seeed studio

MeshBee®
Open Source ZigBee RF Module
User's Manual

©2014 Seeed Technology Inc. All rights reserved
www.seeedstudio.com

v0.1 2014/04/28 oliver wang Created

Table of Contents

Table Of Contents

(@Y= AV 1= PO 4
ADOUL thIS DOCUMENTeeiiiiiie et 4
Y0 [Tox ¥ o] o 1 4
Acronyms and ADDIeVIations............ccccevieiie e 5

1. KBY FRATUIES. ...ttt et e e e e be e e e snne e e e annnee s 6
1.1 PhySICAl TRALUIES:oveeieieeiee et 6
1.2 Operation TRALUIES:c.eeiee et nreas 6

P ST T (= T T o 7
2.1 PiN @SSIGNMENTooiieiiieiic et et 8

3. OPEratioN IMOUEeevieiii ettt e e et e et e e be e s aeesneeenteenreas 9

TR I 110 o = 9
I A od I 1Y/ oo [T 10
TR 21 1Y/ LG4 1Y/ o T [R 10
I B - - W 1 [0 To = R 11

4, AT COMMANGSvviiiiriie ettt e e e s eb e e e et e e e s b e s s ebb e e e sabbeeesbbeesssbeeessabenesssbeneas 12
4.1 Node information COMMANGS..........cccveiieeiiiriiie e 12
4.2 Data transSmit COMMANGS.........cocveiiiiiiee ittt sbee e 13
4.3 Network formation COMMANAScc.eeoicriiiiiiieiiee e 14
@ B AN ol 0] 110 1= T 16

T AN I =10 1 PR STR 18
5.1 Structure Of AP Frameooceeeeieieeeee e 18

6. AUPS FUNCLION LISt..eiiiiiiiiiiii ettt e re e e e s e bbb e e e e s e bbane e e 23
6.1 Set run-time PAramMeterSccveieeiieie et reas 23
AN LT 10 I o I - L 24
B.3 SUIT AP ..o 24

Appendix a: AT COMMAN INUEX......c.oeiiiiieeiieiee e e e sae e reesreas 32

Overview

Overview

About this document

This manual gives a single point of reference for information relating to the MeshBee.
Including:

Chaptl: Key features;

Chapt2: Pin definition;

Chapt3: Operation mode;

Chapt4: AT commands;

Chapt5: API frames;

Chapt6: Functions that AUPS can call

Information shown in this document is all based on the firmware v1003. The manual
should be used as a reference resource throughout MeshBee application development. It does
not provide in-depth introduction of the MeshBee programming. Please refer to the MeshBee
CookBook(MB_2014 D02) for further references on the firmware architecture and
programming issue.

Introduction

MeshBee® is a 2.4 GHz wireless zighee RF module together with high level open source
software driven by community. It uses microchip JN516x from NXP that enables several
different standards-based zigbee mesh networking. User can easily and cost-effectively
integrate ZigBee functionality into target project. Our factory firmware supports latest fully
Zigbee Pro stack.

MeshBee® is the best choice to make your connected thing.

Overview

Acronyms and Abbreviations

AUPS: Arduino-ful user programming space
SPM: Stream processing machine

CMI: Communication interface

ADS: Airport data server

UDS: Uart data server

HAL: Hardware abstract layer

SULLI: Seeed Unified Library Interface

API: Application programming interface
MCU: Microcontroler

JenOS: Jennic operating system

Features

1. Key Features

1.1 Physical features:

1

2)

3)

4)

5)

6)

Range: Indoor/Urban: up to 30m;
Outdoor line-of-sight: up to 100m;

Receiver Sensitivity: -95dBm,;

Working Frequency: unlicensed
2.4GHz band;

Data Transmission Rate: 4800, 9600,
19200, 38400, 57600, 115200 (bps);

Programmable 32-bit RISC CPU:
32M clock, 256KB Flash, 32KB RAM,
4KB EEPROM;

Socket compatible with the Xbee, so
you can plug it into any Xbee socket
as a quick replacement

1.2 Operation features:

1)

2)

3)

4)

5)

6)

7)

Easy-to-Use Serial Interface and rich
extendable ports;

Communication type: Point to Point,
Start Network , Mesh Network;

Support for OTA(upgrade firmware
over the air);

Easy-to-Use AT Command: Setup
ZigBee network, set Serial Baud Rate,
etc;

API configuration and control mode;

Arduino-ful user programming
space;

Open source hardware and
firmware;

MeshBee

Features

2. Pin de

finition

.
3

H
=
N -

U4

Figure 2.1: Pin definition of MeshBee

Note: please refer to datasheet of IN516x for more

information about each pin.

Features

2.1 Pin assignment

Pin No Name Direction Description

1 3v3 — Power supply

2 D14/TX1 Output Digital 1014 or UART1 TX

3 D15/RX1 Input Digital 1015 or UART1 RX

4 DO1/SPIMISO Both Digital Output 1 or SPI Master In Slave

Out Input
5 RST — Reset pin
6 D11/PWM1 Both Digital 1011 (default usage: RSSI
Indicator) or PWM1 Output

7 DOO/SPICLK Output Digital Output 0 or SPI Master Clock
Output

8 D18/ SPIMOSI Both Digital 10 18 or SPI Master Out Slave In
Output

9 Vref/ ADC2 Input Analogue peripheral reference

voltage; ADC input 2

10 GND — GND

11 D6/TX0 Both UARTO TX or Digital 106

12 D12/CTSO Both Digital 1012 or UARTO clear to send

input
13 D9 Both Digital 10 9 (default usage: Mesh Bee
ON/Sleep Indicator)
14 D7/RX0 Both UARTO RX or Digital 10 7
15 D10 Both Digital 10 10 (default usage: Network
Association Indicator)

16 RTSO Both Digital I0 13 or UARTO request to send
output

17 D1/SPISEL2/ADC4 Both Digital 10 1; SPI Master Select Output

2; ADCinput 4
18 DO/SPISEL1/ADC3 Both Digital 10 0; SPI Master Select Output
1; ADCinput 3
19 D16/SCL Both Digital 10 16 or 12C clock
20 D17/SDA Both Digital 10 17 or 12C data

Set Up

3. Operation Mode

MeshBee has four different types of mode: AT, API, DATA, MCU, illustrated in figure
below:

ATM

e
e

Figure 3.1: No matter which mode MeshBee works in, input “+++” can come back to AT command

mode.

3.1 AT mode

Mesh Bee communicates with outside through UART1 including data and command
communicating. The default setting of UART1 is: 115200 baud rate, data bits 8, parity none,
stop bit 1. “+++<CR>" can put Mesh Bee into AT mode. The mode switch is illustrated in
figure 3.1.

AT command can be classified into two types: register R/W AT and action AT.

The pattern of AT command is “ATXX[DDDD]<CR>” in which XX stands for the
register/action name and DDDD stands for the written value of a register. All letters’ case is
ignored.

Register R/W AT can operate a virtual register of Mesh Bee. Absence of DDDD means
reading the register value out and meanwhile ATXXDDDD means setting the register value
to DDDD.

Action AT can trigger a specific action. The execution of command may be immediate or
time-consuming.

Set Up

Syntax for sending AT commands:

AT ASCII Parameter
Prefix Command Optional

. | —

Example:ATDAOOQO

Figure 3.2: syntax for AT commands

3.2 API Mode

APl is simply a set of standard interfaces created to allow other MCU to interact with
MeshBee. For our purposes, APl supports local operation and remote operation. For example,
a host application can send an “AT10” frame to Coordinator A, A will set its GP1O when it
receives this frame. The most important thing to note is that APIs are specifically engineered
to enable MeshBee to talk efficiently to other MCU. The target of API-mode is to transmit
highly structured data quickly and reliably.

3.3 MCU Mode

In order to simplify the development of application for user, we create an Arduino-ful
user programming space(AUPS).

In AT mode, using “ATMC” to enter MCU mode, then the arduino_loop will be
executed periodically.

Write your own code in “ups arduino sketch.c”.
Example :

10 _T led_io;

int16 state = HAL_PIN_HIGH;

void arduino_setup(void)

{
setLooplntervalMs(1000); /Iset loop period

10

Set Up

suli_pin_init(&led_io, 9); /linit led
suli_pin_dir(&Iled_io, HAL_PIN_OUTPUT);
}
void arduino_loop(void)
{
suli_pin_write(&Ied_io, state); /Iset led

if(state == HAL_PIN_HIGH)
state = HAL_PIN_LOW;
else
state = HAL_PIN_HIGH;

}
‘Note: In MCU mode, Uartl is under the control of the
AUPS, user should not send API frame to MeshBee.
3.4 Data Mode

When operating in Data mode, the modules act as a serial line. All UART data received

through the UART1 is transmitted to a specified remote device.
To use a transparent connection, take the following steps:

1) Set unicast address: ATDAXXX
2) Enter Data Mode: ATDT

11

Set Up

4. AT commands

4.1 Node information commands

ATIF

1) Action AT, immediate execution, for any zigbee role.

2) Get node InFormation

3) ATIF command will print information of node including: supported AT commands, node’s
firmware version, node’s zigbee short address, node’s MAC address, node’s radio channel,
node’s zigbee role, etc.

4) Example:

. AT commands supported:
ATRE ATPA ATLA ATTM ATDA ATER ATQT ATIF
ATDT ATAP ATMC ATOT ATOR ATOA ATOS ATTI

2.Node information:

FW Version : 0x1003

short addr T 0x0000

Mac addr : 0x00158d0000355273
RadioChnl : 15

Device Type : Co-ordinator
UART1's BaudrRate : 115200

Unicast Dest addr: Oxce7l

3.Belonging to:
PANID: 0x75310 EXPANID: 0Ox00158d0000355273
oK

Figure 3.3: ATIF screen shot

ATLA

1) Action AT, time-consuming execution, for any zigbee role

2) List All nodes within the network
12

Set Up

3) ATLAwill broadcast a topology query packet into the whole network. The node that’s
still alive may response to that. The querying node will print responding nodes’ short
address, MAC address, Link-Quality-Indication (LQI), etc. LQI is a positive integer, the
bigger LQI the better link quality.

——0325*1.aﬁlEidUUUUEEEZb*.LQZ:ZU*.EE”:—EZ.uer:031003

Figure 3.4: ATLA screen shot

ATQT

1) Action AT, immediate execution, for any zigbee role
2) Get on-chip temperature.

4.2 Data transmit commands

ATTM

1) Register R/W AT, for any zigbee role

2) Bits:1, decimal, max:1, default:0

3) Setnode’s TX Mode

4) 0 - broadcast, 1- unicast (need setting destination address by ATDA command first).

13

Set Up

ATDA

1)
2)
3)
4)

5)

Register RW AT, for any zigbee role

Bits:4, hex, max: ffff, default:0000

Set node’s unicast destination address

This address will also be used as the OTA target address, means that this destination
address will be used for ATOT and ATOS command. It has a pattern of HHHH that is 4
bits of HEX number ignoring case.

Example: ATDAl4ad<CR>

ATBR

1)
2)
3)
4)
5)

Register R/W AT, for any zigbee role

Bits:1, decimal, max:5, default:5

Set UART1’s Baud Rate

0- 4800, 1-9600, 2-19200, 3-38400, 4-57600, 5-115200.
Example: ATBR5<CR>

4.3 Network formation commands

ATPA

1)
2)
3)
4)

Register RW AT, for any zigbee role but with different effect.

Bits:1, decimal, max:1, default:0

Set node’s Power up Action

The node’s default power-up behavior is restoring the last network state before power
down. But when setting PA register to 1 and then reboot, the node will not restore the last
network. In this case, coordinator node will re-create a network and router/End device
will re-scan the network. The PA register will be cleared to 0 after reboot.

14

Set Up

ATRS

1)
2)
3)

Action AT, time-consuming execution, for router/End device

Re-Scan network

The scanning process will take a while and you can use ATLN command to monitor the
scan result. If node finds nothing after a long time scanning, retry ATRS command or reset
Mesh Bee. The node will automatically join the first found network when AJ register has a
value of 1.

ATLN

1)
2)
3)

Action AT, immediate execution, for router/End device
List Network scanned
The index value will be used by ATJN command.

AT)N

1)
2)
3)
4)

Register R/W AT, for router/End device

Bits:1, decimal, max:8, default:0

Join a Network with specific index

ATJIN command is also an action trigger command. The node will join the network
specified by the index of ATLN output. ATJN will return error when the node’s already in
that network.

ATA]J

1)
2)
3)
4)

Register RW AT, for router/End device

Bits:1, decimal, max:1, default:1

Whether Auto Join network scanned

If AJ register has a value of 1, the node will automatically join the first network scanned
after ATRS command or power up with PA register equals to 1.

15

Set Up

4.4 OTA commands

ATOT

1) Action AT, immediate execution, for coordinator
2) OTATrigger
3) Non-coordinator nodes can upgrade firmware over-the-air. This is called OTA. ATOT

command will trigger the OTA upgrade download of a destination node. OTA architecture
consists of OTA server and client. Coordinator will be the server side and router/End
device is the client side. To OTA a client node, you should firstly enter the AT mode on
server side and set the unicast destination address (DA register) to the short address of the
client node, and then execute the ATOT command. And now trace serial port (usually
UARTO) will print some information about OTA process if trace is enabled. After
downloading all image blocks which are saved in the external Flash, the client node will
trigger the upgrade process automatically. The process is: mark the internal firmware
invalid, then reboot, and then the bootloader will copy the new image from the external
Flash into the internal Flash, and then run the new firmware.

Found valid image at external flash.

Image CRC: Ox64B81956b.

Total bytes: 178200, client req period: 1000ms
QK

Figure 3.5: ATOT screen shot

ATOR

1)
2)
3)
4)

Register RW AT, for coordinator

Bits:5, decimal, max:60000, default:1000

OTA block request Rate

Set the interval of two image block requests. The value’s unite is milliseconds. The
smaller, the faster.

16

Set Up

ATOA

1) Action AT, immediate execution, for coordinator

2) OTAAbort

3) Abort the OTA downloading process of a specific node specified by the DA register.
4) Example:

QK

OTA: abort ack from OxcE71.

Figure 3.6: ATOA screen shot

ATOS

1) Action AT, time-consuming execution, for coordinator
2) Query OTA Status

3) Query the status of the OTA downloading process of a specific node specified by the DA
register.

OTA sTatus
Node: Oxce7l
Finished: 1%
Remaining: 58 min

Figure 3.7: ATOS screen shot

17

Set Up

5. API frame

5.1 Structure of API Frame

Every transfer of information requires a protocol. We defined the API frame like
this(structure was defined in firmware_at_api.h):

Start Delimiter Length APl identifier Payload CheckSum
Bytel Byte2 Byte3 Byted~n Byte n+1

Figure 5.1: API Frame structure

5.1.1 API structure types

API_LOCAL_AT REQ

API identifier value: 0x08
These packet types are useful only if the host wants to send commands to its local
MeshBee. You don’t need to specify the unicast address.

AT Index
Frame ID Num Parameter Value

Figure 5.2: local AT require

Frame ID: To Identifies the UART data frame for the host to correlate with a subsequent ACK
(acknowledgement).
AT index Num: Index of the AT commands.

Parameter value: Parameter value to be set.

18

Set Up

API_LOCAL_AT RESP

API identifier value: 0x88

The API type “local AT response” is an ACK frame which is returned to the host from
MeshBee after handling a local AT request frame. To set a register, these frame types indicate
whether the request execution is successful or not. To read a register, it contains the value of
the register you query.

AT Index
Frame ID Status Parameter Value

Figure 5.3: local AT response

Frame ID: To Identifies the UART data frame for the host to correlate with a subsequent ACK
(acknowledgement).

AT index Num: Index of the AT commands.

Status: Command execution status.

Parameter value: Return register value.

API_REMOTE_AT REQ

API identifier value: Ox17
These types allows for module parameter registers on a remote device to be queried or
set, or perform an action (example: reboot) on a remote device.

AT Index Unicast
Frame |D Option Parameter Value Address

Figure 5.4: remote AT require

19

Set Up

Frame ID: To ldentifies the UART data frame for the host to correlate with a subsequent ACK
(acknowledgement).
Option:
[8:0]:ACK Mode, 0 with ACK; 1 without ACK.
[8:1]:Cast Mode,0 unicast; 1 broadcast.
AT index Num: Index of the AT commands.
Parameter value: Parameter value to be set.
Unicast Address: Set to the 16- bit network address of the remote.

API_REMOTE_AT RESP

API identifier value: 0x97
The API type “remote AT response” is an ACK frame which is returned to the host from
the remote node after handling a remote AT request frame.

AT Index Unicast
Frame ID Status Parameter Value Address

Figure 5.5: remote AT response

Frame ID: To Identifies the UART data frame for the host to correlate with a subsequent ACK
(acknowledgement).

AT index Num: Index of the AT commands.

Status: Command execution status.

Parameter value: Return register value.

Unicast Address: 16- bit network address of the remote.

AP|_DATA_PACKET

API identifier value: 0x02
The API type “data packet” is a user data frame. This request message will cause the
module to send RF Data as an RF Packet.

20

Set Up

Unicast
Frame ID Option Data Length Data Value Address

Figure 5.6: Data packets TX require

Frame ID: To Identifies the UART data frame for the host to correlate with a subsequent ACK
(acknowledgement).
Option:
[8:0]:ACK Mode, 0 with ACK; 1 without ACK.
[8:1]:Cast Mode,0 unicast; 1 broadcast.
Data length: the length of data payload.
Parameter value: Data value.

Unicast Address: Set to the 16- bit network address of the remote.

API_TOPO_REQ

API identifier value: Oxfb
This API type allows module to query the network topology.

Required Cmd

Figure 5.7: Structure of network Topo Require

APl TOPO_RESP
API identifier value: Ox6b

In response to an “API_TOPO_REQ” message, the module will send a response
message.

21

Set Up

.) Firmware Short Mac Address Mac Address
Db .
Link Quality m Version Address Low High

Figure 5.8: Structure of network topology response

Link Quality: Indicate link quality of node.

Dbm: Power intensity.

Firmware Version: Firmware Version.

Short Address: source address of this response.

Mac Address Low: MAC address of the node, low byte.
Mac Address High: MAC address of the node, high byte.

22

6. AUPS Function list

This chapter contains the information of functions that AUPS can call.

6.1 Set run-time parameters

setLooplntervalMs

void setLooplntervalMs(uint32 ms);

Description:

This function can be used to set the period of “arduino_Loop()”.
Parameter:

ms : millisecond
Return:

None

setNodeState

void setNodeState(uint32 state):

Description:

This function can be used to set the working state of MeshBee.
Parameter:

state : working state

E_MODE_AT

E_MODE_API

E_MODE_DATA

E_MODE_MCU
Return:

None

23

6.2 Send RF data

bSendToAirPort

bool API_bSendToAirPort(uintl6 txMode, uint16 unicastDest, uint8 *buf, int len);
Description:

This function can be used to send RF packets.
Parameter:

txMode: mode of transmit

UNICAST

BROADCAST

unicastDest: short address of unicast

buf: the pointer of data

len: length of the data
Return:

OK

ERR

6.3 Suli API

suli_pin_init

void suli pin init(10 T *pio, PIN T pin);

Description:
This function can be used to initialize a digital 10 of MeshBee.
Parameter:
pio: pointer of the 10_T entity
pin: pin No
DO, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14,
D15, D16, D17, D18, D19, D20, DOO, DOL.
Return:
none

24

suli_pin_dir

void suli pin dir(I0 T *pio, DIR T dir);

Description:

This function can be used to set direction of digital 10.

Parameter:
pio: pointer of the 10_T entity
dir: direction
HAL_PIN_INPUT
HAL_PIN_OUTPUT

Return:
none

suli_pin_write

void suli pin write(10 T *pio, intl6 state);

Description:

This function can be used to write a digital 10.

Parameter:
pio: pointer of the 10_T entity
state: state of 10
HAL_PIN_LOW
HAL_PIN_HIGH

Return:
none

suli_pin_read

int16 suli pin read(10 T *pio);

Description:

25

This function can be used to read a digital 10.
Parameter:

pio: pointer of the 10_T entity
Return:

state: state of 10

HAL_PIN_LOW

HAL_PIN_HIGH

suli_analog_init

void suli analog inittANALOG T * aio, PIN T pin);

Description:

This function can be used to initialize an analog pin.
Parameter:

aio: pointer of the ANALOG _T entity

pin: pin No

Al: ADC1
A2: ADC2
A3: ADC3
A4: ADC4

TEMP: On-chip temperature ADC

VOL : On-chip voltage ADC
Return:

none

suli_analog_read

int16 suli analog read(ANALOG T *aio);

Description:

This function can be used to read the ADC value.
Parameter:

aio: pointer of the ANALOG _T entity

26

Return:
ADC value

suli i2c_init

void suli i2c init(void * i2c device);

Description:

This function can be used to initialize 12C of MeshBee (D16, D17).
Parameter:

12c_device: any dummy value
Return:

none

suli_i2c_write

uint8 suli i12c write(void * i2c device, uint8 dev addr, uint8 *data, uint8 len);

Description:

This function can be used to write a buff to 12C.
Parameter:

i2c_device: any dummy value

dev_addr: device address

data: data array

len: length of the data
Return:

The number of bytes already been written

suli_i2c_read

uint8 suli i2c read(void *i2c device, uint8 dev addr, uint8 *buff, uint8 len):

27

Description:

This function can be used to read a buff from 12C.
Parameter:

i2c_device: any dummy value

dev_addr: device address

data: pointer of data array

len: length of the data
Return:

The number of bytes already been read

suli_uart_init

void suli uart init(void * uart device, int16 uart num, uint32 baud);

Description:

This function can be only used to initialize uartlof MeshBee. Because uartO is under the

control of the system.
Parameter:
uart_device: any dummy value
uart_num: any dummy value
baud: baud rate
4800
9600
19200
38400
57600
115200
Return:
none

suli_uart send

void suli uart send(void * uart device, int16 uart num, uint8 *data, uint16 len);

Description:

28

This function can be only used to send data through uartl.
Parameter:

uart_device: any dummy value

uart_num: any dummy value

data: pointer of the data array

len: length of the data
Return:

none

suli_uart_send_byte

void suli uart send byte(void *uart device, int16 uart num, uint8 data);

Description:

This function can be only used to send one byte through uartl.
Parameter:

uart_device: any dummy value

uart_num: any dummy value

data: data byte
Return:

none

suli_uart write_float

void suli uart write float(void *uart device, int16 uart num, float data, uint8 prec);

Description:

This function can be only used to send float data through uart1.
Parameter:

uart_device: any dummy value

uart_num: any dummy value

data: float data
Return:

none

29

suli_uart_write_int

void suli uart write int(void *uart device, intl6 uart num, int32 num);

Description:

This function can be only used to send int data through uartl.
Parameter:

uart_device: any dummy value

uart_num: any dummy value

num: int value
Return:

none

suli_uart_printf

void suli uart printf(void *uart device, intl6 uart num, const char *fmt, ...) ;

Description:

This function can be only used to send formatted string to uartl.
Parameter:

uart_device: any dummy value

uart_num: any dummy value

fmt: format of string
Return:

none

suli_uart_read_byte

uint8 suli uart read byte(void * uart device, intl6 uart num);

Description:

30

This function can be only used to read a byte from uart1.
Parameter:

uart_device: any dummy value

uart_num: any dummy value
Return:

Returned byte

suli_uart_readable

uintl6 suli uart readable(void * uart device, intl6 uart num);

Description:
This function can be only used to judge if uartl is readable.
Parameter:
uart_device: any dummy value
uart_num: any dummy value
Return:
The number of bytes which can be read

31

Appendix a: AT command index

ATRB
ATPA

ATAJ

ATRS

ATLN

ATIN

ATLA

ATTM

ATDA

ATQT

ATIO

ATIF

0x30
0x32

0x34

0x36

0x38

0x40

Ox42

Ox44

Ox46

0x48

0x50

0Ox52

reboot
power up action

Auto Join Network
Re-Scan Network
List scanned network
Join specified Network
List All nodes
Transmit mode
Unicast Address
Query Chip temperature
Handle 10s

Node information

Note:

v1003 firmware compatible

32

STU

Copyright (c) 2014 Seeed Technology Inc.

F5, Bldg 8, Shiling Industrial Park,
Xinwei, #32 Tongsha Road,
Xili Town, Nanshan Dist.
Shenzhen 518055 China

+86 755 33552591

www.seeedstudio.com

33

