
RB-See-202

Seeedstudio Grove 125Khz RFID Reader

Introduction

This Grove-125KHz TFID Reader is a module used to read uem4100 RFID card information with two output formats: Uart and Wiegand. It has a sensitivity with maximum 7cm sensing distance. There is also the electronic brick version of this module.

Features

- Selectable output format: Uart or Wiegand.
- 4Pins Electronic Grove Interface

Application Ideas

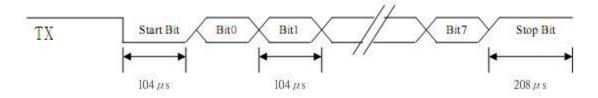
- Internet of Thing
- Pet Toy
- Access Control System

Specifications

- Supply voltage: 5v
- Max sensing distance: 7cm
- Uart output: TTL output, 9600baudrate, 8 data bits, 1 stop bit, and no verify bit.
- Wiegand output: 26 bits Wiegand format, 1 even verify bit, 24 data bits, and 1 odd verify bit;

Usage

Pin Definition and Rating


Pin Name	Function and Note	Rating			
GND	Connect to the Host GND	-			
VCC	Power supply	5V			
	RX - In Uart mode, it is unused	-			
RX/D0	D0 - In Wiegand mode, it represents Data0	5V or 0V			
	TX - In Uart mode, it represents TX data	5V or 0V			
TX/D1	D1 - In Wiegand mode, it represents Data1	5V or 0V			

Hardware Installation

* Uart Mode (Jumper set to the left two pins)

You would need to select the jumper to "U" to enter this mode, and teh setting is: 9600bps, N, 8, 1, TTL output

Output Time sequence

Output Data Format

0x02	10ASCII Data Characters	Checksum	0x03
------	-------------------------	----------	------

0x02 - 1 byte start flag

10 ASCII Data Characters - Card number info

Checksum - 2 bytes

0x03 - 1 byte end flag

Example

Card number: 62E3086CED

Checksum:(62H)XOR(E3H)XOR(08H)XOR(6CH)XOR(EDH)=08H

Note: The 10 ASCII characters grouped as 5 hex data needs to be further processed as you may find that the 5 hex data is not equal to the number marked on the tags in Decimal. Actually the tag number is equal to the later 4 bytes in decimal. For example, the card number is 62E3086CED, the corresponding number marked on the tag should be 60717296877 which is the Decimal format of E3086CED.


* Wiegand Mode (Jumper Set to the Right two Pins)

You would need to select the jumper to "U" to enter this mode, and the setting is: 9600bps, N, 8, 1, TTL output

bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
-	PE		D							P0																
-	-	E							0									-								
-	-				D2[7	70]				D1[[70] D0[70]								-					

In Wiegand Mode, output data is formatted with 26bits including 24bits card info and 2 bits parity.

- PE is even bit, PO is odd bit;
- E is the data bit which was involved in even, O is the data bit which was involved in odd;
- DX[7..0] is the data bit which correspond to Mifare@ Standard & Light card read only ID;
- Wiegand Format 26bits' output time sequence;

Notes

Symbol	Specification	Representative value
THD	Sending Start Delay	1.2ms
TSD	Sending Stop Delay	1ms
TDW	Data pulse width	160µs
TIW	Data pulse interval width	880µs

Demo code

The demo code for Arduino is designed to read Wiegand data in interrupt mode.

Programming

Includes important code snippet. Demo code like :

Demo code

{

}