

THE NEW GENERATION LORAWAN SENSORS OF SENSECAP

S210X Sensors User Guide

Table of Contents

1.	Product Introduction4		
2.	Part I	_ist	5
3.	Key F	Parameters of the Sensor	6
4.	LED	of Sensor Working Status	7
5.	Sens	eCAP Mate App	9
5.1	Down	oad App	9
5.2	2How t	o connect sensor to App	10
5	.2.1	Create a New Account	10
5	.2.2	Connect to Sensor to App	11
5.3	3Config	jure parameters through App	13
5	.3.1	Select the Platform and Frequency	13
5	.3.2	Set the Interval	17
5	.3.3	Set the EUI and Key	17
5	.3.4	Set the Packet Policy	18
5	.3.5	Set the Activation Type	18
5	.3.6	Restore Factory Setting	19
6.	Conn	ect to the SenseCAP Portal	20
6.1	Sense	CAP Portal	20
6	5.1.1	Create a New Account	20
6	.1.2	Other Functions	
6	.1.3		21
6 1		API Instruction	
0.2	2Conne	API Instruction ect to SenseCAP with Helium Network	
	2Conne 5.2.1		22
6		ect to SenseCAP with Helium Network	22 22
6 6	.2.1	ect to SenseCAP with Helium Network Quick Start	22 22 22
6 6 6	5.2.1 5.2.2	ect to SenseCAP with Helium Network Quick Start Preparation	22 22 22 23
6 6 6	5.2.1 5.2.2 5.2.3	ect to SenseCAP with Helium Network Quick Start Preparation Bind Sensor to SenseCAP Portal	22 22 22 23 25
6 6 6 6	5.2.1 5.2.2 5.2.3 5.2.4	ect to SenseCAP with Helium Network Quick Start Preparation Bind Sensor to SenseCAP Portal Setup the Sensor.	22 22 22 23 25 26
6 6 6 6 6	5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6	ect to SenseCAP with Helium Network Quick Start Preparation Bind Sensor to SenseCAP Portal Setup the Sensor Set Frequency of Sensor via SenseCAP Mate App	22 22 22 23 25 26 27
6 6 6 6 6 6.3	5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6	ect to SenseCAP with Helium Network Quick Start Preparation Bind Sensor to SenseCAP Portal Setup the Sensor Set Frequency of Sensor via SenseCAP Mate App Check Data on SenseCAP Portal	22 22 22 23 25 26 27 29

6.3.	.3 Bind Sensor to SenseCAP Portal	30	
6.3.	6.3.4 Setup the Sensor		
6.3.	.5 Set Frequency of Sensor via SenseCAP Mate App	30	
6.3.	.6 Check Data on SenseCAP Portal	31	
7. C	Connect to Helium Network	32	
8. C	Connect to The Things Network	32	
9. P	Payload Decoder	33	
9.1D	Decoder Code	33	
9.2P	Packet Parsing	34	
9.2.	.1 Packet Initialization	34	
9.3D	Data Parsing Example	35	
9.3.	.1 Measurements List	35	
9.3.	.2 Example – S2101 Air Temperature and Humidity Sensor	36	
9.3.	.1 Example – S2102 Light Intensity Sensor	37	
9.3.	.2 Example – S2103 CO2, Temperature and Humidity Sensor	38	
9.3.	.3 Example – S2104 Soil Moisture and Temperature Sensor	39	
	1 Evenuela 00405 Opil Majatura Tarana anatura and 50 Operan	10	
9.3.	.4 Example – S2105 Soil Moisture, Temperature and EC Sensor	40	
	attery Information		
9.4B		41	
9.4B	Battery Information	41 43	
9.4B 10. L	Battery Information ORaWAN Downlink Command Set the Data Uplink Interval	41 43 43	
9.4B 10. L 10.1	Battery Information ORaWAN Downlink Command Set the Data Uplink Interval Reboot the device	41 43 43 44	
9.4B 10. L 10.1 10.2 10.3	Battery Information ORaWAN Downlink Command Set the Data Uplink Interval Reboot the device	41 43 43 44 45	
9.4B 10. L 10.1 10.2 10.3	Battery Information DoRaWAN Downlink Command Set the Data Uplink Interval Reboot the device How to send downlink	41 43 43 43 44 45 46	
9.4B 10. L 10.1 10.2 10.3 11. D	Battery Information DRAWAN Downlink Command Set the Data Uplink Interval Reboot the device How to send downlink Device Installation The Do's and Don'ts	41 43 43 43 44 45 46 46	
9.4B 10. L 10.1 10.2 10.3 11. D 11.1	Battery Information DRAWAN Downlink Command	41 43 43 44 45 46 46 47	
9.4B 10. L 10.1 10.2 10.3 11. D 11.1 11.2	Battery Information DRAWAN Downlink Command	41 43 43 44 45 46 46 47 47	
9.4B 10. L 10.1 10.2 10.3 11. D 11.1 11.2 11.2 11.2	Battery Information DRAWAN Downlink Command	41 43 43 44 45 46 46 46 47 47 48	
9.4B 10. L 10.1 10.2 10.3 11. D 11.1 11.2 11.2 11.2	Battery Information Dorallow Downlink Command	41 43 43 44 45 46 46 46 47 47 47 47 48 50	
9.4B 10. L 10.1 10.2 10.3 11. D 11.1 11.2 11.2 11.3	Battery Information DRaWAN Downlink Command	41 43 43 44 45 46 46 46 47 47 48 50 50	
9.4B 10. L 10.1 10.2 10.3 11. D 11.1 11.2 11.2 11.3 11.3 11.3	Battery Information DRaWAN Downlink Command	41 43 43 44 45 46 46 46 47 48 50 51	

12.2	Why is the new sensor's battery not 100%?	53
12.3	Support	53
12.4	Document Version	.53

1. Product Introduction

Among the first launch of Seeed Industrial IoT product series, SenseCAP is focusing on wireless environmental sensing applications: smart agriculture, precision farming, smart city and so on. It consists of hardware products (sensors, data-loggers & gateways, etc.), software services (SenseCAP portal, mobile App, open dashboard), and API for device & data management.

The next generation of SenseCAP LoRaWAN sensors, the S210X series offers users' industrial long-distance data acquisition via LoRa. The S210x series is suitable for a wide variety of different industries such as smart agriculture, smart buildings and industrial control.

With the IP66 rating, $-40 \sim +85$ C ° operating temperature and built-in 19Ah high-capacity battery, combined with the devices' low power consumption, the S210X series can operate in harsh outdoor environments for up to 10 years with a range of up to 10km. The built-in Bluetooth facilitates setup and greatly reduces large-scale deployment costs. Users can focus on application development with the easy set-up and start retrieving data in a few steps. Just install the device, bind it using the QR code and configure the network, then data can be viewed from the SenseCAP portal, which supports popular IoT protocols such as HTTP and MQTT.

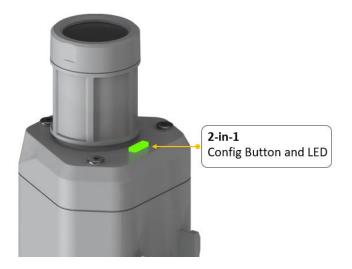
Ĭ

2. Part List

Before installing, please check the part list to ensure nothing is missing.

Picture	Name	Quantity
	Sensor Node	1
	Bracket	1
Quick Start for SenseCAP S2IOX Sensors	Quick Start Guide	1
	KA4*20mm Self-drilling Screw	4

Ĭ


3. Key Parameters of the Sensor

Using the LoRaWAN protocol generally involves the following parameters.

Parameters	Description
LoRaWAN MAC Version	v1.0.3
Join Type	OTAA (Default)
	ABP (It can be modified via App)
Device EUI	Unique identification of device, one of the join network parameters on OTAA mode. (It can be got via App)
Device Code (KEY)	On the device label, for device binding and API call.
App EUI	Unique identification of application, one of the join network parameters on OTAA mode. (It can be got via App)
Арр Кеу	Application key, one of the join network parameters on OTAA mode. (It can be got via App)
DevAddr	This parameter is available only in ABP mode, one of the join network parameters.
NwkSkey	This parameter is available only in ABP mode, one of the join network parameters.
AppSkey	This parameter is available only in ABP mode, one of the join network parameters.

Ĩ

4. LED of Sensor Working Status

You can refer to the LED indicator for the Sensor Node for its working status. Please see the status explanations in the chart below:

Actions	Description	Green LED Status
First power up, press and hold for 3s	Power on and activate the Bluetooth	LED flashes at 1s frequency, waiting for Bluetooth connection. If Bluetooth not connected within 1 minute, the machine would shut down again.
Press once	Reboot device and join LoRa network	 The LED will be on for 5 seconds for initialization Waiting for join LoRa network: breathing light flashing Join LoRa network success: LED flashes fast for 2s LoRa network join failure: LED suddenly stop.

7

Ĩ

Press and hold for 3s	Activate Bluetooth again	 Waiting for Bluetooth connection: LED flashes at 1s frequency Enter configuration mode after Bluetooth connection is successful: LED flashes at 2s frequency If Bluetooth is not connected within 1 minute, the device will reboot and join LoRa network.
Press and hold for 9s	Power off	In the 3rd seconds will start flashing at 1s frequency, until the light is steady on, release the button, the light will go out.

<u> Mote:</u>

1. After power off, you need to **reconfigure the frequency band.** Power off is recommended when not deployed.

2. If the frequency is not configured after power on, the device will be power off again.

Ĭ

5. SenseCAP Mate App

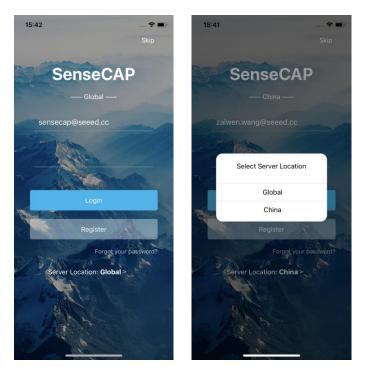
5.1 Download App

As a tool, SenseCAP Mate App is used to config LoRa parameters, set interval, bind devices to your account and check device basic information.

(1) For iOS, please search for "SenseCAP Mate" in the App Store and download it.

Download SenseCAP Mate App

(2) For Android, please search for "SenseCAP Mate" in the Google Store and download it.


You can also download App from https://www.pgyer.com/sensecapmate

5.2 How to connect sensor to App

5.2.1 Create a New Account

SenseCAP Mate supports device configuration and remote management. To use the SenseCAP Portal platform and other functions, please register an account.

SenseCAP Mate supports offline functionality, and you can opt out of an account if you only use the configuration sensor. Just click Skip.

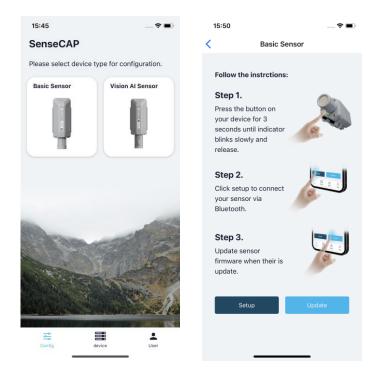
Please select Global of Server Location.

You can also create an account via the SenseCAP Portal: http://sensecap.seeed.cc

- 1) Select register account, enter email information and click "register", the registered email will be sent to the user's mailbox.
- 2) Open the "SenseCAP..."Email, click the jump link, fill in the relevant information, and complete the registration.
- 3) Return to the login interface and complete the login.

Mote:

If you can't find the email, it may be automatically identified as "spam" and put in the "trash can".


5.2.2 Connect to Sensor to App

1) Press button and hold for **3 seconds**, the LED will flash at 1s frequency. Please use the App to connect the sensor within 1 minute; otherwise, the device will power off or reboot.

2) Please select "S210X Sensor", it includes S210X series products.

Please click the "Setup" button to turn on Bluetooth and click "Scan" to start scanning the sensor's Bluetooth.

3) Select the Sensor by S/N (S/N is on the front label of the sensor). Then, the basic information of the sensor will be displayed after entering.

IoT into the Wild				
15:50	? .		🕈 🔳	D
<	Setup	< 11499	92846221600009	
		General	Settings	
(1)		Basic		
• ((Device Model	SenseCAPS2101	
		Device EUI	2CF7F1C04160000B	
		Sensor Type	Air Temperature and Humidity Sensor	
Select D	Device	Backup Firmwa	re Version 1.1.5	
	346221600009 >	Software Versi	on 1.1.5	
-		Hardware Vers	ion V1.1	
	Scan	LoRaWAN Vers	sion V1.0.3	
		Class Type	ClassA	
		Battery	100%	
		Measuremen	nt	
			Measure	

4) Enter configuration mode after Bluetooth connection is successful: LED flashes at 2s frequency.

Ĭ

5.3 Configure parameters through App

5.3.1 Select the Platform and Frequency

S210x Sensors are manufactured to support universal frequency plan from 863MHz ~928MHz in one SKU. That is to say, every single device can support 7 frequency plans.

15:53	🗢 🔳	15:54	🗢 🔳
< 114992	846221600009	< 114992	2846221600009
General	Settings	General	Settings
Platform	Other Platform V	Platform	Other Platform V
Frequency Plan	US915 ~	Frequency Plan	US915 V
Sub-Band	Sub-Band2 V	Sub-Band	Sub-Band2 🗸
Uplink Interval (mi	n) 6	Uplink Interval (mi	in) 60
Activation Type	OTAA V	EU868	
Device EUI	2CF7F1C04160000B	US915	
SenseCAP for The	e Things Network	AU915	
SenseCAP for Hel	lium	AS923	
Helium		IN865	
The Things Network		KR920	
Other Platform		RU864	
_		_	

Platform	Description
SenseCAP for The Things Network	Default platform. It must be used with SenseCAP Outdoor Gateway (https://www.seeedstudio.com/LoRaWAN-Gateway-EU868-p- 4305.html). SenseCAP builds a proprietary TTN server that enables sensors to be used out of the box when paired with an SenseCAP outdoor gateway.
SenseCAP for Helium	When there is the Helium network around the user, data can be uploaded using sensors. Devices run on a private Helium console of SenseCAP. Users do not need to create devices on Helium console, right out of the box.
Helium	Connect Sensor to public Helium console.
The Things Network	Connect Sensor to your TTN(TTS) server.
Other Platform	Other LoRaWAN Network Server.

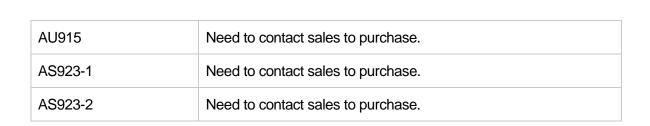
1) SenseCAP for Helium:

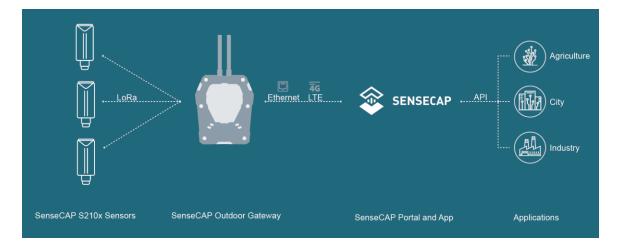
We provide the SenseCAP Portal to manage devices and data: sensecap.seeed.cc

We built a private Helium Console with an embedded SenseCAP Portal. When users get the SenseCAP sensors, you can use it by scanning the code and binding it to the Portal.

"SenseCAP for Helium" is selected by default. The device runs in a fixed main frequency and sub-band, refer to Helium Frequency Plan (<u>https://docs.helium.com/lorawan-on-helium/frequency-plans/</u>). You only need to select the main frequency, such as EU868 and US915.

SenseCAP for Helium supports the following frequency plan:


EU868 / US915 / AU915 / KR920 / IN865 / AS923-1 / AS923-2 / AS923-3 / AS923-4


2) SenseCAP for The Things Network

SenseCAP Portal also builds the TTN private server, and the sensor must be used together with the SenseCAP Outdoor Gateway (<u>https://www.seeedstudio.com/LoRaWAN-Gateway-EU868-p-4305.html</u>).

Due to the limitation of the SenseCAP outdoor gateway frequency, "SenseCAP for TTN" supports the following frequency plan(The sensor is capable of supporting all frequency plan):

Gateway Frequency	Description
EU868	It must be used with SenseCAP EU868 Gateway (<u>https://www.seeedstudio.com/LoRaWAN-Gateway-EU868-p-4305.html</u>)
US915	It must be used with SenseCAP US915 Gateway (<u>https://www.seeedstudio.com/LoRaWAN-Gateway-US915-p-4306.html</u>)

3) Helium

Users can choose sensors to use on the public helium console:

https://console.helium.com/

IoT into the Wild

4) The Things Network

Users can choose sensors to use on the public The Things Network server:

https://console.cloud.thethings.network/

5) Other Platform:

When you use other LoRaWAN network server, please select Other Platform.

At this point, you need to determine the sensor frequency band according to the gateway frequency and sub-band.

S210x Sensors support the following frequency plan:

Sensor Frequency Common Sub-band

	Name	
EU863-870	EU868	
US902-928	US915	Sub band from 1 to 8 (default sub-band 2)
AU915-928	AU915	Sub band from 1 to 8 (default sub-band 2)
KR920-923	KR920	
IN865-867	IN865	
	AS923-1	
AS923	AS923-2	Frequency plan for Holium
A3923	AS923-3	Frequency plan for Helium
	AS923-4	
RU864-867	RU864	

ANote1:

Different countries and LoRaWAN network servers use different frequency plans.

For Helium network, please refer to:

https://docs.helium.com/lorawan-on-helium/frequency-plans

For The Things Network, please refer to:

https://www.thethingsnetwork.org/docs/lorawan/frequency-plans/

- 1) When using the SenseCAP platform, the EUI, APP EUI and APP Key are fixed and are the same as the sensor label.
- 2) When the sensor is selected to be used with a public platform such as Helium or TTN, the EUI will not change, and the sensor will generate a new fixed App EUI and App Key for network access.

5.3.2 Set the Interval

The working mode of device: wake up the device every interval and collect measurement values and upload them through LoRa. For example, the device collects and uploads data every 60 minutes by default.

Parameter	Туре
Uplink Interval	Unit: minutes, number from 1 to 1440.

Uplink Interval (min)	60

<u> Mote:</u>

The SenseCAP portal has a limit on uplink interval: minimum interval is **5 minutes**.

The interval using the other platforms ranges from 1 to 1440 minutes.

5.3.3 Set the EUI and Key

The device uses OTAA to join the LoRaWAN network by default. So, it can set the device EUI and App EUI.

Parameter	Туре
Device EUI	16 bits, hexadecimal from 0 ~ F
App EUI	16 bits, hexadecimal from 0 ~ F
Арр Кеу	32 bits, hexadecimal from 0 ~ F

Device EUI	2CF7F1C04160000B
APP EUI	577D1C6ECDCC3B8D
АРР Кеу	466F991B963100CC478

Ĩ

5.3.4 Set the Packet Policy

The sensor uplink packet strategy has three modes.

Parameter	Description
2C+1N (default)	2C+1N (2 confirm packets and 1 none-confirm) is the best strategy, the mode can minimize the packet loss rate, however the device will consume the most data packet in TTN, or date credits in Helium network.
1C	1C (1 confirm) the device will sleep after get 1 received confirm packet from server.
1N	1N (1 none-confirm) the device only send packet and then start to sleep, no matter the server received the data or not.

5.3.5 Set the Activation Type

The sensor supports two network access modes, OTAA by default.

Parameter	Description
OTAA (default)	Over The Air Activation, it joins the network through Device EUI, App EUI, and App Key.
ABP	Activation By Personalization, it joins the network through DevAddr, NwkSkey, and AppSkey.

When using ABP mode, you need to configure the following information:

Parameter	Description
DevAddr	32 bits, hexadecimal from 0 ~ F
NwkSkey	32 bits, hexadecimal from 0 ~ F
AppSkey	8 bits, hexadecimal from 0 ~ F

- 18

ΙοΤ	into	the	Wild

Activation Type	ABP	~
Nwk Skey Only hexadecimal digits are allowed to b	D65CF04A554CB71ECCC0D numbers of 0-F with a maximum be filled in.	
APP Skey Only hexadecimal digits are allowed to I	24CEAFD65CF04A554CB71 numbers of 0-F with a maximum	
Dev Addr	0100000A numbers of 0-F with a maximum	of 8

<u> Mote:</u>

The factory defaults to a fixed value.

5.3.6 Restore Factory Setting

When selecting the SenseCAP platform, you must use the fixed EUI/App EUI/App Key. Therefore, you need to restore the factory Settings before switching back to the SenseCAP platform from other platforms.

When we make a mistake or want to reset everything, we can click the button. The device will be restored to the factory's default configuration.

6. Connect to the SenseCAP Portal

6.1 SenseCAP Portal

The main function of the SenseCAP Portal is to manage SenseCAP devices and to store data. It is built on Azure, a secure and reliable cloud service from Microsoft. You can apply for an account and bind all devices to this account. SenseCAP provides the web portal and API. The web portal includes Dashboard, Device Management, Data Management, and Access Key Management, while API is open to users for further development.

📚 SENSECAP 📃						English xfactory.SZ@seeed.cc v	
⊙ Dashboard ≝ Devices →	Dashboard Add+					Data update interval: Manual	• ©
Gateway	Devices Overview			Monitoring		Announcement	
Node Group Sensor Node I da Data Table Graph	1 LoRad	Sateway	8 Sensor Node	Gateway Offline Node Offline Low Battery		Wecome	
🛡 Security 🗸 🗸	Gurrent Value 🧷		+ × ×	CO2 //		🖨 Chart Settin	ngs 👯 🗙
Access API keys	UL 99529Pa Air Pressure (2CF7F 12210400074) •Online 2019-08-08 14:12:03	28°C Ar Temperature (26F7F12210400083) +Online 2019-08-08 13:53:11	68%FIH Air Humidity (20F 7F 1221040068) +Online 2019-08-08 13:53:11	500 400 200 100 0.0 300-200 100-00-05 10.50.00	2019-08-08 01:3	CO2 (2CFFF12210400076)	<u>∿</u> <u>al</u> ○
	172.8Lux Light (2CF7F1221040007E)	385ppm CO2 (2CF7F12210400070)		Light 🖉		Chart Setlin	ngs 23 X <u>∿ al</u> C
	•Online 2019-08-08 13:37:41	•Online 2019-08-08 13:31:09		250			

6.1.1 Create a New Account

Portal Website: http://sensecap.seeed.cc

- 4) Select register account, enter email information and click "register", the registered email will be sent to the user's mailbox.
- 5) Open the "SenseCAP..."Email, click the jump link, fill in the relevant information, and complete the registration.
- 6) Return to the login interface and complete the login.

Mote:

If you can't find the email, it may be automatically identified as "spam" and put in the "trash can".

6.1.2 Other Functions

- **Dashboard:** Including Device Overview, Announcement, Scene Data, and Data Chart, etc.
- Device Management: Manage SenseCAP devices.
- **Data Management:** Manage data, including Data Table and Graph section, providing methods to search for data.
- Subaccount System: Register subaccounts with different permissions.
- Access Key Management: Manage Access Key (to access API service), including Key Create, Key Update, and Key Check.

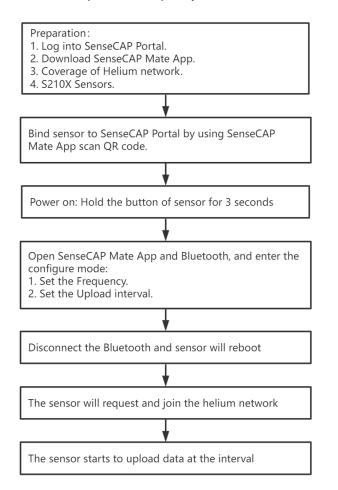
Mote:

SenseCAP Portal User Guide: https://sensecap-docs.seeed.cc/quickstart.html

6.1.3 API Instruction

SenseCAP API is for users to manage IoT devices and data. It includes 3 types of API methods: HTTP protocol, MQTT protocol, and Websocket protocol.

- With HTTP API, users can manage LoRa devices, to get raw data or historical data.
- With MQTT API, users can subscribe to the sensor's real-time measurement data through the MQTT protocol.
- With Websocket API, users can get real-time measurement data of sensors through Websocket protocol.


Please refer to this link for API User Guide: https://sensecap-docs.seeed.cc/

API	- 200	SenseGAP Ported	
intraduction >	List of Sensor Information 2	Quick Start >	Data Masagement s
HTTP API >		Dational >	SameCAP APP >
Data OpenEtman API >		Divice Masagement >	
LoReWAN Series	- 400	Software Tools	$\sim \sim \sim$
LafleWWW Gateway and Wesley	s Sensor Catalog VI 4 pdf >	SerenCAP Node Cardigani	iner Tani >
SenseCAP Product User Galdeds	aflatWAN Darkey V1.3 pdf >	DennetCAP Denner Hub Den	(Igoration Text.)
SeverCAP LoRaWAN Sever Un	er Mahaal V1.0.pdf (

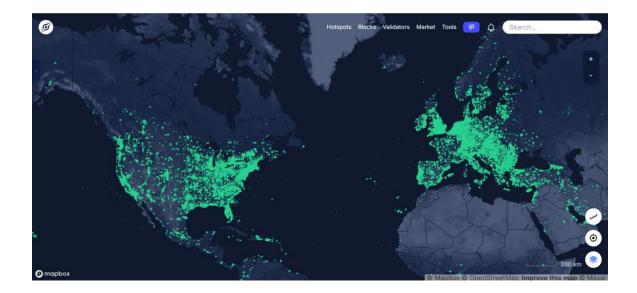
6.2 Connect to SenseCAP with Helium Network

6.2.1 Quick Start

Follow this process to quickly use the sensor, see the following section for details.

6.2.2 Preparation

1) SenseCAP Mate App


Download the App, please refer to section 5 for using.

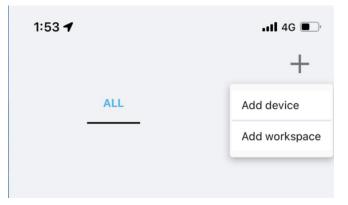
2) Coverage of Helium network

Option 1: Use the Helium network that already exists nearby.

Please refer to the map, search your location to see if there's any helium network around: https://explorer.helium.com/

A green hexagon indicates the presence of the network.

Option 2: Deploy a new Helium gateway.


You can purchase M1, M2 gateways to cover your surroundings with the Helium network: <u>https://www.sensecapmx.com/</u>

6.2.3 Bind Sensor to SenseCAP Portal

Please open SenseCAP Mate App.

(1) Scan QR Code

1) Click "Add device" on the upper-right corner of device page to enter the device binding page.

2) Scan the QR code on the device to bind the device to your account. If you do not set it to a designated group, the device will be put into the "default" group.

IoT into the Wild

Ĩ

(2) Manually fill in the EUI

If the QR code sticker is damaged, you can manually fill in the EUI of the device to bind the device to your account. Please make sure you put in the EUI in the format suggested by the system and then click "confirm".

6.2.4 Setup the Sensor

- 1) Open the SenseCAP Mate App
- 2) Press button and hold for 3 seconds, the LED will flash at 1s frequency.

3) Please click the "Setup" button to turn on Bluetooth and click "Scan" to start scanning the sensor's Bluetooth.

4) Select the Sensor by S/N (label). Then, the basic information of the sensor will be displayed after entering.

lo'	T into the Wi	ld		
15:50		🕈 🔳	15:52	🗢 🔳
<	Setup		1149928462	21600009
(1		12	General Basic	Settings
•	(((<u>a</u>)))))	Device Model	SenseCAPS2101
		.//	Device EUI 20	CF7F1C04160000B
				r Temperature and Imidity Sensor
Select	Device		Backup Firmware Versi	on 1.1.5
	2846221600009 perature and Humidity Sensor	>	Software Version	1.1.5
	Scan		Hardware Version	V1.1
			LoRaWAN Version	V1.0.3
			Class Type	ClassA
			Battery	100%
			Measurement	
			Measu	ire

6.2.5 Set Frequency of Sensor via SenseCAP Mate App

Set the corresponding frequency band based on the frequency band of the gateway.

Please refer to <u>section 5</u> for detail.

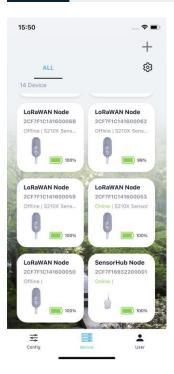
1) Click the "Setting" and select the platform is "SenseCAP for Helium".

5:53	🕈 🔳	15:54		? 🔳
11499	2846221600009	< 11499	2846221600009	
General	Settings	General	Settin	igs
atform	Other Platform V	Platform	Other Platform	~
equency Plan	US915 V	Frequency Plan	US915	~
ub-Band	Sub-Band2 🗸	Sub-Band	Sub-Band2	~
olink Interval (m	nin) 6	Uplink Interval (m	nin) e	60
ctivation Type		EU868	_	
evice EUI	2CF7F1C04160000B	US915		
enseCAP for Th	ne Things Network	AU915		
enseCAP for He	elium	AS923		
elium		IN865		
ne Things Netw	(ork	KR920		

- 2) Select the Frequency Plan, if the gateway is US915, set the sensor to US915.
- 3) Click the "Send" button, send the setting to the sensor for it to take effect.

4) Click the "Home" button, the App will disconnect the Bluetooth connection.

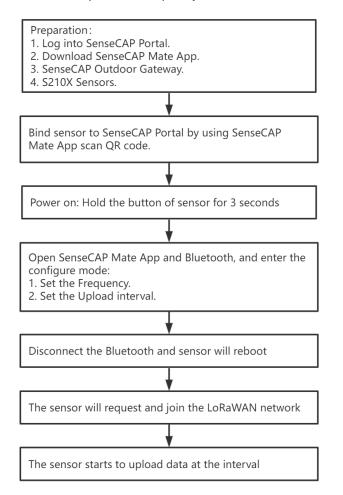
Then, the sensor will reboot.


- 5) When the device is disconnected from Bluetooth, the LED lights up for **5 seconds** and then flashes as a **breathing light**.
- 6) After joining the network successfully, LED flashes fast for 2s.

6.2.6 Check Data on SenseCAP Portal

On the SenseCAP App or the website <u>http://sensecap.seeed.cc/</u>, you can check the device online status and the latest data. In the list for each Sensor, you can check its online status and the time of its last data upload.

IoT into the Wild =


SENSECAP	2						E	inglish 🗸 🔔 xta	actory.SZ@seeed.cc 👻 🖃	
O Dashboard	Devices / S	ensor Node								
🛗 Devices 🗸 🗸										
Gateway	All		DRa NB-IoT							
Node Group	EUI Device EUI Frequency(MHz)									
Sensor Node	Device	Group Device Group		Online Status	Online Status					
∭u Data ∨					onino otatoo					
Table	Registration	Time From		То			1Day 7Days 30Day	13		
Graph	Search	Clear Clear	'he number of search results: 4							
🕏 Security 🗸 🗸										
Access API keys	NO.	EUI	Device Name		Sensor Count	Device Group	Online Status	Operation	Last Message Time	22
	01	2CF7F12210400070	CO2 Sensor		1	station-1	Online	Move	2019-11-15 10:28:16	
	0 2	2CF7F12210400074	Barometric Pressure Sensor		1	station-1	Online	Move	2019-11-15 10:09:27	
	3	2CF7F1221040007E	Light Intensity Sensor		1	station-1	Online	Move	2019-11-15 09:43:47	
	□ 4	2CF7F12210400083	Air Temperature and Humidity S	ensor	1	station-1	Online	Move	2019-11-15 10:02:47	

6.3 Connect to SenseCAP with private TTN

6.3.1 Quick Start

Follow this process to quickly use the sensor, see the following section for details.

6.3.2 Preparation

1) SenseCAP Mate App

Download the App, please refer to section 5 for using.

2) SenseCAP Outdoor Gateway

Now, the sensor needs to be used with the SenseCAP Outdoor Gateway (<u>https://www.seeedstudio.com/LoRaWAN-Gateway-EU868-p-4305.html</u>) to transmit data to the SenseCAP Portal.

a) Setup the Gateway, connect to power cable and Internet.

IoT into the Wild

- b) Bind the gateway to SenseCAP Portal.
- c) Ensure the gateway indicator is steady on.

d) Ensure the gateway is displayed online on the portal.

Online status	Online

6.3.3 Bind Sensor to SenseCAP Portal

Please refer to the section 6.2.3

6.3.4 Setup the Sensor

Please refer to the section 6.2.4

6.3.5 Set Frequency of Sensor via SenseCAP Mate App

Set the corresponding frequency band based on the frequency band of the gateway.

Please refer to section 5 for detail.

1) Click the "Setting" and select the platform is "SenseCAP for The Things Network".

15:53	🗢 🔳	15:54		?
11499	2846221600009	< 11499	2846221600009	
General	Settings	General	Setting	gs
atform	Other Platform V	Platform	Other Platform	~
equency Plan	US915 ~	Frequency Plan	US915	~
ub-Band	Sub-Band2 V	Sub-Band	Sub-Band2	~
plink Interval (m	nin) 6	Uplink Interval (n	nin) 6	0
ctivation Type	OTAA V	EU868	_	
evice EUI	2CF7F1C04160000B	US915		
enseCAP for Th	ne Things Network	AU915		
enseCAP for He	elium	AS923		
lelium		IN865		
he Things Netw	vork	KR920		

- 2) Select the Frequency Plan, if the gateway is US915, set the sensor to US915.
- 3) Click the "Send" button, send the setting to the sensor for it to take effect.

4) Click the "Home" button, the App will disconnect the Bluetooth connection.

Then, the sensor will reboot.

- 5) When the device is disconnected from Bluetooth, the LED lights up for **5 seconds** and then flashes as a **breathing light**.
- 6) After joining the network successfully, LED flashes fast for 2s.

6.3.6 Check Data on SenseCAP Portal

Please refer to the section 6.2.6

7. Connect to Helium Network

Please refer to the manual to connect sensors to Helium public console:

https://files.seeedstudio.com/products/SenseCAP/S210X/How%20to%20Connect%20Sense CAP%20S210X%20to%20Helium%20Network.pdf

8. Connect to The Things Network

Please refer to this manual:

https://files.seeedstudio.com/products/SenseCAP/S210X/How%20to%20Connect%20Sense CAP%20S210X%20to%20The%20Things%20Network.pdf

Please refer to the link to use the TTN platform:

The Things Network website: https://www.thethingsnetwork.org

The Things Industries login: https://accounts.thethingsindustries.com/login

TTN Quick Start: https://www.thethingsnetwork.org/docs/quick-start/

||

9. Payload Decoder

9.1 Decoder Code

TTN payload decoding script for SenseCAP LoRaWAN:

https://github.com/Seeed-Solution/TTN-Payload-Decoder/blob/master/decoder_new-v3.js

APPLICATION DATA

ters	uplink	downlink	activation	n ack	error		
	time	counter	port				
• 1	1:19:12		0				
• 1	1:19:16	5	2	confirmed	payload: 01	01 10 B0 68 00 00 01 02 10 88 F4 00 00 8C FF	Measurement Data packets
· i	1:18:58		Ū				
1	1:19:02	4	2	confirmed	payload: 00	19 00 58 68 43 00 00 00 AB 5E	
• 1	1:18:42		0				Initial Packets
1	1:18:46	3	2	confirmed	payload: 01	06 00 00 00 00 00 2F 87	
• 1	1:18:28		0				
1	1:18:32	2	2	confirmed	payload: 00	00 00 01 01 00 01 00 07 00 64 00 05 00 01 01 00	01 01 00 01 01 02 00 54 00 00 15 01 03 0
6							
• 1	1:18:15		0				
1	1: 1 8:19	1	2	confirmed	payload: 00	00 00 00 00 00 00 00 00 00	
• 1	1:17:57		0				
1	1:18:01	0	2	confirmed	payload: 00	00 00 00 00 00 00 00 00 00	
† 1	1:17:52				dev addr: 26	6 02 22 C0 app eui: 80 00 00 00 00 00 00 08 dev	veui: 2C F7 F1 21 10 70 00 54

II pause 🛍 clear

9.2 Packet Parsing

9.2.1 Packet Initialization

After being powered on or reboot, SenseCAP Sensors will be connected to the network using the OTAA activation method. Each Sensor Node will send data packets to the server, including the following data:

Initial packets (no need to learn about these initial packets)

One packet with device info including hardware version, software version, battery level, sensor hardware & software version, sensor EUI, power, and sensor power time counter at each channel.

Measurement data packets

The only thing we should pay attention to is the sensor measurement data packets.

APP	LIC	ATION	DATA					II <u>pause</u> 🛍 <u>cle</u>
Filte	rs	uplink	downlink	activatio	n ack	error		
		time	counter	port				
•	11:	:19:12		0				
	11:	:19:16	5	2	confirmed	payload: (1 01 10 B0 68 00 00 01 02 10 88 F4 00 00 8C FF	Measurement data packets
•	11:	:18:58		0				

Packet Structure

The structure of the frame is shown in the image below.

channel	frame type	frame content		
1 byte	2 bytes	≥ 4 bytes		

1 byte for channel, default as 1, means the sensor has been well connected.

2 bytes for frame type, in this case, it will be 0110 and 0210, means temperature value and humidity value

4 bytes for content, is the sensor value with CRC

The frame content is sent in little-endian byte order.

Ĭ

9.3 Data Parsing Example

9.3.1 Measurements List

Measurements	Measurement ID(HE	X/DEC)	Resolution	Unit
Air Temperature	0x1001	4097	0.01	°C
Air Humidity	0x1002	4098	0.01	%RH
Light Intensity	0x1003	4099	1	Lux
CO2	0x1004	4100	1	ppm
Soil Temperature	0x1006	4102	0.1	°C
Soil Moisture	0x1007	4103	0.1	%
Soil EC (Electrical Conductivity)	0x100C	4108	0.01	dS/m

For the complete list, see: <u>https://sensecap-docs.seeed.cc/measurement_list.html</u>

9.3.2 Example – S2101 Air Temperature and Humidity Sensor

Air Temperature and Humidity Sensor measurement packet:

01 0110 B0680000 01 0210 88F40000 8CFF

Part	Value	Raw Data	Description
1	Air Temperature	<mark>01 0110</mark> B0680000	 01 is the channel number. 0110 is 0x1001 (little-endian byte order) , which is the measurement ID for air temperature. B0680000 is actually 0x000068B0, whose equivalent decimal value is 26800. Divide it by 1000, and you will get the actual measurement value for air temperature as 26.8°C.
2	Air Humidity	<mark>01</mark>	 01 is the channel number. 0210 is 0x1002 (little-endian byte order), which is the measurement ID for air humidity. 88F40000 is actually 0x0000F488, whose equivalent decimal value is 62600. Divide it by 1000, and you will get the actual value for air humidity as 62.6%RH.
3	CRC	8CFF	The CRC verification part.

 \square

9.3.1 Example – S2102 Light Intensity Sensor

Light Intensity Sensor measurement packet:

<mark>01</mark> 0310 A8550200 E3E9

Part	Value	Raw Data	Description
	Light	<mark>01</mark> 0310 A8550200	01 is the channel number. 0310 is 0x1003 (little-endian byte order) , which is the measurement ID for Light Intensity.
1	Intensity		A8550200 is actually 0x000255A8, whose equivalent decimal value is 153000. Divide it by 1000, and you'll get the actual measurement value for Light Intensity as 153 Lux.
3	CRC	E3E9	The CRC verification part.

||

9.3.2 Example – S2103 CO2, Temperature and Humidity Sensor

CO2, Temperature and Humidity Sensor measurement packet:

01 0410 80140700 01 0110 F4650000 01 0210 7C7D0100 3C4D

Part	Value	Raw Data	Description
1	CO2	<mark>01</mark>	 01 is the channel number. 0410 is 0x1004 (little-endian byte order) , which is the measurement ID for CO2. 80140700 is actually 0x00071480, whose equivalent decimal value is 464000. Divide it by 1000, and you will get the actual measurement value for CO2 as 464 ppm.
2	Air Temperature	<mark>01</mark> 0110 F4650000	01 is the channel number. 0110 is 0x1001 (little-endian byte order) , which is the measurement ID for air temperature. F4650000 is actually 0x000065F4, whose equivalent decimal value is 26100. Divide it by 1000, and you will get the actual measurement value for air temperature as 26.1 ℃.
3	Air Humidity	01 0210 7C7D0100	 01 is the channel number. 0210 is 0x1002 (little-endian byte order), which is the measurement ID for air humidity. 7C7D0100 is actually 0x00017D7C, whose equivalent decimal value is 97660. Divide it by 1000, and you will get the actual measurement value for air humidity as 97.66 %RH.
4	CRC	3C4D	The CRC verification part.

9.3.3 Example – S2104 Soil Moisture and Temperature Sensor

Soil Moisture and Temperature Sensor measurement packet:

01 0610 245E0000 01 0710 BCB10000 A3D9

Part	Value	Raw Data	Description
			01 is the channel number.
1	Soil	<mark>01</mark> 0610 245E0000	0610 is 0x1006 (little-endian byte order) , which is the measurement ID for soil temperature.
	' Temperature		245E0000 is actually 0x00005E24, whose equivalent decimal value is 24100. Divide it by 1000, and you will get the actual measurement value for soil temperature as 24.1°C.
			01 is the channel number.
0	Soil	sture 01 0710 BCB10000	0710 is 0x1007 (little-endian byte order), which is the measurement ID for soil moisture.
2	Moisture		BCB10000 is actually 0x0000B1BC, whose equivalent decimal value is 45500. Divide it by 1000, and you will get the actual measurement value for soil moisture as 45.5%RH.
3	CRC	A3D9	The CRC verification part.

9.3.4 Example – S2105 Soil Moisture, Temperature and EC Sensor

Soil Moisture, Temperature and EC Sensor measurement packet:

01 0610 5C5D0000 01 0710 48A30000 01 0C10 B4000000 DD0A

Part	Value	Raw Data	Description
1	Soil Temperature	<mark>01 0610</mark> 5C5D0000	 O1 is the channel number. O610 is 0x1006 (little-endian byte order) , which is the measurement ID for soil temperature. 5C5D0000 is actually 0x00005D5C, whose equivalent decimal value is 23900. Divide it by 1000, and you will get the actual measurement value for soil temperature as 23.9°C.
2	Soil Moisture	<mark>01</mark>	 O1 is the channel number. O710 is 0x1007 (little-endian byte order), which is the measurement ID for soil moisture. 48A30000 is actually 0x0000B1BC, whose equivalent decimal value is 45500. Divide it by 1000, and you will get the actual measurement value for soil moisture as 45.5% RH.
3	Soil Electrical Conductivity	<mark>01 0C10</mark> B4000000	 01 is the channel number. 0C10 is 0x100C (little-endian byte order), which is the measurement ID for soil EC. B4000000 is actually 0x000000B4, whose equivalent decimal value is 180. Divide it by 1000, and you will get the actual measurement value for soil EC as 0.18 dS/m.
4	CRC	DD0A	The CRC verification part.

Ĩ

9.4 Battery Information

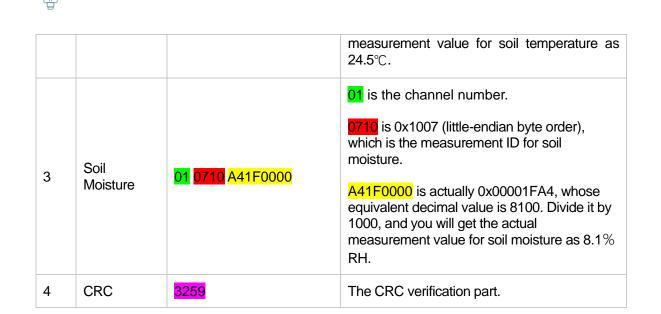
Please note the counter number. After 20 packets, it will follow one special packet with battery info.

You can either ignore this packet or get rid of the battery info in your code.

ψ 18:89:48 $% = 100000000000000000000000000000000000$	DevAddr: 27 00 59 27		
ψ 18:09:48 $$ Schedule data downlink for transmissi.	FPort: 5		
\Uparrow 18:89:48 $$ Forward data message to Application S.	DevAddr: 27 00 59 27	FRMPayload: FE 39 78 39 59 DE 1E A8 C5 5F 0D 63 BE F6 5E 7E DB 0E 13 4F 44 87 D7	FPort: 2 SNR: 7.5 Bandwidth: 125000
\uparrow 18:89:48 Forward uplink data message	DevAddr: 27 00 59 27	FRMPayload: 00 07 00 64 00 05 00 01 06 10 B4 5F 00 00 01 07 10 A4 1F 00 00 32 59	FPort: 2 SNR: 7.5 Bandwidth: 125000
\hat{T} 18:89:48 $% \hat{T}$ Receive uplink data message	DevAddx: 27 00 59 27	Battery Package	
\hat{T} 18:09:48 $% \hat{T}$ Successfully processed data message	DevAddr: 27 00 59 27	FPort: 2 FCnt: 5 FRMPayload: FE 39 78 39 59 DE 1E A8 C5 5F 0D 63 BE F6 5E 7E	DB 0E 13 4F 44 87 D7 Bandwidth: 125000 SNR: 7.5 Raw payload: 80 27 59
<⇒18:89:48 Link ADR accept received	DevAddr: 27 00 59 27		
↑ 18:89:48 Receive data messade	DevAddr: 27 00 59 27	FPort: 2 FCnt: 5 FRMPayload: FE 39 78 39 59 DE 1E A8 C5 5F 0D 63 BE F6 5E 7E	DB 0E 13 4F 44 87 D7 Bandwidth: 125000 SNR: 7.5 Raw payload: 80 27 59

Original Info:

00070064000500010610B45F0000010710A41F00003259


Battery Package: 00070064000500

Example:

Battery & Soil Moisture and Temperature Sensor(S2104) measurement packet:

00070064000500010610B45F0000010710A41F00003259

Part	Value	Raw Data	Description
			00 is the channel number.
			0700 is 0x0007 (little-endian byte order) , which is the measurement ID for battery.
1	Battery	<mark>00</mark> 0700 <mark>6400</mark> 0500	6400 is 0x0064 (little-endian byte order) , whose equivalent decimal value is 100. Battery level is 100%.
			D500 is 0x0005 (little-endian byte order) , whose equivalent decimal value is 5. Upload interval is 5 minutes.
			01 is the channel number.
2	Soil Temperature	<mark>01</mark> 0610 B45F0000	0610 is 0x1006 (little-endian byte order) , which is the measurement ID for soil temperature.
			B45F0000 is actually 0x00005FB4, whose equivalent decimal value is 24500. Divide it by 1000, and you will get the actual

IoT into the Wild

10. LoRaWAN Downlink Command

10.1 Set the Data Uplink Interval

- (1) Using the Network Server's portal or API to send downlink command, then the Node will respond to the ack. The downlink command takes effect and responds the next time the node uploads data.
- (2) Downlink as follow:

0x00	0x89	0x00	prepareId_L	prepareId_H	duty_L	duty_H	crc-L	crc-H	
0x00		Fixed	field						
0x89		Fixed	field						
0x00		Fixed	field						
propor		Comm	Command ID low byte, you can customize the values, it allows each command ID						
prepare	elu_L	to be t	to be the same						
propor		Comm	Command ID high byte, you can customize the values, it allows each command ID						
prepare	prepareId_H		to be the same						
duty_L		Data interval low byte, you can set the data interval, unit: minute							
duty_H	H Data interval high byte, you can set the data interval, unit: minute								
crc-L		CRC low byte, it's calculated by the CRC-16/CCITT							
crc-H		CRC low byte, it's calculated by the CRC-16/CCITT							

(3) When you send the downlink command, the Node responds to the ack command.

0x00	0x1F	0x00	prepareId_L	prepareld_H	result	0x00	crc-L	crc-H
0x00		Fixed f	ield					
0x1F		Fixed f	ield					
0x00		Fixed f	ield					
prepar	eld_L	Command ID low byte, it is the same as the downlink command						
prepar	prepared H Command ID high byte, it is the same as the downlink command							
result	result If the downlink command is in force, it responds 0x01, else it responds 0x00				00			
0x00	0x00 Fixed field							
crc-L	crc-L CRC low byte, it's calculated by the CRC-16/KERMIT							
crc-H CRC low byte, it's calculated by the CRC-16/ KERMIT								

(3) Use the FPort = 2

CRC Tool: <u>https://crccalc.com/</u>, select the algorithm of CRC-16/KERMIT.

Example: Set the Node's data interval is 10 minutes.

Send the downlink command (HEX) via FPort=2:

00 89 00 11 22 0A 00 38 B4

0x00	0x89	0x00	prepareId_L	prepareId_H	duty_L	duty_H	crc-L	crc-H
00	89	00	11	22	0A	00	38	B4

ACK Response:

<mark>00 1F 00 11 22 01 00 78 0F</mark>

0x00	0x1F	0x00	prepareId_L	prepareId_H	result	0x00	crc-L	crc-H
00	1F	00	11	22	01	00	78	0F

Command List:

Description	Command
Set Uplink interval = 1 minute	008900112201009050
Set Uplink interval = 5 minutes	00890011220500F037
Set Uplink interval = 10 minutes	00890011220A0038B4
Set Uplink interval = 15 minutes	00890011220F0080CA
Set Uplink interval = 20 minutes	0089001122150061A2
Set Uplink interval = 30 minutes	00890011221E00C946
Set Uplink interval = 60 minutes	00890011223C004A56

10.2 Reboot the device

FPort = 2

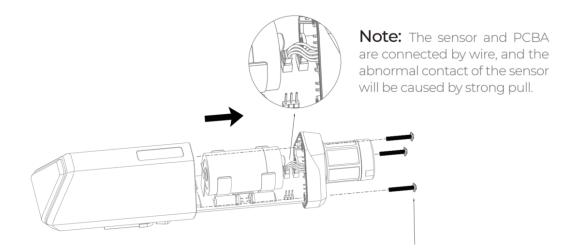
Command: 00C8000000002B26

||

10.3 How to send downlink

Example: use the Helium Console to send

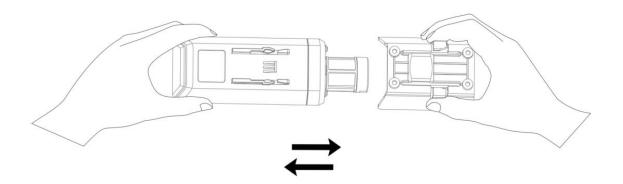
eduling	FPort	Region		
rst Last	2	US915	US915	
00890011220500F037			Base64	Text
Payload 00890011220500F037			Base64	Т


11. Device Installation

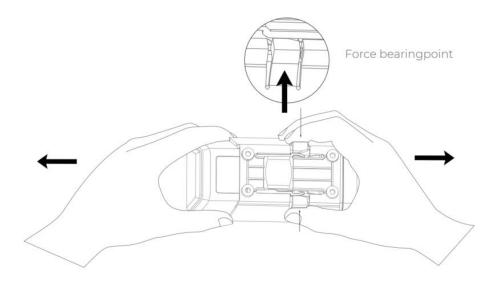
11.1 The Do's and Don'ts

1. Do not remove the sensor probe. Otherwise, it will cause leaks and wire fracture. If accidentally unscrewed, it needs to be tightened to ensure waterproof performance. (like the 1/2)

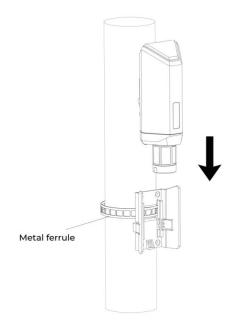
2. Do not open the inside of the sensor unless the battery needs to be replaced. This may result in abnormal waterproofing. If it is opened, make sure the waterproofing gasket is properly installed and tighten the screws.


11.2 Installing Sensor

11.2.1 Installing the Sensor Bracket

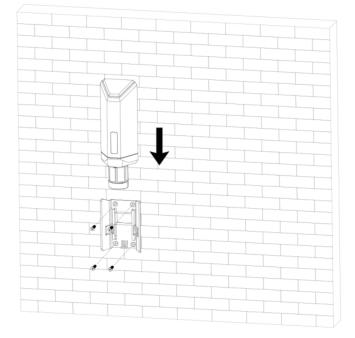

Specially designed for installing SenseCAP Sensors, the bracket is a sliding cap. With designated screw-holes, the bracket helps fasten the Sensor Node firmly onto a pole or a wall.

1) With the sensor in one hand and a bracket in the other, find an unobstructed direction along the back of the sensor.



2) One hand holds the clasp while the other holds the device. Pull outward with opposite force. Press the upper part of the buckle with your finger.

11.2.1 Mount on Pole and Wall


1) Mount on pole

2) Mount on wall

 \square

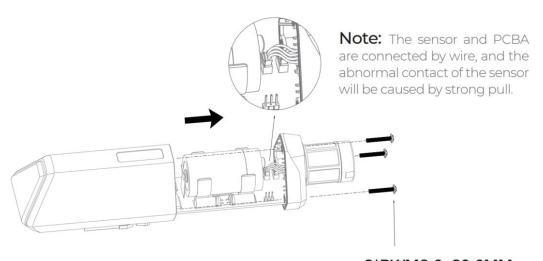
11.3 Replace the Battery

11.3.1 How to Buy the Battery

We suggest buying it from Amazon.

- 1) EEMB ER34615: Click here
- 2) Search the key word: LiSOCI2 ER34615 battery. Compare the batteries that meet the following parameters. The most important thing is to match the voltage.

Battery Specification				
Nominal capacity	19000mAh			
Model	Li-SOCI2, ER34615			
Nominal voltage	3.6V			
Max. continuous current	230mA			
Max. pulse current capability	400mA			
Dimension	Ø 34.0*61.5mm (D size)			
Operating temperature range	-60°C to 85°C			

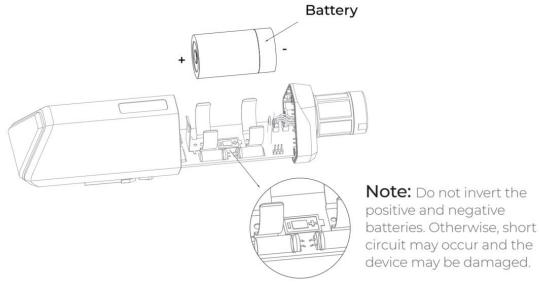

11.3.2 How to Replace a New Battery

1) Remove three screws.

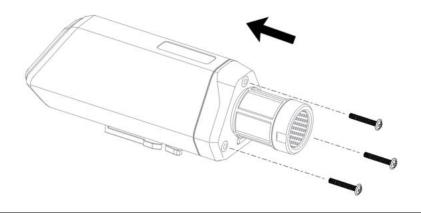
<u> Note:</u>

Ĩ

The sensor and PCBA are connected by wire, please disassemble carefully.


3*PWM3.0x20.0MM

2) Install a new battery.



Pay attention to the positive and negative terminals of the battery.

Ĩ

3) Install screws.

<u> Mote:</u>

During the installation, ensure that the waterproof washer is properly installed and the screws are locked; otherwise, water will flow into the device.

12. Trouble Shooting

12.1 Sensors can't join LoRa network, how to do?

- 1) Check the gateway frequency configuration. Make sure the gateway and Sensor Node have the same uplink and downlink frequency.
- 2) Check the real-time log and RESET the sensor to see if there are any sensor data packets. If there are packets, check whether the gateway is sending downlink packets.
- 3) If the channels and other configurations are correct and the gateway logs do not have packets, please contact technical support.

12.2 Why is the new sensor's battery not 100%?

Battery power detection is not high precision. Its principle is to measure the supply voltage, when the power is turned on and repeatedly RESET, the voltage is unstable, so it is not 100%. When the sensor is stable, the power will be more accurate.

12.3 Support

Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.

Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc.) and send a mail to: sensecap@seeed.cc

12.4 Document Version

Version	Date	Description	Editor
V1.0.0	5/01/2022	First edition	Jenkin Lu
V1.0.1	6/14/2022	Add App description	Jenkin Lu
V1.0.2	7/21/2022	Delete some steps	Jenkin Lu