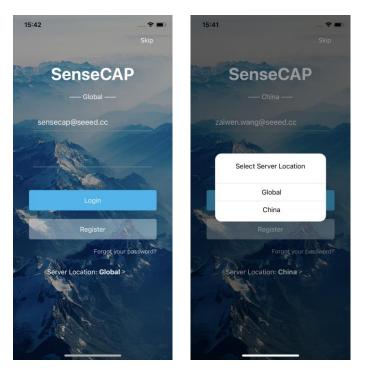
6.1 Download App

As a tool, SenseCAP Mate App is used to config LoRa parameters, set interval, bind devices to your account and check device basic information.

(1) For iOS, please search for "SenseCAP Mate" in the App Store and download it.

Download SenseCAP Mate App

(2) For Android, please search for "SenseCAP Mate" in the Google Store and download it.


You can also download App from https://www.pgyer.com/sensecapmate

6.2 How to connect sensor to App

6.2.1 Create a New Account

SenseCAP Mate supports device configuration and remote management. To use the SenseCAP Portal platform and other functions, please register an account.

SenseCAP Mate supports offline functionality, and you can opt out of an account if you only use the configuration sensor. Just click Skip.

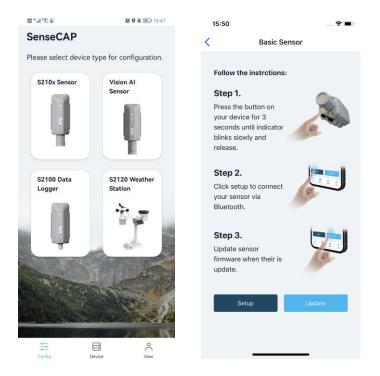
Please select Global of Server Location.

You can also create an account via the SenseCAP Portal: http://sensecap.seeed.cc


- 1) Select register account, enter email information and click "register", the registered email will be sent to the user's mailbox.
- 2) Open the "SenseCAP..."Email, click the jump link, fill in the relevant information, and complete the registration.
- 3) Return to the login interface and complete the login.

Note:

If you can't find the email, it may be automatically identified as "spam" and put in the "trash can".


6.2.2 Connect to Sensor to App

1) Press button and hold for **3 seconds**, the LED will flash at 1s frequency. Please use the App to connect the sensor within 1 minute; otherwise, the device will power off or reboot.

2) Please select "S2100 Data Logger".

Please click the "Setup" button to turn on Bluetooth and click "Scan" to start scanning the sensor's Bluetooth.

3) Select the Sensor by S/N (S/N is on the front label of the sensor). Then, the basic information of the sensor will be displayed after entering.

IoT into the Wild			
Ø	\$ Q \ 19:32	\$° "#"	数素♥除面■19:3;
Setup		← 11499	2872223300135
		General	Settings
	1.)	Basic	
))).	Device Model	SenseCAPS2100
	·//	Device EUI	2CF7F1C0434000A4
		Device Type	S2100 Data Logger
evice		Protocol	GPIO
72223300135	>	GIPO Input	Level Mode
Scan		Backup Firmwar	re Version 0.1
		Software Versio	n 2.0
		Hardware Versio	on V1.1
		LoRaWAN Versi	on V1.0.3
		Class Type	ClassA
		Battery	100%
		Measurement	:

4) Enter configuration mode after Bluetooth connection is successful: LED flashes at 2s frequency.

Ĭ

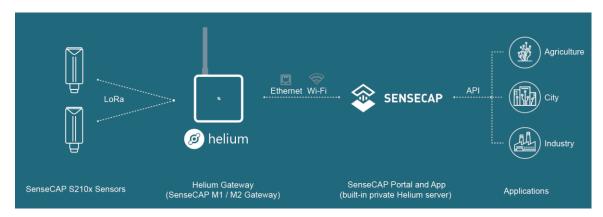
6.3 Configure basic parameters through App

6.3.1 Select the Platform and Frequency

S210x Sensors are manufactured to support universal frequency plan from 863MHz ~928MHz in one SKU. That is to say, every single device can support 7 frequency plans.

15:53	🗢 🔳	15:54	🕈 🔳	
114992846221600009		< 114992	2846221600009	
General	Settings	General	Settings	
Platform	Other Platform	Platform	Other Platform	
Frequency Plan	US915 V	Frequency Plan	US915 ~	
Sub-Band	Sub-Band2 🗸	Sub-Band	Sub-Band2 🗸	
Uplink Interval (mir	n) 6	Uplink Interval (mi	in) 60	
Activation Type	OTAA V	EU868		
Device EUI 2CF7F1C04160000B		US915		
SenseCAP for The Things Network		AU915		
SenseCAP for Helium		AS923	AS923	
Helium		IN865		
The Things Network		KR920		
Other Platform		RU864		
		_		

Platform	Description	
SenseCAP for The Things Network	Default platform. It must be used with SenseCAP Outdoor Gateway (<u>https://www.seeedstudio.com/LoRaWAN-Gateway-EU868-p-</u> 4305.html). SenseCAP builds a proprietary TTN server that	
	enables sensors to be used out of the box when paired with an SenseCAP outdoor gateway.	
SenseCAP for Helium	When there is the Helium network around the user, data can be uploaded using sensors. Devices run on a private Helium console of SenseCAP. Users do not need to create devices on Helium console, right out of the box.	
Helium	Connect Sensor to public Helium console.	
The Things Network	Connect Sensor to your TTN(TTS) server.	
Other Platform	Other LoRaWAN Network Server.	


1) SenseCAP for Helium:

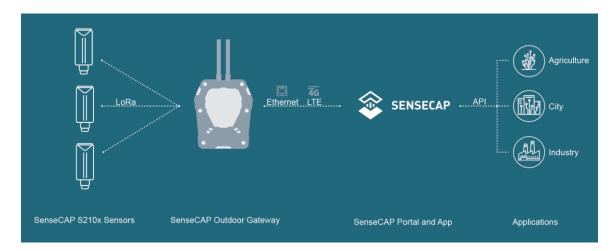
We provide the SenseCAP Portal to manage devices and data: sensecap.seeed.cc

We built a private Helium Console with an embedded SenseCAP Portal. When users get the SenseCAP sensors, you can use it by scanning the code and binding it to the Portal.

"SenseCAP for Helium" is selected by default. The device runs in a fixed main frequency and sub-band, refer to Helium Frequency Plan (<u>https://docs.helium.com/lorawan-on-helium/frequency-plans/</u>). You only need to select the main frequency, such as EU868 and US915.

SenseCAP for Helium supports the following frequency plan:

EU868 / US915 / AU915 / KR920 / IN865 / AS923-1 / AS923-2 / AS923-3 / AS923-4


2) SenseCAP for The Things Network

SenseCAP Portal also builds the TTN private server, and the sensor must be used together with the SenseCAP Outdoor Gateway (<u>https://www.seeedstudio.com/LoRaWAN-Gateway-EU868-p-4305.html</u>).

Due to the limitation of the SenseCAP outdoor gateway frequency, "SenseCAP for TTN" supports the following frequency plan(The sensor is capable of supporting all frequency plan):

Gateway Frequency	Description
EU868	It must be used with SenseCAP EU868 Gateway (<u>https://www.seeedstudio.com/LoRaWAN-Gateway-EU868-p-4305.html</u>)
US915	It must be used with SenseCAP US915 Gateway (<u>https://www.seeedstudio.com/LoRaWAN-Gateway-US915-p-4306.html</u>)
AU915	Need to contact sales to purchase.

3) Helium

Users can choose sensors to use on the public helium console:

https://console.helium.com/

IoT into the Wild

4) The Things Network

Users can choose sensors to use on the public The Things Network server:

https://console.cloud.thethings.network/

5) Other Platform:

When you use other LoRaWAN network server, please select Other Platform.

At this point, you need to determine the sensor frequency band according to the gateway frequency and sub-band.

S210x Sensors support the following frequency plan:

Sensor Frequency	Common Name	Sub-band
EU863-870	EU868	
US902-928	US915	Sub band from 1 to 8 (default sub-band 2)
AU915-928	AU915	Sub band from 1 to 8 (default sub-band 2)
KR920-923	KR920	
IN865-867	IN865	
	AS923-1	
46000	AS923-2	
-	AS923-3	Frequency plan for Helium
	AS923-4	
RU864-867	RU864	

ANote1:

Different countries and LoRaWAN network servers use different frequency plans.

For Helium network, please refer to:

https://docs.helium.com/lorawan-on-helium/frequency-plans

For The Things Network, please refer to:

https://www.thethingsnetwork.org/docs/lorawan/frequency-plans/

- 1) When using the SenseCAP platform, the EUI, APP EUI and APP Key are fixed and are the same as the sensor label.
- 2) When the sensor is selected to be used with a public platform such as Helium or TTN, the EUI will not change, and the sensor will generate a new fixed App EUI and App Key for network access.

6.3.2 Set the Interval

The working mode of device: wake up the device every interval and collect measurement values and upload them through LoRa. For example, the device collects and uploads data every 60 minutes by default.

Uplink Interval Unit: minu	utes, number from 1 to 1440.

Uplink Interval (min)	60

<u> Mote:</u>

The SenseCAP portal has a limit on uplink interval: minimum interval is **5 minutes**.

The interval using the other platforms ranges from 1 to 1440 minutes.

6.3.3 Set the EUI and Key

The device uses OTAA to join the LoRaWAN network by default. So, it can set the device EUI and App EUI.

Parameter	Туре
Device EUI	16 bits, hexadecimal from 0 ~ F
App EUI	16 bits, hexadecimal from 0 ~ F
Арр Кеу	32 bits, hexadecimal from 0 ~ F

Device EUI	2CF7F1C04160000B
APP EUI	577D1C6ECDCC3B8D
АРР Кеу	466F991B963100CC478

6.3.4 Set the Packet Policy

The sensor uplink packet strategy has three modes.

Parameter	Description
2C+1N (default)	2C+1N (2 confirm packets and 1 none-confirm) is the best strategy, the mode can minimize the packet loss rate, however the device will consume the most data packet in TTN, or date credits in Helium network.
1C	1C (1 confirm) the device will sleep after get 1 received confirm packet from server.
1N	1N (1 none-confirm) the device only send packet and then start to sleep, no matter the server received the data or not.

6.3.5 Set the Activation Type

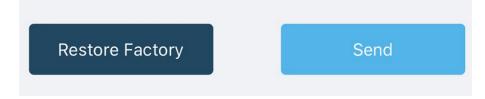
The sensor supports two network access modes, OTAA by default.

Parameter	Description
OTAA (default)	Over The Air Activation, it joins the network through Device EUI, App EUI, and App Key.
ABP	Activation By Personalization, it joins the network through DevAddr, NwkSkey, and AppSkey.

When using ABP mode, you need to configure the following information:

Parameter	Description
DevAddr	32 bits, hexadecimal from 0 ~ F
NwkSkey	32 bits, hexadecimal from 0 ~ F
AppSkey	8 bits, hexadecimal from 0 ~ F

IoT into the Wil	
io i into the wi	d


Activation Type	ABP 🗸 🗸
Nwk Skey Only hexadecimal digits are allowed to b	D65CF04A554CB71ECCC0D58C40 numbers of 0-F with a maximum of 32 be filled in.
APP Skey	24CEAFD65CF04A554CB71ECCC0
Only hexadecimal digits are allowed to l	numbers of 0-F with a maximum of 32 be filled in.
Dev Addr	0100000A
Only hexadecimal digits are allowed to l	numbers of 0-F with a maximum of 8 be filled in.

ANote:

The factory defaults to a fixed key for ABP mode.

6.3.6 Restore Factory Setting

When selecting the SenseCAP platform, you must use the fixed EUI/App EUI/App Key. Therefore, you need to restore the factory Settings before switching back to the SenseCAP platform from other platforms.

When we make a mistake or want to reset everything, we can click the button. The device will be restored to the factory's default configuration.

6.4 Configure Level or Pulse Sensor via App

- 1) Select the "GPIO" protocol.
- 2) Select the supply voltage to the sensor. It supports 3V/5V/12V. Please refer to section "Power Supply Options of Sensor".

ي چ [،] الـ " ه	10 * 9 * 107) 19:57	ن چ' ا <i>س</i> " ۲	10 × 9 × E	Z)i 19:59
← 114992	2872223300135		← 114992	872223300135	
General	Settings		General	Settings	
Basic Setting		-	Basic Setting		•
Sensor Settin	g	•	Sensor Setting	9	•
Protocol	GPIO	~	Protocol	GPIO	~
Power Voltage	ЗV	~	Power Voltage	3V	~
GPIO Input	Level Mode	~	GPIO Input	Level Mode	~
Measurement De	lay(ms) 0		Measurement Del	ay(ms) 0	
	—			—	
GPIO			3V		
Analog Input			5V		
RS485 Modbus R	TU		12V		

- Set the "Sensor Warm-up time", the warm-up time denotes the amount of time it takes for the sensor to attain its highest accuracy or performance level once the voltage supply has been applied.
- 4) Select the input type:

Level Mode	The input level signal is collected, the high level is 1, the low level is 0
Counter Mode	The pulse signal is collected, and the number of pulses is recorded

6.4.1 Set the level sensor

Select the "Work Mode".

Periodic collect mode	Periodically collect data. For example, if the uplink interval is set to 60 minutes, the data logger wakes up from the sleep state every 60 minutes, collects data, and uploads data via LoRaWAN.
-----------------------	---

Ĭ

	Wake up the data logger when the input signal is high or low and upload the current level. If no, the data logger uploads data every uplink interval.
Threshold mode	For example, the upload interval is set to 60 minutes, and the threshold mode is set to collect high level. When the input signal changes from a low level to a high level, the Data Logger reports the high level. If the threshold is not triggered, the current status is uploaded every 60 minutes.

) "I '\$ 0 0 • 0	10 × 9 × 11	21:31	\$* In."	₩\$9¥
- 114992	872223300135		< 1	hreshold Setting
General	Setting	js	High Level Trigg	ger
Basic Setting		•	Low Level Trigg	er
,				
iensor Setting	3	•		
Protocol	GPIO	~		
Power Voltage	3V	~		
GPIO Input	Level Mode	~		
Measurement Del	ay(ms) 0			
Work Mode	Periodic collect m	oc ~		
	-			
Periodic collect me	ode			
hreshold mode				Confirm

6.4.2 Set the pulse (counter) sensor

Select the "Counter Mode" as input type. Then set the following parameters in turn.

IoT into the Wild —		
)""li"≋.© - 11499:	取まり来 回 13:40 2 872223300082	
General	Settings	
GPIO Input	Counter Mode V	
Measurement De	lay(ms) 0	
Input Type	Pull High 🗸 🗸	
Digital Filter		
Reboot to clear t	he count	
Factory A	⊘ Y=Ax+B	
Factory B	0	
Unit time collecti	ion 🕥	
Work Mode	Periodic collect mode	

Sensor Warm-up Time	The warm-up time denotes the amount of time it takes for the sensor to attain its highest accuracy or performance level once the voltage supply has been applied.
Digital input	Sets the type of input pulse. Pull High: Valid when a rising edge is detected. Pull Low: Valid when a falling edge is detected.
Digital Filter	When the pulse width exceeds 250 $\mu s,$ which advised to enable it. It is enabled by default.
Reboot to clear the count	When a Datalogger restart occurs, the count is cleared to 0. It is disabled by default.
Y= Ax + B	 "Y": It is the value Datalogger will upload. "x": It is the original counter value. Factory A: Custom values that can be scaled up or down by multiples of the "x". Factory B: A custom value that increments or diminishes the value of the "x". By setting the values of A and B, you can calculate the desired value. If only raw counter values are uploaded, set A=1 and B=0.

Unit time collection	Enabling this function increases upload by a value: cumulative amount per hour.	
Offic time collection	For example, if the value of Y within one hour is 1000, 1000/h will be uploaded.	

Ĭ

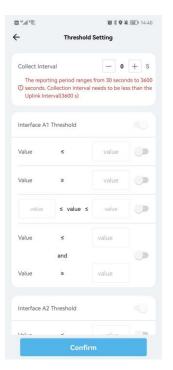
6.5 Configure Analog Sensor via App

Select the "Protocol" as "Analog input". Then set the following parameters in turn.

œ"	数素●発展13:49	la "』"??	201 孝 9 発 (15) 14:
114992	2872223300082	← 11499287	2223300082
General	Settings	General	Settings
Sensor Setting	g 🍝	Sensor Setting	
Protocol	Analog Input 🗸 🗸	Protocol	Analog Input 🛛 🗸
Power Type	Periodic power	Power Type	Periodic power 🗸 🗸
Power Voltage:	5V ~	Power Voltage:	5V ~
Analog Input:	Electric Current 🗸 🗸	Analog Input:	Electric Current 🛛 🗸
Measurement Del	lay(ms) 100	Measurement Delay	(ms) 100
Electric Current	4-20mA	Electric Current	4-20m/
Interface A1		Interface A1	
Interface A2		-	_
Work Mode	Periodic collect moc 🗸	Electric Current	
		Voltage	

	Periodic power: Power the sensor before data collection, and power off the sensor after data collection. This mode reduces power consumption and increases battery life.
Power Type	Always-on: Select this mode when the sensor needs constant power supply. Generally, an external 12V DC power supply is used. If it is powered only by batteries, it may not work for long.
Power Voltage	Select the supply voltage to the sensor. It supports 3V/5V/12V. Please refer to section "Power Supply Options of Sensor".
	Current: Select the current signal of the sensor from 4 to 20mA.
Analog Input	Voltage: Select the voltage signal of 0~10V sensor.

6.5.1 Set the 4~20mA sensor


Sensor Warm-up Time	The warm-up time denotes the amount of time it takes for the sensor to attain its highest accuracy or performance level once the voltage supply has been applied.
Current Range	4~20mA

- 31

 $\left[\right]$

Interface I1	The Data Logger supports two analog current signals. When th			
Interface I2	sensor wire is connected to 11/12, the configuration can be enable			
Y= Ax + B	"Y": It is the value Datalogger will upload.			
	"x": It is the original current value.			
	Factory A: Custom values that can be scaled up or down by multiples of the "x".			
	Factory B: A custom value that increments or diminishes the value of the "x".			
	By setting the values of A and B, you can calculate the desired value. If only raw values are uploaded, set A=1 and B=0.			

Select the "Work Mode".

Periodic collect mode	Periodically collect data. For example, if the uplink interval is set to 60 minutes, the data logger wakes up from the sleep state every 60 minutes, collects data, and uploads data via LoRaWAN.
Threshold mode	You can set a threshold rule for the measured value. When the rule is triggered, the device uploads data through LoRaWAN.
Collect Interval	Data Logger is divided into uplink interval and collection interval.

	The uplink interval is the interval of LoRaWAN data is uploaded each time. In periodic mode, the uplink interval is equal to the collection interval. Range: 30~3600 seconds	
	The threshold mode greatly increases power consumption and is not recommended.	
Interface I1 Threshold Interface I2 Threshold	Value = "Y", it is the value calculated by Y= Ax+B.	
	You can choose one of the four rules.	
	For example, set the uplink interval = 60 min, collection interval = 30s, interface 11 rule is value \ge 20.	
	Datalogger collects data on port I1 every 30 seconds. The collected data matches the rules. If the value is greater than 20, the data is uploaded immediately. If the threshold rule is not triggered within 60 minutes, data will be uploaded once every 60 minutes.	
	When the threshold is triggered and data is uploaded, the Data Logger will not collect and upload data for 5 minutes. There is silence for 5 minutes.	

6.5.1 Set the 0~10V Voltage sensor

© م چ' اد" ₪		認常の業 (15:51	û ♣ \$\$° h." 🖾		◎常●発師●15:52	© ● \$` h."		10 \$ Q	🕸 🐻 15:
11499:	287222330	0082	← 11499	9287222330	00082	÷	Threshold	Setting	
General		Settings	General		Settings	Collect Inter	val	— o	+ 5
ensor Settin	g		Measurement D	elay(ms)	100	() seconds. C	ing period ranges Collection Interval erval(3600 s)		
Protocol	Analog	Input 🗸	Interface A1						
			Voltage		0-10V	Interface A1	Threshold		
Power Type	Periodi	c power 🗸 🗸			⊘ Y=Ax+B	Value	≤	value	
ower Voltage:	5V	~	Factory A	1					1
			Factory B	0		Value	2	value	
nalog Input:	Voltage	~				value	≤ value ≤	value	
			Interface A2						
leasurement De	lay(ms)	100	Voltage		0-10V	Value	≤	value	
Interface A1		☉ Y=Ax+B		and					
nterface A2			Factory A	1		Value	2	value	
Vork Mode	Thresh	bld mode \sim	Factory B	0		Interface A2	Threshold		
hreshold Setting		>	Work Mode	Periodi	c collect moc 🗸	Malica	-		1
							Confin		

 \square

Sensor Warm-up Time	The warm-up time denotes the amount of time it takes for the sensor to attain its highest accuracy or performance level once the voltage supply has been applied.		
Current Range	0~10V (The Data Logger can collect voltage signals within 0~10V and automatically adjust the upper limit to increase accuracy)		
Interface V1	The Data Logger supports two analog voltage signals. When the		
Interface V2	sensor wire is connected to V1/V2, the configuration can be enabled.		
	"Y": It is the value Datalogger will upload.		
	"x": It is the original current value.		
Y= Ax + B	Factory A: Custom values that can be scaled up or down by multiples of the "x".		
	Factory B: A custom value that increments or diminishes the value of the "x".		
	By setting the values of A and B, you can calculate the desired value. If only raw values are uploaded, set A=1 and B=0.		

Work Mode:

Periodic collect mode	Periodically collect data. For example, if the uplink interval is set to 60 minutes, the data logger wakes up from the sleep state every 60 minutes, collects data, and uploads data via LoRaWAN.
Threshold mode	You can set a threshold rule for the measured value. When the rule is triggered, the device uploads data through LoRaWAN.
Collect Interval	Data Logger is divided into uplink interval and collection interval. The uplink interval is the interval of LoRaWAN data is uploaded each time. In periodic mode, the uplink interval is equal to the collection interval. Range: 30~3600 seconds

	Value = "Y", it is the value calculated by $Y = Ax + B$.		
Interface V1 Threshold	You can choose one of the four rules.		
	For example, set the uplink interval = 60 min, collection interval = 30s, interface 11 rule is value \ge 20.		
Interface V2 Threshold	Datalogger collects data on port I1 every 30 seconds. The collected data matches the rules. If the value is greater than 20, the data is uploaded immediately. If the threshold rule is not triggered within 60 minutes, data will be uploaded once every 60 minutes.		
	When the threshold is triggered and data is uploaded, the Data Logger will not collect and upload data for 5 minutes. There is silence for 5 minutes.		

6.6 Configure RS485 Modbus-RTU Sensor via App

Select the "Protocol" as "RS485 Modbus RTU". Then set the following parameters in turn.

™¥9\$Ø ™¥9\$Ø		题 16:04	۵ % الـ" ۵		10 × 9 ×	(55) 16:04
114992	2872223300082		← 114	9928722233	00082	
General	Settin	gs	General		Settin	gs
Sensor Setting	g	•	Power Type	Period	lic power	~
Protocol	RS485 Modbus R	ти ~	Power Voltage	5V		~
Baud	9600	~	Measurement I	Delay(ms)	100	
Modbus Address	1		Response Time	eout	1	x100 m
Power Type	Periodic power	~	Startup Time		1	×100 m
Power Voltage	5V	~	Measurement I	Number	3	~
Measurement De	lay(ms) 100		Work Mode	Period	lic collect m	100 ~
Response Timeou	ut 1	x100 ms	Measurement \$	Setting		
Startup Time	1	x100 ms				
Measurement Nu	mber 3	~	Restore Factory		Sen	d

Baud Rate	Baud rate of communication with the sensor.
Daud Nale	Range: 4800/9600/14400/19200/38400/57600/115200
Modbus Address	Slave address of the sensor. The range is 1 to 247.
Power Type	Periodic power: Power the sensor before data collection, and power off the sensor after data collection. This mode reduces power consumption and increases battery life.
	Always-on: Select this mode when the sensor needs constant power supply. Generally, an external 12V DC power supply is used. If it is powered only by batteries, it may not work for long.
Power Voltage	Select the supply voltage to the sensor. It supports 3V/5V/12V. Please refer to section "Power Supply Options of Sensor".
Sensor Warm-up Time	The warm-up time denotes the amount of time it takes for the sensor to attain its highest accuracy or performance level once the voltage supply has been applied.
Response Timeout	After Data Logger initiates a data read request to the sensor, it waits for the timeout time for a response. If this time is exceeded, the command will be resent; unit: 100 milliseconds.

Startup Time	The length of time the sensor can communicate from powered -on to communicating with Modbus, unit: 100 milliseconds.
Measurement Number	Data Logger can collect 0 to 10 measurements in RS485 mode.
	Periodic collect mode: Periodically collect and upload data.
Work Mode	Threshold mode: Select a maximum of three measurements to set the threshold rule. After the rule is triggered, data is uploaded.
Measurement Setting	Set the register of the measurement value and other configurations.

Measurement Setting

Set each measurement in turn

Register Address	The register address of the measured value in the sensor, which is an integer.	
Function Code	Modbus function code, supports 01/02/03/04 function code.	
	The data type determines the number of registers read from the sensor and how the data should parse the value.	
	There are some options:	
	Unsigned 16bit integer,0xAB	
Data Type	Signed 16bit integer, 0xAB	
	Unsigned 32bit integer, 0xABCD	
	Unsigned 32bit integer, 0xCDAB	
	Precision of the value. You can choose the decimal place of the measurement value. If 1 is selected, one decimal place is reserved.	
	0, #	
Precision	1, #.#	
	3, #.##	
Y= Ax + B	"Y": It is the value of Data Logger will upload.	

	"x": It is the original current value.
	Factory A: Custom values that can be scaled up or down by multiples of the "x".
	Factory B: A custom value that increments or diminishes the value of the "x".
	By setting the values of A and B, you can calculate the desired value. If only raw values are uploaded, set A=1 and B=0.
	This function is enabled only for some special sensors and is generally disabled by default
	After reading the value of the register, special instructions can be issued to the sensor, such as the instruction to empty the register after reading register 0.
Write Strategy	None: Off by default.
	After Read: Send the RS485 command to sensor after reading the register.
	On New Data: Send the RS485 command to sensor every 24 hours.

Work Mode:

Periodic collect mode	Periodically collect data. For example, if the uplink interval is set to 60 minutes, the data logger wakes up from the sleep state every 60 minutes, collects data, and uploads data via LoRaWAN.
Threshold mode	You can set a threshold rule for the measured value. When the rule is triggered, the device uploads data through LoRaWAN.
Collect Interval	Data Logger is divided into uplink interval and collection interval. The uplink interval is the interval of LoRaWAN data is uploaded each time. In periodic mode, the uplink interval is equal to the collection interval. Range: 30~3600 seconds

Т

 \square

Г

Measurement Threshold 1	Measurement: Select a measurement value that has been configured. Measurement Value = "Y", it is the value calculated by Y= Ax+B.					
	You can choose one of the four rules.					
Measurement Threshold 2	For example, set the uplink interval = 60 min, collection interval = 30s, interface I1 rule is value \ge 20.					
	Datalogger collects data on port 11 every 30 seconds. The collected data matches the rules. If the value is greater than 20, the data is uploaded immediately. If the threshold rule is not triggered within 60 minutes, data will be uploaded once every 60 minutes.					
Measurement Threshold 3	When the threshold is triggered and data is uploaded, the Data Logger will not collect and upload data for 5 minutes, there is silence for 5 minutes.					

٦

7. Connect to the SenseCAP Portal

7.1 SenseCAP Portal

The main function of the SenseCAP Portal is to manage SenseCAP devices and to store data. It is built on Azure, a secure and reliable cloud service from Microsoft. You can apply for an account and bind all devices to this account. SenseCAP provides the web portal and API. The web portal includes Dashboard, Device Management, Data Management, and Access Key Management, while API is open to users for further development.

📚 SENSECAP 📃						English xfactory.SZ@seeed.cc v		
⊙ Dashboard ≝ Devices →	Dashboard Add+			Data update interval: Manual . 3				
Gateway	Devices Overview			Monitoring		Announcement		
Node Group Sensor Node I da Data Table Graph	1 LoRad	Sateway	8 Sensor Node	Gateway Offline Node Offline Low Battery		Wecome		
🛡 Security 🗸 🗸	Gurrent Value 🧷		+ × ×	CO2 //		🖨 Chart Settin	ngs 👯 🗙	
Access API keys	UL 99529Pa Air Pressure (2CF7F 12210400074) •Online 2019-08-08 14:12:03	28°C Ar Temperature (26F7F12210400083) +Online 2019-08-08 13:53:11	68%FIH Air Humidity (20F 7F 1221040068) +Online 2019-08-08 13:53:11	500 400 200 100 0.0 300-200 100-00-05 10.50.00	2019-08-08 01:3	CO2 (2CFFF12210400076)	<u>∿</u> <u>al</u> ○	
	172.8Lux Light (2CF7F1221040007E)	385ppm CO2 (2CF7F12210400070)		Light 🖉		Chart Settin Light (2CF7F1221040007E)	ngs 🗄 🗙 <u>∿ d</u> C	
	•Online 2019-08-08 13:37:41	•Online 2019-08-08 13:31:09		250				

7.1.1 Create a New Account

Portal Website: http://sensecap.seeed.cc

- 4) Select register account, enter email information and click "register", the registered email will be sent to the user's mailbox.
- 5) Open the "SenseCAP..."Email, click the jump link, fill in the relevant information, and complete the registration.
- 6) Return to the login interface and complete the login.

Mote:

If you can't find the email, it may be automatically identified as "spam" and put in the "trash can".

7.1.2 Other Functions

- **Dashboard:** Including Device Overview, Announcement, Scene Data, and Data Chart, etc.
- Device Management: Manage SenseCAP devices.
- **Data Management:** Manage data, including Data Table and Graph section, providing methods to search for data.
- Subaccount System: Register subaccounts with different permissions.
- Access Key Management: Manage Access Key (to access API service), including Key Create, Key Update, and Key Check.

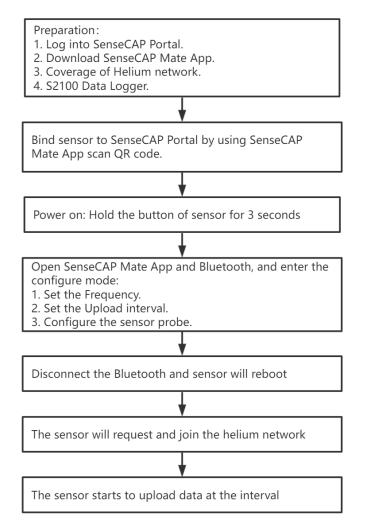
Mote:

SenseCAP Portal User Guide: https://sensecap-docs.seeed.cc/quickstart.html

7.1.3 API Instruction

SenseCAP API is for users to manage IoT devices and data. It includes 3 types of API methods: HTTP protocol, MQTT protocol, and Websocket protocol.

- With HTTP API, users can manage LoRa devices, to get raw data or historical data.
- With MQTT API, users can subscribe to the sensor's real-time measurement data through the MQTT protocol.
- With Websocket API, users can get real-time measurement data of sensors through Websocket protocol.


Please refer to this link for API User Guide: https://sensecap-docs.seeed.cc/

	- / ->		
API	List of Series Information (SenseCAP Portal	Data Management >
HTTP API >		Dashtioard (Secondar APP >
Data OperCinuan API >		Device Management >	
LoRaWAN Series	$-\infty$	Software Tools	<u> </u>
LaFuWW Cutoway and Western Se	encor Catalog-V1.4 pdf >	EarnerCAP Rode Configuration	in Teal >
SenseCAP Product User Gaéded and	aWAN Series) V1.3.pdf =	SeconCAP Sensor Hub Confi	Iperation Tool 1
ServerCAP LOFEWAR Server Unit	Annual VIII pot (

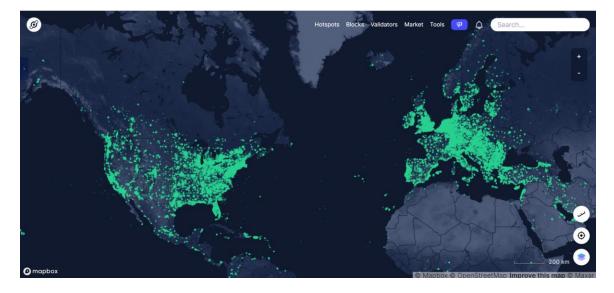
7.2 Connect to SenseCAP with Helium Network

7.2.1 Quick Start

Follow this process to quickly use the sensor, see the following section for details.

7.2.2 Preparation

1) SenseCAP Mate App


Download the App, please refer to section 5 for using.

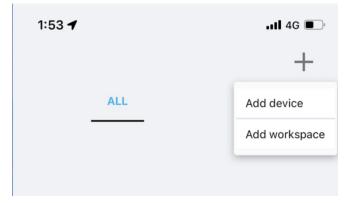
2) Coverage of Helium network

Option 1: Use the Helium network that already exists nearby.

Please refer to the map, search your location to see if there's any helium network around: https://explorer.helium.com/

A green hexagon indicates the presence of the network.

Option 2: Deploy a new Helium gateway.


You can purchase M1, M2 gateways to cover your surroundings with the Helium network: <u>https://www.sensecapmx.com/</u>

7.2.3 Bind Sensor to SenseCAP Portal

Please open SenseCAP Mate App.

(1) Scan QR Code

1) Click "Add device" on the upper-right corner of device page to enter the device binding page.

2) Scan the QR code on the device to bind the device to your account. If you do not set it to a designated group, the device will be put into the "default" group.



IoT into the Wild

Ĩ

(2) Manually fill in the EUI

If the QR code sticker is damaged, you can manually fill in the EUI of the device to bind the device to your account. Please make sure you put in the EUI in the format suggested by the system and then click "confirm".

7.2.4 Setup the Sensor

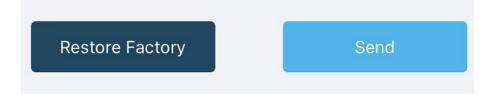
- 1) Open the SenseCAP Mate App
- 2) Press button and hold for 3 seconds, the LED will flash at 1s frequency.

3) Please click the "Setup" button to turn on Bluetooth and click "Scan" to start scanning the sensor's Bluetooth.

4) Select the Sensor by S/N (label). Then, the basic information of the sensor will be displayed after entering.

ΙοΤ	into the Wild	: I		
15:50		🕈 🔳	15:52	🕈 🔳
<	Setup		< 11499284	6221600009
			General	Settings
(1)		.)	Basic	_
•	((i /))		Device Model	SenseCAPS2101
			Device EUI	2CF7F1C04160000B
			Sensor Type	Air Temperature and Humidity Sensor
Select De	evice		Backup Firmware Ve	ersion 1.1.5
	16221600009 ure and Humidity Sensor	*	Software Version	1.1.5
	Scan		Hardware Version	V1.1
			LoRaWAN Version	V1.0.3
			Class Type	ClassA
			Battery	100%
			Measurement	
			M	easure
	<u> </u>			

7.2.5 Set Frequency of Sensor via SenseCAP Mate App


Set the corresponding frequency band based on the frequency band of the gateway.

Please refer to <u>section 5</u> for detail.

1) Click the "Setting" and select the platform is "SenseCAP for Helium".

15:53	🗢 🛙	D 15:54		🕈 🖿
114993	2846221600009	< 11499	2846221600009	
General	Settings	General	Setti	ngs
atform	Other Platform V	Platform	Other Platform	~
equency Plan	US915 ~	Frequency Plan	US915	~
ub-Band	Sub-Band2 V	Sub-Band	Sub-Band2	~
plink Interval (m	in) 6	Uplink Interval (n	nin)	60
ctivation Type	ОТАА 🗸	EU868	_	
evice EUI	2CF7F1C04160000B	US915		
enseCAP for Th	e Things Network	AU915		
enseCAP for He	elium	AS923		
lelium		IN865		
he Things Netw	rork	KR920		

- 2) Select the Frequency Plan, if the gateway is US915, set the sensor to US915.
- 3) Click the "Send" button, send the setting to the sensor for it to take effect.

4) Click the "Home" button, the App will disconnect the Bluetooth connection.

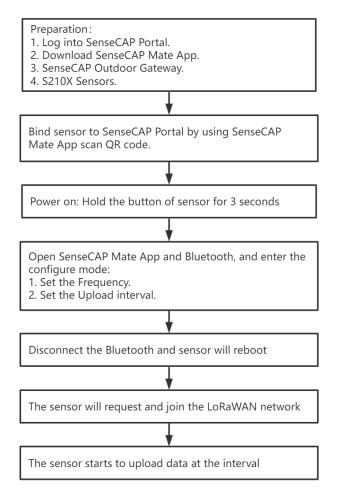
Then, the sensor will reboot.

- 5) When the device is disconnected from Bluetooth, the LED lights up for **5 seconds** and then flashes as a **breathing light**.
- 6) After joining the network successfully, LED flashes fast for 2s.

7.2.6 Check Data on SenseCAP Portal

On the SenseCAP App or the website <u>http://sensecap.seeed.cc/</u>, you can check the device online status and the latest data. In the list for each Sensor, you can check its online status and the time of its last data upload.

IoT into the Wild =


	=					E	inglish 🗸 📃 🗴	factory.SZ@seeed.cc 👻 🖃	
O Dashboard	Devices / S	Sensor Node							
🛗 Devices 🗸 🗸	All		Ra NB-IoT						
Gateway	All	Lo	na ND-101						
Node Group		EUI Device EUI	Frequency(M	Hz) Frequency		*			
Sensor Node	Device	Group Device Group	 Online Sta 	tus Online Status					
Ili Data 🗸									
Table	Registratio	n Time From	🛅 — То		iii	1Day 7Days 30Day	8		
Graph	Search	Clear Clear	e number of search results: 4		1				
🔮 Security 🗸 🗸									
Access API keys	• NO.	EUI	Device Name	Sensor Count	Device Group	Online Status	Operation	Last Message Time	1 N N
	0.1	2CF7F12210400070	CO2 Sensor	1	station-1	Online	Move	2019-11-15 10:28:16	
	2	2CF7F12210400074	Barometric Pressure Sensor	1	station-1	Online	Move	2019-11-15 10:09:27	
	3	2CF7F1221040007E	Light Intensity Sensor	1	station-1	Online	Move	2019-11-15 09:43:47	
	4	2CF7F12210400083	Air Temperature and Humidity Sensor	1	station-1	Online	Move	2019-11-15 10:02:47	

7.3 Connect to SenseCAP with private TTN

7.3.1 Quick Start

Follow this process to quickly use the sensor, see the following section for details.

7.3.2 Preparation

1) SenseCAP Mate App

Download the App, please refer to section 5 for using.

2) SenseCAP Outdoor Gateway

Now, the sensor needs to be used with the SenseCAP Outdoor Gateway (<u>https://www.seeedstudio.com/LoRaWAN-Gateway-EU868-p-4305.html</u>) to transmit data to the SenseCAP Portal.

a) Setup the Gateway, connect to power cable and Internet.

IoT into the Wild

- b) Bind the gateway to SenseCAP Portal.
- c) Ensure the gateway indicator is steady on.

d) Ensure the gateway is displayed online on the portal.

Online status	Online

7.3.3 Bind Sensor to SenseCAP Portal

Please refer to the section 6.2.3

7.3.4 Setup the Sensor

Please refer to the section 6.2.4

7.3.5 Set Frequency of Sensor via SenseCAP Mate App

Set the corresponding frequency band based on the frequency band of the gateway.

Please refer to section 5 for detail.

1) Click the "Setting" and select the platform is "SenseCAP for The Things Network".

15:53	🗢 I	D 15:54		🗢 🖿
11499	2846221600009	< 11499	2846221600009	
General	Settings	General	Settin	igs
latform	Other Platform V	Platform	Other Platform	~
requency Plan	US915 ~	Frequency Plan	US915	~
ub-Band	Sub-Band2 V	Sub-Band	Sub-Band2	~
plink Interval (m	nin) 6	Uplink Interval (n	nin) e	50
ctivation Type	OTAA ~	EU868	_	
evice EUI	2CF7F1C04160000B	US915		
enseCAP for Th	ne Things Network	AU915		
enseCAP for He	elium	AS923		
lelium		IN865		
he Things Netw	vork	KR920		

- 2) Select the Frequency Plan, if the gateway is US915, set the sensor to US915.
- 3) Click the "Send" button, send the setting to the sensor for it to take effect.

4) Click the "Home" button, the App will disconnect the Bluetooth connection.

Then, the sensor will reboot.

- 5) When the device is disconnected from Bluetooth, the LED lights up for **5 seconds** and then flashes as a **breathing light**.
- 6) After joining the network successfully, LED flashes fast for 2s.

7.3.6 Check Data on SenseCAP Portal

Please refer to the section 6.2.6

8. Connect to Helium Network

Please refer to the manual to connect sensors to Helium public console:

https://files.seeedstudio.com/products/SenseCAP/S210X/How%20to%20Connect%20Sense CAP%20S210X%20to%20Helium%20Network.pdf

9. Connect to The Things Network

Please refer to this manual:

https://files.seeedstudio.com/products/SenseCAP/S210X/How%20to%20Connect%20Sense CAP%20S210X%20to%20The%20Things%20Network.pdf

Please refer to the link to use the TTN platform:

The Things Network website: https://www.thethingsnetwork.org

The Things Industries login: https://accounts.thethingsindustries.com/login

TTN Quick Start: https://www.thethingsnetwork.org/docs/quick-start/

10. Payload Decoder

10.1 Decoder Code

TTN payload decoding script for SenseCAP LoRaWAN:

https://github.com/Seeed-Solution/TTN-Payload-Decoder/blob/master/decoder_new-v3.js

APPLICATION DATA

ters	uplink	downlink	activation	n ack	error		
	time	counter	port				
• 1	1:19:12		0				
• 1	1:19:16	5	2	confirmed	payload: 01	01 10 B0 68 00 00 01 02 10 88 F4 00 00 8C FF	Measurement Data packets
• 1	1:10:50		Û				
1	1:19:02	4	2	confirmed	payload: 00	19 00 58 68 43 00 00 00 AB 5E	
• 1	1:18:42		0				Initial Packets
1	1:18:46	3	2	confirmed	payload: 01	06 00 00 00 00 00 2F 87	
• 1	1:18:28		0				
1	1:18:32	2	2	confirmed	payload: 00	00 00 01 01 00 01 00 07 00 64 00 05 00 01 01 00	01 01 00 01 01 02 00 54 00 00 15 01 03 0
•							
• 1	1:18:15		0				
1	1:18:19	1	2	confirmed	payload: 00	00 00 00 00 00 00 00 00 00	
• 1	1:17:57		0				
1	1:18:01	0	2	confirmed	payload: 00	00 00 00 00 00 00 00 00 00	
/ 1	1:17:52				dev addr: 26	6 02 22 C0 app eui: 80 00 00 00 00 00 00 08 dev	veui: 2C F7 F1 21 10 70 00 54

II pause 🛍 clear

10.2 Packet Parsing

10.2.1 Packet Initialization

After being powered on or reboot, SenseCAP Sensors will be connected to the network using the OTAA activation method. Each Sensor Node will send data packets to the server, including the following data:

Initial packets (no need to learn about these initial packets)

One packet with device info including hardware version, software version, battery level, sensor hardware & software version, sensor EUI, power, and sensor power time counter at each channel.

Measurement data packets

The only thing we should pay attention to is the sensor measurement data packets.

APPL	IPPLICATION DATA											
Filter		ıplink	downlink	activatio	n ack	error						
	ti	me	counter	port								
•	11:19:	12		0								
•	11:19:	16	5	2	confirmed	payload:	01 01 10 B0 68 00 00 01 02 10 88 F4 00 00 8C FF	Measurement data packets				
•	11:18:	58		0								

Packet Structure

The structure of the frame is shown in the image below.

channel	frame type	frame content		
1 byte	2 bytes	≥ 4 bytes		

1 byte for channel, default as 1, means the sensor has been well connected.

2 bytes for frame type, in this case, it will be 0110 and 0210, means temperature value and humidity value

4 bytes for content, is the sensor value with CRC

The frame content is sent in little-endian byte order.

10.3 Data Parsing Example

10.3.1 Measurements List

Measurements	Measurement ID(HE	X/DEC)	Resolution	Unit
Air Temperature	0x1001	4097	0.01	°C
Air Humidity	0x1002	4098	0.01	%RH
Light Intensity	0x1003	4099	1	Lux
CO2	0x1004	4100	1	ppm
Soil Temperature	0x1006	4102	0.1	°C
Soil Moisture	0x1007	4103	0.1	%
Soil EC (Electrical Conductivity)	0x100C	4108	0.01	dS/m

For the complete list, see: <u>https://sensecap-docs.seeed.cc/measurement_list.html</u>

10.3.2 Example – S2101 Air Temperature and Humidity Sensor

Air Temperature and Humidity Sensor measurement packet:

01 0110 B0680000 01 0210 88F40000 8CFF

Part	Value	Raw Data	Description
			01 is the channel number.
1	Air Temperature	<mark>01 0110</mark> B0680000	 0110 is 0x1001 (little-endian byte order) , which is the measurement ID for air temperature. B0680000 is actually 0x000068B0, whose equivalent decimal value is 26800. Divide it by 1000, and you will get the actual measurement value for air temperature as 26.8°C.
2	Air Humidity	<mark>01</mark>	 01 is the channel number. 0210 is 0x1002 (little-endian byte order), which is the measurement ID for air humidity. 88F40000 is actually 0x0000F488, whose equivalent decimal value is 62600. Divide it by 1000, and you will get the actual value for air humidity as 62.6%RH.
3	CRC	8CFF	The CRC verification part.

10.4 Battery Information

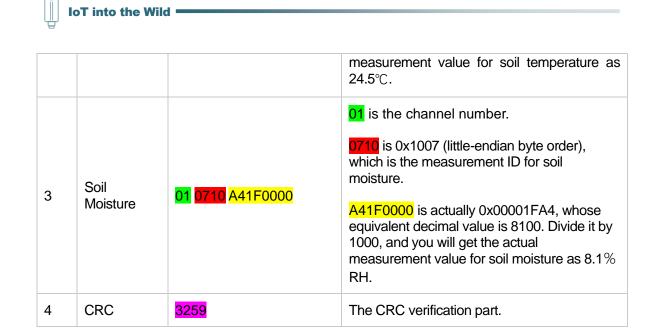
Please note the counter number. After 20 packets, it will follow one special packet with battery info.

You can either ignore this packet or get rid of the battery info in your code.

ψ 18:89:48 Successfully scheduled data downlink …	DevAddr: 27 00	9 59 27				
ψ 18:89:48 $$ Schedule data downlink for transmissi.	FPort: 5					
\Uparrow 18:89:48 $$ Forward data message to Application S.	DevAddr: 27 00	8 59 27 FRMPayload: FE 39 78 39 5	DE 1E A8 C5 5F 0D 63 BE F6 5E 7E DB 0E 13 4F 44 87 D7	FPort: 2 SNR: 7.	5 Bandwidth: 125000	
\uparrow 18:89:48 Forward uplink data message	DevAddr: 27 00	8 59 27 FRMPayload: 80 87 88 64 8	05 00 01 06 10 B4 5F 08 00 01 07 10 A4 1F 00 08 32 59	FPort: 2 SNR: 7.	5 Bandwidth: 125008	
\uparrow 18:89:48 Receive uplink data message	DevAddr: 27 00	8 59 27	Battery Package			
Φ 18:89:48 $% = 100000000000000000000000000000000000$	DevAddr: 27 00	B 59 27 FPort: 2 FCnt: 5 FRMPay	Dad: FE 39 78 39 59 DE 1E AB C5 5F 0D 63 BE F6 5E 7E	DB 0E 13 4F 44 87 D7	Bandwidth: 125000 SNR: 7.5 Raw payload:	88 27 59
<⇒18:89:48 Link ADR accept received	DevAddr: 27 00	9 59 27				
↑ 18:89:48 Receive data messade	DevAddr: 27 00	8 59 27 FPort: 2 FCnt: 5 FRMPay	pad: FE 39 78 39 59 DE 1E A8 C5 5F 0D 63 BE F6 5E 7E	DB 0E 13 4F 44 87 D7	Bandwidth: 125000 SNR: 7.5 Raw payload:	88 27 59

Original Info:

00070064000500010610B45F0000010710A41F00003259


Battery Package: 00070064000500

Example:

Battery & Soil Moisture and Temperature Sensor(S2104) measurement packet:

00070064000500010610B45F0000010710A41F00003259

Part	Value	Raw Data	Description		
			00 is the channel number.		
			0700 is 0x0007 (little-endian byte order) , which is the measurement ID for battery.		
1	1 Battery 00 0700 6400 0500	6400 is 0x0064 (little-endian byte order) , whose equivalent decimal value is 100. Battery level is 100%.			
			0500 is 0x0005 (little-endian byte order) , whose equivalent decimal value is 5. Upload interval is 5 minutes.		
			01 is the channel number.		
2	Soil Temperature	<mark>01</mark> 0610 B45F0000	0610 is 0x1006 (little-endian byte order) , which is the measurement ID for soil temperature.		
			B45F0000 is actually 0x00005FB4, whose equivalent decimal value is 24500. Divide it by 1000, and you will get the actual		

11. LoRaWAN Downlink Command

11.1 Set the Data Uplink Interval

- (1) Using the Network Server's portal or API to send downlink command, then the Node will respond to the ack. The downlink command takes effect and responds the next time the node uploads data.
- (2) Downlink as follow:

0x00	0x89	0x00	prepareId_L	prepareId_H	duty_L	duty_H	crc-L	crc-H		
0x00	0x00 Fixed field									
0x89		Fixed	field							
0x00		Fixed	field							
propor	prepareId_L Command ID low byte, you can customize the values, it allows each command IC						mand ID			
prepare	ela_L	to be t	he same	-						
prepare		Comm	and ID high byte	e, you can custor	nize the val	ues, it allows	each com	mand ID		
prepare	elu_n	to be t	he same	-						
duty_L		Data i	nterval low byte,	you can set the	data interva	l, unit: minute	Э			
duty_H	duty_H Data interval high byte, you can set the data interval, unit: minute									
crc-L										
crc-H		CRCI	ow byte, it's calc	ulated by the CR	C-16/CCIT	Т				

(3) When you send the downlink command, the Node responds to the ack command.

0x00	0x1F	0x00	prepareId_L	prepareld_H	result	0x00	crc-L	crc-H	
0x00	0x00 Fixed field								
0x1F		Fixed f	ield						
0x00	Dx00 Fixed field								
prepare	epareId_L Command ID low byte, it is the same as the downlink command								
prepare	eld_H	Comm	and ID high byte	e, it is the same a	s the dow	nlink comma	and		
result		If the d	ownlink comma	nd is in force, it re	esponds 0	x01, else it r	esponds 0x	00	
0x00		Fixed f	ield				•		
crc-L	crc-L CRC low byte, it's calculated by the CRC-16/KERMIT								
crc-H									

(3) Use the FPort = 2

CRC Tool: <u>https://crccalc.com/</u>, select the algorithm of CRC-16/KERMIT.

Example: Set the Node's data interval is 10 minutes.

Send the downlink command (HEX) via FPort=2:

00 89 00 11 22 0A 00 38 B4

0x00	0x89	0x00	prepareId_L	prepareId_H	duty_L	duty_H	crc-L	crc-H
00	89	00	11	22	0A	00	38	B4

ACK Response:

<mark>00 1F 00 11 22 01 00 78 0F</mark>

0x00	0x1F	0x00	prepareId_L	prepareId_H	result	0x00	crc-L	crc-H
00	1F	00	11	22	01	00	78	0F

Command List:

Description	Command
Set Uplink interval = 1 minute	008900112201009050
Set Uplink interval = 5 minutes	00890011220500F037
Set Uplink interval = 10 minutes	00890011220A0038B4
Set Uplink interval = 15 minutes	00890011220F0080CA
Set Uplink interval = 20 minutes	0089001122150061V2
Set Uplink interval = 30 minutes	00890011221E00C946
Set Uplink interval = 60 minutes	00890011223C004A56

11.2 Reboot the device

FPort = 2

Command: 00C8000000002B26

 \square

11.3 How to send downlink

Example: use the Helium Console to send

		Region		
2	US915	5	\vee	
00F037		Base64	Text	

12. Device Installation

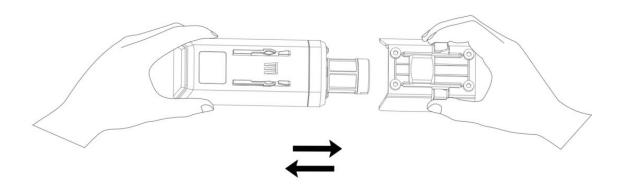
12.1 Check the waterproof performance of the device

12.1.1 Data logger connection port

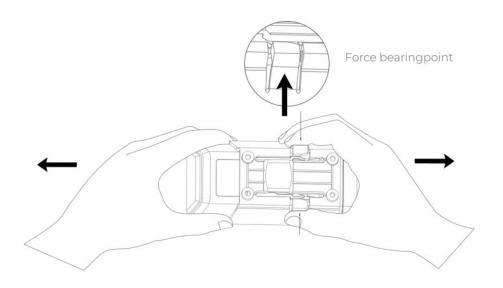
- 1) Check the connection position of the probe of the Datalogger to ensure that the screw cap is tightened.
- 2) The waterproof tape can be used to wrap the connection around many circles to strengthen the waterproof performance.

12.1.2 The connection port of the junction box

12.2 Installing Sensor

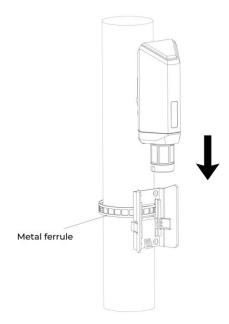

12.2.1 Installing the Sensor Bracket

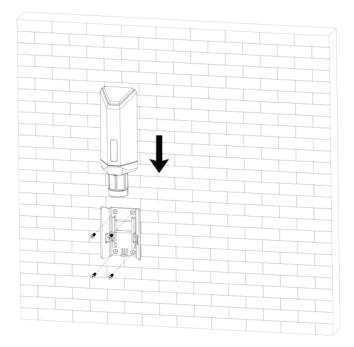
Specially designed for installing SenseCAP Sensors, the bracket is a sliding cap. With designated screw-holes, the bracket helps fasten the Sensor Node firmly onto a pole or a wall.



Ĩ

1) With the sensor in one hand and a bracket in the other, find an unobstructed direction along the back of the sensor.


2) One hand holds the clasp while the other holds the device. Pull outward with opposite force. Press the upper part of the buckle with your finger.


12.2.1 Mount on Pole and Wall

1) Mount on pole

||

2) Mount on wall

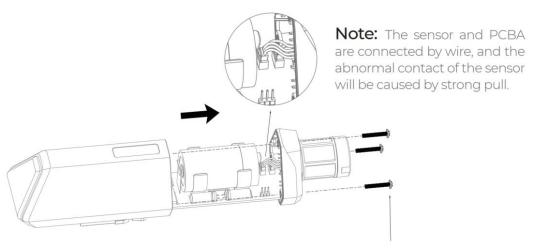
12.3 Replace the Battery

12.3.1 How to Buy the Battery

We suggest buying it from Amazon.

- 1) EEMB ER34615: Click here
- 2) Search the key word: LiSOCI2 ER34615 battery. Compare the batteries that meet the following parameters. The most important thing is to match the voltage.

Battery Specification				
Nominal capacity	19000mAh			
Model	Li-SOCI2, ER34615			
Nominal voltage	3.6V			
Max. continuous current	230mA			
Max. pulse current capability	400mA			
Dimension	Ø 34.0*61.5mm (D size)			
Operating temperature range	-60°C to 85°C			

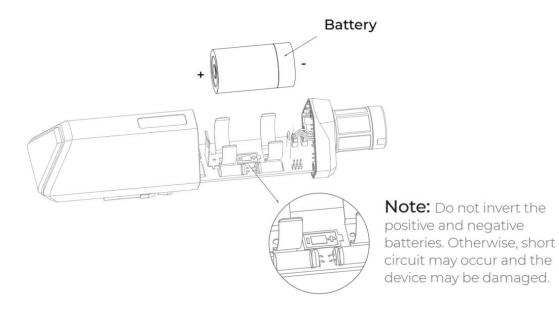

12.3.2 How to Replace a New Battery

1) Remove three screws.

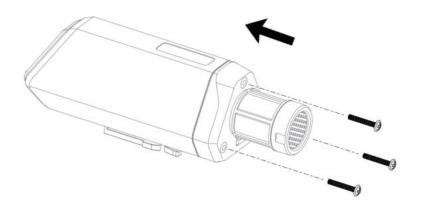
Note:

Ĭ

The sensor and PCBA are connected by wire, please disassemble carefully.


3*PWM3.0x20.0MM

2) Install a new battery.



Pay attention to the positive and negative terminals of the battery.

Ĩ

3) Install screws.

Note:

During the installation, ensure that the waterproof washer is properly installed and the screws are locked; otherwise, water will flow into the device.

13. Trouble Shooting

13.1 Sensors can't join LoRa network, how to do?

- 1) Check the gateway frequency configuration. Make sure the gateway and Sensor Node have the same uplink and downlink frequency.
- 2) Check the real-time log and RESET the sensor to see if there are any sensor data packets. If there are packets, check whether the gateway is sending downlink packets.
- 3) If the channels and other configurations are correct and the gateway logs do not have packets, please contact technical support.

13.2 Why is the new sensor's battery not 100%?

Battery power detection is not high precision. Its principle is to measure the supply voltage, when the power is turned on and repeatedly RESET, the voltage is unstable, so it is not 100%. When the sensor is stable, the power will be more accurate.

13.3 Support

Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.

Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc.) and send a mail to: sensecap@seeed.cc

13.4 Document Version

Version	Date	Description	Editor
V1.0.0	9/05/2022	First edition	Jenkin Lu