
	 � 1

Advanced Brushed
and Brushless
Digital Motor
Controllers

User Manual

V1.8, August 28, 2017

visit www.roboteq.com to download the latest revision of this manual

©Copyright 2017 Roboteq, Inc

Brushless Motor Connections and Operation

2	 Advanced Digital Motor Controllers User Manual	 V1.8, August 28, 2017

Revision History

Date Version Changes

August 29, 2017 1.8 Added AC Induction Sections

Extended command set
October 15, 2016 1.7 Added Speed Position Mode

Major Additions to Brushless Motor Section

Added RoboCAN protocol

Miscellaneous updates
May 10, 2012 1.2 Added CAN Networking

Added Closed Loop Count Position mode,
Closed Loop Torque mode

Extended command set
January 8, 2011 1.2 Added Brushless Motor Connections and Operation

July 15, 2010 1.2 Extended command set

Improved position mode
May 15, 2010 1.1 Added Scripting

January 1, 2010 1.0 Initial release

September 15, 2008 1.9d Created Brushless DC version

June 1, 2007 1.9b Added Output C active when Motors On

Fixed Encoder Limit Switches

Protection in case of Encoder failure in Closed Loop Speed

Added Short Circuit Protection (with supporting hardware)

Added Analog 3 and 4 Inputs (with supporting hardware)

Added Operating Mode Change on-the-fly

Changeable PWM frequency

Selectable polarity for Dead Man Switch

Modified Flashing Pattern

Separate PID Gains for Ch1 and C2, changeable on-the-fly

Miscellaneous additions and correction

Added Amps Calibration option

January 10, 2007 1.9 Changed Amps Limit Algorithm

Miscellaneous additions and correction

Console Mode in Roborun

March 7, 2005 1.7b Updated Encoder section.

February 1, 2005 1.7 Added Position mode support with Optical Encoder

Miscellaneous additions and corrections

April 17, 2004 1.6 Added Optical Encoder support

Revision History

	 Advanced Digital Motor Controllers User Manual� 3

Date Version Changes

March 15, 2004 1.5 Added finer Amps limit settings

Enhanced Roborun utility

August 25, 2003 1.3 Added Closed Loop Speed mode

Added Data Logging support

Removed RC monitoring

August 15, 2003 1.2 Modified to cover XDC24xx - XBL16xx - XSX18xx controller
design

Changed Power Connection section

April 15, 2003 1.1 Added analog mode section

Added position mode section

Added RCRC monitoring feature

Updated Roborun utility section

Modified RS232 watchdog

March 15, 2003 1.0 Initial Release

The information contained in this manual is believed to be accurate and reliable. However,
it may contain errors that were not noticed at time of publication. User’s are expected to
perform their own product validation and not rely solely on data contained in this manual.

4	 Advanced Digital Motor Controllers User Manual	 V1.8, August 28, 2017

	 Revision History.. 2

	 Introduction... 19
	 Refer to the Datasheet for Hardware-Specific Issues............................... 19
	 User Manual Structure and Use.. 19
	 SECTION 1 Connecting Power and Motors to the Controller................... 19
	 SECTION 2 Safety Recommendations... 19
	 SECTION 3 Connecting Sensors and Actuators to Input/Outputs 19
	 SECTION 4 I/O Configuration and Operation.. 20
	 SECTION 5 Magentic Sensor... 20
	 SECTION 6 Command Modes ... 20
	 SECTION 7 Motor Operating Features and Options................................. 20
	 SECTION 8 Brushless Motor Connections and Operation........................ 20
	 SECTION 9 AC Induction MotorOperation.. 20
	 SECTION 10 Closed Loop Speed and Speed Position Modes.................. 20
	 SECTION 11 Closed Loop Relative and Tracking Position Modes.............. 20
	 SECTION 12 Closed Loop Count Position Mode...................................... 20
	 SECTION 13 Closed Loop Torque Mode... 21
	 SECTION 14 Serial (RS232/USB) Operation... 21
	 SECTION 15 CAN Networking on Roboteq Controllers............................ 21
	 SECTION 16 RoboCAN Networking... 21
	 SECTION 17 CANopen Interface.. 21
	 SECTION 18 MicroBasic Scripting.. 21
	 SECTION 19 Commands Reference... 21
	 SECTION 20 Using the Roborun Configuration Utility.............................. 21

SECTION 1	 Connecting Power and Motors to the Controller..23
	 Power Connections... 23
	 Controller Power... 24
	 Controller Powering Schemes... 25
	 Mandatory Connections... 26
	 Connection for Safe Operation with Discharged Batteries (note 1).......... 27
	 Use precharge Resistor to prevent switch arcing (note 2)........................ 27
	 Protection against Damage due to Regeneration (notes 3 and 4)............ 27
	 Connect Case to Earth if connecting AC equipment (note 5)................... 27
	 Avoid Ground loops when connecting I/O devices (note 6)...................... 27
	 Connecting the Motors... 28
	 Single Channel Operation... 29
	 Power Fuses... 29
	 Wire Length Limits... 29
	 Electrical Noise Reduction Techniques.. 30
	 Battery Current vs. Motor Current.. 30
	 Measured and Calculated Currents.. 31
	 Power Regeneration Considerations... 32
	 Using the Controller with a Power Supply.. 33

SECTION 2	 Safety Recommendations..35
	 Possible Failure Causes.. 35

	 Advanced Digital Motor Controllers User Manual� 5

	 Motor Deactivation in Normal Operation.. 36
	 Motor Deactivation in Case of Output Stage Hardware Failure................ 36
	 Manual Emergency Power Disconnect... 38
	 Remote Emergency Power Disconnect.. 39
	 Protection using Supervisory Microcomputer.. 39
	 Self Protection against Power Stage Failure... 40

SECTION 3	 Connecting Sensors and Actuators to Input/Outputs...43
	 Controller Connections... 43
	 Controller’s Inputs and Outputs.. 44
	 Connecting devices to Digital Outputs... 45
	 Connecting Resistive Loads to Outputs... 45
	 Connecting Inductive loads to Outputs... 45
	 Connecting Switches or Devices to Inputs shared with Outputs............. 46
	 Connecting Switches or Devices to direct Digital Inputs.......................... 46
	 Connecting a Voltage Source to Analog Inputs... 47
	 Reducing noise on Analog Inputs... 48
	 Connecting Potentiometers to Analog Inputs... 48
	 Connecting Potentiometers for Commands with Safety band guards...... 49
	 Connecting Tachometer to Analog Inputs... 50
	 Connecting External Thermistor to Analog Inputs..................................... 51
	 Using the Analog Inputs to Monitor External Voltages............................. 52
	 Connecting to RC Radios.. 53
	 Connecting Optical Encoders... 53
	 Optical Incremental Encoders Overview.. 53
	 Recommended Encoder Types... 54
	 Connecting the Encoder... 55
	 Cable Length and Noise Considerations... 56
	 Motor - Encoder Polarity Matching... 56

SECTION 4	 I/O Configuration and Operation..57
	 Basic Operation.. 57
	 Input Selection.. 58
	 Digital Inputs Configurations and Uses... 58
	 Analog Inputs Configurations and Use... 59
	 Analog Min/Max Detection.. 60
	 Min, Max and Center adjustment.. 60
	 Deadband Selection.. 61
	 Command Correction.. 62
	 Use of Analog Input... 62
	 Pulse Inputs Configurations and Uses... 62
	 Digital Outputs Configurations and Triggers.. 63
	 Encoder Configurations and Use.. 64
	 Hall and other Rotor Sensor Inputs... 65

SECTION 5	 Magnetic Guide Sensor Connection and Operation...67
	 Introduction to MGS1600 Magnetic Guide Sensor................................... 67
	 MagSensor MultiPWM interface.. 68
	 Enabling MagSensor MultiPWM Communication.................................... 68

6	 Advanced Digital Motor Controllers User Manual	 V1.8, August 28, 2017

	 Accessing Sensor Information.. 68
	 Connecting Multiple Magnetic Guide Sensor... 69
	 Accessing Multiple Sensor Information Sequentially................................ 69
	 Accessing Multiple Sensor Information Simultaneously........................... 70

SECTION 6	 Command Modes...73
	 Input Command Modes and Priorities.. 73
	 USB vs Serial Communication Arbitration... 75
	 CAN Commands Arbitration.. 75
	 Commands issued from MicroBasic scripts... 75
	 Operating the Controller in RC mode.. 75
	 Input RC Channel Selection.. 76
	 Input RC Channel Configuration... 77
	 Joystick Range Calibration.. 77
	 Deadband Insertion... 77
	 Command Correction.. 77
	 Reception Watchdog... 77
	 Using Sensors with PWM Outputs for Commands.................................. 78
	 Operating the Controller In Analog Mode... 78
	 Input Analog Channel Selection.. 78
	 Input Analog Channel Configuration... 79
	 Analog Range Calibration.. 79
	 Using Digital Input for Inverting direction... 79
	 Safe Start in Analog Mode.. 79
	 Protecting against Loss of Command Device... 79
	 Safety Switches.. 79
	 Monitoring and Telemetry in RC or Analog Modes................................... 80
	 Using the Controller with a Spektrum Satellite Receiver.......................... 80
	 Using the Controller in Serial (USB/RS232) Mode.................................... 80

SECTION 7	 Motor Operating Features and Options..81
	 Power Output Circuit Operation.. 81
	 Global Power Configuration Parameters... 82
	 PWM Frequency... 82
	 Overvoltage Protection... 82
	 Undervoltage Protection... 82
	 Temperature-Based Protection... 82
	 Short Circuit Protection... 83
	 Mixed Mode Select... 83
	 Motor Channel Parameters... 84
	 User Selected Current Limit Settings... 84
	 Selectable Amps Threshold Triggering.. 85
	 Programmable Acceleration & Deceleration... 85
	 Forward and Reverse Power Adjustment Gain... 86
	 Selecting the Motor Control Modes... 86
	 Open Loop Speed Control.. 86
	 Closed Loop Speed Control.. 86
	 Closed Loop Speed Position Control... 87

	 Advanced Digital Motor Controllers User Manual� 7

	 Closed Loop Position Relative Control.. 87
	 Closed Loop Count Position.. 88
	 Closed Loop Position Tracking... 88
	 Torque Mode... 89

SECTION 8	 Brushless Motor Connections and Operation... 91
	 Introduction to Brushless Motors... 91
	 Number of Poles... 92
	 Trapezoidal Switching.. 93
	 Hall Sensor Wiring.. 93
	 Hall Sensor Verification... 94
	 Hall Sensor Alignment and Wiring Order.. 95
	 Determining the Wiring Order Empirically.. 96
	 Sensorless Trapezoidal Commutation... 97
	 Setting and Operating Trapezoidal Modes... 97
	 Sensorless Configuration and Calibration... 98
	 Verifying Commutation Timing.. 98
	 Sinusoidal Commutation... 99
	 Angle Feedback Sensors... 99
	 Sinusoidal Configurations and Calibrations..101
	 Setup and Test Encoder Feedback Mode.. 102
	 Setup and Test Hall Encoder Feedback Mode... 102
	 Setup and Test the SPI Encoder Feedback Mode................................... 103
	 Setup and Test the Sin/Cos Encoder Feedback Mode............................. 103
	 Operating Brushless Motors... 107
	 Stall Detection.. 107
	 Speed Measurement using the angle feedback Sensors....................... 107
	 Distance Measurement using Hall, SPI or other Sensors....................... 108
	 Field Oriented Control (FOC).. 108
	 FOC Testing and Troubleshooting...110
	 Field Weakening...110

SECTION 9 	 AC Induction MotorOperation..113
	 Introduction to AC Induction Motors..113
	 Asynchronous Rotation and Slip..114
	 Connecting the Motor..115
	 Selecting and Connecting the Encoder..115
	 Testing the Encoder...115
	 Open Loop Variable Frequency Drive Operation......................................116
	 Figuring the Motor’s Volts per Hertz..116
	 Maintaining Slip within Safe Range...117
	 Closed Loop Speed Mode with Constant Slip Control............................117
	 Field Oriented Control (FOC) mode Operation..118
	 Configuring FOC Torque Mode..119
	 Configuring FOC Speed Mode.. 120

SECTION 10	 Closed Loop Speed and Speed-Position Modes... 121
	 Modes Description... 121

8	 Advanced Digital Motor Controllers User Manual	 V1.8, August 28, 2017

	 Closed Loop Speed Mode.. 121
	 Closed Loop Speed Position Control .. 121
	 Motor Sensors.. 122
	 Tachometer or Encoder Mounting.. 122
	 Tachometer wiring.. 122
	 Brushless Hall Sensors as Speed Sensors... 123
	 Speed Sensor and Motor Polarity... 123
	 Controlling Speed in Closed Loop... 124
	 PID Description... 125
	 PID tuning in Closed Loop Speed Mode... 126
	 PID Tuning in Speed Position Mode.. 127
	 Error Detection and Protection... 128

SECTION 11	 Closed Loop Relative and Tracking Position Modes... 129
	 Modes Description... 129
	 Position Relative Mode... 129
	 Position Tracking Mode... 129
	 Selecting the Position Modes... 130
	 Position Feedback Sensor Selection... 130
	 Sensor Mounting.. 130
	 Feedback Sensor Range Setting... 131
	 Adding Safety Limit Switches... 132
	 Using Current Trigger as Protection.. 133
	 Operating in Closed Loop Relative Position Mode.................................. 133
	 Operating in Closed Loop Tracking Mode.. 135
	 Position Mode Relative Control Loop Description.................................. 135
	 PID tuning in Position Mode... 136
	 PID Tuning Differences between Position Relative and Position Tracking.137
	 Loop Error Detection and Protection... 138

SECTION 12	 Closed Loop Count Position Mode... 139
	 Mode description.. 139
	 Sensor Types and Mounting.. 140
	 Encoder Home reference.. 140
	 Preparing and Switching to Closed Loop.. 140
	 Count Position Commands... 141
	 Position Command Chaining... 141
	 Position Accuracy Considerations... 142
	 PID Tunings... 143
	 Loop Error Detection and Protection.. 143

SECTION 13	 Closed Loop Torque Mode... 145
	 Torque Mode Description .. 145
	 Torque Mode Selection, Configuration and Operation............................ 146
	 Torque Mode Tuning.. 146
	 Configuring the Loop Error Detection... 146
	 Torque Mode Limitations.. 146
	 Torque Mode Using an External Amps Sensor....................................... 147

	 Advanced Digital Motor Controllers User Manual� 9

SECTION 14	 Serial (RS232/USB) Operation... 149
	 Use and benefits of Serial Communication.. 149
	 Serial Port Configuration... 150
	 Connector RS232 Pin Assignment.. 150
	 Setting Different Bit Rates.. 150
	 Cable configuration... 151
	 Extending the RS232 Cable.. 151
	 Connecting to Arduino and other TTL Serial Microcomputers................ 152
	 USB Configuration.. 153
	 Command Priorities.. 154
	 USB vs. Serial Communication Arbitration.. 154
	 CAN Commands... 154
	 Script-generated Commands.. 154
	 Communication Protocol Description... 154
	 Character Echo.. 155
	 Command Acknowledgment.. 155
	 Command Error.. 155
	 Watchdog time-out... 155
	 Controller Present Check.. 155

SECTION 15	 CAN Networking on Roboteq Controllers.. 157
	 Supported CAN Modes... 157
	 Connecting to CAN bus.. 158
	 Introduction to CAN Hardware signaling... 159
	 CAN Bus Pinout.. 159
	 CAN and USB Limitations... 160
	 Basic Setup and Troubleshooting.. 160
	 Cable polarity, integrity and termination resistor.................................... 161
	 Check CANbus activity using a voltmeter... 161
	 Check CANbus activity using a CAN sniffer.. 161
	 Mode Selection and Configuration... 161
	 Common Configurations... 162
	 MiniCAN Configurations... 162
	 RawCAN Configurations... 162
	 Using RawCAN Mode... 162
	 Checking Received Frames... 162
	 Reading Raw Received Frames.. 163
	 Transmitting Raw Frames.. 163
	 Using MiniCAN Mode... 164
	 Transmitting Data.. 164
	 Receiving Data.. 164
	 MiniCAN Usage Example... 165

SECTION 16	 RoboCAN Networking... 167
	 Network Operation... 168
	 RoboCAN via Serial & USB... 168
	 Runtime Commands... 168
	 Broadcast Command.. 168

10	 Advanced Digital Motor Controllers User Manual	 V1.8, August 28, 2017

	 Realtime Queries.. 169
	 Remote Queries restrictions... 169
	 Configurations Read/Writes.. 170
	 Remote Configurations Read restrictions... 170
	 Remote Maintenance Commands.. 170
	 Self Addressed Commands and Queries.. 171
	 RoboCAN via MicroBasic Scripting... 171
	 Sending Commands and Configuration.. 171
	 Reading Operating values Configurations... 172
	 Continuous Scan... 173
	 Checking the presence of a Node... 175
	 Self Addressed Commands and Queries.. 175
	 Broadcast Command.. 175
	 Remote MicroBasic Script Download... 175

SECTION 17	 CANopen Interface... 177
	 Use and benefits of CANopen.. 177
	 CAN Connection... 177
	 CAN Bus Configuration... 178
	 Node ID... 178
	 Bit Rate... 178
	 Heartbeat.. 178
	 Autostart... 178
	 Commands Accessible via CANopen.. 179
	 CANopen Message Types... 179
	 Service Data Object (SDO) Read/Write Messages................................. 179
	 Transmit Process Data Object (TPDO) Messages.................................. 179
	 Receive Process Data Object (RPDO) Messages................................... 180
	 SDO Construction Details... 183
	 SDO Example 1: Set Encoder Counter 2 (C) of node 1 value 10............ 184
	 SDO Example 2: Activate emergency shutdown (EX) for node 12......... 184
	 SDO Example 3: Read Battery Volts (V) of node 1. 185

SECTION 18	 MicroBasic Scripting... 187
	 Script Structure and Possibilities... 187
	 Source Program and Bytecodes... 188
	 Variables Types and Storage.. 188
	 Variable content after Reset.. 188
	 Controller Hardware Read and Write Functions...................................... 188
	 Timers and Wait.. 189
	 Execution Time Slot and Execution Speed.. 189
	 Protections.. 189
	 Print Command Restrictions... 189
	 Editing, Building, Simulating and Executing Scripts................................ 190
	 Editing Scripts... 190
	 Building Scripts... 190
	 Simulating Scripts... 190
	 Downloading MicroBasic Scripts to the controller.................................. 191

	 Advanced Digital Motor Controllers User Manual� 11

	 Saving and Loading Scripts in Hex Format.. 191
	 Executing MicroBasic Scripts... 191
	 Debugging Microbasic Scripts.. 192
	 Script Command Priorities.. 192
	 MicroBasic Scripting Techniques... 193
	 Single Execution Scripts... 193
	 Continuous Scripts.. 193
	 Optimizing Scripts for Integer Math.. 194
	 Script Examples.. 195
	 MicroBasic Language Reference.. 195
	 Introduction... 195
	 Comments.. 196
	 Boolean... 196
	 Numbers... 196
	 Strings... 196
	 Blocks and Labels... 197
	 Variables.. 198
	 Arrays.. 198
	 Terminology.. 198
	 Keywords.. 199
	 Operators.. 199
	 Micro Basic Functions... 199
	 Controller Configuration and Commands.. 200
	 Timers Commands... 200
	 Pre-Processor Directives (#define).. 200
	 Option (Compilation Options)... 200
	 Dim (Variable Declaration)... 200
	 If...Then Statement... 201
	 For...Next Statement... 202
	 While/Do Statements... 203
	 Terminate Statement.. 204
	 Exit Statement.. 204
	 Continue Statement.. 204
	 GoTo Statement.. 205
	 GoSub/Return Statements.. 205
	 ToBool Statement... 206
	 Print Statement... 206
	 + Operator.. 206
	 - Operator.. 206
	 * Operator... 206
	 / Operator.. 206
	 Mod Operator... 207
	 And Operator.. 207
	 Or Operator... 207
	 XOr Operator... 207
	 Not Operator... 207

12	 Advanced Digital Motor Controllers User Manual	 V1.8, August 28, 2017

	 True Literal.. 207
	 False Literal... 207
	 ++ Operator.. 207
	 -- Operator... 208
	 << Operator.. 208
	 >> Operator.. 209
	 <> Operator.. 209
	 < Operator.. 209
	 > Operator.. 209
	 <= Operator.. 209
	 > Operator.. 209
	 >= Operator.. 209
	 += Operator.. 209
	 -= Operator... 210
	 *= Operator.. 210
	 /= Operator... 210
	 <<= Operator... 210
	 >>= Operator..211
	 [] Operator...211
	 Abs Function..211
	 Atan Function...211
	 Cos Function..211
	 GetValue... 212
	 SetCommand.. 212
	 SetConfig / GetConfig... 213
	 SetTimerCount/GetTimerCount.. 213
	 SetTimerState/GetTimerState.. 213
	 Sending RoboCAN Commands and Configuration.................................. 214
	 Reading RoboCAN Operating Values Configurations.............................. 214
	 RoboCAN Continuous Scan.. 215
	 Checking the Presence of a RoboCAN Node.. 215

SECTION 19	 Commands Reference.. 217
	 Commands Types.. 217
	 Runtime commands... 217
	 Runtime queries... 217
	 Maintenance commands.. 217
	 Set/Read Configuration commands.. 218
	 Runtime Commands... 218
	 AC - Set Acceleration.. 219
	 AX - Next Acceleration.. 219
	 B - Set User Boolean Variable... 220
	 BND - Mutli-purpose Bind... 221
	 C - Set Encoder Counters... 221
	 CB - Set Brushless Counter.. 222
	 CG - Set Motor Command via CAN.. 222
	 CS - CAN Send.. 223

	 Advanced Digital Motor Controllers User Manual� 13

	 D0 - Reset Individual Digital Out bits.. 224
	 D1 - Set Individual Digital Out bits.. 224
	 DC - Set Deceleration... 225
	 DS - Set all Digital Out bits... 226
	 DX - Next Decceleration.. 226
	 EES - Save Configuration in EEPROM.. 227
	 EX - Emergency Stop.. 228
	 G - Go to Speed or to Relative Position... 228
	 H - Load Home counter.. 229
	 MG - Emergency Stop Release... 230
	 MS - Stop in all modes.. 230
	 P - Go to Absolute Desired Position.. 230
	 PR - Go to Relative Desired Position... 231
	 PRX - Next Go to Relative Desired Position.. 232
	 PX - Next Go to Absolute Desired Position... 232
	 R - MicroBasic Run... 233
	 RC - Set Pulse Out.. 234
	 S - Set Motor Speed... 234
	 SX - Next Velocity.. 235
	 VAR - Set User Variable... 235
	 Runtime Queries... 236
	 A - Read Motor Amps... 238
	 AI - Read Analog Inputs.. 239
	 AIC - Read Analog Input after Conversion... 239
	 ANG - Read Rotor Angle... 240
	 ASI - Read Raw Sin/Cos sensor.. 240
	 B - Read User Boolean Variable... 241
	 BA - Read Battery Amps... 241
	 BCR - Read Brushless Count Relative... 242
	 BS - Read BL Motor Speed in RPM.. 242
	 BSR - Read BL Motor Speed as 1/1000 of Max RPM............................. 243
	 C - Read Encoder Counter Absolute... 243
	 CAN - Read Raw CAN frame.. 244
	 CB - Read Absolute Brushless Counter.. 245
	 CF - Read Raw CAN Received Frames Count... 245
	 CIA - Read Converted Analog Command.. 246
	 CIP - Read Internal Pulse Command... 246
	 CIS - Read Internal Serial Command... 247
	 CL - Read RoboCAN Alive Nodes Map... 247
	 CR - Read Encoder Count Relative... 248
	 D - Read Digital Inputs.. 249
	 DI - Read Individual Digital Inputs... 249
	 DO - Read Digital Output Status... 250
	 DR - Read Destination Reached.. 250
	 E - Read Closed Loop Error... 251
	 F - Read Feedback... 251

14	 Advanced Digital Motor Controllers User Manual	 V1.8, August 28, 2017

	 FC - Read FOC Angle Adjust... 252
	 FF - Read Fault Flags... 253
	 FID - Read Firmware ID.. 253
	 FM - Read Runtime Status Flag.. 254
	 FS - Read Status Flags.. 255
	 HS - Read Hall Sensor States... 255
	 ICL - Is RoboCAN Node Alive.. 256
	 K - Read Spektrum Receiver... 256
	 LK - Read Lock status... 257
	 M - Read Motor Command Applied.. 258
	 MA - Read Field Oriented Control Motor Amps...................................... 258
	 MGD - Read Magsensor Track Detect... 259
	 MGM - Read Magsensor Markers.. 260
	 MGS - Read Magsensor Status.. 260
	 MGT - Read Magsensor Track Position.. 261
	 MGY - Read Magsensor Gyroscope... 262
	 P - Read Motor Power Output Applied.. 262
	 PI - Read Pulse Inputs... 263
	 PIC - Read Pulse Input after Conversion... 264
	 S - Read Encoder Motor Speed in RPM.. 264
	 SCC - Read Script Checksum.. 265
	 SR - Read Encoder Speed Relative... 265
	 T - Read Temperature... 266
	 TM - Read Time... 267
	 TR - Read Position Relative Tracking.. 267
	 TRN - Read Control Unit type and Controller Model............................... 268
	 UID - Read MCU Id... 268
	 V - Read Volts.. 269
	 VAR - Read User Integer Variable.. 270
	 SL - Read Slip Frequency.. 270
	 Query History Commands.. 271
	 # - Send Next History Item / Stop Automatic Sending............................ 271
	 # C - Clear Buffer History.. 272
	 # nn - Start Automatic Sending... 272
	 Maintenance Commands.. 272
	 CLMOD - Calibrate Sin/Cos sensors... 273
	 CLRST - Reset configuration to factory defaults..................................... 273
	 CLSAV - Save calibrations to Flash.. 273
	 DFU - Update Firmware via USB.. 273
	 EELD - Load Parameters from EEPROM... 274
	 EERST - Reset Factory Defaults... 274
	 EESAV - Save Configuration in EEPROM.. 274
	 LK - Lock Configuration Access.. 275
	 RESET - Reset Controller.. 275
	 SLD - Script Load.. 275
	 STIME - Set Time.. 275
	 UK - Unlock Configuration Access.. 276

	 Advanced Digital Motor Controllers User Manual� 15

	 Set/Read Configuration Commands ... 276
	 Setting Configurations.. 276
	 Reading Configurations... 277
	 Configuration Read Protection.. 278
	 General Configuration and Safety... 278
	 ACS - Analog Center Safety.. 278
	 AMS - Analog within Min & Max Safety... 279
	 BEE - User Storage in Battery Backed RAM... 280
	 BRUN - MicroBasic Auto Start.. 280
	 CLIN - Command Linearity.. 281
	 CPRI - Command Priorities.. 282
	 DFC - Default Command value... 283
	 ECHOF - Enable/Disable Serial Echo.. 283
	 EE - Store User Data in Flash.. 284
	 RSBR - Set RS232 bit rate.. 285
	 RWD - Serial Data Watchdog.. 286
	 SCRO - Select Print output port for scripting.. 287
	 SKCTR - Spektrum Center.. 287
	 SKDB - Spektrum Deadband... 288
	 SKLIN - Spektrum Linearity... 288
	 SKMAX - Spektrum Max... 289
	 SKMIN - Spektrum Min... 290
	 SKUSE - Assign Spektrum port to motor command............................... 290
	 TELS - Telemetry String... 291
	 Analog, Digital, Pulse IO Configurations... 292
	 ACTR - Set Analog Input Center (0) Level.. 292
	 ADB - Analog Deadband... 293
	 AINA - Analog Input Use... 294
	 ALIN - Analog Linearity... 295
	 AMAX - Set Analog Input Max Range... 296
	 AMAXA - Action at Analog Max.. 296
	 AMIN - Set Analog Input Min Range... 297
	 AMINA - Action at Analog Min.. 298
	 AMOD - Enable and Set Analog Input Mode.. 299
	 APOL - Analog Input Polarity... 300
	 DINA - Digital Input Action.. 300
	 DINL - Digital Input Active Level... 301
	 DOA - Digital Output Action.. 302
	 DOL - Digital Outputs Active Level.. 303
	 PCTR - Pulse Center Range... 303
	 PDB - Pulse Input Deadband... 304
	 PINA - Pulse Input Use... 305
	 PLIN - Pulse Linearity.. 306
	 PMAX - Pulse Max Range... 306
	 PMAXA - Action on Pulse Max.. 307
	 PMIN - Pulse Min Range... 308
	 PMINA - Action on Pulse Min.. 308

16	 Advanced Digital Motor Controllers User Manual	 V1.8, August 28, 2017

	 PMOD - Pulse Mode Select.. 309
	 PPOL - Pulse Input Polarity..311
	 Motor Configurations...311
	 ALIM - Amp Limit.. 312
	 ATGA - Amps Trigger Action.. 313
	 ATGD - Amps Trigger Delay... 314
	 ATRIG - Amps Trigger Level... 315
	 BKD - Brake activation delay in ms... 315
	 BLFB - Encoder or Hall Sensor Feedback for closed loop....................... 316
	 BLSTD - Stall Detection.. 317
	 CLERD - Close Loop Error Detection.. 318
	 EHL - Encoder High Count Limit... 318
	 EHLA - Encoder High Limit Action.. 319
	 EHOME - Encoder Counter Load at Home Position................................ 320
	 ELL - Encoder Low Count Limit... 321
	 ELLA - Encoder Low Limit Action... 321
	 EMOD - Encoder Usage... 322
	 EPPR - Encoder PPR Value.. 323
	 ICAP - PID Integral Cap... 324
	 KD - PID Differential Gain.. 324
	 KI - PID Integral Gain... 325
	 KP - PID Proportional Gain.. 326
	 MAC - Motor Acceleration Rate.. 327
	 MDEC - Motor Deceleration Rate... 327
	 MDIR - Motor Direction.. 328
	 MMOD - Operating Mode.. 328
	 MVEL - Default Position Velocity... 329
	 MXMD - Separate or Mixed Mode Select... 330
	 MXPF - Motor Max Power Forward.. 330
	 MXPR - Motor Max Power Reverse... 331
	 MXRPM - Max RPM Value.. 332
	 MXTRN - Number of turns between limits... 332
	 OVH - Overvoltage hysteresis... 333
	 OVL - Overvoltage Cutoff Limit... 334
	 PWMF - PWM Frequency... 334
	 THLD - Short Circuit Detection Threshold... 335
	 UVL - Undervoltage Limit... 336
	 ^UVL 100 : Set undervoltage limit to 10.0 V... 336
	 Brushless Specific Commands... 336
	 BADJ - Brushless zero angle... 337
	 BADV - Brushless timing angle adjust... 338
	 BFBK - Brushless feedback sesnor... 338
	 BHL - Brushless Counter High Limit... 339
	 BHLA - Brushless Counter High Limit Action... 340
	 BHOME - Brushless Counter Load at Home Position............................. 341
	 BLL - Brushless Counter Low Limit.. 342

	 Advanced Digital Motor Controllers User Manual� 17

	 BLLA - Brushless Counter Low Limit Action... 342
	 BMOD - Brushless operating mode.. 343
	 BPOL - Number of Pole Pairs and Speed Polarity of Brushless Motor... 344
	 BZPW - Brushless zero seek power level... 345
	 HPO - Hall Sensor Position... 345
	 HSM - Hall Sensor Map.. 346
	 KIF - FOC PID Integral Gain.. 347
	 KPF - FOC PID Proportional Gain.. 348
	 SPOL - Sin/Cos or Resolver number of poles... 348
	 SSP - Sensorless Start-Up Power.. 349
	 SST - Sensorless Start-Up Time.. 350
	 SWD - Swap Windings.. 350
	 TID - FOC Target Id.. 351
	 ZSMC - SinCos Calibration.. 352
	 AC Induction Specific Command.. 353
	 VPH - AC Induction Volts per Hertz... 353
	 ILM - Mutual Inductance... 353
	 ILLR - Rotor Leakage Inductance.. 354
	 IRR - Rotor Resistance.. 355
	 MPW - Minimum Power... 356
	 MXS - Optimal Slip Frequency.. 357
	 RFC - Rotor Flux Current... 357
	 CAN Communication Commands... 358
	 CAS - CANOpen Auto start... 358
	 CBR - CAN Bit Rate.. 359
	 CEN - CAN Enable.. 359
	 CHB - CAN Heartbeat... 360
	 CLSN - CAN Listening Node... 360
	 CNOD - CAN Node Address... 361
	 CSRT - MiniCAN SendRate... 361
	 CTPS - CANOpen TPDO SendRate... 362

SECTION 20	 Using the Roborun Configuration Utility... 363
	 System Requirements.. 363
	 Downloading and Installing the Utility.. 363
	 The Roborun+ Interface.. 364
	 Header Content.. 365
	 Status Bar Content.. 365
	 Program Launch and Controller Discovery.. 366
	 Configuration Tab.. 366
	 Entering Parameter Values.. 367
	 Automatic Analog and Pulse input Calibration.. 368
	 Input/Output Labeling... 369
	 Loading, Saving Controller Parameters... 370
	 Locking & Unlocking Configuration Access... 370
	 Configuration Parameters Grouping & Organization............................... 371
	 Startup Parameters... 371

18	 Advanced Digital Motor Controllers User Manual	 V1.8, August 28, 2017

	 Commands Parameters.. 372
	 CAN Communication Parameters... 372
	 Encoder Parameters... 373
	 Digital Input and Output Parameters.. 373
	 Analog Input Parameters.. 374
	 Pulse Input Parameters... 374
	 Power Output Parameters.. 375
	 General Settings... 375
	 Motor Parameters... 375
	 Run Tab... 376
	 Status and Fault Monitoring.. 376
	 Applying Motor Commands.. 377
	 Digital, Analog and Pulse Input Monitoring... 377
	 Digital Output Activation and Monitoring.. 377
	 Using the Chart Recorder... 377
	 Console Tab... 378
	 Text-Mode Commands Communication .. 378
	 Updating the Controller’s Firmware.. 379
	 Updating Script... 381
	 Updating the Controller Logic... 381
	 Scripting Tab.. 381
	 Edit Window... 382
	 Download to Device button.. 382
	 Download to Remote Device button... 382
	 Build button... 382
	 Exporting Script Object Hex Files... 382
	 Simulation button.. 382
	 Correcting Compilation Errors... 382
	 Executing Scripts.. 383
	 Debugging Scripts.. 384

Refer to the Datasheet for Hardware-Specific Issues

	 Advanced Digital Motor Controller User Manual� 19

	 Introduction

Refer to the Datasheet for Hardware-Specific Issues
This manual is the companion to your controller’s datasheet. All information that is specific
to a particular controller model is found in the datasheet. These include:

•	 Number and types of I/O
•	 Connectors pin-out
•	 Wiring diagrams
•	 Maximum voltage and operating voltage
•	 Thermal and environmental specifications
•	 Mechanical drawings and characteristics
•	 Available storage for scripting
•	 Battery or/and Motor Amps sensing
•	 Storage size of user variables to Flash or Battery-backed RAM

User Manual Structure and Use
The user manual discusses issues that are common to all controllers inside a given prod-
uct family. Except for a few exceptions, the information contained in the manual does not
repeat the data that is provided in the datasheets.

The manual is divided in 18 sections organized as follows:

SECTION 1 Connecting Power and Motors to the Controller
This section describes the power connections to the battery and motors, the mandatory
vs. optional connections. Instructions and recommendations are provided for safe opera-
tion under all conditions.

SECTION 2 Safety Recommendations
This section lists the possible motor failure causes and provides examples of prevention
methods and possible ways to regain control over motor if such failures occur.

SECTION 3 Connecting Sensors and Actuators to Input/Outputs
This section describes all the types of inputs that are available on all controller models and
describes how to attach sensors and actuators to them. This section also describes the
connection and operation of optical encoders.

Introduction

20	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

SECTION 4 I/O Configuration and Operation
This section details the possible use of each type of Digital, Analog, Pulse or Encoder in-
puts, and the Digital Outputs available on the controller. It describes in detail the software
configurable options available for each I/O type.

SECTION 5 Magentic Sensor
This section discusses how to interface one or more Roboteq’s MGS1600 Magnetic Guide
Sensors to the motor controller.

SECTION 6 Command Modes
The controller can be operated using serial, analog or pulse commands. This section de-
scribes each of these modes and how the controller can switch from one command input
to another. Detailed descriptions are provided for the RC pulse and Analog command
modes and all their configurable options.

SECTION 7 Motor Operating Features and Options
This section reviews all the configurable options available to the motor driver section. It
covers global parameters such as PWM frequency, overvoltage, or temperature-based
protection, as well as motor channel-specific configurations. These include amps limiting,
acceleration/deceleration settings, or operating modes.

SECTION 8 Brushless Motor Connections and Operation
This section addresses installation and operating issues specific to brushless motors. It is
applicable only to brushless motor controller models.

SECTION 9 AC Induction MotorOperation
This section discusses the controller’s operating features and options when using three
phase AC Induction motors.

SECTION 10 Closed Loop Speed and Speed Position Modes
This section focuses on the closed loop speed mode with feedback using analog speed
sensors or encoders. Information is provided on how to setup a closed loop speed control
system, tune the PID control loop, and operate the controller.

SECTION 11 Closed Loop Relative and Tracking Position Modes
This section describes how to configure and operate the controller in position mode using
analog, pulse, or encoder feedback. In position mode, the motor can be made to smoothly
go from one position to the next. Information is provided on how to setup a closed loop
position system, tune the PID control loop, and operate the controller.

SECTION 12 Closed Loop Count Position Mode
This section describes how to configure and operate the controller in Closed Loop Count
Position mode. Position command chaining is provided to ensure seamless motor motion.

User Manual Structure and Use

	 Advanced Digital Motor Controller User Manual� 21

SECTION 13 Closed Loop Torque Mode
This section describes how to select, configure and operate the controller in Closed Loop
Torque mode.

SECTION 14 Serial (RS232/USB) Operation
This section describes how to communicate to the controller via the RS232 or USB inter-
face.

SECTION 15 CAN Networking on Roboteq Controllers
This section describes the RawCAN and MiniCAN operating modes available on CAN-en-
abled Roboteq controllers.

SECTION 16 RoboCAN Networking
This section describes the RoboCAN protocol: a simple and efficient meshed network
scheme for Roboteq devices

SECTION 17 CANopen Interface
This section describes the configuration of the CANopen communication protocol and the
commands accepted by the controller operating in the CANopen mode.

SECTION 18 MicroBasic Scripting
This section describes the MicroBasic scripting language that is built into the controller. It
describes the features and capabilities of the language and how to write custom scripts. A
Language Reference is provided.

SECTION 19 Commands Reference
This section lists and describes in detail all configuration parameters, runtime commands,
operating queries, and maintenance commands available in the controller.

SECTION 20 Using the Roborun Configuration Utility
This section describes the features and capabilities of the Roborun PC utility. The utility
can be used for setting/changing configurations, operate/monitor the motors and I/O, edit,
simulate and run Microbasic scripts, and perform various maintenance functions such as
firmware updates.

Introduction

22	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Power Connections

	 Advanced Digital Motor Controller User Manual� 23

SECTION 1	 Connecting
Power and
Motors to the
Controller

This section describes the controller’s connections to power sources and motors.

This section does not show connector pin-outs or wiring diagram. Refer to the datasheet
for these.

Important Warning

The controller is a high power electronics device. Serious damage, including fire,
may occur to the unit, motor, wiring and batteries as a result of its misuse. Please
follow the instructions in this section very carefully. Any problem due to wiring er-
rors may have very serious consequences and will not be covered by the product’s
warranty.

Power Connections
Power connections are described in the controller model’s datasheet. Depending on the
model type, power connection is done via wires, fast-on tabs, screw terminals or copper
bars coming out of the controller.

Controllers with wires as power connections have Ground (black), VMot (red) power ca-
bles and a Power Control wire (yellow). The power cables are located at the back end of
the controller. The various power cables are identified by their position, wire thickness and
color: red is positive (+), black is negative or ground (-).

Controllers with tabs, screw terminals or copper bars have their connector identified in
print on the controller.

Connecting Power and Motors to the Controller

24	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Controller Power
The controller uses a flexible power supply scheme that is best described in Figure 1-1.
In this diagram, it can be seen that the power for the Controller’s internal microcomput-
er is separate from this of the motor drivers. The microcomputer circuit is connected to
a DC/DC converter which takes power from either the Power Control input or the VMot
input. A diode circuit that is included in most controller models, is designed to automat-
ically select one power source over the other and lets through the source that has the
highest voltage.

Channel 1 MOSFET Power Stage

Channel 2 MOSFET Power Stage

0Vmin
Vmot

Microcomputer &
MOSFET Drivers DC/DC

ENABLE

7V min
Vpwr max

0Vmin
Vmot max

Power
Control
&Backup

Vmot

Mot1(-)

Mot2(-)

Mot1(+)

Mot2(+)

Vmot

GND

GND

GND

*

* included in high voltage models only

FIGURE 1-1. Representations of the controller’s Internal Power Circuits

When powered via the Power Control input only, the controller will turn On, but motors
will not be able to turn until power is also present on the VMot wires or Tab.

The Power Control input also serves as the Enable signal for the DC/DC converter. When
floating or pulled to above 1V, the DC/DC converter is active and supplies the controller’s
microcomputer and drivers, thus turning it On. When the Power Control input is pulled to
Ground, the DC/DC converter is stopped and the controller is turned Off.

The Power Control input MUST be connected to Ground to turn the Controller Off. For
turning the controller On, even though the Power Control may be left floating, whenever
possible pull it to a 12V or higher voltage to keep the controller logic solidly On. You may
use a separate battery to keep the controller alive as the main Motor battery discharges.

On high voltage controller that are rated above 60V, a zener diode is inserted between the
VMot supply and the DC/DC converter. This causes a voltage drop that keeps the voltage
at the converter’s input within its maximum operating range. However, this diode also

Controller Powering Schemes

	 Advanced Digital Motor Controller User Manual� 25

increases by around 20V the low voltage threshold at which the controller will start operat-
ing when powered from VMot alone.

The table below shows the state of the controller depending on the voltage applied to
Power Control and VMot.

TABLE 1-1. Controller Status depending on Power Control and VMot

Power Control input is
connected to

And Main Battery
Voltage is Action

Ground Any Voltage Controller is Off. Required Off
Configuration.

Floating 0V Controller is Off. Not Recom-
mended Off Configuration.

Floating Above VMotMin (1) Controller is On.

Power Stage is Active (2)

7V to max PwrCtl (3) Volts Any Voltage Controller is On.

Power Stage is Active (2)

Note 1: VMotMin = 7V on all controller rated up to 60V. VMotMin = 28V on all controllers rated above
60V. See product datasheet

Note 2: Power Stage is active but turned off when overvoltage or undervoltage condition.

Note 3: 35V max on 30V controllers. 60V max on all products rated above 30V

Note: All ground terminals (-) are connected to each other inside the controller. On dual
channel controllers, the two VMot main battery wires are also connected to each other
internally. However, you must never assume that connecting one wire of a given battery
potential will eliminate the need to connect the other. When pre-charging the controller’s
capacitors, the Power Control input must be grounded. See the note on capacitor pre-
charging on page 27. “Capacitor precharging”

Controller Powering Schemes
Roboteq controllers operate in an environment where high currents may circulate in
unexpected manners under certain condition. Please follow these instructions. Roboteq
reserves the right to void product warranty if analysis determines that damage is due to
improper controller power connection.

The example diagram on Figure 1-2 on page 26 shows how to wire the controller and
how to turn power On and Off. All Roboteq models use a similar power circuit. See the
controller datasheet for the exact wiring diagram for your controller model.

Connecting Power and Motors to the Controller

26	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Motor

Hall
Sensors

HA/HB/HC
GND/+5V

VMot/Red

PwrCtrl/Yellow

SW1 Main
On/Off Switch 1A

F2
1A

Diode
>20A

Resistor
1K, 0.5W

+ -

SW2
Emergency
Contactor or
Cut-off Switch

F1

White/U

Green/V

Blue/W

Hall sensor
Connector

Earth Tab

I/O Connector

Ground/Black

Ground/Black

Main
Battery

Backup
Battery

Note 5

Note 6
Do not Connect!

Note 1

Note 3 Note 2

U

V W

Note 4

FIGURE 1-2. Brushless DC Controller power wiring diagram

Mandatory Connections
It is imperative that the controller is connected as shown in the wiring diagram provided in
the datasheet in order to ensure a safe and trouble-free operation. All connections shown
as thick black lines are mandatory.

•	 Connect the thick black wire(s) or the ground terminal to the minus (-) terminal of
the battery that will be used to power the motors. Connect the thick red wire(s) or
VMot terminal to the plus (+) terminal of the battery. The motor battery may be of
12V up to the maximum voltage specified in the controller model datasheet.

•	 The controller must be powered On/Off using switch SW1on the Power Control
wire/terminal. Grounding this line powers Off the controller. Floating or pulling this
line to a voltage will power On the controller. (SW1 is a common SPDT 1 Amp or
more switch).

•	 Use a suitable high-current fuse F1 as a safety measure to prevent damage to the
wiring in case of major controller malfunction. (Littlefuse ATO or MAXI series).

•	 The battery must be connected in permanence to the controller’s Red wire(s) or
VMot terminal via a high-power emergency switch SW2 as additional safety mea-
sure. Partially discharged batteries may not blow the fuse, while still having enough
power left to cause a fire. Leave the switch SW2 closed at all times and open only
in case of an emergency. Use the main On/Off switch SW1 for normal operation.
This will prolong the life of SW2, which is subject to arcing when opening under
high current with consequent danger of contact welding.

•	 If installing in an electric vehicle equipped with a Key Switch where SW2 is a con-
tactor, and the key switch energizes the SW2 coil, then implement SW1 as a relay.
Connect the Key Switch to both coils of SW1 and SW2 so cutting off the power to
the vehicle by the key switch and SW2 will set the main switch SW1 in the OFF
position as well.

Controller Powering Schemes

	 Advanced Digital Motor Controller User Manual� 27

Connection for Safe Operation with Discharged Batteries (note 1)
The controller will stop functioning when the main battery voltage drops below 7V. To en-
sure motor operation with weak or discharged batteries, connect a second battery to the
Power Control wire/terminal via the SW1 switch. This battery will only power the control-
ler’s internal logic. The motors will continue to be powered by the main battery while the
main battery voltage is higher than the secondary battery voltage.

Use precharge Resistor to prevent switch arcing (note 2)
Insert a 1K, 0.5W resistor across the SW2 Emergency Switch. This will cause the control-
ler’s internal capacitors to slowly charge and maintain the full battery voltage by the time
the SW2 switch is turned on and thus eliminate damaging arcing to take place inside the
switch. Make sure that the controller is turned Off with the Power Control wire grounded
while the SW2 switch is off. The controller’s capacitors will not charge if the Power Control
wire is left floating and arcing will then occur when the Emergency switch is turned on.

Protection against Damage due to Regeneration (notes 3 and 4)
Voltage generated by motors rotating while not powered by the controller can cause seri-
ous damage even if the controller is Off or disconnected. This protection is highly recom-
mended in any application where high motion inertia exists or when motors can be made
to rotate by towing or pushing.

•	 Use the main SW1 switch on the Power Control wire/terminal to turn Off and keep
Off the controller.

•	 Insert a high-current diode (Digikey P/N 10A01CT-ND) to ensure a return path to the
battery in case the fuse is blown. Smaller diodes are acceptable as long as their
single pulse current rating is > 20 Amp.

•	 Optionally use a Single Pole, Dual Throw switch for SW2 to ground the controller
power input when OFF. If a SPDT switch cannot be used, then consider extending
the diode across the fuse and the switch SW2.

Connect Case to Earth if connecting AC equipment (note 5)
If building a system which uses rechargeable batteries, it must be assumed that periodi-
cally a user will connect an AC battery charger to the system. Being connected to the AC
main, the charger may accidentally bring AC high voltage to the system’s chassis and to
the controller’s enclosure. Similar danger exists when the controller is powered via a pow-
er supply connected to the mains.

Some controller models in metallic enclosures are supplied with an Earth tab, which per-
mits earthing the metal case. Connect this tab to a wire connected to the Earth while the
charger is plugged in the AC main, or if the controller is powered by an AC power supply
or is being repaired using any other AC equipment (PC, Voltmeter etc.)

Avoid Ground loops when connecting I/O devices (note 6)
When connecting a PC, encoder, switch or actuators on the I/O connector, be very careful
that you do not create a path from the ground pins on the I/O connector and the battery
minus terminal. Should the controller’s main Ground wires (thick black) or terminals be
disconnected while the VMot wires (thick red) or terminals are connected, high current
would flow from the ground pins, potentially causing serious damage to the controller
and/or your external devices.

Connecting Power and Motors to the Controller

28	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

•	 Do not connect a wire between the I/O connector ground pins and the battery mi-
nus terminal. Look for hidden connection and eliminate them.

•	 Have a very firm and secure connection of the controller ground wire and the bat-
tery minus terminal.

•	 Do not use connectors or switches on the power ground cables.

Important Warning

Do not rely on cutting power to the controller for it to turn Off if the Power Control
is left floating. If motors are spinning because the robot is pushed or because of
inertia, they will act as generators and will turn the controller On, possibly in an un-
safe state. ALWAYS ground the Power Control wire terminal to turn the controller Off
and keep it Off.

Important Warning

Unless you can ensure a steady voltage that is higher than 7V (28V in controllers
rated above 60V) in all conditions, it is recommended that the battery used to pow-
er the controller’s electronics be separate from the one used to power the motors.
This is because it is very likely that the motor batteries will be subject to very large
current loads which may cause the voltage to eventually dip below 7V as the bat-
teries’ charge drops. The separate backup power supply should be connected to the
Power Control input.

Connecting the Motors
Refer to the datasheet for information on how to wire the motor(s) to a particular motor
controller model.

After connecting the motors, apply a minimal amount of power using the Roborun PC util-
ity with the controller configured in Open Loop speed mode. Verify that the motor spins
in the desired direction. Immediately stop and swap the motor wires if not.

In Closed Loop Speed or Position mode, beware that the motor polarity must match this
of the feedback. If it does not, the motors will runaway with no possibility to stop other
than switching Off the power. The polarity of the Motor or of the feedback device may
need to be changed.

Important Warning

Make sure that your motors have their wires isolated from the motor casing. Some
motors, particularly automotive parts, use only one wire, with the other connected
to the motor’s frame. If you are using this type of motor, make sure that it is mount-
ed on isolators and that its casing will not cause a short circuit with other motors
and circuits which may also be inadvertently connected to the same metal chassis.

Single Channel Operation

	 Advanced Digital Motor Controller User Manual� 29

Single Channel Operation
Dual channel Brushed DC controllers may be ordered with the -S (Single Channel) suffix.

The two channel outputs must be paralleled as shown in the datasheet so that they can
drive a single load with twice the power. To perform in this manner, the controller’s Power
Transistors that are switching in each channel must be perfectly synchronized. Without
this synchronization, the current will flow from one channel to the other and cause the
destruction of the controller.

The single channel version of the controller incorporates a hardware setting inside the
controller which ensures that both channels switch in a synchronized manner and respond
to commands sent to channel 1.

Important Warning

Before pairing the outputs, attach the motor to one channel and then the other. Veri-
fy that the motor responds the same way to command changes.

Power Fuses
For low Amperage applications (below 30A per motor), it is recommended that a fuse be
inserted in series with the main battery circuit as shown in Figure 1-2 on page 26.

The fuse will be shared by the two output stages and therefore must be placed before
the Y connection to the two power wires. Fuse rating should be the sum of the expected
current on both channels. Note that automotive fuses above 40A are generally slow, will
be of limited effectiveness in protecting the controller and may be omitted in high current
application. The fuse will mostly protect the wiring and battery against after the controller
has failed.

Important Warning

Fuses are typically slow to blow and will thus allow temporary excess current to
flow through them for a time (the higher the excess current, the faster the fuse will
blow). This characteristic is desirable in most cases, as it will allow motors to draw
surges during acceleration and braking. However, it also means that the fuse may
not be able to protect the controller.

Wire Length Limits
The controller regulates the output power by switching the power to the motors On and
Off at high frequencies. At such frequencies, the wires’ inductance produces undesirable
effects such as parasitic RF emissions, ringing and overvoltage peaks. The controller has
built-in capacitors and voltage limiters that will reduce these effects. However, should the
wire inductance be increased, for example by extended wire length, these effects will be
amplified beyond the controller’s capability to correct them. This is particularly the case for
the main battery power wires.

Connecting Power and Motors to the Controller

30	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Important Warning

Avoid long connection between the controller and power source, as the added in-
ductance may cause damage to the controller when operating at high currents. Try
extending the motor wires instead since the added inductance is not harmful on
this side of the controller.

If the controller must be located at a long distance from the power source, the effects of
the wire inductance may be reduced by using one or more of the following techniques:

•	 Twisting the power and ground wires over the full length of the wires
•	 Use the vehicle’s metallic chassis for ground and run the positive wire along the

surface
•	 Add a capacitor (10,000uF or higher) near the controller

Electrical Noise Reduction Techniques
As discussed in the above section, the controller uses fast switching technology to control
the amount of power applied to the motors. While the controller incorporates several cir-
cuits to keep electrical noise to a minimum, additional techniques can be used to keep the
noise low when installing the controller in an application. Below is a list of techniques you
can try to keep noise emission low:

•	 Keep wires as short as possible
•	 Loop wires through ferrite cores
•	 Add snubber RC circuit at motor terminals
•	 Keep controller, wires and battery enclosed in metallic body

Battery Current vs. Motor Current
The controller limits the current that flows through the motors and not the battery cur-
rent. Current that flows through the motor is typically higher than the battery current. This
counter-intuitive phenomenon is due to the “flyback” current in the motor’s inductance. In
some cases, the motor current can be extremely high, causing heat and potentially dam-
age while battery current appears low or reasonable.

The motor’s power is controlled by varying the On/Off duty cycle of the battery voltage
16,000 times per second to the motor from 0% (motor off) to 100 (motor on). Because
of the inductive flyback effect, during the Off time current continues to flow at nearly
the same peak - and not the average - level as during the On time. At low PWM ratios,
the peak current - and therefore motor current - can be very high as shown in Figure 1-4,
below.

The relation between Battery Current and Motor current is given in the formula below:

Motor Current = Battery Current / PWM ratio

Measured and Calculated Currents

	 Advanced Digital Motor Controller User Manual� 31

Off

Off

Off

On

Vbat

Motor

Motor

Vbat

I mot
Avg

I bat
Avg

On

On

FIGURE 1-3. Current flow during operation

Off

Off

Off

On

Vbat

Motor

Motor

Vbat

I mot
Avg

I bat
Avg

On

On

FIGURE 1-4. Instant and average current waveforms

The relation between Battery Current and Motor current is given in the formula below:

Motor Current = Battery Current / PWM Ratio

Example: If the controller reports 10A of battery current while at 10% PWM, the current in
the motor is 10 / 0.1 = 100A.

Measured and Calculated Currents
All Roboteq Brushed DC motor controllers, have current sensors for measuring the bat-
tery current and estimate the motor current. At 20% PWM and above, the motor current
is computed using the formula above. Below 20%, and approaching 0%, this method
cause unstable and imprecise readings. At these levels, formula used is

Motor Current = Battery Current / 0.20

This approximation creates a more stable value but one that is increasingly inaccurate as
the PWM approaches 0%. This approximation produces usable value nevertheless.

Roboteq’s Brushless motor controllers use sensors on the motor outputs or/and on the
battery ground terminal. Controllers using sensors on the battery terminal outputs suffer
the same limitation at low PWM as discussed above.

Connecting Power and Motors to the Controller

32	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Controllers with sensors on the motor terminals provide accurate motor current sensing in
all conditions, and provide a good estimate battery current value. Some controller models
have sensors on the motor and on the battery terminals, and provide the most accurate
current sensing as all are actually measured values.

Whether sensors are on motor or/and battery terminals can be found in the product’s
datasheet

Important Warning

Do not connect a motor that is rated at a higher current than the controller.

Power Regeneration Considerations
When a motor is spinning faster than it would normally at the applied voltage, such as
when moving downhill or decelerating, the motor acts like a generator. In such cases, the
current will flow in the opposite direction, back to the power source.

It is therefore essential that the controller be connected to rechargeable batteries. If a
power supply is used instead, the current will attempt to flow back in the power supply
during regeneration, potentially damaging it and/or the controller.

Regeneration can also cause potential problems if the battery is disconnected while
the motors are still spinning. In such a case, the energy generated by the motor will
keep the controller On, and depending on the command level applied at that time, the
regenerated current will attempt to flow back to the battery. Since none is present, the
voltage will rise to potentially unsafe levels. The controller includes an overvoltage pro-
tection circuit to prevent damage to the output transistors (see “Using the Controller
with a Power Supply” below). However, if there is a possibility that the motor could be
made to spin and generate a voltage higher than 40V, a path to the battery must be pro-
vided, even after a fuse is blown. This can be accomplished by inserting a diode across
the fuse as shown in Figure 1-2 on page 26.

Please download the Application Note “Understanding Regeneration” from the www.ro-
boteq.com for an in-depth discussion of this complex but important topic.

Important Warning

Use the controller only with a rechargeable battery as supply to the Motor Power
wires (thick black and red wires). If a transformer or power supply is used, damage
to the controller and/or power supply may occur during regeneration. See “Using
the Controller with a Power Supply” below for details.

Important Warning

Avoid switching Off or cutting open the main power cables while the motors are
spinning. Damage to the controller may occur. Always ground the Power Control
wire to turn the controller Off.

Using the Controller with a Power Supply

	 Advanced Digital Motor Controller User Manual� 33

Using the Controller with a Power Supply
Using a transformer or a switching power supply is possible but requires special care, as the
current will want to flow back from the motors to the power supply during regeneration. As
discussed in “Power Regeneration Considerations” above, if the supply is not able to absorb
and dissipate regenerated current, the voltage will increase until the over-voltage protection
circuit cuts off the motors. While this process should not be harmful to the controller, it may
be to the power supply, unless one or more of the protective steps below is taken:

•	 Use a power supply that will not suffer damage in case a voltage is applied at its
output that is higher than its own output voltage. This information is seldom pub-
lished in commercial power supplies, so it is not always possible to obtain positive
reassurance that the supply will survive such a condition.

•	 Avoid deceleration that is quicker than the natural deceleration due to the friction
in the motor assembly (motor, gears, load). Any deceleration that would be quicker
than natural friction means that braking energy will need to be taken out of the sys-
tem, causing a reverse current flow and voltage rise.

•	 Place a battery in parallel with the power supply output. This will provide a reservoir
into which regeneration current can flow. It will also be very helpful for delivering
high current surges during motor acceleration, making it possible to use a lower
current power supply. Batteries mounted in this way should be connected for the
first time only while fully charged and should not be allowed to discharge. The power
supply will be required to output unsafe amounts of current if connected directly to a
discharged battery. Consider using a decoupling diode on the power supply’s output
to prevent battery or regeneration current to flow back into the power supply.

•	 Place a resistive load in parallel with the power supply, with a circuit to enable
that load during regeneration. This solution is more complex but will provide a safe
path for the braking energy into a load designed to dissipate it. The diagram below
shows an example of such a circuit. The controller must be configured so that its
digital output is activated when an overvoltage condition is detected. The MOSFET
and brake resistor value must be sized according to the expected regeneration
current that must be absorbed.

IXTN170P10P

12V Zener

*Zener

*Zener:
- Not needed with supply up to 40V
- 20V with supply up to 60V

100K

Brake Resistor
1 to 10 Ohm, High Wattage
Depending on Braking Energy

47K

Supply +

GNDGND

Controller
VMot

Controller
DOut

G

D

S

FIGURE 1-5. regen brake resistor

Note: The schematic above is provided for reference only. It may not work in all conditions.

Connecting Power and Motors to the Controller

34	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Possible Failure Causes

	 Advanced Digital Motor Controller User Manual� 35

SECTION 2	 Safety
Recommendations

In many applications, Roboteq controllers drive high power motors that move parts and
equipment at high speed and/or with very high force. In case of malfunction, potentially
enormous forces can be applied at the wrong time and/or wrong place causing serious
damage to property and/or harm to person. While Roboteq controllers operate very reli-
ably, and failures are rare, a failure is possible as with any other electronic equipment. If
there is any danger that a loss of motor control can cause damage or injury, you must plan
on that possibility and implement methods for stopping the motor independently of the
controller operation.

Below is a list of failure categories, their effect and possible ways to regain control, or min-
imize the consequences. The list of possible failures is not exhaustive and the suggested
prevention methods are provided as examples for information only.

Important Safety Disclaimer

Dangerous uncontrolled motor runaway condition can occur for a number of rea-
sons, including, but not limited to: command or feedback wiring failure, configu-
ration error, faulty firmware, errors in user MicroBasic script or in user program, or
controller hardware failure. The user must assume that such failures can occur and
must take all measures necessary to make his/her system safe in all conditions.
The information contained in this manual, and in this section in particular, is provid-
ed for information only. Roboteq will not be liable in case of damage or injury as a
result of product misuse or failure.

Possible Failure Causes
Dangerous unintended motor operation could occur for a number of reasons, including,
but not limited to:

•	 Failure in Command device
•	 Feedback sensors malfunction
•	 Wiring errors or failure
•	 Controller configuration error

Safety Recommendations

36	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

•	 Faulty firmware
•	 Errors or oversights in user MicroBasic scripts
•	 Controller hardware failure

Motor Deactivation in Normal Operation
In normal operation, the controller is always able to turn off the motor if it detects faults or
if instructed to do so from an external command.

In case of wiring problem, sensor malfunction, firmware failure or error in user Microbasic
scripts, the controller may be in a situation where the motors are turned on and kept on as
long as the controller is powered. A number of features discussed throughout this manual
are available to stop motor operation in case of abnormal situation. These include:

•	 Watchdog on missing incoming serial/USB commands
•	 Loss detection of Radio Pulse
•	 Analog command outside valid range
•	 Limit switches
•	 Stall detection
•	 Close Loop error detection
•	 Other …

Additional features can easily be added using MicroBasic scripting.

Ultimately, the controller can be simply turned off by grounding the Power Control pin. As-
suming there is no hardware damage in the power stage, the controller output will be off
(i.e. motor wires floating) when the controller is off.

Important Warning:

While cutting the power to the motors is generally the best thing to do in case of
major failure, it may not necessarily result in a safe situation.

Motor Deactivation in Case of Output Stage Hardware Failure
On brushed DC motor controllers, the power stage for each motor is composed of 4
MOSFETs (semiconductor switches). In some cases of MOSFET failures, it is possible
that one or both motors will remain permanently powered with no way to stop them
either via software or by turning the controller off.

On brushless motor controllers, shorted MOSFETs will not cause the motor to turn on its
own. Nevertheless, it is still advised to follow the recommendations included in this sec-
tion.

Motor Deactivation in Case of Output Stage Hardware Failure

	 Advanced Digital Motor Controller User Manual� 37

The figures below show all the possible combinations of shorted MOSFETs switches in a
brushed DC motor controller.

1

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-
+

-

+

-

+

-

3

2

9

8

11

10

13

15 16

12

6

5

4 7

14

FIGURE 2-1. MOSFET Failures resulting in no motor activation

1

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-
+

-

+

-

+

-

3

2

9

8

11

10

13

15 16

12

6

5

4 7

14

FIGURE 2-2. MOSFET Failures resulting in battery short circuit and no motor activation

1

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-
+

-

+

-

+

-

3

2

9

8

11

10

13

15 16

12

6

5

4 7

14

FIGURE 2-3. MOSFET Failure resulting in motor activation

Two failure conditions (15 and 16) will result in the motor spinning out of control re-
gardless whether the controller is on or off. While these failure conditions are rare, us-
ers must take them into account and provide means to cut all power to the controller’s
power stage.

Safety Recommendations

38	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Manual Emergency Power Disconnect
In systems where the operator is within physical reach of the controller, the simplest safe-
ty device is the emergency disconnect switch that is shown in the wiring diagram inside
all controller datasheets, and in the example diagram below.

Motor 1

VMot/Red

PwrCtrl/Yellow

SW1 Main
On/Off Switch

+ -

SW2
Emergency
Contactor or
Cut-off Switch

White/M1+

Green/M1-

White/M2+

Green/M2-

Earth Tab

I/O Connector

VMot/Red

Ground/Black

Ground/Black

Ground/Black

Motor 2

Main
Battery

Backup
Battery

FIGURE 2-4. Example powering diagram (Brushed DC motor Controller)

The switch must be placed visibly and be easy to operate. Prefer “mushroom” emergency
stop push buttons. Make sure that the switches are rated at the maximum current that
can be expected to flow through all motors at the same time.

FIGURE 2-5. “Mushroom” type Emergency Disconnect Switch

Remote Emergency Power Disconnect

	 Advanced Digital Motor Controller User Manual� 39

Remote Emergency Power Disconnect
In remote controlled systems, the emergency switch must be replaced by a high power
contactor relay as shown in Figure 2-6. The relay must be normally open and be activated
using an RC switch on a separate radio channel. The receiver should preferably be pow-
ered directly from the system’s battery. If powered from the controller’s 5V output, keep
in mind that in case of a total failure of the controller, the 5V output may or may not be
interrupted.

+ -

VMot

Ground

RC1

RC2

RC3

RC Switch

Controller

RC Receiver

Main
Battery

I/O Connector

PwrCtrl

On/O� Switch

Ground

FIGURE 2-6 Example of remotely operated safety disconnect

The receiver must operate in such a way that the contactor relay will be off if the transmit-
ter if off or out of range.

The transmitter should have a visible and easy to reach emergency switch for the oper-
ator. That switch will be used to deactivate the relay remotely. It could also be used to
shutdown entirely the transmitter, assuming it is determined for certain that this will deac-
tivate the relay at the controller.

Protection using Supervisory Microcomputer
In applications where the controller is commanded by a PC, a microcomputer or a PLC,
that supervisory system could be used to verify that the controller is still responding and
cut the power to the controller’s power stage in case a malfunction is detected. The su-
pervisory system would only require a digital output or other means to activate/deactivate
the contactor relay as shown in the figure below.

Safety Recommendations

40	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

+ -

VMot

Ground

RS232

Digital Output

Controller

PC, PLC or
Microcomputer

Main
Battery

I/O Connector

PwrCtrl

On/Off Switch

Ground

FIGURE 2-7. Example of safety disconnect via supervisory system

Self Protection against Power Stage Failure
If the controller processor is still operational, it can self detect several, although not all,
situations where a motor is running while the power stage is off. The figure below shows
a protection circuit using an external contactor relay.

VMot

Ground

Digital Out

Emergency
Disconnect

Contactor

to +40V Max

+ -

Main
Battery

I/O Connector

PwrCtrl

On/Off Switch

Ground

Controller

FIGURE 2-8. Self protection circuit using contactor

Note: Digital outputs are rated 40V max. If the battery voltage is higher than 40V, the relay
must be connected to the + of an alternate power source of lower voltage.

Self Protection against Power Stage Failure

	 Advanced Digital Motor Controller User Manual� 41

The controller must have the Power Control input wired to the battery so that it can oper-
ate and communicate independently of the power stage. The controller’s processor will
then activate the contactor coil through a digital output configured to turn on when the
“No MOSFET Failure” condition is true. The controller will automatically deactivate the coil
if the output is expected to be off and battery current is above 500mA to 2.5A (depending
on the controller model) for more than 0.5s.

The contactor must be rated high enough so that it can cut the full load current. For even
higher safety, additional precaution should be taken to prevent and to detect fused contac-
tor blades.

This contactor circuit will only detect and protect against damaged output stage condi-
tions. It will not protect against all other types of fault. Notice therefore, the presence of
an emergency switch in series with the contactor coil. This switch should be operated
manually or remotely, as discussed in the Manual Emergency Power Disconnect the Re-
mote Emergency Power Disconnect and the Protection using Supervisory Microcomputer
earlier in this section of the manual.

Using this contactor circuit, turning off the controller will normally deactivate the digital
output and this will cut the power to the controller’s output stage.

Important Warning

Fully autonomous and unsupervised systems cannot depend on electronics alone to
ensure absolute safety. While a number of techniques can be used to improve safety,
they will minimize but never totally eliminate risks. Such systems must be mechani-
cally designed so that no moving parts can ever cause harm in any circumstances.

Safety Recommendations

42	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Controller Connections

	 Advanced Digital Motor Controller User Manual� 43

SECTION 3	 Connecting
Sensors and
Actuators to
Input/Outputs

This section describes the various inputs and outputs and provides guidance on how to
connect sensors, actuators or other accessories to them.

Controller Connections
The controller uses a set of power connections DSub and plastic connectors for all neces-
sary connections.

The power connections are used for connecting to the batteries and motor, and will typ-
ically carry large current loads. Details on the controller’s power wiring can be found at
“Connecting Power and Motors to the Controller” section of this manual.

The DSub and plastic connectors are used for all low-voltage, low-current connections to
the Radio, Microcontroller, sensors and accessories. This section covers only the connec-
tions to sensors and actuators.

For information on how to connect the RS232 port, see “Serial (RS232/USB) Operation”
section.

The remainder of this section describes how to connect sensors and actuators to the con-
troller’s low-voltage I/O pins that are located on the DSub connectors.

Connecting Sensors and Actuators to Input/Outputs

44	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Controller’s Inputs and Outputs
The controller includes several inputs and outputs for various sensors and actuators. De-
pending on the selected operating mode, some of these I/Os provide command, feedback
and/or safety information to the controller.

When the controller operates in modes that do not use these I/Os, these signals are
ignored or can become available via the USB/RS232 port for user application. Below is a
summary of the available signals and the modes in which they are used by the controller.
The actual number of signal of each type, voltage or current specification, and their posi-
tion on the I/O connector is given in the controller datasheet.

TABLE 3-1. Controller’s IO signals and definitions

Signal I/O type Use/Activation

DOUT1
to
DOUTn

Digital Output - Activated when motor(s) is powered
- Activated when motor(s) is reversed
- Activated when overtemperature
- Activated when overvoltage
- Mirror Status LED
- Deactivates when output stage fault
- User activated (RS232/USB or via scripting)

DIN1
to
DINn

Digital Input - Safety Stop
- Emergency stop
- Motor Stop (deadman switch)
- Invert motor direction
- Forward or reverse limit switch
- Run MicroBasic Script
- Load Home counter

AIN1
to
AINn

Analog Input - Command for motor(s)
- Speed or position feedback
- �Trigger Action similar to Digital Input if under or over
user-selectable threshold

PIN1
to
PINn

Pulse Input - Command for motor(s)
- Speed or position feedback
- �Trigger Action similar to Digital Input if under or over
user selectable threshold

ENC1a/b
to
ENC2a/b

Encoder Inputs - Speed or position feedback
- �Trigger action similar to Digital Input if under or over
user-selectable count threshold

Connecting devices to Digital Outputs

	 Advanced Digital Motor Controller User Manual� 45

Connecting devices to Digital Outputs
Depending on the controller model, 2 to 8 Digital Outputs are available for multiple pur-
poses. The Outputs are Open Drain MOSFET outputs capable of driving over 1A at up to
24V. See datasheet for detailed specifications.

Since the outputs are Open Drain, the output will be pulled to ground when activated.
The load must therefore be connected to the output at one end and to a positive voltage
source (e.g. a 24V battery) at the other.

Connecting Resistive Loads to Outputs
Resistive or other non-inductive loads can be connected simply as shown in the diagram
below.

Up to
24V
DC

DOUT Internal
Transistor

Lights, LEDs, or any other
non-inductive load

Ground

+

-

FIGURE 3-1. Connecting resistive loads to Dout pins

Connecting Inductive loads to Outputs
The diagrams on Figure 3-2 show how to connect a relay, solenoid, valve, small motor, or
other inductive load to a Digital Output:

Up to
24V
DC

DOUT
Internal
Transistor

Relay, Valve
Motor, Solenoid
or other Inductive Load

Ground

+

-

FIGURE 3-2. Connecting inductive loads to Dout pins

Connecting Sensors and Actuators to Input/Outputs

46	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Important Warning

Overvoltage spikes induced by switching inductive loads, such as solenoids or re-
lays, will destroy the transistor unless a protection diode is used.

Connecting Switches or Devices to Inputs shared with Outputs

On HDCxxxx and HBLxxxx controllers, Digital inputs DIN12 to DIN19 share the connector pins
with digital outputs DOUT1 to DOUT8. When the digital outputs are in the Off state, these out-
puts can be used as inputs to read the presence or absence of a voltage at these pins.

Input
Buffer

+5V Out

GND

Output
Driver

1K
to
10K

50K

DIN12 to DIN19
(DOUT1 to DOUT7)

FIGURE 3-3. Switch wiring to inputs shared with outputs

For better noise immunity, an external pull up resistor should be installed even though one
is already present inside the controller.

Important Warning

Do not activate an output when it is used as input. If the input is connected directly
to a positive voltage when the output is activated, a short circuit will occur. Always
pull the input up via a resistor.

Connecting Switches or Devices to direct Digital Inputs
The controller Digital Inputs are high impedance lines with a pull down resistor built into
the controller. Therefore it will report an Off state if unconnected, A simple switch as
shown on Figure 3-4 can be used to activate it. When a pull up switch is used, for better
noise immunity, an external pull down resistor should be installed even though one is al-
ready present inside the controller.

33kOhm
1K
to
10K

5V Out

20kOhm

DIN

Ground

FIGURE 3-4. Pull up (Active High) switch wirings to DIN pins

Connecting a Voltage Source to Analog Inputs

	 Advanced Digital Motor Controller User Manual� 47

A pull up resistor must be installed when using a pull down switch.

33kOhm

5V Out

20kOhm

1K to
10K
Ohm

Ground

DIN

FIGURE 3-5. Pull down (Active Low) switch wirings to DIN pins

Connecting a Voltage Source to Analog Inputs
Connecting sensors with variable voltage output to the controller is simply done by mak-
ing a direct connection to the controller’s analog inputs. When measuring absolute voltag-
es, configure the input in “Absolute Mode” using the PC Utility.

0-5V
Source

Internal Resistors
and Converter

+5V

Ground

AIN
A/D

20kOhm

33kOhmV

FIGURE 3-6. 0-5V Voltage source connected to Analog inputs

Using external resistors, it is possible to alter the input voltage range to 0V/10V or
-10V/+10V.

33kOhm

20kOhm

Internal Resistors
and Converter

+5V

Ground

A/D

4.7kOhm

0-10V

4.7kOhm

Figure 3-7. External resistor circuit for 0 to 10V capture range

Connecting Sensors and Actuators to Input/Outputs

48	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

33kOhm

20kOhm

Internal Resistors
and Converter

+5V

Ground

A/D

10kOhm 5kOhm

+/-10V

10kOhm

Figure 3-8. External resistors circuit for -10V to 10V capture range

Important Notice

On newer motor controllers models, activating the pulse mode on an input will also
enable a pull up resistor on that input. If the input is also used for analog capture,
the analog reading will be wrong. Make sure the pulse mode is disabled on that
input.

Reducing noise on Analog Inputs
The Analog inputs are very fast and have a high input resistance. They will therefore eas-
ily be disturbed by ambient electrical noise and this will cause the analog reading to be
fluctuating. Use shielded cables between the input and the analog sensor. Add a 1uF ca-
pacitor between the input pin and the GND pin. With good shielding and filtering, a signal
stable to withing +/-5V or better can generally be achieved.

Connecting Potentiometers to Analog Inputs
Potentiometers mounted on a foot pedal or inside a joystick are an effective method for
giving command to the controller. In closed loop mode, a potentiometer is typically used
to provide position feedback information to the controller.

Connecting the potentiometer to the controller is as simple as shown in the diagram on
Figure 3-9.

The potentiometer value is limited at the low end by the current that will flow through it
and which should ideally not exceed 5 or 10mA. If the potentiometer value is too high,
the analog voltage at the pot’s middle point will be distorted by the input’s resistance to
ground of 53K. A high value potentiometer also makes the input sensitive to noise, partic-
ularly if wiring is long. Potentiometers of 1K or 5K are recommended values.

Connecting a Voltage Source to Analog Inputs

	 Advanced Digital Motor Controller User Manual� 49

1K to 10K
Ohm Pot

Internal Resistors
and Converter

+5V

Ground

A/D

20kOhm

33kOhm

FIGURE 3-9. Potentiometer wiring

Because the voltage at the potentiometer output is related to the actual voltage at the
controller’s 5V output, configure the analog input in “Relative Mode”. This mode measures
the actual voltage at the 5V output in order to eliminate any imprecision due to source
voltage variations. Configure using the PC Utility.

Connecting Potentiometers for Commands with Safety band guards
When a potentiometer is used for sensing a critical command (Speed or Brake, for exam-
ple) it is critically important that the controller reverts to a safe condition in case wiring is
sectioned. This can be done by adding resistors at each end of the potentiometer so that
the full 0V or the full 5V will never be present, during normal operation, when the potenti-
ometer is moved end to end.

Using this circuit shown below, the Analog input will be pulled to 0V if the two top wires
of the pot are cut, and pulled to 5V if the bottom wire is cut. In normal operation, using
the shown resistor values, the analog voltage at the input will vary from 0.2V to 4.8V.

5K Ohm Pot

Internal Resistors
and Converter

+5V220 Ohm

220 Ohm Ground

A/D

20kOhm

33kOhm

FIGURE 3-10. Potentiometer wiring in Position mode

Connecting Sensors and Actuators to Input/Outputs

50	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

The controller’s analog channels are configured by default so that the min and max com-
mand range is from 0.25V to 4.75V. These values can be changed using the PC configura-
tion utility. This ensures that the full travel of the pot is used to generate a command that
spans from full min to full max.

If the Min/Max safety is enabled for the selected analog input, the command will be con-
sidered invalid if the voltage is lower than 0.1V or higher than 4.9. These values cannot be
changed.

Connecting Tachometer to Analog Inputs
When operating in closed loop speed mode, tachometers can be connected to the con-
troller to report the measured motor speed. The tachometer can be a good quality brushed
DC motor used as a generator. The tachometer shaft must be directly tied to that of the
motor with the least possible slack.

Since the controller only accepts a 0 to 5V positive voltage as its input, the circuit shown
in Figure 3-11 must be used between the controller and the tachometer: a 10kOhm poten-
tiometer is used to scale the tachometer output voltage to -2.5V (max reverse speed) and
+2.5V (max forward speed). The two 1kOhm resistors form a voltage divider that sets the
idle voltage at mid-point (2.5V), which is interpreted as the zero position by the controller.

With this circuitry, the controller will see 2.5V at its input when the tachometer is
stopped, 0V when running in full reverse, and +5V in full forward.

20KOhm

1kOhm Max Speed Adjust
10kOhm pot

1kOhm

Internal Resistors
and Converter

+5V

Ground

A/DTach
AIN

33KOhm

 FIGURE 3-11. Tachometer wiring diagram

The tachometers can generate voltages in excess of 2.5 volts at full speed. It is important,
therefore, to set the potentiometer to the minimum value (cursor all the way down per
this drawing) during the first installation.

Since in closed loop control the measured speed is the basis for the controller’s power
output (i.e. deliver more power if slower than desired speed, less if higher), an adjustment
and calibration phase is necessary. This procedure is described in “Closed Loop Speed
Mode” section of this manual.

Connecting External Thermistor to Analog Inputs

	 Advanced Digital Motor Controller User Manual� 51

Important Warning

The tachometer’s polarity must be such that a positive voltage is generated to the
controller’s input when the motor is rotating in the forward direction. If the polarity
is inverted, this will cause the motor to run away to the maximum speed as soon
as the controller is powered and eventually trigger the closed loop error and stop.
If this protection is disabled, there will be no way of stopping it other than pressing
the emergency stop button or disconnecting the power.

Connecting External Thermistor to Analog Inputs
Using external thermistors, the controller can be made to supervise the motor’s tempera-
ture and cut the power output in case of overheating. Connecting thermistors is done ac-
cording to the diagram shown in Figure 3-12. Use a 10kOhm Negative Coefficient Therm-
istor (NTC) with the temperature/resistance characteristics shown in the table below.
Recommended part is Vishay NTCALUG03A103GC, Digikey item BC2381-ND.

TABLE 3-1. Recommended NTC characteristics

Temp (˚C) -25 0 25 50 75 100

Resistance (kOhm) 129 32.5 10.00 3.60 1.48 0.67

33kOhm

20kOhm

Internal Resistors
and Converter

+5V

Ground

A/D

10kOhm

10kOhm
NTC

Thermistor

FIGURE 3-12. NTC Thermistor wiring diagram

Thermistors are non-linear devices. Using the circuit described on Figure 12, the controller
will read the following values according to the temperature. For best precision, the analog
input must be configured to read in Relative Mode.

The analog input must be configured so that the minimum range voltage matches the de-
sired temperature and that an action be triggered when that limit is reached. For example
500mV for 80oC, according to the table. The action can be any of the actions in the list. An
emergency or safety stop (i.e. stop power until operator moves command to 0) would be
a typical action to trigger.

Connecting Sensors and Actuators to Input/Outputs

52	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

 -
40

 -
30

 -
20

 -
10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 10
0

 11
0

 12
0

 13
0

 14
0

 15
0

Volts

oC

FIGURE 3-13. Voltage reading by Controller vs NTC temperature

Note: The voltage values in this chart are provided for reference only and may vary based
on the Thermistor model/brand and the resistor precision. It is recommended that you ver-
ify and calibrate your circuit if it is to be used for safety protection.

Using the Analog Inputs to Monitor External Voltages
The analog inputs may also be used to monitor the battery level or any other DC voltage.
If the voltage to measure is up to 5V, the voltage can be brought directly to the input pin.
To measure higher voltage, insert two resistors wired as voltage divider. The figure shows
a 10x divider capable of measuring voltages up to 50V.

47kOhm

IN
Ext Voltage

4.7kOhm

Internal Resistors
and Converter

A/D

33kOhm

20kOhm

+5V

Ground
FIGURE 3-14. Battery Voltage monitoring circuit

Connecting Optical Encoders

	 Advanced Digital Motor Controller User Manual� 53

Connecting Sensors to Pulse Inputs
The controller has several pulse inputs capable of capturing Pulse Length, Duty Cycle or
Frequency with excellent precision. Being a digital signal, pulses are also immune to noise
compared to analog inputs.

Important Notice

On newer motor controllers models, activating the pulse mode on an input will also
enable a pull up resistor on that input. If the input is also used for analog capture,
the analog reading will be wrong.

Connecting to RC Radios
The pulse inputs are designed to allow direct connection to an RC radio without additional
components.

Controller
Power

Optional
Power
to
Radio

R/C Radio

R/C Channel 1

R/C Channel 2

R/C Radio Ground
Controller
Ground

5V Out

MCU

FIGURE 3-15. RC Radio powered by controller electrical diagram

Connecting to PWM Joysticks and Position Sensors
The controller’s pulse inputs can also be used to connect to sensors with PWM outputs.
These sensors provide excellent noise immunity and precision. When using PWM sen-
sors, configure the pulse input in Duty Cycle mode. Beware that the sensor should always
be pulsing and never output a steady DC voltage at its ends. The absence of pulses is con-
sidered by the controller as a loss of signal.

Connecting Optical Encoders

Optical Incremental Encoders Overview
Optical incremental encoders are a means for capturing speed and traveled distance on a
motor. Unlike absolute encoders which give out a multi-bit number (depending on the res-
olution), incremental encoders output pulses as they rotate. Counting the pulses tells the
application how many revolutions, or fractions of, the motor has turned. Rotation velocity
can be determined from the time interval between pulses or by the number of pulses
within a given time period. Because they are digital devices, incremental encoders will
measure distance and speed with perfect accuracy.

Since motors can move in forward and reverse directions, it is necessary to differentiate
the manner that pulses are counted so that they can increment or decrement a position

Connecting Sensors and Actuators to Input/Outputs

54	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

counter in the application. Quadrature encoders have dual channels, A and B, which are
electrically phased 90° apart. Thus, direction of rotation can be determined by monitoring
the phase relationship between the two channels. In addition, with a dual-channel en-
coder, a four-time multiplication of resolution is achieved by counting the rising and falling
edges of each channel (A and B). For example, an encoder that produces 250 Pulses per
Revolution (PPR) can generate 1,000 Counts per Revolution (CPR) after quadrature.

1 Pulse
= 4 Transitions
= 4 Counts

A Channel

Count Up Count Down

B Channel

Quadrature
Signal

FIGURE 3-16.Quadrature encoder output waveform

The figure below shows the typical construction of a quadrature encoder. As the disk ro-
tates in front of the stationary mask, it shutters light from the LED. The light that passes
through the mask is received by the photo detectors. Two photo detectors are placed side
by side at so that the light making it through the mask hits one detector after the other to
produces the 90o phased pulses.

LED light source

Stationary mask

Photodetector

Rotating
encoder disk

FIGURE 3-17. Typical quadrature encoder construction

Unlike absolute encoders, incremental encoders have no retention of absolute position
upon power loss. When used in positioning applications, the controller must move the
motor until a limit switch is reached. This position is then used as the zero reference for all
subsequent moves.

Recommended Encoder Types
The module may be used with most incremental encoder modules as long as they include
the following features:

•	 Two quadrature outputs (Ch A, Ch B), single ended
•	 3.0V minimum swing between 0 Level and 1 Level on quadrature output
•	 5VDC operation. 50mA or less current consumption per encoder

More sophisticated incremental encoders with index, and other features may be used,
however these additional capabilities will be ignored.

The choice of encoder resolution is very wide and is constrained by the module’s maxi-
mum pulse count at the high end and measurement resolution for speed at the low end.

Connecting the Encoder

	 Advanced Digital Motor Controller User Manual� 55

Specifically, the controller’s encoder interface can process 1 million counts per second,
unless otherwise specified in the product datasheet.

Commercial encoders are rated by their numbers of “Pulses per Revolution” (also some-
times referred as “Number of Lines” or “Cycles per Revolution”). Carefully read the manu-
facturer’s datasheet to understand whether this number represents the number of pulses
that are output by each channel during the course of a 360 degrees revolution rather than
the total number of transitions on both channels during a 360 degrees revolution. The sec-
ond number is 4 times larger than the first one.

The formula below gives the pulse frequency at a given RPM and encoder resolution in
Pulses per Revolution.

				 Pulse Frequency in counts per second = RPM / 60 * PPR * 4

Example: a motor spinning at 10,000 RPM max, with an encoder with 200 Pulses per Rev-
olution would generate:

10,000 / 60 * 200 * 4 = 133.3 kHz which is well within the 1MHz maximum supported by
the encoder input.

An encoder with a 200 Pulses per Revolutions is a good choice for most applications.

A higher resolution will cause the counter to count faster than necessary and possibly
reach the controller’s maximum frequency limit.

An encoder with a much lower resolution will cause speed to be measured with less precision.

Connecting the Encoder
Encoders connect directly to pins present on the controller’s connector. The connector
provides 5V power to the encoders and has inputs for the two quadrature signals from
each encoder. The figure below shows the connection to the encoder.

Encoder
Controller

GND

5V Out

ENC1A (ENC2A)

Ch A

Ch B
ENC1B (ENC2B)

5V

GND

FIGURE 3-18. Controller connection to typical Encoder

Connecting Sensors and Actuators to Input/Outputs

56	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Cable Length and Noise Considerations
Cable should not exceed one 3’ (one meter) to avoid electrical noise to be captured by the
wiring. A ferrite core filter should be inserted near the controller for length beyond 2’ (60
cm). For longer cable length use an oscilloscope to verify signal integrity on each of the
pulse channels and on the power supply.

Ferrite Core
Encoder

Controller

 FIGURE 3-19. Use ferrite core on cable length beyond 2’ or 60cm

Important Warning

Excessive cable length will cause electrical noise to be captured by the controller
and cause erratic functioning that may lead to failure. In such situation, stop opera-
tion immediately.

Motor - Encoder Polarity Matching
When using encoders for closed loop speed or position control, it is imperative that when
the motor is turning in the forward direction, the counter increments its value and a posi-
tive speed value is measured. The counter value can be viewed using the PC utility.

If the Encoder counts backwards when the motor moves forward, correct this by either:

1- Swapping Channel A and Channel B on the encoder connector. This will cause the en-
coder module to reverse the count direction,

2- Enter a negative number in the PPR configuration will also cause the counter to count
in the reverse direction

3- Swapping the leads on the motor. This will cause the motor to rotate in the opposite
direction.

Basic Operation

	 Advanced Digital Motor Controller User Manual� 57

SECTION 4	 I/O Configuration
and Operation

This section discusses the controller’s digital and analog inputs and output and how they
can be used.

Basic Operation

The controller’s operation can be summarized as follows:

•	 Receive commands from a radio receiver, joystick or a microcomputer
•	 Activate the motor according to the received command
•	 Perform continuous check of fault conditions and adjust actions accordingly
•	 Report real-time operating data

The diagram below shows a simplified representation of the controller’s internal operation.
The most noticeable feature is that the controller’s serial, digital, analog, pulse and encod-
er inputs may be used for practically any purpose.

Input Capture
and

Switchbox

Command
Priority

Selection Motor
Command

Output
Driver

RS232/USB

Analog Inputs
Motor
Outputs

Digital
Outputs

Commands

Feedback

Estop/Limit Switches

Amps
Temperature

Voltages

Pulse Inputs

Digital Inputs

Encoder Inputs

Configuration

Configuration

Configuration ConfigurationScript

FIGURE 4-1. Simplified representation of the controller’s internal operation

Safety Recommendations

58	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Practically all operating configurations and parameters can be changed by the user to
meet any specific requirement. This unique architecture leads to a very high number of
possibilities. This section of the manual describes all the possible operating options.

Input Selection
As seen earlier in the controller’s simplified internal operating diagram on Figure 4-1, any
input can be used for practically any purpose. All inputs, even when they are sharing the
same pins on the connector, are captured and evaluated by the controller. Whether an in-
put is used, and what it is used for, is set individually using the descriptions that follow.

Important Notice

On shared I/O pins, there is nothing stopping one input to be used as analog or
pulse at the same time or for two separate inputs to act identically or in conflict
with one another. While such an occurrence is normally harmless, it may cause the
controller to behave in unexpected manner and/or cause the motors not to run.
Care must be exercised in the configuration process to avoid possible redundant or
conflictual use.

Digital Inputs Configurations and Uses
Each of the controller’s digital Inputs can be configured so that they are active high or ac-
tive low. Each output can also be configured to activate one of the actions from the list in
the table below. In multi-channel controller models, the action can be set to apply to any
or all motor channels.

TABLE 4-1. Digital Input Action List

Action
Applicable
Channel Description

No Action - Input causes no action

Safety Stop Selectable
Stops the selected motor(s) channel until command is
moved back to 0 or command direction is reversed

Emergency stop All

Stops the controller entirely until controller is powered
down, or a special command is received via the serial
port

Motor Stop (deadman
switch) Selectable

Stops the selected motor(s) while the input is active.
Motor resumes when input becomes inactive

Invert motor direction Selectable
Inverts the motor direction, regardless of the command
mode in used

Forward limit switch Selectable Stops the motor until command is changed to reversed

Reverse limit switch Selectable Stops the motor until the command is changed forward

Run script NA Start execution of MicroBasic script

Load Home counter Selectable Load counter with Home value

Analog Inputs Configurations and Use

	 Advanced Digital Motor Controller User Manual� 59

Configuring the Digital Inputs and the Action to use can be done very simply using the PC
Utility.

Wiring instructions for the Digital Inputs can be found in “Connecting Switches or Devices
to Inputs shared with Outputs” onpage 46

Analog Inputs Configurations and Use
The controller can do extensive conditioning on the analog inputs and assign them to
different use.

Each input can be disabled or enabled. When enabled, it is possible to select the whether
capture must be as absolute voltage or relative to the controller’s 5V Output. Details on how
to wire analog inputs and the differences between the Absolute and Relative captures can
be found in “Using the Analog Inputs to Monitor External Voltages” page 47.

TABLE 4-2. Analog Capture Modes

Analog Capture Mode Description

Disabled Analog capture is ignored (forced to 0)

Absolute Analog capture measures real volts at the input

Relative Analog captured is measured relative to the 5V Output which is
typically around 4.8V to 5.1V depending on the controller model and
the load. Correction is applied so that an input voltage measured to
be the same as the 5V Output voltage is reported at 5.0V

The raw Analog capture then goes through a series of processing shown in the diagram
below.

Min/Max/Center

Analog
Input

Command

Selectable Action

Selectable Action

Feedback

Deadband Exponent Use
Select

AIn > Max

AIn < Min

FIGURE 4-2. Analog Input processing chain

Safety Recommendations

60	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Analog Min/Max Detection

An analog input can be configured so that an action is triggered if the captured value is
above a user-defined Maximum value and/or under a user-defined Minimum value. The ac-
tions that can be selected are the same as these that can be triggered by the Digital Input.
See the list and description in Table 4.1, “Digital Input Action List” on page 58.

Min, Max and Center adjustment

The raw analog capture is then scaled into a number ranging from -1000 to +1000 based
on user-defined Minimum, Maximum and Center values for the input. For example, setting
the minimum to 500mV, the center to 2000mV, and the maximum to 4500mV, will pro-
duce the output to change in relation to the input as shown in the graph below

Analog
Capture
Voltage

-1000

+1000

min

maxctr

Output

FIGURE 4-3. Analog Input processing chain

This feature allows to capture command or feedback values that match the available range
of the input sensor (typically a potentiometer).

For example, this capability is useful for modifying the active joystick travel area. The figure
below shows a transmitter whose joystick’s center position has been moved back so that the
operator has a finer control of the speed in the forward direction than in the reverse position.

New Desired
Center Position

Min
Forward

Min
Reverse

Max
Forward

Max
Reverse

FIGURE 4-4. Calibration example where more travel is dedicated to forward motion

Analog Inputs Configurations and Use

	 Advanced Digital Motor Controller User Manual� 61

Setting the center value to be the same as the min value makes the input capture only
commands in the positive direction. For example if Min = Center = 200 and Max = 4500,
the input will convert into 0 when 200 and below, and 1000 above 4500.

The Min, Max and Center values are defined individually for each input. They can be easily
entered manually using the Roborun PC Utility. The Utility also features an Auto-calibration
function for automatically capturing these values.

Deadband Selection
The adjusted analog value is then adjusted with the addition of a deadband. This parameter
selects the range of movement change near the center that should be considered as a 0
command. This value is a percentage from 0 to 50% and is useful, for example, to allow some
movement of a joystick around its center position before any power is applied to a motor. The
graph below shows output vs input changes with a deadband of approximately 40%.

Input

-1000

+1000

Output

+1000

-1000

FIGURE 4-5. Effect of deadband on the output

Note that the deadband only affects the start position at which the joystick begins to take
effect. The motor will still reach 100% when the joystick is at its full position. An illustra-
tion of the effect of the deadband on the joystick action is shown in the Figure 4-6 below.

Centered
Position

Deadband
(no action) Min

Forward
Min

Reverse

Max
Forward

Max
Reverse

FIGURE 4-6. Effect of deadband on joystick position vs. motor command

The deadband value is set independently for each input using the PC configuration utility.

Safety Recommendations

62	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Command Correction
An optional exponential or a logarithmic adjustment can then be applied to the signal. Ex-
ponential correction will make the commands change less at the beginning and become
stronger at the end of the joystick movement. The logarithmic correction will have a stron-
ger effect near the start and lesser effect near the end. The linear selection causes no
change to the input. There are 3 exponential and 3 logarithmic choices: weak, medium and
strong. The graph below shows the output vs input change with exponential, logarithmic
and linear corrections.

Input

-1000

+1000

Output

+1000

-1000

Linear

Logarithmic

Exponential

FIGURE 4-7. Effect of exponential / logarithmic correction on the output

The exponential or log correction is selected separately for each input using the PC Con-
figuration Utility.

Use of Analog Input

After the analog input has been fully processed, it can be used as a motor command or, if
the controller is configured to operate in closed loop, as a feedback value (typically speed
or position).

Each input can therefore be configured to be used as command or feedback for any motor
channel(s). The mode and channel(s) to which the analog input applies are selected using
the PC Configuration Utility.

Pulse Inputs Configurations and Uses

The controller’s Pulse Inputs can be used to capture pulsing signals of different types.

TABLE 4-3. Analog Capture Modes

Catpure Mode Description Typical use

Disabled Pulse capture is ignored (forced to 0)

Pulse Measures the On time of the pulse RC Radio

Digital Outputs Configurations and Triggers

	 Advanced Digital Motor Controller User Manual� 63

TABLE 4-3. (continued)

Catpure Mode Description Typical use

Duty Cycle
Measures the On time relative to the
full On/Off period

Hall position sensors and joysticks with
pulse output

Frequency
Measures the repeating frequency of
pulse Encoder wheel

The capture mode can be selected using the PC Configuration Utility.

The captured signals are then adjusted and can be used as command or feedback accord-
ing to the processing chain described in the diagram below.

Min/Max/CenterCapture

Pulse
Input

Command

Feedback

Deadband Exponent Use
Select

FIGURE 4-8. Pulse Input processing chain

Except for the capture, all other steps are identical to these described for the Analog cap-
ture mode.

Use of Pulse Input

After the pulse input has been fully processed, it can be used as a motor command or, if
the controller is configured to operate in closed loop, as a feedback value (typically speed
or position).

Each input can therefore be configured to be used as command or feedback for any motor
channel(s). The mode and channel(s) to which the analog input applies are selected using
the PC Configuration Utility.

Digital Outputs Configurations and Triggers

The controller’s digital outputs can individually be mapped to turn On or Off based on the
status of user-selectable internal status or events. The table below lists the possible as-
signment for each available Digital Output.

Safety Recommendations

64	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Action Output activation Typical Use

No action
Not changed by any internal controller
events.

Output may be activated using Seri-
al commands or user scripts

Motor(s) is on
When selected motor channel(s) has power
applied to it. Brake release

Motor(s) is reversed
When selected motor channel(s) has power
applied to it in reverse direction. Back-up warning indicator

Overvoltage When battery voltage above over-limit Shunt load activation

Overtemperature When over-temperature limit exceeded Fan activation. Warning buzzer

Status LED When status LED is ON
Place Status indicator in visible
location.

Encoder Configurations and Use
On controller models equipped with encoder inputs, external encoders enable a range of
precision motion control features. See “Connecting Optical Encoders” page 53 for a
detailed discussion on how optical encoders work and how to physically connect them to
the controller. The diagram below shows the processing chain for each encoder input

32-bit
up/down
Counter

Speed
Measure

Encoder
Input

Command

Selectable Action

Selectable Action

Count

Speed in RPM

Max RPM

Feedback

Use
Select

Count > Max

Count < Min

Scalling

Encoder PPR

FIGURE 4-9. Encoder input processing

The encoder’s two quadrature signals are processed to generate up and down counts
depending on the rotation direction. The counts are then summed inside a 32-bit counter.
The counter can be read directly using serial commands and/or can be used as a position
feedback source for the closed loop position mode.

The counter can be compared to user-defined Min and/or Max values and trigger action
if these limits are reached. The type actions are the same as these selectable for Digital
Inputs and described in “Digital Inputs Configurations and Uses”page 58.

Hall and other Rotor Sensor Inputs

	 Advanced Digital Motor Controller User Manual� 65

The count information is also used to measure rotation speed. Using the Encoder Pulse
Per Rotation (PPR) configuration parameter, the output is a speed measurement in actual
RPM that is useful in closed loop speed modes where the desired speed is set as a nu-
merical value, in RPM, using a serial command.

The speed information is also scaled to produce a number ranging from -1000 to +1000
relative to a user-configured arbitrary Max RPM value. For example, with the Max RPM
configured as 3000 and the a motor rotating at 1500 RPM, the measured relative speed
will be 500. Relative speed is useful for closed loop speed mode that use Analog or Pulse
inputs as speed commands.

Configuring the encoder parameters is done easily using the PC Configuration Utility.

Hall and other Rotor Sensor Inputs
On brushless motor controllers, the Hall or other Rotor position sensor that are used to
switch power around the motor windings, are also used to measure speed and distance
traveled.

Speed is evaluated by measuring the time between transition of the Hall Sensors. A 32 bit
up/down counter is also updated at each Hall Sensor transition.

Speed information picked up from the Hall Sensors can be used for closed loop speed op-
eration without any additional hardware.

Safety Recommendations

66	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Introduction to MGS1600 Magnetic Guide Sensor

	 Advanced Digital Motor Controller User Manual� 67

SECTION 5	 Magnetic Guide
Sensor Connection
and Operation

This section discusses how to interface one or more Roboteq’s MGS1600 Magnetic Guide
Sensors to the motor controller. Details of the Sensor’s operation can be found in the
product’s datasheet.

Introduction to MGS1600 Magnetic Guide Sensor
Roboteq’s Magnetic Guide Sensor is a sensor capable of detecting and reporting the posi-
tion of a magnetic field along its horizontal axis. The sensor is intended for applications in
Automatic Guided Vehicles using inexpensive adhesive magnetic tape to form a guide on
the floor. The tape creates an invisible field that is immune to dirt and unaffected by light-
ing conditions. The sensor can be interfaced directly to any of Roboteq’s motor controllers
in order to create an effective AGV solution with just two components.

The sensor generates the following information about the track:

•• Tape Detect

•• Position of Left Track

•• Position of Right Track

•• Presence of Left Marker

•• Presence of Right Marker

This data can be transmitted to Roboteq controller and other devices using one of the fol-
lowing methods

Method To Roboteq
Controllers To PLCs To PC’s

MagSensor MultiPWM Preferred Unsuitable Unsuitable

Serial Not Recommended Preferred Suitable

CANbus Suitable Preferred Suitable (1)

USB N/A Unsuitable Suitable

Notes:
1: PC must be fitted with CAN adapter

Magnetic Guide Sensor Connection and Operation

68	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

MagSensor MultiPWM interface
The recommended interfacing method to Roboteq motor controller is the MagSensor
MultiPWM mode. As the name implies, this proprietary method uses a succession
of variable duty-cycle pulses to carry the Tracks, Tape Detect, Markers and Gyroscope
information.

Any of the controller’s pulse input can be configured as a MultiPWM input. The diagram
below shows how simple this one-wire interfacing is.

Motor Controller

Sensor

MultiPWM

Pulse Input

G
N

D

5V Out or
7-30V Supply

Figure 5-1: One-wire interfacing using MultiPWM

Enabling MagSensor MultiPWM Communication
MGS1600 Sensor is set to MultiPWM mode in its factory default configuration. To enable
capture, the selected pulse input on the controller must be configured to “MagSensor”
when using the PC utility. When changing via the console use

^PMOD cc 4

To enable pulse input cc in MultiPWM mode.

Accessing Sensor Information
Once enabled, the pulses are sent continuously by the sensor 100 times per second.
The pulses are captured and parsed by the motor controller as they arrive. A real time
mirror image of sensor data is then present inside the controller. From there the sensor
information can be read using serial, USB, CAN or MicroBasic scripts like any other of the
controller’s operational parameters.

Connecting Multiple Magnetic Guide Sensor

	 Advanced Digital Motor Controller User Manual� 69

The following Motor Controller queries are available for reading the captured sensor data.

?MGD : Read tape detect

?MGT nn : Read left track when nn= 1 or right track when nn= 2

?MGM nn : Read left marker when nn=1 or right track when nn= 2

Details on these commands can be found in the Commands Reference section of this
manual

Connecting Multiple Magnetic Guide Sensor
More than one sensor can be connected to a single motor controller. This can be useful
in AGV designs that must be able to move in the forward and reverse direction along the
guide. Connecting multiple sensor can be done by connecting each sensor to one of the
available pulse input, as shown in the figure below.

G
N

D

Pu
ls

e
In

 1

Pu
ls

e
In

 2

Pu
ls

e
In

 n

7-30V Supply

Motor Controller

Figure 5-2: Connecting multiple sensors to a motor controller

Accessing Multiple Sensor Information Sequentially
Two methods are available for accessing each sensor’s data when multiple sensors are
connected.

The first method is to only have one sensor enabled at any one time. This is done by en-
abling and disabling pulse inputs via serial commands or MicroBasic scripting. Examples:

^PMOD 1 0 : Serial command to Disable Sensor on pulse input 1

Setconfig(_PMOD, 1, 0) : Microbasic instruction to disable sensor on Pulse input 1

^PMOD 2 4 : Enable Sensor on Pulse input 2

Setconfig(_PMOD, 2, 4) : Microbasic instruction to enable sensor on Pulse input 2

The sensor information can then be accessed with the ?MGD, ?MGT and ?MGM function
discussed above.

Magnetic Guide Sensor Connection and Operation

70	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Accessing Multiple Sensor Information Simultaneously
It is possible to have all magnetic sensors enabled at the same time by having their re-
spective pulse input set to MagSensor MultiPWM

When more than one pulse input is configured that way, the sensor data is accessible
using the ?MGD, ?MGT, ?MGM and ?MGY queries as follows, where x is the pulse input
number (1, 2, 3 etc.).

Reading Tape Detect

?MGD x or GetValue(_MGD, x)

Returns the Tape Detect state of Sensor at Pulse input x

Example:

?MGD 2 : Returns the Tape Detect state of Sensor 2

Reading Marker Detect

?MGM 2*(x-1)+1 or GetValue(_MGM, 2*(x-1)+1)

Returns the state of the Left Marker Detect state of Sensor at Pulse input x

?MGM 2*(x-1)+2 or GetValue(_MGM, 2*(x-1)+2)

Returns the state of the Right Marker Detect state of Sensor at Pulse input x

Examples:

?MGM 1 : Returns the Left Marker Detect state of Sensor at input 1

?MGM 2 : Returns the Right Marker Detect state of Sensor at input 1

?MGM 3 : Returns the Left Marker Detect state of Sensor at input 2

?MGM 4 : Returns the Right Marker Detect state of Sensor at input 2

Reading Track Positions

?MGT 3*(x-1)+1 or GetValue(_MGT, 3*(x-1)+1)

Returns the Left Track Position of Sensor at input x

?MGT 3*(x-1)+2 or GetValue(_MGT, 3*(x-1)+2)

Returns the Right Track Position of Sensor at input x

Connecting Multiple Magnetic Guide Sensor

	 Advanced Digital Motor Controller User Manual� 71

?MGT 3*(x-1)+3 or GetValue(_MGT, 3*(x-1)+3)

Returns the Active (Left or Right) Track Position of Sensor at input x

Examples:

?MGT 1 : Returns the Left Track Position of Sensor at input 1

?MGT 2 : Returns the Right Track Position of Sensor at input 1

?MGT 4 : Returns the Left Track Position of Sensor at input 2

?MGT 5 : Returns the Right Track Position of Sensor at input 2

?MGT 7 : Returns the Left Track Position of Sensor at input 3

Magnetic Guide Sensor Connection and Operation

72	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Input Command Modes and Priorities

	 Advanced Digital Motor Controller User Manual� 73

SECTION 6	 Command
Modes	

This section discusses the controller’s normal operation in all its supported operating
modes.

Input Command Modes and Priorities
The controller will accept commands from one of the following sources

•	 Serial data (RS232, USB, MicroBasic script)
•	 Pulse (R/C radio, PWM, Frequency)
•	 Analog signal (0 to 5V)
•	 Spektrum Radio (on selected models)
•	 CAN Interface

One, many or all command modes can be enabled at the same time. When multiple
modes are enabled, the controller will select which mode to use based on a user
selectable priority scheme. Setting the priorities is done using the PC configuration
utility.

This scheme uses a priority table containing three parameters and let you select which
mode must be used in each priority order. During operation, the controller reads the first
priority parameter and switches to that command mode. If that command mode is found
to be active, that command is then used. If no valid command is detected, the controller
switches to the mode defined in the next priority parameter. If no valid command is recog-
nized in that mode, the controller then repeats the operation with the third priority param-
eter. If no valid command is recognized in that last mode, the controller applies a default
command value that can be set by the user (typically 0).

Brushless Motor Connections and Operation

74	 Advanced Digital Motor Controller User Manual	 V1.8, August 28 2017

FIGURE 6-1. Controller’s possible command modes

In the Serial mode, the mode is considered as active if commands (starting with “!”)
arrive within the watchdog timeout period via the RS232 or USB ports. The mode will
be considered inactive, and the next lower priority level will be selected as soon as the
watchdog timer expires. Note that disabling the watchdog will cause the serial mode to be
always active after the first command is received, and the controller will never switch to a
lower priority mode.

In the pulse mode, the mode is considered active if a valid pulse train is found and re-
mains present.

In analog mode, the mode is considered active at all time, unless the Center at Start
safety is enabled. In this case, the Analog mode will activate only after the joystick has
been centered. The Keep within Min/Max safety mode will also cause the analog mode to
become inactive, and thus enable the next lower priority mode, if the input is outside of a
safe range.

The example in Figure 6-1 shows the controller connected to a microcomputer, a RC ra-
dio, and an analog joystick. If the priority registers are set as in the configuration below:

	 1- Serial
	 2- Pulse
	 3- Analog

then the active command at any given time is given in the table below.

TABLE 6-1. Priority resolution example

Microcomputer
Sending commands

Valid Pulses
Received

Analog joystick
within safe Min/Max Command mode selected

Yes Don’t care Don’t care Serial

No Yes Don’t care RC mode

No No Yes Analog mode

No No No User selectable default value

Set

Res
et

Serial/USB

Pulse

Analog

Operating the Controller in RC mode

	 Advanced Digital Motor Controller User Manual� 75

Note that it is possible to set a priority level to “None”. For example, the priority table

	 1 - Serial
	 2 - RC Pulse
	 3 - None

will only arbitrate and use Serial or RC Pulse commands.

USB vs Serial Communication Arbitration
On controllers equipped with a USB port, commands may arrive through the RS232 or the
USB port at the same time. They are executed as they arrive in a first come first served
manner. Commands that are arriving via USB are replied on USB. Commands arriving via
the UART are replied on the UART. Redirection symbol for redirecting outputs to the other
port exists (e.g. a command can be made to respond on USB even though it arrived on
RS232).

CAN Commands Arbitration
On controllers fitted with a CAN interface, commands received via CAN are processed as
they arrive regardless if any other mode is active at the same time. Care must be taken to
avoid conflicting commands from different sources. Queries of operating parameters will
not interfere with queries from serial or USB.

Commands issued from MicroBasic scripts
When sending a Motor or Digital Output command from a MicroBasic script, it will be
interpreted by the controller the same way as a serial command (RS232 or USB). If a serial
command is received from the serial/USB port at the same time a command is sent from
the script, both will be accepted and this can cause conflicts if they are both relating to
the same channel. Care must be taken to avoid, for example, cases where the script com-
mands one motor to go to a set level while a serial command is received to set the motor
to a different level.

Important Warning

When running a script that sends motor command, make sure you click “Mute” in
the PC utility. Otherwise, the PC will be sending motor commands continuously and
these will interfere with the script commands.

Script commands are also subject to the serial Watchdog timer and share the same
priority level as Serial commands. Use the “Command Priorities” configuration to
set the priority of commands issued from the script vs commands received from the
Pulse Inputs or Analog Inputs.

Operating the Controller in RC mode
The controller can be directly connected to an R/C receiver. In this mode, the speed or
position information is contained in pulses whose width varies proportionally with the
joysticks’ positions. The controller mode is compatible with all popular brands of RC trans-
mitters.

Brushless Motor Connections and Operation

76	 Advanced Digital Motor Controller User Manual	 V1.8, August 28 2017

The RC mode provides the simplest method for remotely controlling a robotic vehicle:
little else is required other than connecting the controller to the RC receiver and powering
it On.

FIGURE 6-2. R/C radio control mode

The speed or position information is communicated to the controller by the width of a
pulse from the RC receiver: a pulse width of 1.0 millisecond indicates the minimum joy-
stick position and 2.0 milliseconds indicates the maximum joystick position. When the
joystick is in the center position, the pulse should be 1.5ms.

1.05ms

min center maxjoystick position:

R/C pulse timing:
0.45ms

0.9ms

FIGURE 6-3. Joystick position vs. pulse duration default values

The controller has a very accurate pulse capture input and is capable of detecting
changes in joystick position (and therefore pulse width) as small as 0.1%. This res-
olution is superior to the one usually found in most low cost RC transmitters. The
controller will therefore be able to take advantage of the better precision and better
control available from a higher quality RC radio, although it will work fine with lesser
expensive radios as well.

Input RC Channel Selection
The controllers features several inputs that can be used for pulse capture. See product
datasheet for actual number of pulse input. Any RC input can be used as command
for any motor channels. The controller’s factory default defines two channels for RC

Set

Res
et

Operating the Controller in RC mode

	 Advanced Digital Motor Controller User Manual� 77

capture (one input on single channel products). Which channel and which pin on the input
connector depends on the controller model and can be found in the controller’s datasheet.

Changing the input assignment is done using the PC Configuration utility.

Input RC Channel Configuration
Internally, the measured pulse width is compared to the reference minimum, center and
maximum pulse width values. From this is generated a command number ranging from
-1000 (when the joystick is in the min. position), to 0 (when the joystick is in the center po-
sition) to +1000 (when the joystick is in the max position). This number is then used to set
the motor’ desired speed or position that the controller will then attempt to reach.
For best results, reliability and safety, the controller will also perform a series of correc-
tions, adjustments and checks to the R/C commands, as described below.

Joystick Range Calibration
The Joystick min, max and center position are adjustable. For best control accuracy, the
controller can be calibrated to capture and use your radio’s specific timing characteristics
and store them into its internal Flash memory. This is done using a simple calibration pro-
cedure described page 60.

Deadband Insertion
The controller allows for a selectable amount of joystick movement to take place around
the center position before activating the motors. See the full description of this feature at
“Deadband Selection” page 61

Command Correction
The controller can also be set to translate the joystick motor commands so that the motor
responds differently depending on whether the joystick is near the center or near the
extremes. Five different exponential or logarithmic translation curves may be applied.
Since this feature applies to the R/C, Analog and RS232 modes, it is described in detail in
“Command Correction” page 62, in the General Operation section of the manual.

Reception Watchdog
Immediately after it is powered on, if in the R/C mode, the controller is ready to receive
pulses from the RC radio.

If valid pulses are received on any of the enabled Pulse input channels, the controller will
consider the RC Pulse mode as active. If no higher priority command is currently active
(See “Input Command Modes and Priorities” page 73), the captured RC pulses will
serve to activate the motors.

If no valid RC pulses reach the controller for more than 500ms, the controller no lon-
ger considers it is in the RC mode and a lower priority command type will be accepted
if present.

Brushless Motor Connections and Operation

78	 Advanced Digital Motor Controller User Manual	 V1.8, August 28 2017

Important Warning

Some receivers include their own supervision of the radio signals and will move
their servo outputs to a safe position in case of signal loss. Using these types of re-
ceiver, the controller will always be receiving pulses even with the transmitter off.

Using Sensors with PWM Outputs for Commands
The controller’s Pulse inputs can be used with various types of angular sensors that use
contactless Hall technology and that output a PWM signal. These type of sensors are
increasingly used inside joysticks and will perform much more reliably, and typically with
higher precision than traditional potentiometers.

The pulse shape output from these devices varies widely from one sensor model to an-
other and is typically different than this of RC radios:

- They have a higher repeat rate, up to a couple of kHz.
- The min and max pulse width can reach the full period of the pulse

Care must therefore be exercised when selecting a sensor. The controller will accommo-
date any pulsing sensor as long as the pulsing frequency does not exceed 250Hz. The
sensor should not have pulses that become too narrow - or disappear altogether - at the
extremes of their travel. Select sensors with a minimum pulse width of 10us or higher.
Alternatively, limit mechanically the travel of the sensor to keep the minimum pulse width
within the acceptable range.

A minimum of pulsing must always be present. Without it, the signal will be considered as
invalid and lost.

Pulses from PWM sensors can be applied to any Pulse input on the controller’s connector.
Configure the input capture as Pulse or Duty Cycle.

A Pulse mode capture measures the On time of the pulse, regardless of the pulse period.

A Duty Cycle mode capture measures the On time of the pulse relative to the entire pulse
period. This mode is typically more precise as it compensates for the frequency drifts o
the PWM oscillator.

PWM signals are then processed exactly the same way as RC pulses. Refer to the RC
pulse paragraphs above for reference.

Operating the Controller In Analog Mode
Analog Command is the simplest and most common method when the controller is used
in a non-remote, human-operated system, such as Electric Vehicles.

Input Analog Channel Selection
The controller features 4 to 11 inputs, depending on the model type, that can be used for
analog capture. Using different configuration parameters, any Analog input can be used as
command for any motor channel. The controller’s factory default defines two channels as

Operating the Controller In Analog Mode

	 Advanced Digital Motor Controller User Manual� 79

Analog command inputs. Which channel and which pin on the input connector depends on
the controller model and can be found in the controller’s datasheet.

Changing the input assignment is done using the PC Configuration utility. See “Analog In-
puts Configurations and Use” on page 59.

Input Analog Channel Configuration
An Analog input can be Enabled or Disabled. When enabled, it can be configured to cap-
ture absolute voltage or voltage relative to the 5V output that is present on the connector.
See “Analog Inputs Configurations and Use” on page 59

Analog Range Calibration
If the joystick movement does not reach full 0V and 5V, and/or if the joystick center point
does not exactly output 2.5V, the analog inputs can be calibrated to compensate for this.
See “Min, Max and Center adjustment” on page 60 and “Deadband Selection”on
page 61.

Using Digital Input for Inverting direction
Any digital input can be configured to change the motor direction when activated. See
“Digital Inputs Configurations and Uses” on page 58. Inverting the direction has the
same effect as instantly moving the command potentiometer to the same level the oppo-
site direction. The motor will first return to 0 at the configured deceleration rate and go to
the inverted speed using the configured acceleration rate.

Safe Start in Analog Mode
By default, the controller is configured so that in Analog command mode, no motor will
start until all command joysticks are centered. The center position is the one where the
input equals the configured Center voltage plus the deadband.

After that, the controller will respond to changes to the analog input. The safe start check
is not performed again until power is turned off.

Protecting against Loss of Command Device
By default, the controller is protected against the accidental loss of connection to the
command potentiometer. This is achieved by adding resistors in series with the poten-
tiometer that reduce the range to a bit less than the full 0V to 5V swing. If one or more
wires to the potentiometer are cut, the voltage will actually reach 0V and 5V and be con-
sidered a fault condition, if that protection is enabled. See “Connecting Potentiometers for
Commands with Safety band guards” on page 49.

Safety Switches
Any Digital input can be used to add switch-activated protection features. For example,
the motor(s) can be made to activate only if a key switch is turned On, and a passenger
is present on the driver’s seat. This is done using by configuring the controller’s Digital in-
puts. See “Digital Inputs Configurations and Uses” page 58.

Brushless Motor Connections and Operation

80	 Advanced Digital Motor Controller User Manual	 V1.8, August 28 2017

Monitoring and Telemetry in RC or Analog Modes
The controller can be fully monitored while it is operating in RC or Analog modes. If direct-
ly connected to a PC via USB or RS232, the controller will respond to operating queries
(Amps, Volts, Temperature, Power Out, ...) without this having any effect on its response
to Analog or RC commands. The PC Utility can therefore be used to visualize in real time
all operating parameters as the controller runs. See “Run Tab” on page 363.

In case the controller is not connected via a bi-directional link, and can only send infor-
mation one-way, typically to a remote host, the controller can be configured to output a
user-selectable set of operating parameters, at a user selectable repeat rate. See “Query
History Commands” on page 263.

MicroBasic scripting can also be used to generate a periodic text string containing param-
eters to monitor.

Using the Controller with a Spektrum Satellite Receiver
Some controller models can be connected directly to a miniature Spektrum SP9545
satellite receiver. Using only 3 wires this interface will carry the information of up to
6 command joysticks with a resolution and precision that is significantly higher than
traditional 1.5ms pulse signals.

The PC utility is used to map any of the 6 channels as a command for each motor. Binding
the receiver to the transmitter is done using the %BIND maintenance command. See
“Maintenance Commands” on page 209 for details on the binding procedure.

Using the Controller in Serial (USB/RS232) Mode
The serial mode allows full control over the controller’s entire functionality. The controller
will respond a large set of commands. These are described in detail in “Serial (RS232/
USB) Operation” on page 141.

Power Output Circuit Operation

	 Advanced Digital Motor Controller User Manual� 81

SECTION 7	 Motor Operating
Features and
Options

This section discusses the controller’s operating features and options relating to its motor
outputs.

Power Output Circuit Operation
The controller’s power stage is composed of high-current MOSFET transistors that are
rapidly pulsed on and off using Pulse Width Modulation (PWM) technique in order to de-
liver more or less power to the motors. The PWM ratio that is applied is the result of com-
putation that combines the user command and safety related corrections. In closed-loop
operation, the command and feedback are processed together to produced a the adjusted
motor command. The diagram below gives a simplified representation of the controller’s
operation.

Motor
Command

Acceleraton
Decceleration

Channel
Mixing

Short
Detect

Channel
Mixing

Safety
Checks

Power
Output

Motor
Outs

Commands

Feedback

Estop,
Limit Switches,

...

Amps
Temperature

Voltages

ConfigurationConfigurationConfiguration

Configuration

Configuration

Configuration

PWM

FIGURE 7-1. Simplified diagram of power output operation

Motor Operating Features and Options

82	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Global Power Configuration Parameters

PWM Frequency
The power MOSFETs are switched at 16kHz by default. This frequency can set to another
value ranging from 10 kHz to 50 kHz. Increasing the frequency reduces the efficiency due
to switching losses. Lowering the frequency eventually creates audible noise and can be
inefficient on low inductance motors.

Changing the PWM frequency typically results in no visible change in the motor operation
and should be left untouched.

Overvoltage Protection
The controller includes a battery voltage monitoring circuit that will cause the output
transistors to be turned Off if the main battery voltage rises above a preset Over Voltage
threshold. The value of that threshold is set by default and may be adjusted by the user.
The default value and settable range is given in the controller model datasheet.

This protection is designed to prevent the voltage created by the motors during regenera-
tion to be “amplified” to unsafe levels by the switching circuit.

The controller will resume normal operation when the measured voltage drops below the
Over Voltage threshold minus an user definable hysteresis voltage.

The controller can also be configured to trigger one of its Digital Outputs when an Over
Voltage condition is detected. This Output can then be used to activate a Shunt load
across the VMot and Ground wires to absorb the excess energy if it is caused by regen-
eration. This protection is particularly recommended for situation where the controller is
powered from a power supply instead of batteries.

Undervoltage Protection
In order to ensure that the power MOSFET transistors are switched properly, the control-
ler monitors the internal preset power supply that is used by the MOSFET drivers. If the
internal voltage drops below a safety level, the controller’s output stage is turned Off. The
rest of the controller’s electronics, including the microcomputer, will remain operational as
long as the power supply on VMot is above the minimum voltage specified in the product
datasheet or if Power Control is above 7V.

Additionally, the output stage will be turned off when the main battery voltage on VMot
drops below a user configurable level that is factory preset at 5V.

Temperature-Based Protection
The controller features active protection which automatically reduces power based on
measured operating temperature. This capability ensures that the controller will be able to
work safely with practically all motor types and will adjust itself automatically for the vari-
ous load conditions.

When the measured temperature reaches 70oC, the controller’s maximum allowed power
output begins to drop by 20% for every degree until the temperature reaches 75oC. Above
75oC, the controller’s power stage turns itself off completely.

Note that the measured temperature is measured on the heat sink near the Power Transis-
tors and will rise and fall faster than the outside surface.

Global Power Configuration Parameters

	 Advanced Digital Motor Controller User Manual� 83

The time it takes for the heat sink’s temperature to rise depends on the current output,
ambient temperature, and available air flow (natural or forced).

Short Circuit Protection
The controller includes a circuit that will detect very high current surges that are consis-
tent with short circuits conditions. When such a condition occurs, the power transistor for
the related motor channel are cut off within a few microseconds. Conduction is restored
at 1ms intervals. If the short circuit is detected again for up to a quarter of a second, it is
considered as a permanent condition and the controller enters a Safety Stop condition,
meaning that it will remain off until the command is brought back to 0.

The short circuit detection can be configured with the PC utility to have one of three sen-
sitivity levels: quick, medium, and slow.

The protection is very effective but has a few restrictions:

Only shorts between two motor outputs of the same channel are detected. Shorts be-
tween a motor wire and VMot are also detected. Shorts between a motor output and
Ground are not detected.

Wire inductance causes current to rise slowly relative to the PWM On/Off times. Short
circuit will typically not be detected at low PWM ratios, which can cause significant heat
to eventually accumulate in the wires, load and the controller, even though the controller
will typically not suffer direct damage. Increasing the short circuit sensitivity will lower the
PWM ratio at which a short circuit is detected.

Since the controller can handle very large current during its normal operation, Only direct
short circuits between wires will cause sufficiently high current for the detection to work.
Short circuits inside motors or over long motor wires may go undetected.

A simplified short circuit protection logic is implemented on some controller models.
Check with controller datasheet for details.

Mixed Mode Select
Mixed mode is available as a configuration option in dual channel controllers to create
tank-like steering when one motor is used on each side of the robot: Channel 1 is used for
moving the robot in the forward or reverse direction. Channel 2 is used for steering and
will change the balance of power on each side to cause the robot to turn. Figure 7-2 below
illustrates how the mixed mode motor arrangement.

Controller

 FIGURE 7-2. Effect of commands to motor examples in mixed mode

Motor Operating Features and Options

84	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

The controller supports 3 mixing algorithms with different driving characteristics.
The table below shows how each motor output responds to the two commands
in each of these modes.

TABLE 7-1. Mixing Mode characteristics

Input Mode 1 Mode 2 Mode 3

Throttle Steering M1 M2 M1 M2 M1 M2

0 0 0 0 0 0 0 0

0 300 300 -300 300 -300 300 -300

0 600 600 -600 600 -600 600 -600

0 1000 1000 -1000 1000 -1000 1000 -1000

0 -300 -300 300 -300 300 -300 300

0 -600 -600 600 -300 300 -600 600

0 -1000 -1000 1000 -1000 1000 -1000 1000

300 300 600 0 600 0 522 90

300 600 900 -300 900 -300 762 -120

300 1000 1000 -700 1000 -1000 1000 -400

300 -300 0 600 0 600 90 522

300 -600 -300 900 -300 900 -120 762

300 -1000 -700 1000 -1000 1000 -400 1000

600 300 900 300 900 300 708 480

600 600 1000 0 1000 -200 888 360

600 1000 1000 -400 1000 -1000 1000 200

600 -300 300 900 300 900 480 708

600 -600 0 1000 -200 1000 360 888

600 -1000 -400 1000 -1000 1000 200 1000

1000 300 1000 700 1000 400 900 1000

1000 600 1000 400 1000 -200 1000 1000

1000 1000 1000 0 1000 -1000 1000 1000

1000 -300 700 1000 400 1000 1000 900

1000 -600 400 1000 -200 1000 1000 1000

1000 -1000 0 1000 -1000 1000 1000 1000

Motor Channel Parameters

User Selected Current Limit Settings
The controller has current sensors at each of its output stages. Every 1 ms, this current
is measured and a correction to the output power level is applied if higher than the user
preset value.

Motor Channel Parameters

	 Advanced Digital Motor Controller User Manual� 85

The current limit may be set using the supplied PC utility. The maximum limit is dependent
on the controller model and can be found on the product datasheet.

The limitation is performed on the Motor current and not on the Battery current. See “Bat-
tery Current vs. Motor Current” on page 30 for a discussion of the differences.

Selectable Amps Threshold Triggering
The controller can be configured to detect when the Amp on a motor channel exceed a
user-defined threshold value and trigger an action if this condition persists for more than a
preset amount of time.

The list of actions that may be triggered is shown in the table below.

TABLE 7-2. Possible Action List when Amps threshold is exceeded

Action
Applicable
Channel Description

No Action - Input causes no action

Safety Stop Selectable Stops the selected motor(s) channel until command is
moved back to 0 or command direction is reversed

Emergency stop All Stops the controller entirely until controller is powered
down, or a special command is received via the serial
port

This feature is very different than amps limiting. Typical uses for it are for stall detection
or “soft limit switches”. When, for example, a motor reaches an end and enters stall con-
dition, the current will rise, and that current increase can be detected and the motor be
made to stop until the direction is reversed.

Programmable Acceleration & Deceleration
When changing speed command, the controller will go from the present speed to the de-
sired one at a user selectable acceleration. This feature is necessary in order to minimize
the surge current and mechanical stress during abrupt speed changes.

This parameter can be changed by using the PC utility. Acceleration can be different for
each motor. A different value can also be set for the acceleration and for the deceleration.
The acceleration value is entered in RPMs per second. In open loop installation, where
speed is not actually measured, the acceleration value is relative to the Max RPM param-
eter. For example, if the Max RPM is set to 1000 (default value) and acceleration to 2000,
this means that the controller will go from 0 to 100% power in 0.5 seconds.

Important Warning

Depending on the load’s weight and inertia, a quick acceleration can cause consider-
able current surges from the batteries into the motor. A quick deceleration will cause
an equally large, or possibly larger, regeneration current surge. Always experiment
with the lowest acceleration value first and settle for the slowest acceptable value.

Motor Operating Features and Options

86	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Forward and Reverse Power Adjustment Gain
This parameter lets you select the scaling factor for the power output as a percentage val-
ue. This feature is used to connect motors with voltage rating that is less than the battery
voltage. For example, using a factor of 50% it is possible to connect a 12V motor onto a
24V system, in which case the motor will never see more than 12V at its input even when
the maximum power is applied.

Selecting the Motor Control Modes
For each motor, the controller supports multiple motion control modes. The controller’s
factory default mode is Open Loop Speed control for each motor. The mode can be
changed using the Roborun PC utility.

Open Loop Speed Control
In this mode, the controller delivers an amount of power proportional to the command
information. The actual motor speed is not measured. Therefore the motor will slow down
if there is a change in load as when encountering an obstacle and change in slope. This
mode is adequate for most applications where the operator maintains a visual contact
with the robot.

Power Command PWM
Motor

Figure 7-3: Open loop mode

Closed Loop Speed Control
In this mode, illustrated in Figure 7-4, optical encoder (typical) or an analog tachometer
is used to measure the actual motor speed. If the speed changes because of changes in
load, the controller automatically compensates the power output. This mode is preferred
in precision motor control and autonomous robotic applications. Details on how to wire
the tachometer can be found in “Connecting Tachometer to Analog Inputs” on page 50.
Closed Loop Speed control operation is described in “Closed Loop Speed Mode” on page
113. On brushless motors, speed may be sensed directly from the motor’s Hall or others
internal Sensors and closed loop operation is possible without additional hardware.

Position Sensor

Gear box

Position Feedback

FIGURE 7-4. Motor with tachometer or Encoder for Closed Loop Speed operation

Selecting the Motor Control Modes

	 Advanced Digital Motor Controller User Manual� 87

Closed Loop Speed Position Control
In this mode, the controller computes the position at which the motor must be at every
1ms. Then a position loop compares that expected position with the current position and
applies the necessary power level in order for the motor to reach that position. This mode
is especially effective for accurate control at very slow speeds. Details on this mode can
be found in Closed Loop Speed and Speed-Position Modes on page 113

Position Counter

Trajectory

Speed
Command PWM

Motor

Position Feedback

Expected
Position - PID

Figure 7-5: Closed Loop Speed Position mode

Closed Loop Position Relative Control
In this mode, illustrated in Figure 7-6, the axle of a geared down motor is typically cou-
pled to a position sensor that is used to compare the angular position of the axle versus
a desired position. The motor will move following a controlled acceleration up to a user
defined velocity, and decelerate to smoothly reach the desired destination. This feature of
the controller makes it possible to build ultra-high torque “jumbo servos” that can be used
to drive steering columns, robotic arms, life-size models and other heavy loads. Details on
how to wire the position sensing potentiometers and operating in this mode can be found
in “Closed Loop Relative and Tracking Position Modes” on page 121.

Position Sensor

Gear box

Position Feedback

FIGURE 7-6. Motor with potentiometer assembly for position operation

Position Sensor

-1000 to +1000
Position Command

-1000 to +1000 Feedback

Trajectory
PWM

Motor

Expected
Position - PID

Figure 7-7. Closed Loop Position Relative mode

Motor Operating Features and Options

88	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Closed Loop Count Position
In this mode, an encoder is attached to the motor as for the Speed Mode of Figure
7-8. Then, the controller can be instructed to move the motor to a specific number of
counts, using a user-defined acceleration, velocity, and deceleration profile. Details
on how to configure and use this mode can be found in “Closed Loop Count Position
Mode” on page 131. On brushless motors, the hall sensors can be also be used for
position measurement.

Position CounterPosition Feedback

Count
Position Command

Trajectory
PWM

Motor

Expected
Position - PID

Figure 7-8: Closed Loop Count Position mode

Closed Loop Position Tracking
This modes uses the same feedback sensor mount as this of Figure 7-9. In this mode the
motor will be moved until the final position measured by the feedback sensor matches
the command. The motor will move as fast as it possibly can, using maximum physical
acceleration. This mode is best for systems where the motor can be expected to move as
fast as the command changes. Details on this operating mode can be found in “Closed
Loop Relative and Tracking Position Modes” on page 121.

-1000 to +1000
Position Command PWM

Motor

Position Sensor
-1000 to +1000 Feedback

- PID

Figure 7-9: Closed Loop Position Tracking mode

Torque Mode

	 Advanced Digital Motor Controller User Manual� 89

Torque Mode
In this closed loop mode, the motor is driven in a manner that it produces a desired
amount of torque regardless of speed. This is achieved by using the motor current as
the feedback. Torque mode does not require any specific wiring. Detail on this operating
mode can be found in “Closed Loop Torque Mode” on page 137.

Torque Command PWM
Motor

Current
Sensor

Current Feedback

- PID A

Figure 7-10: Closed Loop Torque mode

Motor Operating Features and Options

90	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Introduction to Brushless Motors

	 Advanced Digital Motor Controller User Manual� 91

SECTION 8	 Brushless Motor
Connections
and Operation

This section addresses installation an operating issues specific to brushless motors. It is
applicable only to brushless motor controller models.

Introduction to Brushless Motors
Brushless motors, or more accurately Brushless DC Permanent Magnet Synchronous mo-
tors (since there are other types of motors without brushes) contain permanent magnets
and electromagnets. The electromagnets are arranged in groups of three and are powered
in sequence in order to create a rotating field that drives the permanent magnets. The
electromagnets are located on the non-rotating part of the motor, which is normally in the
motor casing for traditional motors, in which case the permanent magnets are on the ro-
tor that is around the motor shaft. On hub motors, such as those found on electric bikes,
scooters and some other electric vehicles, the electromagnets are on the fixed center part
of the motor and the permanent magnets on the rotating outer part.

N

S

U

V W

Figure 8-1. Permanent Magnet Synchronous Motor construction

Brushless Motor Connections and Operation

92	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

As the name implies, Brushless motors differ from traditional DC motors in that they do
not use brushes for commutating the electromagnets. Instead, it is up to the motor con-
troller to apply, in sequence, current to each of the 3 motor windings in order to cause the
rotor to spin. There are fundamentally two methods of generating the rotating magnetic
field in the motor’s winding:

•	 Trapezoidal Commutation
•	 Sinusoidal Commutation

Within each commutation method is then a method for detecting the actual position of
the rotor in order to synchronize the generated rotating field. These are:

•	 Hall sensors
•	 Encoders (Absolute or relative)
•	 Sensorless

All Roboteq brushless controllers support Trapezoidal with Hall sensor feedback. Sinusoidal
and alternative rotor detection techniques are available on selected models. Refer to the
controller’s datasheet to determine which modes are supported.

Number of Poles
One of the key characteristics of a brushless motor is the number of poles of permanent
magnets pairs it contains. A full 3-phase cycling of motor’s electromagnets will cause the
rotor to move to the next permanent magnet pole. A full 3-phase cycle is known as electri-
cal turn which will be different from the physical (mechanical) turn of the shaft if the motor
number of pole pairs is greater than one: increasing the number of pole pairs will cause
the motor to rotate more slowly for a given rate of change on the winding’s phases.

The number of pole pairs is necessary for determining the number of turns a motor has
done. It can also be used to measure the motor speed. The Roboteq controllers can
measure both.

The number of pole pairs on a particular motor is usually found in the motor’s specifica-
tion sheet. The number of pole pairs can also be measured by applying a low DC current
(around 1A) between any two wires of the 3 that go to the motor and then counting the
number of cogs you feel when rotating the motor by hand for a full turn. It can also be de-
termined by rotating the motor shaft by hand a full turn. Then take the number of counts
reported by the hall counter, and divide it by 6.

The number of pole pairs is a configuration parameter that can be entered in the controller
configuration (see “BPOL” in the command reference section). This parameter is not need-
ed for basic motor operation with Hall Sensor feedback and can be left at its default value.
It is needed if accurate speed reporting is required or to operate in Closed Loop Speed
mode. The number of pole pairs in a critical configuration in sinusoidal mode.

Entering a negative number of pole pairs will reverse the measured speed and the count
direction. It is useful when operating the motor in closed loop speed mode and if other-
wise a negative speed is measured when the motor is moved in the positive direction.

Trapezoidal Switching

	 Advanced Digital Motor Controller User Manual� 93

Trapezoidal Switching
In trapezoidal switching, the controller applies current to two of the 3 motor wires, in turn
and in alternating direction. A total of 6 combination of current flow are possible, resulting
in the rotor getting a changing magnetic field every 30 degrees of electrical rotation. The
controller must therefore know where the rotor is in relation to the electromagnets so
that current can be applied to the correct winding at any given point in time. The simplest
and most reliable method is to use three Hall sensors inside the motor. The diagram be-
low shows the direction of the current in each of the motor’s windings depending on the
state of the 3 hall sensors.

Figure 8-2. Hall sensors sequence

Hall Sensor Wiring

Hall sensors connection requires 5 wires on the motor:

•	 Ground

•	 Sensor1 Output

•	 Sensor2 Output

•	 Sensor3 Output

•	 + power supply

Sensor outputs are generally Open Collector, meaning that they require a pull up resistor
in order to create the logic level 1. Pull up resistor of 4.7K ohm to +5V are incorporated
inside all controllers. Additionally, 1nF capacitors to ground are present at the controller’s
input in order to remove high frequency spikes which may be induced by the switching at
the motor wires.

Brushless Motor Connections and Operation

94	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Figure 8-3. Hall sensor inputs equivalent circuit

Both 60 degrees and 120 degrees Hall sensors spacing, are supported (see “HPO” in the
command reference section). Hall sensors can typically be powered over a wide voltage
range. The controller supplies 5V for powering the Hall sensors.

Unless specified otherwise in the datasheet, Hall sensor connection to the controller is
done using Molex Microfit 3.0 connectors. These high quality connectors provide a reliable
connection and include a lock tab for secure operation. The connector pinout is shown in
the controller model’s datasheet.

Important Warning

Keep the Hall sensor wires away from the motor wires. High power PWM switching
on the motor leads will induce spikes on the Hall sensor wires if located too close.
On hub motors where the Hall sensor wires are inside the same cable as the motor
power wires, separate the two sets of wires the nearest from the motor as possible.

Important Notice

Make sure that the motor sensors have a digital output with the signal either at 0
or at 1, as usually is the case. Sensors that output are slow changing analog signals
will cause the motor to run imperfectly.

Hall Sensor Verification
The following query can be used to verify that the hall sensors are seen by the controller:

?HS

Trapezoidal Switching

	 Advanced Digital Motor Controller User Manual� 95

The reply is one or two numbers depending whether the controller is a single or dual
channel. The values is between 0 and 7 with each bit representing the state of each of the
HA, HB and HC sensors.

Turn the motor slowly by hand while sending frequent ?HS queries. Verify that all valid
combinations appear at one time or the other and that none of the invalid combination
ever show.

For 60 degrees spaced Hall sensors, 0-1- 3-4- 6-7 are valid combinations, while 2 and 5
are invalid combinations. For 120 degrees spaced sensors, 1-2- 3-4- 5-6 are valid combina-
tions, while 0 and 7 are invalid combinations.

Note that HS query does not work on the first generation HBL and VBL family of products.

Hall Sensor Alignment and Wiring Order
It is very important that the hall sensors be precisely aligned vs the electromagnets in-
side the motor so that commutation be done exactly at the right time. Bad alignment will
cause the motor to run inefficiently.

The order of the Hall sensors and these of the motor connections must match in order for
the motor to spin. Unfortunately, there is no standard naming and ordering convention for
brushless motors.

The Hall Sensor and Motor Phases naming convention used in Roboteq controllers is A,
B and C for the sensors and U, V and W for the motor phases. When rotating the motor
shaft clockwise by hand, the controllers expects the sensor A to be a mirror of the voltage
generated between wires U and W, sensor B between V and U, sensor C between W
and V. See figure 8-4. The sinewave voltage will be inverted when turning the motor in the
opposite direction.

Alternatively, in order to synchronize the wiring order of the motor winding and the hall
sensor wires, the HSM configuration command can be used (see “HSM” in the com-
mand reference section). For each hall sensor cable order and motor wire order, there are
6 combinations, one of which will make the motor spin smoothly and efficiently in both
direction. Try each of the 6 available values of HSM (0-5) and retain the one that will make
the motor spin in both directions while drawing the same low current.

Vv-u Vw-vVu-w

Va Vb Vc

Figure 8-4. Relation between hall sensor and U V W windings

Brushless Motor Connections and Operation

96	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Motor
U
V
W

Vw-u

Probe

Probe

Rotate
shaft
clockwise GND Clip

GND Clip

Hall Sensor Power and Pull-ups

HA

Va

+5V

2-10k

2-10k

2-10k

HB

HC

GND

5V

Figure 8-5. Use an oscilloscope and the circuit in figure to place the probes and generate these signals

Determining the Wiring Order Empirically
While probing with an oscilloscope gives the definite order, a simpler and quicker way
may be to try all valid combination by trial and error. To do this, you can either connect
the motor wires permanently and then try different combination of Hall sensor wiring, or
you can connect the Hall sensors permanently and try different combinations of motor
wiring. There is a total of 6 possible combinations of wiring three sensors on three con-
troller inputs. There are also 6 possible combinations of wiring three motor wires on three
controller outputs. Only one of the 6 combinations will work correctly and smoothly while
allowing the controller to drive the motor in both directions.

The table below show the 6 possible combinations of connecting motor wires 1, 2 and 3
to the controller’s U, V and W outputs.

Controller
Output

Motor
Wiring 1

Motor
Wiring 2

Motor
Wiring 3

Motor
Wiring 4

Motor
Wiring 5

Motor
Wiring 6

U 1 1 2 2 3 3

V 2 3 1 3 1 2

W 3 2 3 1 2 1

Try the different combinations while applying a low amount of power (5 to 10%). Applying
too high power may trigger the stall protection. Be careful not to have the motor output
wires touch each other and create a short circuit. Once a combination that make the mo-
tor spin is found, increase the power level and verify that rotation is smooth, at very slow
speed and at high speed and in both directions.

Trapezoidal Switching

	 Advanced Digital Motor Controller User Manual� 97

Important Notice

Beware that while only one combination is valid, there may be other combinations
that will cause the motor to spin. When the motor spins with the wrong wiring
combination, it will do so very inefficiently. Make sure that the motor spins equally
smoothly in both directions. Try all 6 combinations and select the best.

Sensorless Trapezoidal Commutation
Some Roboteq controller models support sensorless trapezoidal commutation. As the
name implies, the commutation is also made by applying current on two or the 3 motor
wires in alternating manner. However, no hall or other sensor is used on the motor to tell
the controller when to switch the phases. Instead, the rotor position is sensed by mea-
sure the motor’s back EMF voltage on the one wire that is not energized at any one time
(floating wire) during commutation. This technique is very effective and results in commu-
tation characteristics and performance practically identical to switching using Hall sensors
at medium and high speed.

Since it depends on the presence of back EMF – ie the voltage that is generated inside
the motor windings as the rotor turns in the permanent magnets field – position can only
be sensed if the rotor is spinning in the first place. The rotor position cannot be known
when the motor is stopped or stalled. In Trapezoidal Sensorless, the motor is therefore
started by applying an arbitrarily rotating field to the motor windings, making the rotor turn
similarly to stepper motors. Once the motor has started to turn and achieve a speed suffi-
cient to generate a detectable back EMF, the commutation is synchronized with the rotor
position. For all practical purposes, therefore, Sensorless Trapezoidal is not usable in any
system requiring precise control at slow speed, or high torque at stall or start.

Setting and Operating Trapezoidal Modes
Trapezoidal modes are selected via using the Switching Mode configuration menu in the
Roborun PC utility, or by sending the configuration command.

^BMOD ch 0 for hall sensor commutation

^BMOD ch 2 for sensorless commutation

No other settings are necessary for the motor to run.

In the hall sensor mode, and if the sensor vs phase wiring is correct (see “Hall Sensor
Alignment and Wiring Order” on page 95), motor will spin as soon as a power com-
mand is given.

In the sensorless mode the motor will spin regardless of the phase wiring order. If the
motor spin in the opposite direction than the one desires, swap any two of the motor
wires.

The number of poles setting is not necessary in order for the motor to run. The number
of poles is only used to measure the motor’s rotation speed. Enter a negative number of
poles in order to change the speed polarity and count direction.

Brushless Motor Connections and Operation

98	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

 Sensorless Configuration and Calibration
The controller’s default configuration will typically work with any motor. However, faster and
more consistent motor startup will be achieved by performing these setup and calibration steps:

1. �Make sure the battery volts and if possible the maximum load on the motor is set. If
either changes the procedure will need to be repeated.

2. Configure motor channels as sensorless.

3. �Set motor command 10 or -10 and check if the motor starts and rotates smoothly
when using the default setting. If not modify Sensorless Start-Up Power (SSP) accord-
ingly. Higher the motor friction, the higher the value of SSP should be.

4. �Type on console %clmod 4 (for channels 1). This will cause the controller to enter the
sensorless calibration mode.

5. �Set Motor Command 10 or -10 and wait until the rotation of the motor becomes
smooth and stable.

6. Wait for a couple of seconds and stop the motor.

7. �Monitor the Hall Speed with motor command 10 and -10. Make sure the speed is the
same in both directions symmetrical. If not then choose as last the motor command
which gives the smallest speed.

8. Type on console %clmod 0 to exit the calibration mode

9. Type on console %eesav, in order to save the value on flash.

Startup should be quicker and more efficient after these steps. Calibration values can be
viewed, and manually adjusted if needed, using the SST configuration.

Sensorless brushless motors only require their 3 wires to be connected to the controller’s
U, V and W terminals. The wires can be connected in any order. If the motor spins in the
opposite direction than the desired one, simply invert any two motor wires. It is also pos-
sible to use the MDIR Motor Direction configuration parameter.

Verifying Commutation Timing
In trapezoidal modes, with an oscilloscope it is possible to verify that the commutation,
either in Hall sensors or sensorless mode, is happening at the optimal time. On a mo-
tor driven by the motor controller, place a probe between ground and any of the motor
phases. Verify that the voltage looks like the shape on the figure 8-6. Look for symmetrical
ramps on the left and right.

T TT/2 T/2T/2 T/2T

Figure 8-6. Ground to Phase voltage waveform on motor with correct commutation

An alternate method is to run the motor in the forward and then in the reverse direction.
Verify that for a give command level in open loop, the motor reaches the identical speed
and consumes the same amount of current.

Sinusoidal Commutation

	 Advanced Digital Motor Controller User Manual� 99

Sinusoidal Commutation
In sinusoidal commutation, all three wires are permanently energized with a sinusoidal
current that is 120 degrees apart on each phase as shown in figure 8-7.

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

21
1

22
1

23
1

24
1

25
1

26
1

27
1

28
1

29
1

30
1

31
1

32
1

33
1

34
1

35
1

36
1

37
1

38
1

39
1

40
1

41
1

42
1

43
1

44
1

45
1

46
1

47
1

48
1

49
1

50
1

51
1

52
1

53
1

54
1

55
1

56
1

57
1

58
1

59
1

60
1

61
1

62
1

63
1

64
1

65
1

66
1

67
1

68
1

69
1

70
1

71
1

V

U

W

Figure 8-7. 3 phase current

As the motor turns, the phase on each wire is changed in order for the magnetic field to
always be perpendicular, and therefore create the maximum radial force to the rotor.

90o

90o

Figure 8-8. Magnetic field perpendicular to rotor magnets

The principle benefit of sinusoidal commutation is the quiet, rumble-free, motor operation
resulting from the smoothly rotating and always aligned magnetic field.

Wiring Order
The angle sensing direction must match the rotating direction of the magnetic field gener-
ated by the UVW coils. If the motor does not spin and the sensors are correctly attached
and calibrated, either change the SWD configuration command (see “SWD” in the com-
mand reference section), or swap to motor wires. Note that is will typically be necessary
to adjust the angle sensor’s 0 degree reference.

Angle Feedback Sensors
In order for the proper voltage and phase to be applied to each of the 3 motor wires, the
rotor angular position must be known with precision at all times. Roboteq controllers sup-
port several techniques to achieve this.

Brushless Motor Connections and Operation

100	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Important Notice

The number of poles is a very important configuration parameter in sinusoidal
mode. Using the wrong value will produce erratic behavior and possibly damage.

Incremental Encoder Feedback
A quadrature encoder can be used to determine the rotor position. Since encoders do not
give an absolute position, a reference search sequence is necessary before any power
is applied to the motor. The controller will automatically perform this search by applying
a fixed amount of power between the U and V outputs to pull the rotor to the known po-
sitions. This reference search is done at power up or whenever the mode is switched to
Sinusoidal with Encoder feedback. The search can also be initiated from the serial port or
from a MicroBasic script. See below.

Optimally, the encoder should have a PPR that is at least 128 x the number of pole pairs.
For example a motor with 4 pole pairs should have a 128 x 4 = 512 Pulse per revolution.
This will result in 2048 counts for a full turn of the rotor, and therefore the electrical angle
to be measured with 360 / 2048 * 4 = 0.7 degrees, resulting in a very smooth changing
sinusoidal drive to the motor. A significantly lower resolution encoder will results in a step-
ping sinusoid. A higher resolution encoder will not improve the waveform.

Hall + Encoder Feedback
If the motor is fitted with Hall sensors and an Incremental Encoder, the controller can be
configured to use both sensors together. In this mode, the operating mode is identical
to when an Encoder alone is used for feedback, except that there is no need for the ref-
erence search sequence described above. When first energized, the motor will operate
using the Hall sensor until the first change to the Hall pattern is detected. This will set the
angle reference for the encoder. For this mode, it is critical that both the number of En-
coder PPRs and the motor number of pole pairs be entered correctly. Both counters must
count in the same direction.

Sinusoidal with Hall Sensor Feedback
In this mode, the Hall sensors are used to determine the angular position of the rotor.
Since transitions of the Hall pattern occur at every 60 degrees only, the controller will
estimate the current angle by interpolating in between two transition based on the cur-
rent motor speed. This technique works well as long as speed is stable and changes are
relatively slow. It also requires that the magnets and sensors are positioned with precision
inside the motor, which is not always the case in low cost motors. Compared to Trape-
zoidal mode, this mode will result is quieter motor operation because of the sinusoidal
commutation.

Sine/Cosine Analog Sensor Feedback
Some controller models can be interfaced to absolute position sensors with sine/cosine
output. These sensors are usually made using Hall technology, or resolvers, and are built
into the motor. They provide two analog voltage output that are 90 degrees apart. The an-
gle is determined by measuring the voltage ratio between the two signals. The controller
can compensate for differences in amplitudes between the two signals. Sin/cos sensors
require a one-time setup and calibration.

Important Notice

Electrical noise on the sensor output will cause wrong angle readings. Shield the
wires and keep them as far as possible from the motor wires. If noise persists, add

Sinusoidal Commutation

	 Advanced Digital Motor Controller User Manual� 101

a 0.1uF ceramic capacitor between the input pin and ground pin on the controller’s
connector

Synchro Resolver Sensor Feedback
Synchro Resolvers are a form of Sine/Cosine sensor based on transformer technology. It is
composed of a fixed primary coil, and two secondary coils that rotate with the rotor. The
two secondaries are 90o from each other. A fixed frequency excitation voltage is fed in the
primary. As the secondary coils turn, and take turn being parallel with the fixed primary,
the voltage amplitude induced in each varies as shown in the figure below.

Fixed Primary

Primary
Rotating�

Secondary 1

Sec 1

Sec 2

Rotatiion

Rotating�
Secondary 2

Figure 8-9. Resolver equivalent diagram and signals

Controllers models supporting resolvers use one outputs to generate the excitation. The
secondaries are then fed to two analog inputs. Exact wiring depends on the controller
model. Please consult datasheet or contact Roboteq. Resolvers require one time calibra-
tions similar to these for the sin/cos sensors.

Digital Absolute Encoder (SPI) Feedback
Some advanced motors, like these made by Micromotor, incorporate an absolute position
sensor with a high speed serial interface based on the SPI protocol. Controllers supporting
SPI encoders with 12-bit resolution. SPI encoders give the angle’s absolute position. Nev-
ertheless, a calibration of the zero-angle reference must be done once in order to capture
the mechanical offset of the sensor vs the actual 0 degrees position. See “Sinusoidal Ze-
ro-Angle Reference Search Process” on page 104

Sinusoidal Configurations and Calibrations
Sinusoidal mode is selected via the Switching Mode configuration menu in the Roborun
PC utility, or by sending the configuration command:

^BMOD ch 1

Then must be selected the method for capturing the angle of the rotor and the motor
spins. This is done using the Sinusoidal Angle Sensor configuration menu in the utility, or
by sending the command:

^BFBK ch mode

Where mode:

0: Encoder

1: Hall

Brushless Motor Connections and Operation

102	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

2: Hall+Encoder

3: SPI Sensor

4: Sin/Cos Sensor

5: Resolver

Each mode requires a various amount of additional setup and/or calibration as described in
the following sections.

In sinusoidal mode, on some models the controller automatically operates in Field Oriented
Control mode (see “Field Oriented Control (FOC)” on page 108) and requires additional
settings for this.

Setup and Test Encoder Feedback Mode
Since Incremental Encoders do not give and absolute position, a reference search must
be done every time the controller is powered up. This search is done by the controller un-
der these conditions:

•	 Automatically, every time after power up
•	 �When the controller switched from a different mode to sinusoidal mode with

encoder feedback
•	 By sending the !BND ch command from the serial port or from a script

To do the reference search, the controller will energize the motor phases in a predeter-
mined sequence in order to force the rotor to known positions. The details of this process
is described in “Sinusoidal Zero-Angle Reference Search Process” on page 104.

Important Notice

The number of motor poles and encoder PPR are critical parameter for the encoder
feedback mode to work. Make sure that these are correctly loaded in the configuration.

Before trusting that reference search will be successful at every power up, try repeat-
edly to send the manual bind (!BND) command from different starting position of the
motor, under real-life load conditions. After reference search is completed, verify that
the motor turns with the same efficiency in the forward and reverse direction.

Setup and Test Hall Encoder Feedback Mode
The Hall Encoder mode requires no calibration or special setup. Verify only that the correct
number of poles and encoder PPR are loaded in the configuration.

The hall sensors and encoder must be wired so that their respective counter count in the
same direction. To verify this, turn the motor by hand or run it in Trapezoidal mode with
Hall sensor feedback. Observe the count directions in the PC utility.

Important Notice

The number of motor poles and encoder PPR are critical parameter for the Hall-Encoder
feedback mode to work. Make sure that these are correctly loaded in the configuration.

Sinusoidal Commutation

	 Advanced Digital Motor Controller User Manual� 103

Setup and Test the SPI Encoder Feedback Mode
SPI encoders give an absolute angle in digital form, serially to the controller. These sen-
sors can be trusted to give an accurate angle measurement. However, they typically are
not perfectly mechanically aligned with the motor’s zero degree reference. Therefore a
one-time reference calibration must be performed.

After enabling the Sinusoidal Mode and SPI Angle Feedback, verify first that the Hall
Counter (which is shared in this case with the SPI sensor), displays a stable number that
is different from zero. This will indicate that data is output from the sensor and captured
by the controller. Rotate the motor by hand to verify that the counter changes.

Typically, SPI encoders are single pole, meaning that they give the angle value within one
full mechanical turn. A multiple pole sensor would measure multiple full 360 degrees for
every mechanical cycles. The number of sensor poles is a critical configuration parameter
which must be set using the Sensor Poles menu. It can also be set from the console or
serial port with

^SPOL ch poles

Setup and Test the Sin/Cos Encoder Feedback Mode
Sin/Cos encoders are absolute devices. A one-time setup and calibration must be per-
formed in order to calibrate the encoder’s voltage levels, and set the mechanical zero de-
gree angle offset.

The first calibration step measures and stores the minimum and maximum voltages of the
encoder’s signals at of each of the controller’s inputs:

After the controller is configured in Sinusoidal mode with Sin/Cos Feedback, from the con-
sole, type:

  %CLMOD 2 for motor channel 1
  %CLMOD 3 for motor channel 2

This will cause the controller to enter the calibration mode. Move the shaft of the motor
slowly by hand in order to make a couple of full mechanical turns.

Then press %CLMOD 0 (for either motor channels) in order to get out of the calibration mode.

Pressing the command ~ZSMC you can see the calibration values (3 first values for motor
1 and the other 3 for motor 2). Verify that the values are different than 0.

In order to save the calibration values permanently to flash type

%CLSAV 321654987.

You can verify that the sensor works, enable the Angle capture in the Roborun chart. Then
move the shaft by hand and verify that the reported angle smoothly ramps from 0 to 511
(512 = 360 electrical degrees). For additional help, you can verify that the sensor signals
are received by the controller. Move the motor shaft by hand and check the sin/cos raw

Brushless Motor Connections and Operation

104	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

values using ASI query. Verify that these value do change as the shaft is turned and that
have a difference between the min and max values of at least 1000.

Once the sensor is verified to be working, a one-time calibration must be performed to
captures the mechanical offset of the sensor. In most cases, a small difference exists be-
tween the 0 degrees from the sensor vs the actual 0 degrees of the motor. Verify that the
motor shaft is rotating freely. Then perform a Zero Angle reference search.

Single Pole vs Multi Pole Sin/Cos sensors
Some sin/cos sensors will produce a full 360 degrees output for each full 360 mechanical
turns. These are single pole sensors. Other sensors have multiple poles, meaning that the
sine or cosine signal will perform two or more full 360 degrees cycles for every mechani-
cal cycles. The number of sensor poles is a critical configuration parameter which must be
set using the Sensor Poles menu. It can also be set from the console or serial port with

^SPOL ch poles

You can determine the number of sensor poles by following these steps:

1 �After calibrating the sensor, set Motor Poles to 1 (^BPOL 1 1) and the Set Sensor Poles
to 1 (^spol 1 1).

2 �Make one full rotation of the motor shaft by hand and monitor Angle in Roborun Utility.

3 � �Check how many times the Angle range (0-511) rolls over. This gives the number of sen-
sor poles.

4 Restore the correct values of motor and sensor poles

Sinusoidal Zero-Angle Reference Search Process
Most angle sensors will not give an accurate absolute position of the rotor. Incremental
encoder give relative position by their nature and must be set with a reference angle at
every power up.

Absolute sensors like SPI, resolvers or Sin/Cos are not always mounted with a precise ze-
ro-degree reference and must be calibrated at least once.

A reference search can be initiated manually by sending the serial command:

!BND 1 for channel 1
!BND 2 for channel 2

The controller will then respond by energizing the U, V and W coils with the voltages lev-
els needed to force the rotor to move to predetermined positions. The sequence is +90,
-90, +90, -90, +90 and back to -90 electrical degrees. The reference search is considered a
success if the rotor correctly reached the last four end position.

For the reference search to work, the motor must be free to move at least a full electrical
turn (mechanical turn divided by the number of pole pairs). If a brake is present, it must be
disengaged during the search sequence.

Sinusoidal Commutation

	 Advanced Digital Motor Controller User Manual� 105

The amount of current (ie torque) that the controller will apply to the motor for the search is
set in the Reference Seek Power menu of the configuration utility, or the serial command:

^BZPW ch Amps*10

After each !BND command, if the process was successful, the response will be:

BND +

BADJ = nn *Will only return BADJ when using SPI, SSI, SinCos or resolver

The number in BADJ represents the angle adjustment that has been detected and that
must be saved in Flash for future operation

If the process was not successful, the response will be:

BND –

Followed or not by

BADJ=nn

If no BADJ value is displayed, this means that the sensor inputs are very noisy and no val-
ue could be captured.

If a BADJ value is displayed, it should not be accepted as entirely correct. You should try
the !BND command again and/or adjust play manually with the BADJ value in order to
have the optimal performance.

When the !BND fails and BND- is replied, the Bind Error LED will appear in red in the Run
screen of the PC utility. The motor will then not be energized if a command is sent.

The BND fault flag is cleared when setting the BADJ manually or reading the BADJ value
with the following commands, respectively:

^BADJ mm nn

~BADJ

Verify then that in open loop, the motor spins at the same speed in the forward or reverse
direction when the same command is given with different signs. If the motor rotates at
different speeds and/or draws a significantly different amount of current in each direction,
the zero degree reference was not captured correctly.

Multi-poles Motor Considerations
On multi-poles motor there will be several locations around the full mechanical revolution
where the rotor will settle during the reference search. Figure 8-10 below shows an exam-
ple of a 2 poles pairs motor.

Brushless Motor Connections and Operation

106	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

0

0

0
22.5

45

45

45

67.5

90

90

90 112.5

135

135

135

157.5180

180180

202.5

225

225

225

247.5

270

270

270292.5

315

315

315

337.5

Electrical Degrees

Mechanical Degrees

Figure 8-10. Mechanical vs electrical degrees

The reference search will settle on a given electrical angle location. This electrical angle
value exists in 2 mechanical location on this motor. After performing a first search, rotate
the motor shaft and repeat the search. On a perfectly constructed motor, the search will
settle at the same electrical angle on any of the other poles. In practice, it is expected
that the values will be off by one or two degrees from one pole to another. If the value is
consistent from one measurement to another, and difference is larger a few degrees, this
means the poles are not placed with precision in the motor and the motor will not run effi-
ciently. If the difference is very large (20 degrees or more), it is likely that the angle sensor
is not working correctly or that the number of poles of the motor and/or sensor are not
configured correctly.

Important Notice

If the motor is loaded or if there is a lot of friction, the rotor may not be able to
reach the zero angle during the zero-position search. The motor should not be oper-
ated unless it has.

When the zero degree search is done for capturing the offset of absolute sensors (e.g.
sin/cos, resolver or SPI), the angle that is measured by the reference search can be
viewed with the console command

~BADJ ch

The reported values is 0 for 0 degrees and 512 for 360 degrees.

Perform the !BND several times in a row and verify that the same value is captured every time.

Save the offset value permanently to memory with the command

%CLSAV 321654987

This step is only necessary for absolute sensor and must be performed only once.

Operating Brushless Motors

	 Advanced Digital Motor Controller User Manual� 107

Important Warning

In version 1.5 and lower of the firmware, the Zero Adjust Offset was stored in the
configuration flash. The value will be lost, and a new calibration must be performed
when installing version 1.6 of the firmware. In version 1.6 and newer, the value is
stored in a dedicated section of Flash and will not be lost after firmware updates.

Operating Brushless Motors
Once the Hall sensors, motor power wires, and/or the Encoder are correctly connected
to the controller, a brushless motor can be operated exactly like a DC motor and all other
sections in this manual are applicable. In addition, the Hall sensors or encoders, provide
extra information about the motor’s state compared to DC motors. This information en-
ables the additional features discussed below.

Stall Detection
The Hall sensors and the encoders can be used to detect whether the motor is spinning
or not. The controller includes a safety feature that will stop the motor power if no rotation
is detected while a given amount of power is applied for a certain time. Three combina-
tions of power and time are available:

•	 250ms at 10% power
•	 500ms at 25% power
•	 1s at 50% power

If the power applied is higher than the selected value and no motion is detected for the
corresponding amount of time, the power to the motor is cut until the motor command is
returned to 0. This function is controlled by the BLSTD - Brushless Stall Detection param-
eter (see “BLSTD - Brushless Stall Detection” in Command Reference section). Do not
disable the stall protection.

A stall condition is indicated with the “Stall” LED on the Roborun PC utility screen.

In Trapezoidal modes using Hall sensors, the Stall detection looks for changes at any of
the Hall sensors inputs. In Sinusoidal modes, the detection uses the speed measurement
from the encoders.

Important Notice

In close loop modes, it is quite possible to have the motor stopped while power is
applied to them. That could happen while stopped uphill, for example. Select the
appropriate triggering level for your application

Speed Measurement using the angle feedback Sensors
Information from Hall, SPI, sin/cos sensors, (and even Sensorless) is used by the control-
ler to compute the motor’s rotation speed.

When Hall sensors are used, speed is determined by measuring the time between Hall
sensor transitions. This measurement method is very accurate, but requires that the mo-
tor be well constructed and that the placement between sensors be accurate. On preci-

Brushless Motor Connections and Operation

108	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

sion motors, this results in a stable speed being reported. On less elaborate motors, such
as low-cost hub motors, the reported speed may oscillate by a few percent.

Speed measurement is very precise with digital absolute sensors (SPI). Sin/Cos sensors
operating without noise also give a very precise value.

The motor’s number of poles must be entered as a controller parameter in order to pro-
duce an accurate RPM value. See discussion above. The speed information can then be
used as feedback in a closed loop system. Motor with a more precise Hall sensor posi-
tioning will work better in such a configuration than less precise motors.

If the reported speed is negative when the slider is moved in the positive direction, you
can correct this by putting a negative number of poles in the motor configuration. This will
be necessary in order to operate the motor in closed loop speed mode using hall sensor
speed capture.

Distance Measurement using Hall, SPI or other Sensors
When Hall sensors are used, the controller automatically detects the direction of rotation,
keeps track of the number of Hall sensor transition and updates a 32-bit up/down counter.
The number of counts per revolution is computed as follows:

Counts per Revolution = Number of Poles * 6

With SPI or Sin/Cos sensors, the controller accumulates the angle data to recreate an
accurate and high resolution 32-bit counter. For these sensors, the number of counts per
revolution is:

Counts per Revolution = Number of Poles * 512

The counter information can then be read via the Serial/USB port, CAN bus, or can be
used from a MicroBasic script. The counter can also be used to operate the brushless mo-
tor in a Closed Loop Position mode, within some limits.

Field Oriented Control (FOC)

In sinusoidal modes, using the rotor angle to determine the voltage to apply to each of
the 3 motor phase works well at low frequencies, and therefore at low rotation speed. At
higher speed, the effect of the winding inductance, back EMF and other effect from the
motor rotation, create a shifting current. The resulting magnetic field is then no longer op-
timally perpendicular to the rotor’s permanent magnets.

I = Iq I

Iq

Id

Figure 8-10. Perpendicular and non-perpendicular fields

Field Oriented Control (FOC)

	 Advanced Digital Motor Controller User Manual� 109

As can be seen in figure 8-10, when the magnetic field is at an angle other than exactly
perpendicular to the rotor’s magnets, the rotor is pulled by a force that can be decom-
posed in two forces:

Lateral force causing torque, and therefore rotation. This force results from the from the
Quadrature current Iq, which is also called Torque current

Parallel force that pulls the rotor outwards, creating no motion. This force results from the
Direct Current Id, which is also called Flux current

Field Oriented Control is a technique that measures the useful Torque current and wasted
Flux current component of the motor current. It then automatically adjust the power and
phase applied to each motor wire in order to eliminate the wasted Flux current

Id
PI Regulator

PI Regulator
Iq

Inverse
Park SVPWM

Clarke

MOSFET
Bridges

Angle
Capture

Park

ia

ib

iα

iβ

iq

id

iq

id

vq

vd

vα

vβ-

-

θ

MotorSensor

Desired Torque
Current

Desired Flux
Current

Figure 8-11. FOC operation

Field Oriented Control is available on selected models of Roboteq motor controllers. It is
uses a classical implementation as described in the figure 8-11. The current in the motor
phase is captured, along with the rotor’s angle. From this are computed the useful Iq and
wasteful Iq. Two Proportional-Integral (PI) regulators then work to control the power output
so that the desired Torque (Iq) and Flux (Id) currents are met. The desired Flux current is
typically set to 0, and so the regulator will work to totally eliminate the Flux current.

Both PI regulator have user-settable gains. While the factory default gains are suitable for
most motors and applications, they can be modified with the FOC Parameters in the PC
utility. They can also be changed with the console command:

Brushless Motor Connections and Operation

110	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

For single Channel Controllers:

^KPF 1 nn = Proportional Gain for Channel 1 Flux
^KPF 2 nn = Proportional Gain for Channel 1 Torque

^KIF 1 nn = Integral Gain for Channel 1 Flux
^KIF 2 nn = Integral Gain for Channel 1 Torque

For dual Channel Controllers:

^KPF 1 nn = Proportional Gain for Channel 1 Flux
^KPF 2 nn = Proportional Gain for Channel 2 Flux
^KPF 3 nn = Proportional Gain for Channel 1 Torque
^KPF 4 nn = Proportional Gain for Channel 2 Torque

^KIF 1 nn = Integral Gain for Channel 1 Flux
^KIF 2 nn = Integral Gain for Channel 2 Flux
^KIF 3 nn = Integral Gain for Channel 1 Torque
^KIF 4 nn = Integral Gain for Channel 2 Torque

FOC Testing and Troubleshooting

In order to make sure that FOC is operating correctly, monitor values with the PC Utility:

•	 Motor Amps
•	 FOC Flux Amps
•	 FOC Torque Amps
•	 FOC Angle Correction

The indication of good performance are the following:

•	 FOC Quadrature Amps are close to 0.
•	 Motor Amps and FOC Torque Amps values are close.
•	 FOC Angle Correction is stable for stable motor Power.

Check also when changing motor power how fast FOC Flux Amps is corrected to zero.
Tune FOC PI as necessary.

Field Weakening

Field weakening is a technique that is used to achieve faster motor rotation speed. This
is done by having some Flux (Id) current, even though this also introduces some waste.
Field Weakening is therefore possible on Roboteq controller by loading a non-zero setpoint
for the Flux current. This can be done from the console, the serial port, or from a MicroBa-
sic script with the command:

^TID ch Amps*10

FOC Testing and Troubleshooting

	 Advanced Digital Motor Controller User Manual� 111

The amount of Flux current should be different at low and high speed, typically starting
with zero, and increasing after a given RPM threshold is reached. Below is an example of
a MicroBasic script that changes the Flux setpoint according to such a rule

top:
Speed = abs(getvalue(_S, 1)) ‘ Read motor speed from Encoders
if (Speed > 5000) ‘ check if above 5000 RPM
FluxSetpoint = (Speed – 5000) / 100 ‘ 1A per 100 RPM above 5000
else
FluxSetpoint = 0 ‘ No Flux current below 5000 RPM
end if

if (FluxSetpoint > 100) then FluxSetpoint = 100 ‘ Cap to 10.0 Amps

setconfig(_TID, 1, FluxSetpoint) ‘ Apply Flux setpoint
wait(10)
goto top ‘ repeat every 10ms

Brushless Motor Connections and Operation

112	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Introduction to AC Induction Motors

	 Advanced Digital Motor Controller User Manual� 113

SECTION 9 	 AC Induction
MotorOperation

This section discusses the controller’s operating features and options when using three
phase AC Induction motors.

Introduction to AC Induction Motors
Three phase induction motors are the most common types of electrical motors. They have
a very simple construction composed of a stator covered with electromagnets, and a rotor
composed of conductors shorted at each end, arranged as a “squirrel cage”. They work on
the principle of induction where a rotating electro-magnetic field it created by applying a
three-phase current at the stators electromagnets. This in turn induces a current inside the
rotor’s conductors, which in turns produces rotor’s magnetic field that tries to follow sta-
tor’s magnetic field, pulling the rotor into rotation.

Stator

Rotor

Benefits of AC Induction Motors are:

•• Induction motors are simple and rugged in construction. They are more robust and can
operate in any environmental condition.

•• Induction motors are cheaper in cost due to simple rotor construction, absence of brush-
es, commutators, and slip rings

AC-induction-Motor-Operation

114	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

•• They are maintenance free motors unlike dc motors due to the absence of brushes,
commutators and slip rings.

•• Induction motors can be operated in polluted and explosive environments as they do not
have brushes which can cause sparks

Asynchronous Rotation and Slip
AC Induction motors are Asynchronous Machines meaning that the rotor does not turn at
the exact same speed as the stator’s rotating magnetic field. Some difference in the rotor
and stator speed is necessary in order to create the induction into the rotor. The difference
between the two is called the slip.

Slip is measured in Hertz. It is the difference of the frequency generated by the controller,
and the rotor’s frequency, as determined by the formula

f = ((RPM / 60) * NumberOfPoles)

Optimal slip varies from motor to motor and is in the range of typically 2 to 10Hz.

As seen from the figure below, when the slip is 0, i.e. the rotor turns at exactly the same
speed as the stator field, torque totally disappears. Within the stable operating region,
the Torque is proportional to the Slip. The torque and motor efficiency then quickly drops
when the slip grows past its optimal value.

Torque
(Produced on Motor Shaft)

Torque
(Applied to Generator Rotor)

Stable
Region

Motoring

GeneratingSynchronous Speed
Slip = 0
Torque = 0

Stable
Region

Slip (Hz)

Rotor Speed
(RPM)

0

0 RPM

The main task of the motor controller is to generate a rotating magnetic field whose
frequency and strength is such that the rotor will operate within the motor’s optimal slip
range. Three techniques are supported by Roboteq for a achieving this:

Scalar, Volts per Hertz (VPH)

Constant Slip

Field Oriented Control

Each of these techniques, benefits and limitations are described in following sections

Selecting and Connecting the Encoder

	 Advanced Digital Motor Controller User Manual� 115

Connecting the Motor
An AC Induction motors has just 3 power wires which must be connected to the control-
ler’s U V and W terminals. The connection order is not important. However, swapping any
two motor connections will make the motor turn in the opposite direction.

Selecting and Connecting the Encoder
A speed sensor must be used to measure and control the motor’s slip when running in
Constant Slip mode and Torque/Speed FOC mode. This is done using an incremental en-
coder. Most AC induction motors come with a built-in quadrature encoder. These encoders
typically have a relatively low number of counts. 32 or 64 Pulses Per Revolution (PPR) rota-
tion are typical values. A low count encoder results in low frequency pulses.

When using encoders up to 128 Pulses Per Revolution, the controller evaluates the rota-
tion speed by measuring the time between encoder pulses. This results in a measurement
with a resolution of 0.1Hz even at full speed.

When using encoders with higher PPR, speed is measured by counting the number of
encoder signal transitions over a 10ms period. Prefer therefore a high-count encoder of
around 1000 PPR for better speed measurement resolution.

Unless otherwise noted in the product’s datasheet, all Roboteq’s AC Induction Motor
Controllers have pull up resistors that can connect to open collector encoder outputs.
Controllers also have capacitors to help filter out any electrical noises that contribute to
fake encoder readings.

Encoder
4.7K

10nF

GND

5VOut

A
B

Controller I/O Connector

Testing the Encoder
To test the encoder, use the PC utility to enable the encoder and set its number of Pulses
Per Revolution (PPR). Go to the Utility’s Run tab, enable the Encoder Count in the chart.
Make a full turn of the motor shaft by hand. Verify that the counter has changed by the
number of PPR * 4.

Prior to enabling Constant Slip or FOC Modes, operate the motor in open loop Volts per
Hertz mode with slip control disabled. To disable slip control, set the encoder as No Action
in the configuration menu.

AC-induction-Motor-Operation

116	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Apply a positive motor command. Verify that the motor shaft is moving in the desired direc-
tion. If the motor moves in the opposite direction, swap any two of the three motor cables.

If the motor moved in the desired direction, then verify that the encoder counter increments
when a positive motor command is applied. If the counter decrements, then either swap the
A and B encoder wires, or enter a negative number of PPRs in the encoder configuration.

Open Loop Variable Frequency Drive Operation
In its simplest operating mode, the controller will output to the motor a three-phase sinusoid
whose voltage and frequency change together at a fixed ratio. This mode is called Scalar be-
cause of the fixed ratio between the Voltage and Frequency that is applied to the motor.

The ratio is set by the VPH - Volts Per Hertz configuration parameter.

-1000

-800

-600

-400

-200

200

400

600

800

1000

-1000 0 1000

Stator Frequency
(Hz)

Motor Command

48V Battery
VpH = 0.05 V/Hz

48V Battery
VpH = 0.1V/Hz

24V Battery
VpH = 0.1V/Hz

+ Battery
Volts

- Battery
Volts

The figure above shows example of the resulting stator frequency for a given motor com-
mand. In open loop mode, Motor commands range from -1000 to +1000 and result in the
output voltage to range between -VBat to +VBat respectively

As long as the motor is not overloaded, the rotor RPM will be

((Stator Frequency - Slip) / Number of Pole Pairs) * 60

Figuring the Motor’s Volts per Hertz
Each motor has a value for the optimal Volts per Hertz ratio. It can be determined by
the operating frequency and rated voltage written of the motor’s label. The figure below
shows values from a real motor.

Closed Loop Speed Mode with Constant Slip Control

	 Advanced Digital Motor Controller User Manual� 117

Watt
V
Amps
RPM
Nm

50Hz
Encoder 64 Pulses

3500
48Bat
100
1450
23

V fase 3 x 27

For this motor, the VPH can be determined by dividing the 27 Volts per phase by the 50Hz
frequency. In this case 0.54 Volts per Hertz.

Note that this value is for the optimal torque as rated on the label. If the load is a lot light-
er, the VpH will be too high and result in excessive current consumption. If the load is a
lot heavier, the VpH will be too low and the motor will not be able to drive it. The VpH will
therefore need to be different than this computed based on actual load conditions. Always
first monitor the motor consumption at no load. Adjust the VpH to a lower value if the no
load current appears too high.

Maintaining Slip within Safe Range
Open Loop, or Scalar, mode does not require encoders for its operation. If the load is
known to always be within the motor’s max torque, the motor can be trusted to always
be able to drive it. In this case, an encoder does not need to be connected. If an encoder
is connected - to measure and report speed, for example - then it must be configured as
“No Action” in the PC Utility.

For added safety, however, an encoder can be installed and enabled to measure the ro-
tor’s speed, and therefore the slip, in real-time. When the encoder is enabled and config-
ured as “Feedback”, the controller will lower the voltage and frequency if the slip exceeds
twice the value stored in the Optimal Slip configuration.

Prior to enabling the encoder as Feedback, verify that the encoder count direction has the
same polarity as the motor command.

Closed Loop Speed Mode with Constant Slip Control
In this mode, the controller will automatically adjust the voltage and frequency in order to
reach and maintain a desired speed, even as the load is changing, while operating within
the optimal slip range.

To configure this mode, first set the controller in open loop mode as described in the pre-
vious section. Verify that the encoder is working and is counting with the correct polarity.

Once the encoder is verified to work and the motor spins in open loop, follow these
steps. Using the Roborun PC utility:

•• Select Close Loop Constant Slip Mode

AC-induction-Motor-Operation

118	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

•• Set the PID gains found in the Motor Output, Closed Loop Speed Parameters menus
(do not use the FOC PID gains). Try first with gains of P=4, I=0.5, D=0. These values
will produce adequate results in most cases. Additional turning may be needed.

•• Set the Max RPM configuration to the speed that must be reached at full throttle (ie
when command = 1000). Make sure to enter a value that is within the physical reach of
the motor under the expected maximum load condition.

•• Enter the lowest acceleration rate that is acceptable for the application. Rapid chang-
es will create current surges and should therefore not be allowed to be higher than
necessary.

•• Save the settings to the controller.

The motor speed can now be set to be any value between 0 and plus/minus the max-
imum RPM configured above when sending a command ranging from -1000 to +1000
using the serial, analog or pulse inputs.

The motor speed can also be set to an absolute RPM value by sending the S (Speed)
command via serial, USB, CAN or Scripting.

When exercising the motor with the PC utility, monitor the Slip, the Rotor RPM, Stator
RPM and the Motor Amps. The Rotor RPM can be viewed in the Encoder RPM chart. The
Stator RPM can be viewed in the Hall RPM chart.

The slip will stabilize at of the Optimal Slip setting.

Field Oriented Control (FOC) mode Operation
Field Oriented Control (or Vector Drive) is a technique by which the magnetic field gen-
erated in the stator is adjusted in relation to the field induced in the rotor in a manner to
generate optimal torque at all times and all load conditions.

I

Iq

Id

S
S

N
N

Rotor

Stator

Optimal rotation occurs when the magnetic field induced in the rotor is perpendicular
with this of stator. Practically the fields the two fields are never exactly perpendicular. As
shown on the diagram above, the angled field I is made of an outward pulling flux field (Id)
and perpendicular pulling torque field. The torque field is the one that causes the rotation
and that the controller will maximize. Flux field is not causing any rotation and therefore
must be minimized. Some flux is necessary at all times, however, in order to create the
induction in the rotor.

The challenge in induction motors is that the rotor flux’s absolute position cannot be mea-
sured physically. It is determined mathematically using known speed, voltage and current,
and a model representation of the motor’s main parameters shown in the figure below.

Field Oriented Control (FOC) mode Operation

	 Advanced Digital Motor Controller User Manual� 119

	

Rs
Stator

Resistance

Lls
Stator

Leakage
Inductance

Rr
Rotor

Resistance

Llr
Rotor

Leakage
Inductance

Lm
Mutual

Inductance

These parameters include per phase rotor resistance ‘Rr’, rotor leakage inductance ‘Llr’,
mutual inductance ‘Lm’ and rotor leakage inductance ‘Llr’. Usually motor manufacturer will
provide you an equivalent circuit of the induction motor that contains Rr, Rs, Lm, Llr, Lls

In FOC, therefore, rotor flux and motor torque can be individually controlled regardless
of load and speed. FOC offers better dynamic performance, accurate current control and
ensures maximum efficiency, unlike traditional scalar control methods such as Open Loop
VpH and Constant Slip Control.

Under FOC operation, AC induction motors can be run in either FOC torque mode or FOC
speed mode. FOC torque mode allows users to command a torque to motor in terms of
Amps. While FOC speed will regulate the speed at the command/desired value.

Configuring FOC Torque Mode
To configure FOC mode, first set the controller in Open Loop (Volts per Hertz) mode as
described in one of the previous sections. Verify that the motor is spinning in the desired
direction and that encoder is working and is counting with the correct polarity. See Testing
the Encoder section above.

Once the encoder is verified to work and the motor spins in open loop, follow these
steps. Using the Roborun PC utility:

•• Enter the motor parameters under the section “Motor Parameters” in RoboRun
configuration. Usually motor manufacturer will provide you an equivalent circuit of the
induction motor that contains Rr, Rs, Lm, Llr, Lls.

•• Set the Flux Amps. In order to find the optimal flux amps, run the motor in Volts per
Hertz (VpH) mode with small/no load using the motor’s rated VpH ratio. Then watch the
flux amps in the PC utility. Enter this value in the configuration. This flux amps can be
increased for low speed/high torque requirement and can be decreased (Field Weaken-
ing) for high speed/ low torque requirement.

•• Set the operating mode to FOC torque. Set Amps limit according to the application’s
need but do not exceed the motor specifications.

•• Save the settings to the controller.

•• Next step is to tune FOC (Flux and Torque) PID. Start with low proportional gain e.g.
0.1, and then set some Integral gain. Integral gain is more important in this case.

•• Monitor and Record the Flux Amps and Torque Amps for the desired motor channel
when tuning the FOC PID.

AC-induction-Motor-Operation

120	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

•• Put some high load on the rotor and command a step Torque Amps from the slider bar
(say 10A). Record the “FOC Torque Amps” reading on the chart. If the step response
reaches the desired (10A) steady state fast enough then the PID is can be considered
tuned. If it is slow then increase integral gain. If the Torque and Flux Amps show noise
at high speed or motor produces noisy sound, then lower your proportional gain Kp.

•• Once FOC/current PID is tuned, FOC torque mode is ready to operate and FOC speed
mode can then be tuned. Note: It is important to know the value of Flux Amps the mo-
tor is designed to operate under. Flux Amps stay the same during entire FOC operation
unless field weakening is used.

Now motor Torque can be set to any desired value from 0 to plus or minus the value stored
in the Amps Limit configuration parameter, by sending a command of -1000 to +1000 using
the slider, analog input, pulse input, scripting, CAN or any other command mode.

Note that in Torque Mode, the Max Speed RPM configuration parameter is used to limit
the motor speed if the motor is not loaded and the desired torque is below the torque
that can actually be reached by the motor under the current load conditions. For example,
a torque command of 50A on an unloaded motor (that will never draw 50A) will cause the
voltage to increase to maximum value, and therefore the motor to maximum speed, un-
less the speed is limited by the Max RPM parameter.

Configuring FOC Speed Mode
To configure FOC Speed mode, configure first the FOC Torque mode as described in the
section above.

•• Set the controller to FOC Speed Mode

•• Tune speed loop PID in a similar manner as was done for FOC PID. Use the PID gains
found in the Motor Output, Closed Loop Speed Parameters menus (do not use the
FOC PID gains). It can be started with Kp term and introduce small Kd term. Once
transient response on the graph seems reasonable then Ki can be used to get rid of
steady state error.

Now motor Speed can be set to any desired value from 0 to plus or minus the value stored
in the Max RPM configuration parameter, by sending a command of -1000 to +1000 using
the slider, analog input, pulse input, scripting, CAN or any other command mode.

E.g. use the Roborun slider, or the console command

!G 1 800

to set motor RPM to 800 on channel 1 when MaxSpeed is set to 1000 RPM. Correspond-
ing if MaxSpeed is set to 2000 RPM, any value on the slider will give 2 times RPM.

Speed can be also set as an absolute RPM value using the S command from Serial, USB,
CAN or Microbasic

Modes Description

	 Advanced Digital Motor Controller User Manual� 121

SECTION 10	 Closed Loop Speed and
Speed-Position Modes

This section discusses the controller’s Closed Loop Speed modes.

Modes Description
Close loop speed modes ensure that the motor(s) will run at a precise desired speed. If
the speed changes because of changes in load, the controller automatically compensates
the power output so that the motor maintains a constant speed. Two closed loop speed
modes are available:

Closed Loop Speed Mode
This mode is the traditional closed loop technique where speed is measured with a speed
sensor. The speed is compared to the desired speed and a PID control loop adjusts the
power output up or down in order to reach and maintain that speed.

Speed Command PWM
Motor

Speed Sensor
Speed Feedback

- PID

Closed Loop Speed Position Control
In this mode, the controller computes the position at which the motor must be at every
1ms. Then a PID compares that expected position with the current position and applies
the necessary power level in order for the motor to reach that position. This mode is espe-
cially effective for accurate control at very slow speeds.

Closed Loop Speed Mode

122	 Advanced Digital Motor Controller User Manual	 V1.8, August 28 2017

Position Counter

Trajectory

Speed
Command PWM

Motor

Position Feedback

Expected
Position - PID

The controller incorporates a full-featured Proportional, Integral, Differential (PID) control
algorithm for quick and stable speed control.

The closed loop speed mode and all its tuning parameters may be selected individually for
each motor channel.

Motor Sensors
The controller can use a variety of sensors for measuring speed. For brushed DC, Digital
Optical Encoders and Analog Tachometerss may be used. For Brushless motors, the Hall
sensors and all other types of rotor sensors can be use in addition to Encoders and Ta-
chometers. Digital Optical Encoders may be used to capture accurate motor speed.

Analog tachometers are another technique for sensing speed. See “Connecting Tachome-
ter to Analog Inputs” on page 50

Tachometer or Encoder Mounting
Proper mounting of the speed sensor is critical for an effective and accurate speed mode oper-
ation. Figure 10-1 shows a typical motor and tachometer or encoder assembly. It is always pref-
erable to have the encoder connected to the motor shaft rather than at the output of a gearbox.
If the encoder must be mounted after a gear box consider the effect of the gear backlash. A
higher count encoder will typically be required to compensate for the lower rotation speed.

Position Sensor

Gear box

Position Feedback

Speed feedback

Analog Tachometer
or Optical Encoder

FIGURE 10-1. Motor and speed sensor assembly needed for Close Loop Speed mode

Tachometer wiring
The tachometer must be wired so that it creates a voltage at the controller’s analog input
that is proportional to rotation speed: 0V at full reverse, +5V at full forward, and 0 when
stopped.

Brushless Hall Sensors as Speed Sensors

	 Advanced Digital Motor Controller User Manual� 123

Connecting the tachometer to the controller is as simple as shown in the diagram below.

20kOhm

33kOhm

1kOhm Max Speed Adjust
10kOhm pot

Zero Adjust
100 Ohm pot

1kOhm

Internal Resistors
and Converter

5V Out

Ground

A/DTach
Ana In

FIGURE 10-2. Tachometer wiring diagram

Brushless Hall Sensors as Speed Sensors
On brushless motor controllers, the Hall Sensors and most other type of rotor position
sensors that are used to switch power around the motor windings, can also used to mea-
sure speed and distance traveled.

Speed is evaluated by measuring the time between transition of the Hall Sensors. A 32 bit
up/down counter is also updated at each Hall Sensor transition.

Speed information picked up from the Hall Sensors can be used for closed loop speed op-
eration without any additional hardware. Likewise, the position counter that is updated at
every Hall transition can also be used to operate the motor in Speed Position mode.

Speed Sensor and Motor Polarity
The tachometer, encoder or brushless sensor (Hall, Sin/Cos, SPI) polarity (i.e. which rota-
tion direction produces a positive or negative speed information) is related to the motor’s
rotation speed and the direction the motor turns when power is applied to it.

In the Closed Loop Speed mode, the controller compares the actual speed, as measured
by the sensor, to the desired speed. If the motor is not at the desired speed and direction,
the controller will apply power to the motor so that it turns faster or slower, until reached.

Important Warning

The speed sensor polarity must be such that a positive voltage is generated to the
controller’s input when the motor is rotating in the forward direction. If the polarity
is inverted, this will cause the motor to run away to the maximum speed as soon
as the controller is powered and eventually trigger the closed loop error and stop.
If this protection is disabled, there will be no way of stopping it other than pressing
the emergency stop button or disconnecting the power.

Closed Loop Speed Mode

124	 Advanced Digital Motor Controller User Manual	 V1.8, August 28 2017

Determining the right polarity is best done experimentally using the Roborun utility (see
“Using the Roborun Configuration Utility” on page 349) and following these steps:

1.	 Configure the controller in Open Loop Mode using the PC utility. This will cause the
motor to run in Open Loop for now.

2.	 Configure the sensor you plan to use as speed feedback. If an analog tachometer
is used, map the analog channel on which it is connected as “Feedback” for the se-
lected motor channel. If an encoder is used, configure the encoder channel with the
encoder’s Pulses Per Revolution value. On brushless motor, if the rotor sensor (Hall,
Sin/Cos, ..) sensors are used, configure the correct number of motor pole pairs.

3.	 Click on the Run tab of the PC utility. Configure the Chart recorder to display the
speed information if an encoder is used. Display Feedback if an analog sensor is
used.

4.	 Verify that the motor sliders are in the “0” (Stop) position.

5.	 If a tachometer is used, verify that the reported feedback value read is 0 when the
motors are stopped. If not, adjust the Analog Center parameter.

6.	 Move the cursor of the desired motor to the right so that the motor starts rotating,
and verify that a positive speed is reported. Move the cursor to the left and verify that
a negative speed is reported.

7.	 If the reported speed polarity is the same as the applied command, the wiring is cor-
rect.

8.	 If the tachometer polarity is opposite of the command. If an encoder is used, swap
its ChA and ChB outputs. Alternatively, swap the motor leads if using a brushed DC
motor only. The speed polarity can also be inverted by entering a negative number
of encoder PPR. On brushless motors, entering a negative number of poles will also
invert the speed measured by the Hall, SinCos, or SPI sensor.

9.	 Set the controller operating mode to Closed Loop Speed mode using the Roborun
utility.

10.	 Move the cursor and verify that speed stabilizes at the desired value. If speed is un-
stable, tune the PID values.

Important Warning

It is critically important that the tachometer or encoder wiring be extremely robust.
If the speed sensor reports an erroneous speed or no speed at all, the controller will
consider that the motor has not reached the desired speed value and will gradually
increase the applied power to the motor until the closed loop error is triggered and
the motor is then stopped.

Controlling Speed in Closed Loop
When using encoder feedback or Hall Sensor (brushless motor) feedback, the controller
will measure and report speed as the motor’s actual RPM value.

When using analog or pulse as input command, the command value will range from 0 to
+1000 and 0 to -1000. In order for the max command to cause the motor to reach the de-

PID Description

	 Advanced Digital Motor Controller User Manual� 125

sired actual max RPM, an additional parameter must be entered in the encoder or brush-
less configuration. The Max RPM parameter is the speed that will be reported as 1000
when reading the speed in relative mode. Max RPM is also the speed the controller will
attempt to reach when a max command of 1000 is applied.

When sending a speed command via serial, CANbus, scripting or USB, the command may
be sent as a relative speed (0 to +/-1000) or actual RPM value.

PID Description
The controller performs both Closed Loop Speed modes using a full featured Proportional,
Integral and Differential (PID) algorithm. This technique has a long history of usage in con-
trol systems and works on performing adjustments to the Power Output based on the dif-
ference measured between the desired speed or position (set by the user) and the actual
speed or position (captured by the sensor on the motor).

Figure 9-3 shows a representation of the PID algorithm. Every 1 millisecond, the controller
measures the actual motor speed or position and subtracts it from the desired speed or
position to compute the error.

The resulting error value is then multiplied by a user selectable Proportional Gain. The
resulting value becomes one of the components used to command the motor. The effect
of this part of the algorithm is to apply power to the motor that is proportional with the dif-
ference between the current and desired speed or position: when far apart, high power is
applied, with the power being gradually reduced as the motor moves to the desired speed
or destination.

A higher Proportional Gain will cause the algorithm to apply a higher level of power for a
given measured error thus making the motor react more quickly to changes in commands
and/or motor load.

The Differential component of the algorithm computes the changes to the error from one
1 ms time period to the next. This change will be a relatively large number every time
an abrupt change occurs on the desired speed value or the measured speed value. The
value of that change is then multiplied by a user selectable Differential Gain and added to
the output. The effect of this part of the algorithm is to give a boost of extra power when
starting the motor due to changes to the desired speed or position value. The differential
component will also help dampen any overshoot and oscillation.

The Integral component of the algorithm performs a sum of the error over time. In Speed
mode, this component helps the controller reach and maintain the exact desired speed
when the error is reaching zero (i.e. measured speed is near to, or at the desired value). In
Speed Position mode, the Integral parameter can help maintain a slightly tighter difference
between the desired and actual position, but makes no significant difference and can be
omitted altogether.

Closed Loop Speed Mode

126	 Advanced Digital Motor Controller User Manual	 V1.8, August 28 2017

Differential
Gain

Propor tional
Gain

Output

Measured Speed or Position

-

x

Σ

xdE
dt

Integral
Gain

xdE
dt

E= Error

Sensor

Desired Speed
or Position

Integrator
Limit

 FIGURE 10-3. PID algorithm used in speed modes

PID tuning in Closed Loop Speed Mode
As discussed above, three parameters - Proportional Gain, Integral Gain, and Differential
Gain - can be adjusted to tune the Closed Loop Speed control algorithm. The ultimate goal
in a well tuned PID is a motor that reaches the desired speed quickly without overshoot or
oscillation.

Because many mechanical parameters such as motor power, gear ratio, load and inertia
are difficult to model, tuning the PID is essentially a manual process that takes experimen-
tation.

The Roborun PC utility makes this experimentation easy by providing one screen for
changing the Proportional, Integral and Differential gains and another screen for running
and monitoring the motor. First, run the motor with the preset values. Then experiment
with different values until a satisfactory behavior is found.

In Speed Mode, the Integral component of the PID is the most important and must be set
first. The Proportional and Differential components will help improve the response time
and loop stability.

Try initially to only use a small value of I and no P or D:

P = 0
I = 1
D = 0

These values practically always work, but they may cause the motor to be slow reaching
the desired speed. Increase the I gain to improve responsiveness but keeping it below
the level at which the motor begins to oscillate. Experiment then with adding P gain, and
different values of I.

PID Tuning in Speed Position Mode

	 Advanced Digital Motor Controller User Manual� 127

In the case where the load moved by the motor is not fixed, tune the PID with the mini-
mum expected load and tune it again with the maximum expected load. Then try to find
values that will work in both conditions. If the disparity between minimal and maximal
possible loads is large, it may not be possible to find satisfactory tuning values. In this
case, consider changing the PID gains on the fly during motor operation with serial/CAN
commands of with a MicroBasic script

In slow systems, use the integrator limit parameter to prevent the integrator to reach sat-
uration prematurely and create overshoots. Beware to set speeds that can physically be
reached by the motor under load. If the motor is not physically able, there will be a loop
error, which if it becomes too large, will cause a fault to be detected and the motor to be
stopped.

PID Tuning in Speed Position Mode

As discussed, in Closed Loop Speed Position mode, every millisecond, the controller
computes successive desired position. The PID then works to make the motor follow the
computed trajectory. This mode works much better than the regular Closed Loop Speed
mode when the motor must operate at very low speed. When the motor is stopped, it
will maintain its position even if pulled, as for example on a robot stopped downhill.

The PID therefore must be tuned for position mode. In position mode, most of the work
is done by the proportional gain. It acts essentially as an imaginary rubber belt between
the controller’s internal destination counter and the motor: the higher the difference, the
more the belt is stretched, and the stronger the motor will turn. Once the imaginary belt
has stiffened the motor will run at the desired speed.

Try initially with only a small amount of P gain

P = 2
I = 0
D = 0

With the controller configured in Speed Position mode and the motor stopped, do a first
check of the PID’s stiffness by attempting to rotate the motor by hand. It should feel
increasingly hard to rotate away from the rest position. With a higher P gain, it will be-
come harder to move than lower gains. As a rule of thumb, on a mobile robot, use a gain
that makes it very hard to move the wheel more than a quarter turn away from the rest
position. Test then by applying a speed command and verifying the motor runs smoothly
under all load conditions.

The I and D gain can generally be omitted in Speed Position mode.

Beware to set speeds that can physically be reached by the motor under load. The Closed
Loop Speed Position mode relies on the fact that the motor will actually be able to follow
the computed trajectory. If the motor is not able, the controller will pause updating the
destination counter until the motor caught up. This will result in inaccurate speed and can
be a problem in mobile robot applications depending on precise control of their left and
right side motor.

Closed Loop Speed Mode

128	 Advanced Digital Motor Controller User Manual	 V1.8, August 28 2017

Error Detection and Protection
The controller will detect large tracking errors due to mechanical or sensor failures, and
shut down the motor in case of problem in closed loop speed or position system. The
detection mechanism looks for the size of the tracking error (desired position vs. actual
position) and the duration the error is present. Three levels of sensitivity are provided in
the controller configuration:

1: 250ms and Error > 100
2: 500ms and Error > 250
3: 1000ms and Error > 500

When an error is triggered, the motor channel is stopped until the error has disappeared
or when the motor channel is reset to open loop mode. The error is cleared when a stop
command is issued.

Clearing the loop error make the motor available for moving again. However this does not
mean that the loop error will not happen again. Configuration tuning is necessary in order
to prevent from having Loop Error again. The loop error value can be monitored in real
time using the Roborun PC utility.

Modes Description

	 Advanced Digital Motor Controller User Manual� 129

SECTION 11	 Closed Loop
Relative and
Tracking Position
Modes

This section describes the controller’s Position Relative and Position Tracking modes, how
to wire the motor and position sensor assembly and how to tune and operate the control-
ler in these modes.

Modes Description
In these two position modes, the axle of a geared-down motor is coupled to a position
sensor that is used to compare the angular position of the axle versus a desired position.
The controller will move the motor so that it reaches this position.

This feature makes it possible to build ultra-high torque “jumbo servos” that can be used
to drive steering columns, robotic arms, life-size models and other heavy loads.

The two position modes are similar and differ as follows:

Position Relative Mode
The controller accepts a command ranging from -1000 to +1000, from serial/USB, analog
joystick, or pulse. The controller reads a position feedback sensor and converts the signal
into a -1000 to +1000 feedback value at the sensor’s min and max range respectively. The
controller then moves the motor so that the feedback matches the command, using a con-
trolled acceleration, set velocity and controlled deceleration. This mode requires several
settings to be configured properly but results in very smoothly controlled motion.

Position Tracking Mode
This mode is identical to the Position Relative mode in the way that commands and feed-
back are evaluated. However, the controller will move the motor simply using a PID com-
paring the command and feedback, without controlled acceleration and as fast as possible.

Closed Loop Relative and Tracking Position Modes

130	 Advanced Digital Motor Controller User Manual	 V1.8 August 28, 2017

This mode requires fewer settings but often results in a motion that is not as smooth and
harder to control overshoots.

Selecting the Position Modes
The two position modes are selected by changing the Motor Control parameter to Closed
Loop Position. This can be done using the corresponding menu in the Power Output tree
in the Roborun utility. It can also be done using the associated serial (RS232/USB) com-
mand. See “MMOD” on page 329. The position mode can be set independently for each
channel.

Position Feedback Sensor Selection
The controller may be used with the following kinds of sensors:

•	 Potentiometers
•	 Hall effect angular sensors
•	 Optical Encoders
•	 Hall sensor in brushless motor

The first two are used to generate an analog voltage ranging from 0V to 5V depending on
their position. They will report an absolute position information at all times.

Modern position Hall sensors output a digital pulse of variable duty cycle. These sensors
provide an absolute position value with a high precision (up to 12-bit) and excellent noise
immunity. PWM output sensors are directly readable by the controller and therefore are a
recommended choice.

Optical encoders report incremental changes from a reference which is their initial posi-
tion when the controller is powered up or reset. Before they can be used for reporting po-
sition, the motors must be moved in open loop mode until a home switch is detected and
resets the counter. Encoders offer the greatest positional accuracy possible.

Sensor Mounting
Proper mounting of the sensor is critical for an effective and accurate position mode oper-
ation. Figure 11-1 shows a typical motor, gear box, and sensor assembly.

Position Sensor

Gear box

Position Feedback

FIGURE 11-1. Typical motor/Potentiometer/assembly in Position Mode

Feedback Sensor Range Setting

	 Advanced Digital Motor Controller User Manual� 131

The sensor is composed of two parts:

•	 a body which must be physically attached to a non-moving part of the motor as-
sembly or the robot chassis, and

•	 an axle which must be physically connected to the rotating part of the motor you
wish to position.

A gear box is necessary to greatly increase the torque of the assembly. It is also neces-
sary to slow down the motion so that the controller has the time to perform the position
control algorithm. If the gearing ratio is too high, however, the positioning mode will be
very sluggish.

A good ratio should be such that the output shaft rotates at 1 to 10 rotations per second
(60 to 600 RPM) when the motor is at full speed.

The mechanical coupling between the motor and the sensor must be as tight as possible.
If the gear box is loose, the positioning will not be accurate and will be unstable, potential-
ly causing the motor to oscillate.

Some sensors, such as potentiometers, have a limited rotation range of typically 270
degrees (3/4 of a turn), which will in turn limit the mechanical motion of the motor/poten-
tiometer assembly. Consider using a multi-turn potentiometer as long as it is mounted
in a manner that will allow it to turn throughout much of its range, when the mechanical
assembly travels from the minimum to maximum position. When using encoders, best
results are achieved when the encoder is mounted directly on the motor shaft.

Feedback Sensor Range Setting
Regardless the type of sensor used, feedback sensor range is scaled to a -1000 to +1000
value so that it can be compared with the -1000 to +1000 command range.

On analog and pulse sensors, the scaling is done using the min/max/center configuration
parameters.

When encoders are used for feedback, the encoder count is also converted into a -1000 to
+1000 range. In the encoder case, the scaling uses the Encoder Low Limit and Encoder
High Limit parameters. See “Serial (RS232/USB) Operation” on page 141 for details on
these configuration parameters. Beware that encoder counters produce incremental val-
ues. The encoder counters must be reset using the homing procedure before they can be
used as position feedback sensors.

Important Notice
Potentiometers are mechanical devices subject to wear. Use better quality potenti-
ometers and make sure that they are protected from the elements. Consider using
a solid state hall position sensor in the most critical applications. Optical encoders
may also be used, but require a homing procedure to be used in order to determine
the zero position.

Closed Loop Relative and Tracking Position Modes

132	 Advanced Digital Motor Controller User Manual	 V1.8 August 28, 2017

Important Warning
If there is a polarity mismatch, the motor will turn in the wrong direction and the
position will never be reached. The motor will turn until the Closed Loop Error de-
tection is triggered. The motor will then stop until the error disappears, the control-
ler is set to Open Loop, or the controller is reset.

Determining the right polarity is best done experimentally using the Roborun utility (see
“Using the Roborun Configuration Utility” on page 225) and following these steps:

1. Configure the controller in Open Loop Speed mode.
2. Configure the position sensor input channel as position feedback for the desired motor

channel.
3. Click on the Run tab.
4. Enable the Feedback channel in the chart recorder.
5. Move the slider slowly in the positive direction and verify that the Feedback in the chart

increases in value. If the Feedback value decreases, then the sensor is backwards
and you should either invert using configuration commands, invert the sensor physi-
cally, it or swap the motor wires so that the motor turns in the opposite direction.

6. Move the sensor off the center position and observe the motor’s direction of rotation.
7. Go to the max position and verify that the feedback value reaches 1000 a little before

the end of the physical travel. Modify the min and max limits for the sensor input if
needed.

8. Repeat the steps in the opposite direction and verify that the -1000 is reached a little
before the end of the physical travel limit.

Important Safety Warning
Never apply a command that is lower than the sensor’s minimum output value or
higher than the sensor’s maximum output value as the motor would turn forever
trying to reach a position it cannot. Configure the Min/Max parameter for the sen-
sor input so that a value of -1000 to +1000 is produced at both ends of the sensor
travel.

Adding Safety Limit Switches
The Position mode depends on the position sensor providing accurate position informa-
tion. If the sensor is damaged or one of its wires is cut, the motor may spin continuously
in an attempt to reach a fictitious position. In many applications, this may lead to serious
mechanical damage.

To limit the risk of such breakage, it is recommended to add limit switches that will
cause the motor to stop if unsafe positions have been reached independent of the sen-
sor reading. Any of the controller’s digital inputs can be used as a limit switch for any
motor channel.

An alternate method is shown in Figure 11-2. This circuit uses Normally Closed limit
switches in series on each of the motor terminals. As the motor reaches one of the
switches, the lever is pressed, cutting the power to the motor. The diode in parallel with
the switch allows the current to flow in the reverse position so that the motor may be re-
started and moved away from that limit.

Using Current Trigger as Protection

	 Advanced Digital Motor Controller User Manual� 133

The diode polarity depends on the particular wiring and motor orientation used in the ap-
plication. If the diode is mounted backwards, the motor will not stop once the limit switch
lever is pressed. If this is the case, reverse the diode polarity.

The diodes may be eliminated, but then it will not be possible for the controller to move
the motor once either of the limit switches has been triggered.

The main benefit of this technique is its total independence on the controller’s electronics
and its ability to work in practically all circumstances. Its main limitation is that the switch
and diode must be capable of handling the current that flows through the motor. Note
that the current will flow though the diode only for the short time needed for the motor to
move away from the limit switches.

Motor

SW1 SW2

Controller

FIGURE 11-2. Safety limit switches interrupting power to motor

Important Warning

Limit switches must be used when operating the controller in Position Mode. This
will significantly reduce the risk of mechanical damage and/or injury in case of dam-
age to the position sensor or sensor wiring.

Using Current Trigger as Protection
The controller can be configured to trigger an action when current reaches a user config-
urable threshold for more than a set amount of time. This feature can be used to detect
that a motor has reached a mechanical stop and is no longer turning. The triggered action
can be an emergency stop or a simulated limit switch.

Operating in Closed Loop Relative Position Mode
This position algorithm allows you to move the motor from an initial position to a desired
position. The motor starts with a controlled acceleration, reaches a desired velocity, and
decelerates at a controlled rate to stop precisely at the end position. The graph below
shows the speed and position vs. time during a position move.

Closed Loop Relative and Tracking Position Modes

134	 Advanced Digital Motor Controller User Manual	 V1.8 August 28, 2017

Position

End
Position

Start
Position

Position
Mode
Velocity

Acceleration Deceleration

Speed Time

Time

FIGURE 11-3.

When turning the controller on, the default acceleration, deceleration and velocity are pa-
rameters retrieved from the configuration EEPROM. In most applications, these parame-
ters can be left unchanged and only change in commands used to control the change from
one position to the other. In more sophisticated systems, the acceleration, deceleration
and velocity can be changed on the fly using Serial/USB commands or from within a Mi-
croBasic script.

When using Encoders as feedback sensors, the controller can accurately measure the
speed and the number of motor turns that have been performed at any point in time. The
complete positioning algorithm can be performed with the parameters described above.

When using analog or pulse sensors as feedback, the system does not have a direct way
to measure speed or number of turns. It is therefore necessary to configure an additional
parameter in the controller which determines the number of motor turns between the
point the feedback sensor gives the minimum feedback value (-1000) to the maximum
feedback value (+1000).

In the Closed Loop Relative Position mode, the controller will compute the position at
which the motor is expected to be at every millisecond in order to follow the desired ac-
celeration and velocity profile. This computed position becomes the setpoint that is com-
pared with the feedback sensor and a correction is applied at every millisecond.

Operating in Closed Loop Tracking Mode

	 Advanced Digital Motor Controller User Manual� 135

For troubleshooting, the computed position can be monitored in real time by enabling the
Tracking channel in the PC utility’s chart recorder.

Beware not to use accelerations and max velocity that are beyond the motor’s physical
reach at full load. This would result in a loop error which will stop the system if growing
too large.

Operating in Closed Loop Tracking Mode
In this mode the controller makes no effort to compute a smooth, millisecond by millisec-
ond position trajectory. Instead the current feedback position is periodically compared with
the requested destination and power is applied to the motor using these two values in a
PID control loop.

This mode will work best if changes in the commands are smooth and not much faster
than what the motor can physically follow.

Position Mode Relative Control Loop Description
The controller performs the Relative Position mode using a full featured Proportional, Inte-
gral and Differential (PID) algorithm. This technique has a long history of usage in control
systems and works on performing adjustments to the Power Output based on the dif-
ference measured between the desired position (set by the user) and the actual position
(captured by the position sensor).

Figure 10-4 shows a representation of the PID algorithm. Every 1 millisecond, the control-
ler measures the actual motor position and subtracts it from the desired position to com-
pute the position error.

The resulting error value is then multiplied by a user selectable Proportional Gain. The result-
ing value becomes one of the components used to command the motor. The effect of this
part of the algorithm is to apply power to the motor that is proportional with the distance
between the current and desired positions: when far apart, high power is applied, with the
power being gradually reduced and stopped as the motor moves to the final position. The
Proportional feedback is the most important component of the PID in Position mode.

A higher Proportional Gain will cause the algorithm to apply a higher level of power for a
given measured error, thus making the motor move quicker. Because of inertia, however,
a faster moving motor will have more difficulty stopping when it reaches its desired posi-
tion. It will therefore overshoot and possibly oscillate around that end position.

Closed Loop Relative and Tracking Position Modes

136	 Advanced Digital Motor Controller User Manual	 V1.8 August 28, 2017

Differential
Gain

Propor tional
Gain

Output

Measured Position

-

x

Σ

xdE
dt

Integral
Gain

xdE
dt

E= Error

Sensor

Desired Position

Integrator
Limit

FIGURE 11-4. PID algorithm used in Position Mode

The Differential component of the algorithm computes the changes to the error from one
ms time period to the next. This change will be a relatively large number every time an
abrupt change occurs on the desired position value or the measured position value. The
value of that change is then multiplied by a user-selectable Differential Gain and added to
the output. The effect of this part of the algorithm is to give a boost of extra power when
starting the motor due to changes to the desired position value. The differential compo-
nent will also help dampen any overshoot and oscillation.

The Integral component of the algorithm performs a sum of the error over time. In the
position mode, this component helps the controller reach and maintain the exact desired
position when the error would otherwise be too small to energize the motor using the
Proportional component alone. Only a very small amount of Integral Gain is typically re-
quired in this mode.

In systems where the motor may take a long time to physically move to the desired
position, the integrator value may increase significantly causing then difficulties to stop
without overshoot. The Integrator Limit parameter will prevent that value from becoming
unnecessarily large.

PID tuning in Position Mode
As discussed above, three parameters - Proportional Gain, Integral Gain and Differential
Gain - can be adjusted to tune the position control algorithm. The ultimate goal in a well
tuned PID is a motor that reaches the desired position quickly without overshoot or oscil-
lation.

Because many mechanical parameters such as motor power, gear ratio, load and in-
ertia are difficult to model, tuning the PID is essentially a manual process that takes
experimentation.

PID Tuning Differences between Position Relative and Position Tracking

	 Advanced Digital Motor Controller User Manual� 137

The Roborun PC utility makes this experimentation easy by providing one screen for
changing the Proportional, Integral and Differential gains and another screen for running
and monitoring the motor.

When tuning the motor, first start with the Integral and Differential Gains at zero, increas-
ing the Proportional Gain until the motor overshoots and oscillates. Then add Differential
gain until there is no more overshoot. If the overshoot persists, reduce the Proportional
Gain. Add a minimal amount of Integral Gain. Further fine tune the PID by varying the
gains from these positions.

To set the Proportional Gain, which is the most important parameter, use the Roborun util-
ity to observe the three following values:

•	 Command Value
•	 Actual Position
•	 Applied Power

With the Integral Gain set to 0, the Applied Power should be:

Applied Power = (Command Value - Actual Position) * Proportional Gain

Experiment first with the motor electrically or mechanically disconnected and verify that
the controller is measuring the correct position and is applying the expected amount of
power to the motor depending on the command given.

Verify that when the Command Value equals the Actual Position, the Applied Power equals
to zero. Note that the Applied Power value is shown without the sign in the PC utility.

In the case where the load moved by the motor is not fixed, the PID must be tuned with
the minimum expected load and tuned again with the maximum expected load. Then try
to find values that will work in both conditions. If the disparity between minimal and maxi-
mal possible loads is large, it may not be possible to find satisfactory tuning values.

Note that the controller uses one set of Proportional, Integral and Differential Gains for
both motors, and therefore assumes that similar motor, mechanical assemblies and loads
are present at each channel.

PID Tuning Differences between Position Relative and
Position Tracking

The PID works the same way in both modes in that the desired position is compared to
the actually measured position.

In the Closed Loop Relative mode, the desired position is updated every ms and so the
PID deal with small differences between the two values.

In the Closed Loop Tracking mode, the desired position is changed whenever the com-
mand is changed by the user.

Tuning for both modes requires the same steps. However, the P, I and D values can be ex-
pected to be different in one mode or the other.

Closed Loop Relative and Tracking Position Modes

138	 Advanced Digital Motor Controller User Manual	 V1.8 August 28, 2017

Loop Error Detection and Protection
The controller will detect large tracking errors due to mechanical or sensor failures, and
shut down the motor in case of problem in closed loop speed or position system. The
detection mechanism looks for the size of the tracking error (desired position vs. actual
position) and the duration the error is present. Three levels of sensitivity are provided in
the controller configuration:

1: 250ms and Error > 100
2: 500ms and Error > 250
3: 1000ms and Error > 500

When an error is triggered, the motor channel is stopped until the error has disappeared,
the motor channel is reset to open loop mode.

The loop error can be monitored in real time using the Roborun PC utility.

Mode description

	 Advanced Digital Motor Controller User Manual� 139

SECTION 12	 Closed Loop
Count Position
Mode

In the Closed Loop Position mode, the controller can move a motor a precise number of
encoder counts, using a predefined acceleration, constant velocity, and deceleration. This
mode requires that an encoder be mounted on the motor.

Mode description
The desired position is given in number of counts. Using acceleration, deceleration and
top velocity, the controller computes the position at which the motor is expected to be
at every one millisecond interval. A PID then computes the power to give to the motor in
order to maintain that position. A comparator looks at the desired position and the com-
puted current position and issues a Destination Reached flag. The figure below shows a
representation of this mode.

Measured Position

Destination
Reached

-

=

Sensor

Desired End Position

Desired Velocity Desired Position
at Instant

Desired Acceleration

Trajectory
Computation

PID

Motor

Figure 12-1 Closed Loop Position mode

Closed Loop Count Position Mode

140	 Advanced Digital Motor Controller User Manual	 V1.8 August 28, 2017

Sensor Types and Mounting
In position mode, best results are achieved with encoders directly mounted on the motor
shaft. Encoders can be:

•	 Quadrature encoders
•	 Hall Sensors built-in brushless motors
•	 Other rotor sensors built-in brushless motors

It is not advised to mount encoders at the output of a geared motor as the gear box often
introduces backlash. If the encoder must be mounted at the output, then it must typically
have a higher count to compensate the lower speed rotation at that location.

Quadrature encoders typically provide the highest resolution since they can be ordered
with line resolution of several hundreds or thousands of counts per revolution. Hall encod-
ers built in brushless motors give a relatively low, but often adequate count of 6* Number-
OfPoles per mechanical resolution. Other brushless rotor sensors, such as SPI/SSI digital
sensor, or sin/cos sensors will give up to 512 counts per pole and can therefore be used
instead of encoders.

Encoder Home reference
Beware that encoders do not give an absolute position information. It is therefore neces-
sary to perform a search of the zero reference position at least once after every power up.
This is typically achieved by moving the motor up to a limit switch and loading the counter
with a fixed value at that location. A home search sequence can easily be implemented
using a MicroBasic script. The search and counter loading must be done while the motor
is operated in open loop.

Important Warning

Changing the counter with a value while the motor is operated in closed loop can
cause violent and dangerous jumps. Always revert to open loop to change the
counter value.

Preparing and Switching to Closed Loop
To enter this mode you will first need to configure the encoder so that it is used as feed-
back for motor1, and feedback for motor2 on the other encoder in a dual motor system.
On brushless motors, the rotor sensor (Hall, SPI, sin/cos) can be used as a position count-
er. Selecting “Other” will use the encoder if present and properly configured. Selecting
“Hall” will enable the rotor sensor.

Use the PC Utility to set the default acceleration, deceleration and position mode velocity
in the motor menu. These values can then be changed on the fly if needed.

While in Open Loop, enable the Speed channel in the Roborun Chart recorder. Move the
slider in the positive direction and verify that the measured speed polarity is also positive.
If a negative speed is reported, swap the two encoder wires to change the measured po-
larity, or swap the motor leads to make the motor spin in the opposite direction.

Count Position Commands

	 Advanced Digital Motor Controller User Manual� 141

Then use the PC Utility to select the Closed Loop Position Mode. After saving to the con-
troller, the motor will operate in Closed Loop and will attempt to go to the 0 counter posi-
tion. Beware therefore that the motor has not already turned before switching to Closed
Loop. Reset the counter if needed prior to closing the loop.

Count Position Commands
Moving the motor is done using a set of simple commands.

To go to an absolute encoder position value, use the !P command

To go to a relative encoder position count that is relative to the current position, use the
!PR command.

The Acceleration, Deceleration and Velocity are fixed parameters that can be changes us-
ing the ^MAC, ^MDEC and ^MVEL configuration settings. These can also be changed on
the fly, any time using the !AC and !DC commands.

The velocity can also be changed at any time using the !S command:

New position destination command can be issued at any time. If the previous destination
is not reached while the new is sent, the motor will move to the new destination. If this
causes a change of direction, the motor will do the change using the current acceleration
and deceleration settings. See the Commands Reference section for details on all these
commands

Position Command Chaining
It is possible to chain position commands in order to create seamless motion to a new
position after an initial position is reached. To do this, the controller can store the next goto
position with, optionally, a new set of acceleration, deceleration and velocity values.

The commands that set the “next” move are identical to these discussed in the previous
section, with the addition of an “X” at the end. The full command list is:

!PX nn mm	 Next position absolute

!PRX nn mm	 Next position relative

!ACX nn mm	 Next acceleration

!DCX nn mm	 Next deceleration

!SX	 Next velocity

Example: 	 !PX 1 -50000 will cause the motor to move to that new destination once
the previous destination is reached. !PRX -10000 will cause the motor
to move 10000 count back from the previous end destination. If the
next acceleration, next deceleration or next velocity are not entered, the
value(s) used for the previous motion will be used.

Closed Loop Count Position Mode

142	 Advanced Digital Motor Controller User Manual	 V1.8 August 28, 2017

Beware that the next commands must be entered while the motor is moving, since the
next commands will only be taken into account at the end of the current motion.

To chain more than two commands, use a MicroBasic script or an external program to
load new “next” command when the previous “next” commands become active. The
?DR query can be used to detect that this transition has occurred and that a new next
command can be sent to the controller.

The chart below shows a typical chaining flow.

Enter First Destination!P nn mm

Enter 2nd Destination!PX nn mm

?DR Destination Reached

Enter 3rd Destination!PX nn mm

?DR Destination Reached

Enter Last Destination!PX nn mm

Figure 12-2 Command Chaining flow

Position Accuracy Considerations
In the position mode, the controller computes a trajectory that the motor then attempts to
follow using a PID. For this technique to work well, the motor must first be physically able
to run as fast as dictated by the trajectory calculation. If not, a loop error (ie desired posi-
tion - actual position) will accumulate and eventually grow to trigger an error that will stop
the motor. Make sure that the velocity setting is always under the max speed that can be
reached by the motor while running at full load, in open loop.

Some difference between the desired and actual position, i.e. a loop error, is always to
be expected when using a PID. The PID gains must be tuned to minimize the loop error
while keeping smooth motion. The expected position and loop error can be monitored in
real time using the PC utility’s Tracking and Loop Error channels, respectively, in the chart
recorder.

Beware that the Destination Reached flag will become true when the result of the trajec-
tory computation equals the desired destination. In most practical situations, the motor
will still be on its way to actually reach that destination. This can be an important consid-
eration when chaining commands, as the new command will become active before the
motor has actually reached the previous destination

PID Tunings

	 Advanced Digital Motor Controller User Manual� 143

PID Tunings
As long as the motor assembly can physically reach the acceleration and velocity, smooth
motion will result with relatively little need for tuning. As for any position control loop, the
dominant PID parameter is the Proportional gain with only little Integral gain and smaller or
no Derivative gain. See “PID tuning in Position Mode”on page 128.

Loop Error Detection and Protection
The controller will detect large tracking errors due to mechanical or sensor failures, and
shut down the motor in case of problem in closed loop speed or position system. The
detection mechanism looks for the size of the tracking error (desired position vs. actual po-
sition) and the duration the error is present. Three levels of sensitivity are provided in the
controller configuration:

1: 250ms and Error > 100

2: 500ms and Error > 250

3: 1000ms and Error > 500

When an error is triggered, the motor channel is stopped until the error has disappeared,
the motor channel is reset to open loop mode. The error will also be cleared when sending
a new Position Destination using the !P command

The loop error can be monitored in real time using the Roborun PC utility.

Closed Loop Count Position Mode

144	 Advanced Digital Motor Controller User Manual	 V1.8 August 28, 2017

Torque Mode Description

	 Advanced Digital Motor Controller User Manual� 145

SECTION 13	 Closed Loop
Torque Mode	

This section describes the controller’s operation in Torque Mode.

Torque Mode Description
The torque mode is a special case of closed loop operation where the motor command
controls the current that flows though the motor regardless of the motor’s actual speed.

In an electric motor, the torque is directly related to the current. Therefore, controlling the
current controls the torque.

Motor Amps

Command
PID Motor

Output
Driver

FIGURE 13-1. Torque mode

Torque mode is mostly used in electric vehicles since applying a higher command gives
more “push”, similarly to how a gas engine would respond to stepping on a pedal. Like-
wise, releasing the throttle will cause the controller to adjust the power output so that the
zero amps flow through the motor. In this case, the motor will coast and it will take a neg-
ative command (i.e. negative amps) to brake the motor to a full stop.

Closed Loop Torque Mode

146	 Advanced Digital Motor Controller User Manual	 V1.8 August 28, 2017

Torque Mode Selection, Configuration and Operation
Use the PC utility and the menu “Operating Mode” to select Torque Mode. The controller will
now use user commands from RS232, USB, Analog or Pulse to command the motor current.

Commands are ranging from -1000 to +1000. The command is then scaled using the
amps limit configuration value.

For example, if the amps limit is set to 100A, a user command of 500 will cause the con-
troller to energize the motor until 50A are measured. If the motor is little loaded and the
desired current cannot be reached, the motor will run at full speed.

Torque Mode Tuning
In Torque Mode, the measured Motor Amps become the feedback in the closed loop sys-
tem. The PID then operates the same way as in the other Closed Loop modes described
in this manual (See “PID tuning in Position Mode” on page 128).

In most applications requiring torque mode, the loop response does not need to be very
quick and good results can be achieved with a wide range of PID gains. The P and I gains
are the primary component of the loop in this mode. Perform a first test using P=0, I=1
and D=0, and then adjust the I and P gain as needed until satisfactory results are reached.
In brushless controllers operating in sinusoidal mode, torque mode uses the PID that is
regulating the Field Oriented Control. The gains must be therefore set in the FOC menus.
See also the KIF and KPF configuration commands in the Commands Reference section.

Configuring the Loop Error Detection
In Torque Mode, it is very likely that the controller will encounter situation where the mo-
tor is not sufficiently loaded in order to reach the desired amps. In this case, controller
output will quickly rise to 100% while a significant Loop Error (i.e. desired amps - mea-
sured amps) is present. In the default configuration, the controller will shut down the
power if a large loop error is present for more than a preset amount of time. This safety
feature should be disabled in most systems using Torque Mode.

Torque Mode Limitations
The torque mode uses the Motor Amps and not the Battery Amps. See “Battery Current
vs. Motor Current”on page 30. In most Roboteq controllers, Battery Amps is measured
and Motor Amps is estimated. The estimation is fairly accurate at power level of 20% and
higher. Its accuracy drops below 20% of PWM output and no motor current is measured
at all when the power output level is 0%, even though current may be flowing in the
motor, as it would be the case if the motor is pushed. The torque mode will therefore not
operate with good precision at low power output levels.

Furthermore the resolution of the amps capture is limited to around 0.5% of the full range.
On high current controller models, for example, amps are measured with 500mA incre-
ments. If the amps limit is set to 100A, this means the torque will be adjustable with a 0.5%
resolution. If on the same large controller the amps limit is changed to 10A, the torque will
be adjustable with the same 500mA granularity which will result in 5% resolution. For best

Torque Mode Using an External Amps Sensor

	 Advanced Digital Motor Controller User Manual� 147

results use an amps limit that is at least 50% than the controller’s max rating. On newer
Brushless motor controllers, amps sensors are placed at the motor output and motor amps
are measured directly. Torque mode will work effectively on these models.

Torque Mode Using an External Amps Sensor
The limitations described above can be circumvented using an external amps sensor de-
vice such as the Allegro Microsystems ACS756 family of hall sensors. These inexpensive
devices can be inserted in series with one of the motor leads while connected to one of
the controller’s analog inputs. Since it is directly measuring the real motor amps, this sen-
sor will provide accurate current information in all load and regeneration conditions. This
technique only works for DC brushed motors. On brushless motors, the current in the mo-
tor wires is AC and therefore an external sensor cannot be used.

Motor

+5V
GND
Ana

Allegro ACS756
Current Sensor

Controller

FIGURE 13-2. Torque external sensor

To operate in torque mode, simply configure the selected analog input range to this of the
sensor’s output at the min and max current that will correspond to the -1000 to +1000
command range. Configure the analog input as feedback for the selected motor channel.
Then operate the controller in Position Tracking Mode (See “Position Tracking Mode” on
page 121). While the controller will not actually be tracking position, it will adjust the out-
put based on the command and sensor feedback exactly in the same fashion.

Closed Loop Torque Mode

148	 Advanced Digital Motor Controller User Manual	 V1.8 August 28, 2017

Use and benefits of Serial Communication

	 Advanced Digital Motor Controller User Manual� 149

SECTION 14	 Serial (RS232/
USB) Operation

This section describes the communication settings of the controller operating in the
RS232 or USB mode. This information is useful if you plan to write your own controlling
software on a PC or microcomputer.

The full set of commands accepted by the controller is provided in “Commands Refer-
ence” on page 209.

If you wish to use your PC simply to set configuration parameters and/or to exercise the
controller, you should use the RoborunPlus PC utility.

Use and benefits of Serial Communication
The serial communication allows the controller to be connected to PCs, PLC, microcom-
puters or wireless modems. This connection can be used to both send commands and
read various status information in real-time from the controller. The serial mode enables
the design of complex motion control system, autonomous robots or more sophisticated
remote controlled robots than is possible using the RC mode. RS232 commands are very
precise and securely acknowledged by the controller. They are also the method by which
the controller’s features can be accessed and operated to their fullest extent.

When operating in RC or analog input, serial communication can still be used for monitor-
ing or telemetry.

When connecting the controller to a PC, the serial mode makes it easy to perform simple
diagnostics and tests, including:

•	 Sending precise commands to the motor
•	 Reading the current consumption values and other parameters
•	 Obtaining the controller’s software revision and date
•	 Reading inputs and activating outputs
•	 Setting the programmable parameters with a user-friendly graphical interface
•	 Updating the controller’s software

Serial (RS232/USB) Operation

150	 Advanced Digital Motor Controller User Manual	 V1.8 August 28, 2017

Serial Port Configuration
The controller’s default serial communication port is set as follows:

•	 115200 bits/s
•	 8-bit data
•	 1 Start bit
•	 1 Stop bit
•	 No Parity

Communication is done without flow control, meaning that the controller is always ready
to receive data and can send data at any time.

Connector RS232 Pin Assignment

1 13

14 25

18

9151 13

14 25

18

915

FIGURE 14-1. DB25 and DB15 connectors pin code locations

When used in the RS232 mode, the pins on the controller’s DB15 or DB25 connector (de-
pending on the controller model) are mapped as described in the table below

TABLE 14-1. RS232 Signals on DB15 and DB25 connectors §

Pin
Number

Input or
Output Signal Description

2 Output Data Out RS232 Data from Controller to PC

3 Input Data In RS232 Data In from PC

5 - Ground Controller ground

Setting Different Bit Rates
It is possible to set RS232 bit rate to lower values. This operation can only be done while
the controller is connected via USB and only using manual commands from the console.
Beware that once the bit rate is different than the default 115200, it will no longer be able
to communicate with the PC utility if serial connection is used. From the Console, send
the following commands:

^RSBR nn

where nn =

0: 115200
1: 57600
2: 38400
3: 19200
4: 9600

Setting Different Bit Rates

	 Advanced Digital Motor Controller User Manual� 151

Make sure that the controller respond to this command with a +. Check that the value has
been accepted by sending ~RSBR.

Send %EESAV from the console to store the new configuration to flash.

Cable configuration
The RS232 connection requires the special cabling as described in Figure 14-2. The 9-pin
female connector plugs into the PC (or other microcontroller). The 15-pin or 25-pin male
connector plugs into the controller.

It is critical that you do not confuse the connector’s pin numbering. The pin numbers
on the drawing are based on viewing the connectors from the front. Most connectors
brands have pin numbers molded on the plastic.

1

2

3

4

7

8

9

5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

6

TX Data

RX Data Data Out

Data In

GNDGND

DB9 Female
To PC

DB15 Male
To Controller

1

2

3

4

7

8

9

5

1

2

3

4

5

6

7

8

14

15

16

17

18

19

20

6

TX Data

RX Data Data Out

Data In

GNDGND

DB9 Female
To PC

DB25 Male
To Controller

9

21

10

22

11

23

12
24

13
25

FIGURE 14-2. PC to controller RS 232 cable/connector wiring diagram

The 9 pin to 15 pin cable is provided by Roboteq for controllers with 15 pin connectors.

Controllers with 25 pins connectors are fitted with a USB port that can be used with any
USB cables with a type B connector.

Extending the RS232 Cable
RS232 extension cables are available at most computer stores. However, you can easily
build one using a 9-pin DB9 male connector, a 9-pin DB9 female connector and any 3-con-
ductor cable. DO NOT USE COMMERCIAL 9-PIN TO 25-PIN CONVERTERS as these do
not match the 25-pin pinout of the controller. These components are available at any elec-
tronics distributor. A CAT5 network cable is recommended, and cable length may be up to
100’ (30m). Figure 14-3 shows the wiring diagram of the extension cable.

Serial (RS232/USB) Operation

152	 Advanced Digital Motor Controller User Manual	 V1.8 August 28, 2017

1

2

3

4

7

8

9

5

1

2

3

4

5

6

7

8

9

6

TX Data

RX Data Data Out

Data In

GNDGND

DB9 Female DB9 Male

FIGURE 14-3. RS232 extension cable/connector wiring diagram

Connecting to Arduino and other TTL Serial Microcomputers

Aduino and similar microcomputers have a TTL serial port while Roboteq controllers have
a full RS232 serial interface. RS232 has the following differences from TTL serial:

RS232 TTL Serial

Voltage Levels +10V/-10V 0-3V

Logic level Inverted Non-Inverted

A TTL to RS232 adapter must be therefore be used to convert to the Arduino serial inter-
face. Newer Roboteq controller allow the RS232 signal to be non-inverted. Interfacing to
Arduino or other TTL Serial interface can therefore be done with just a resistors, and 2
optional diodes as shown in the diagram below:

GND

Arduino or MCU with TTL Serial

5VOut

2 x optional shottky diodes
min 100mA, 20V
Use 1N5819 or similar

RxD

RxD

4.7K

TxD

TxD

GND

1

9 15

8

FIGURE 14-4. Simplified TTL to RS232 connection

The data sent from the TTL serial port are 0-3V and can be directly connected to the con-
troller’s RS232 input where it will be captured as valid 0-1 levels.

USB Configuration

	 Advanced Digital Motor Controller User Manual� 153

The data at the output of the controller is +/-10V. At the other end of the resistor, the
voltage is clamped to around 0-3.3V by the protection diodes that are included in the Ar-
duino MCU. However, to avoid any stress it is highly recommended to insert the 2 diodes
shown on the diagram.

To operate, the RS232 output must be set to inverted. This must be done from the Con-
sole of the Roborun Utility while connected via USB. This will only work on newer control-
ler models fitted with firmware version 1.6a or more recent.

From the Console, send the following commands:

^RSBR nn

where nn =

5: 115200 + Inverted RS232
6: 57600 + Inverted RS232
7: 38400 + Inverted RS232
8: 19200 + Inverted RS232
9: 9600 + Inverted RS232

Make sure that the controller respond to this command with a +. Check that the value has
been accepted by sending ~RSBR. If a - is replied or if the value is different than the one
entered, then the hardware and/or firmware does not support serial inverted and cannot
be used with this circuit.

Send %EESAV from the console to store the new configuration to flash.

USB Configuration
USB is available on all Roboteq controller models and provides a fast and reliable commu-
nication method between the controller and the PC. After plugging the USB cable to the
controller and the PC, the PC will detect the new hardware, and install the driver. Upon
successful installation, the controller will be ready to use.

The controller will appear like another Serial device to the PC. This method was selected
because of its simplicity, particularly when writing custom software: opening a COM port
and exchanging serial data is a well documented technique in any programming language.

Note that Windows will assign a COM port number that is more or less random. The Rob-
orun PC utility automatically scans all open COM ports and will detect the controller on its
own. When writing your own software, you will need to account for this uncertainty in the
COM port assignment.

Important Warning

Beware that because of its sophistication, the USB protocol is less likely to recover
than RS232 should an electrical disturbance occur. We recommend using USB for
configuration and monitoring, and use RS232 for field deployment. Deploy USB
based system only after performing extensive testing and verifying that it operates
reliably in your particular environment.

Serial (RS232/USB) Operation

154	 Advanced Digital Motor Controller User Manual	 V1.8 August 28, 2017

Command Priorities
The controller will respond to commands from one of three or four possible sources:

•	 Serial (RS232 or USB)
•	 Pulse
•	 Analog
•	 Spektrum Radio (when available)

One, two, three or all four command modes can be enabled at the same time. When
multiple modes are enabled, the controller will select which mode to use based on a user
selectable priority scheme. The priority mechanism is described in details in “Input Com-
mand Modes and Priorities” on page 73.

USB vs. Serial Communication Arbitration
Commands may arrive through the RS232 or the USB port at the same time. They are
executed as they arrive in a first come first served manner. Commands that are arriving
via USB are replied on USB. Commands arriving via the UART are replied on the UART.
Redirection symbol for redirecting outputs to the other port exists (e.g. a command can
be made respond on USB even though it arrived on RS232).

CAN Commands
Command arriving via CAN share the same priority as serial commands and may conflict
with command arriving via serial or USB. CAN queries will not interfere with serial/USB
operation.

Script-generated Commands
Commands that are issued from a user script are handled by the controller exactly as seri-
al commands received via USB or RS232. Care must be taken that conflicting commands
are not sent via the USB/serial at the same time that a different command is issued by the
script.

Script commands are also subject to the serial Watchdog timer. Motors will be stopped
and command input will switch according to the Priority table if the Watchdog timer is al-
lowed to timeout.

Communication Protocol Description
The controller uses a simple communication protocol based on ASCII characters. Com-
mands are not case sensitive. ?a is the same as ?A. Commands are terminated by car-
riage return (Hex 0x0d, ‘\r’).

The underscore ‘_’ character is interpreted by the controller as a carriage return. This alter-
nate character is provided so that multiple commands can be easily concatenated inside a
single string.

All other characters lower than 0x20 (space) have no effect.

Communication Protocol Description

	 Advanced Digital Motor Controller User Manual� 155

Character Echo
The controller will echo back to the PC or Microcontroller every valid character it has re-
ceived. If no echo is received, one of the following is occurring:

•	 echo has been disabled
•	 the controller is Off
•	 the controller may be defective

Command Acknowledgment
The controller will acknowledge commands in one of the two ways:

For commands that cause a reply, such as a configuration read or a speed or amps que-
ries, the reply to the query must be considered as the command acknowledgment.

For commands where no reply is expected, such as speed setting, the controller will
issue a “plus” character (+) followed by a Carriage Return after every command as an ac-
knowledgment.

Command Error
If a command or query has been received, but is not recognized or accepted for any rea-
son, the controller will issue a “minus” character (-) to indicate the error.

 If the controller issues the “-” character, it should be assumed that the command was
not recognized or lost and that it should be repeated.

Watchdog time-out
For applications demanding the highest operating safety, the controller should be config-
ured to automatically switch to another command mode or to stop the motor (but other-
wise remain fully active) if it fails to receive a valid command on its RS232 or USB ports,
or from a MicroBasic Script for more than a predefined period.

By default, the watchdog is enabled with a timeout period of 1 second. Timeout period
can be changed or the watchdog can be disabled by the user. When the watchdog is en-
abled and timeout expires, the controller will accept commands from the next source in
the priority list. See Command Prioritieson page 154.

Controller Present Check
The controller will reply with an ASCII ACK character (0x06) anytime it receives a QRY
character (0x05). This feature can be used to quickly scan a serial port and detect the
presence, absence or disappearance of the controller. The QRY character can be sent at
any time (even in the middle of a command) and has no effect at all on the controller’s
normal operation.

Serial (RS232/USB) Operation

156	 Advanced Digital Motor Controller User Manual	 V1.8 August 28, 2017

CAN Networking on Roboteq Controllers

	 Advanced Digital Motor Controller User Manual� 157

SECTION 15	 CAN Networking
on Roboteq
Controllers

Some controller models are equipped with a standard CAN interface allowing up to 127
controllers to work together on a single twisted pair network at speeds up to 1Mbit/s.

Supported CAN Modes
Four CAN operating modes are available on Roboteq controllers:

	 1 - RawCAN
	 2 - MiniCAN
	 3 - CANopen
	 4 - RoboCAN

RawCAN is a low-level operating mode giving total read and write access to CAN frames.
It is recommended for use in low data rate systems that do not obey to any specific stan-
dard. CAN frames are typically built and decoded using the MicroBasic scripting language.

MiniCAN is greatly simplified subset of CANopen, allowing, within limits, the integration
of the controller into an existing CANopen network. This mode requires MicroBasic script-
ing to prepare and use the CAN data.

CANopen is the full Standard from CAN in Automation (CIA), based on the DS302 specifica-
tion. It is the mode to use if full compliance with the CANopen standard is a primary requisite.

RoboCAN is a Roboteq proprietary meshed networking scheme allowing multiple Robo-
teq devices to operate together as a single system. This protocol is extremely simple and
lean, yet practically limitless in its abilities. It is the preferred protocol to use by users who
just wish to make multiple controllers work together with the minimal effort.

This section describes the RawCAN and MiniCAN modes.

Detailed descriptions of CANopen and RoboCAN can be found in specific sections of
this manual.

CAN Networking on Roboteq Controllers

158	 Advanced Digital Motor Controller User Manual	 V1.8 August 28, 2017

Connecting to CAN bus
A CAN bus network is made of a stretch of two wires. A device can be put on a CANbus
network by simply connecting it’s CAN-High and CAN-Low lines to these of other devices
on the network.

CANH

CANL120Ω

Microcomputer

Joysticks, Batteries
HMI’s and other CAN Accessories

Magnetic Guide Sensor

Motor Controllers

PLC

CAN
Adapter

120Ω

Figure 15-1: CAN Network topology

Resistors should be 120 ohm and located at each end of the cable. However, on a short
network communication will take place with a single resistor of 100 to 200 ohm located
anywhere on the network. Communication will not work if no resistor is present, or if its
value is too high.

No ground connection is necessary in between nodes. However, the ground potential of
each node must be within a few volts of each other. If all devices on the network are pow-
ered from the same power source, this can be expected to be the case.

CANbus will be operational upon enabling the desired CAN protocol and speed using the
PC utility.

Important Warning

A ground difference up to around 10V is acceptable. A difference of 30V or higher
can cause damage to one or more nodes. CANbus isolators must be used if a similar
ground level cannot be guaranteed between nodes.

CAN Networking on Roboteq Controllers

	 Advanced Digital Motor Controller User Manual� 159

Introduction to CAN Hardware signaling
CANbus uses differential signals, which is where CAN derives its robust noise immunity
and fault tolerance. The two signal lines of the bus, CANH and CANL, are biased to around
2.5 V. A logical “1” (also known as the dominant state) on the bus takes CANH around 1
V higher to around 3.5 V, and takes CANL around 1 V lower to 1.5 V, creating a typical 2V
differential signal as shown in Figure 15-2.

0

2.5V

1.5V

3.5V

0V

0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 1 1 1 1 1 1 1 1 1

Figure 15-2: CANbus signaling

Differential signaling reduces noise coupling and allows for high signaling rates over twist-
ed-pair cable. The High-Speed CANbus specifications (ISO 11898 Standard) are given for
a maximum signaling rate of 1 Mbps with a bus length of 40 m with a maximum of 30
nodes. It also recommends a maximum unterminated stub length of 0.3 m.

CAN Bus Pinout
Depending on the controller model, the CAN signals are located on the 9-pin, 15-pin or
25-pin DSub connector. Refer to datasheet for details.

1

15

69

13

14 25

FIGURE 15-3. DB9.Connector pin locations

The pins on the DB9 connector are mapped as described in the table below.

TABLE 15-1. CAN Signals on DB9 connector

Pin Number Signal Description
2 CAN_L CAN bus low

7 CAN_H CAN bus high

CAN Networking on Roboteq Controllers

160	 Advanced Digital Motor Controller User Manual	 V1.8 August 28, 2017

1 8

9 15

FIGURE 15-4. DB15 Connector pin locations

The pins on the DB15 connector are mapped as described in the table below.

TABLE 15-2. CAN Signals on DB15 connector

Pin Number Signal Description
6 CAN_L CAN bus low

7 CAN_H CAN bus high

1

15

69

13

14 25

FIGURE 15-5. DB25 pin locations

The pins on the DB25 connector are mapped as described in the table below.

TABLE 15-3. CAN Signals od DB25 connector

Pin Number Signal Description
8 CAN_L CAN bus low

20 CAN_H CAN bus high

CAN and USB Limitations
On some controller models CAN and USB cannot operate at the same time. On control-
lers equipped with a USB connector, if simultaneous connection is not allowed, the con-
troller will enable CAN if USB is not connected.

The controller will automatically enable USB and disable CAN as soon as the USB is con-
nected to the PC. The CAN connection will then remain disabled until the controller is
restarted with the USB unplugged.

See the controller model datasheet to verify whether simultaneous CAN and USB is sup-
ported.

Basic Setup and Troubleshooting
CANbus is very easy to setup: Simply connect the CANH and CANL to a pair of wires with
at least one resistor somewhere along the cable. Enable the desired CAN protocol and
speed using the PC utility.

CAN Networking on Roboteq Controllers

	 Advanced Digital Motor Controller User Manual� 161

If communication cannot be established, it can be difficult to determine the source of the
problem. Here are a few ways to diagnose:

Cable polarity, integrity and termination resistor
Verify that the controller’s CANH and CANL are connected to the CANH and CANL wire.
Check cable continuity to every node. Verify the presence of a least one resistor and that
its value is 120ohm (a value of 60 to 200 ohm would be acceptable)

Check CANbus activity using a voltmeter
The presence of CAN data traffic can be checked using a simple voltmeter and measuring
the voltage between GND and CANH, and between GND and CANL. When CAN is dis-
abled, both lines should have approximately the same voltage around 2.5V. When CAN is
enabled with RoboCAN or MiniCAN protocol selected, the controller will send a continu-
ous stream of data frames. This will cause the CANH voltage to rise above, and the CANL
voltage to drop below, the 2.5V midpoint. If the idle and active voltages do not match the
above, try again on the controller alone disconnected from the network but with a 100 to
200 ohm resistor across its CANH and CANL pins.

The CANOpen and RawCAN protocol should not be used for this test as these do not gen-
erate data traffic on their own and will not cause measurable voltage changes.

Check CANbus activity using a CAN sniffer
When working on a CAN system, it is highly recommended to make the acquisition of a
USB to CAN adapter such as the PCAN-USB from Peak Systems. Connect the adapter to
the CANH and CANL and run the sniffer software with the correct bit rate selected. The
figure below shows the expected received data when a Roboteq device is on the network
with MiniCAN protocol enabled.

Figure 15-6 : USB to CAN adapter and MiniCAN frame capture

Mode Selection and Configuration
Mode selection is done using the CAN menu in the RoborunPlus PC utility.

CAN Networking on Roboteq Controllers

162	 Advanced Digital Motor Controller User Manual	 V1.8 August 28, 2017

Common Configurations

CAN Mode: Used to select one of the 4 operating modes. Off disables all CAN receive
and transmit capabilities.

Node ID: CAN Node ID used for transmission from the controller. Value may be be-
tween 1 and 126 included.

Bit Rate: Selectable bit rate. Available speeds are 1000, 800, 500, 250, and 125 kbit/s.
Default is 125kbit and is the recommended speed for RawCAN and Mini-
CAN modes.

Heartbeat: Period at which a Heartbeat frame is sent by the controller. The frame is
CANopen compatible 0x700 + NodeID, with one data byte of value 0x05
(Status: Operational). The Heartbeat is sent in any of the selected modes. It
can be disabled by entering a value of 0.

MiniCAN Configurations

ListenNodeID: Filters to accept only packets sent by a specific node.

SendRate: Period at which data frames are sent by the controller. Frames are struc-
tured as standard CANopen Transmit Process Data Objects (TPDOs). Trans-
mission can be disabled by entering a value of 0.

RawCAN Configurations
In the RawCAN mode, incoming frames may be filtered or not by changing the Listen-
NodeID parameter that is shared with the MiniCAN mode. A value of 0 will capture all
incoming frames and it will be up to the user to use the ones wanted. Any other value will
cause the controller to capture only frames from that sender.

Using RawCAN Mode
In the RawCAN Mode, received unprocessed data packets can be read by the user. Like-
wise, the user can build a packet with any content and send it on the CAN network. A
FIFO buffer will capture up to 16 frames.

CAN packets are essentially composed by a header and a data payload. The header is an
11 bit number that identifies the sender’s address (bits 0 to 6) and a packet type (bits 7 to
10). Data payload can be 0 to 8 bytes long.

Checking Received Frames
Received frames are first loaded in the 16-frame FIFO buffer. Before a frame can be read,
it is necessary to check if any frames are present in the buffer using the ?CF query. The
query can be sent from the serial/USB port, or from a MicroBasic script using the getval-
ue(_CF) function. The query will return the number of frames that are currently pending,
and copy the oldest frame into the read buffer, from which it can then be accessed. Send-
ing ?CF again, copies the next frame into the read buffer.
The query usage is as follows:

Syntax:	 ?CF

Reply: 	 CF=number of frames pending

CAN Networking on Roboteq Controllers

	 Advanced Digital Motor Controller User Manual� 163

Reading Raw Received Frames
After a frame has been moved to the read buffer, the header, bytecount and data can be
read with the ?CAN query. The query can be sent from the serial/USB port, or from a Mi-
croBasic script using the getvalue(_CAN, n) function. The query usage is as follows:

When the query is sent from serial or USB, without arguments, the controller replies by
outputting all elements of the frame separated by colons.

Syntax: 	 ?CAN [ee]

Reply:	 CAN=header:bytecount:data0:data1: :data7

Where: 	 ee = frame element
1 = header
2 = bytecount
3 to 10 = data0 to data7

Examples: 	 Q: ?CAN
R: CAN=5:4:11:12:13:14:0:0:0:0

Q: ?CAN 3
R: CAN=11

Notes:	 Read the header to detect that a new frame has arrived. If header is dif-
ferent than 0, then a new frame has arrived and you may read the data.

After reading the header, its value will be 0 if read again, unless a new
frame has arrived.

New CAN frames will not be received by the controller until a ?CAN
query is sent to read the header or any other element.

Once the header is read, proceed to read the other elements of the
received frame without delay to avoid data to be overwritten by a new
arriving frame.

Transmitting Raw Frames
RawCAN Frames can easily be assembled and transmitted using the CAN Send Com-
mand !CS. This command can be used to enter the header, bytecount, and data, one
element at a time. The frame is sent immediately after the bytecount is entered, and so it
should be entered last.

Syntax: 	 !CS ee nn

Where: 	 ee = frame element
1 = header
2 = bytecount
3 to 10 = data0 to data7
nn = value

Examples: 	 !CS 1 5		 Enter 5 in header
!CS 3 2		 Enter 2 in Data 0
!CS 4 3		 Enter 3 in Data 1
!CS 2 2		 Enter 2 in bytecount. Send CAN data frame

CAN Networking on Roboteq Controllers

164	 Advanced Digital Motor Controller User Manual	 V1.8 August 28, 2017

Using MiniCAN Mode
MiniCAN is greatly simplified subset of CANopen. It only supports Heartbeat, and fixed
map Received Process Data Objects (RPDOs) and Transmit Process Data Objects (TP-
DOs). It does not support Service Data Objects (SDOs), Network Management (NMT),
SYNC or other objects.

Transmitting Data
In MiniCAN mode, data to be transmitted is placed in one of the controller’s available In-
teger or Boolean User Variables. Variables can be written by the user from the serial/USB
using !VAR for Integer Variables, or !B for Boolean Variables. They can also be written from
MicroBasic scripts using the setcommand(_VAR, n) and setcommand(_B, n) functions.
The value of these variables is then sent at a periodic rate inside four standard CANopen
TPDO frames (TPDO1 to TPDO4). Each of the four TPDOs is sent in turn at the time peri-
od defined in the SendRate configuration parameter.

Header:

TPDO1: 0x180 + NodeID
TPDO2: 0x280 + NodeID
TPDO3: 0x380 + NodeID
TPDO4: 0x480 + NodeID

Data:

Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8

TPDO1 VAR1 VAR2

TPDO2 VAR3 VAR4

TPDO3 VAR5 VAR6 VAR7 VAR8

TPDO4 BVar
1-8

BVar
9-16

BVar
17-24

BVar
25-32

Byte and Bit Ordering:

Integer Variables are loaded into a frame with the Least Significant Byte first. Example
0x12345678 will appear in a frame as 0x78 0x56 0x34 0x12.

Boolean Variables are loaded in a frame as shown in the table above, with the lowest
Boolean Variable occupying the least significant bit of each byte. Example Boolean Var 1
will appear in byte as 0x01.

Receiving Data
In MiniCAN mode, incoming frames headers are compared to the Listen Node ID number.
If matched, and if the other 4 bits of the header identify the frame as a CANopen standard
RPDO1 to RPDO4, then the data is parsed and stored in Integer or Boolean Variables ac-
cording to the map below. The received data can then be read from the serial/USB using
the ?VAR or ?B queries, or they can be read from a MicroBasic script using the getval-
ue(_VAR, n) or getvalue(_B, n) functions.

CAN Networking on Roboteq Controllers

	 Advanced Digital Motor Controller User Manual� 165

Header:

RPDO1: 0x200 + NodeID
RPDO2: 0x300 + NodeID
RPDO3: 0x400 + NodeID
RPDO4: 0x500 + NodeID

Data:

Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8

RPDO1 VAR9 VAR10

RPDO2 VAR11 VAR12

RPDO3 VAR13 VAR14 VAR15 VAR16

RPDO4 BVar
33-40

BVar
41-48

BVar
49-56

BVar
57-64

Byte and Bit Ordering:

Integer Variables are loaded from frame with the Least Significant Byte first. Example, a
frame with data as 0x78 0x56 0x34 0x12 will load in an Integer Variable as 0x12345678.

Boolean Variables are loaded from a frame as shown in the table above, with the lowest
Boolean Variable occupying the least significant bit of each byte. Example a received byte
of 0x01 will set Boolean Var 33 and clear Vars 34 to 40.

MiniCAN Usage Example
MiniCAN can only be used with the addition of MicroBasic scripts that will give a mean-
ing to the general variables in which the CAN data are stored. The following simple script
uses VAR1 that is transported in RPDO1 as the incoming motor command and puts the
Motor Amp VAR9 so that it is sent in TPDO1.

top:
speed = getvalue(_VAR, 9)
setcommand(_G, 1, speed)
motor_amp = getvalue(_A, 1)
setcommand(_VAR, 1, motor_amp)
wait(10)
goto top:

Note: This script does not check for loss of communication on the CAN bus. It is provided
for information only.

CAN Networking on Roboteq Controllers

166	 Advanced Digital Motor Controller User Manual	 V1.8 August 28, 2017

	 Advanced Digital Motor Controller User Manual� 167

RoboCAN Networking

SECTION 16	 RoboCAN Networking

RoboCAN is a Roboteq proprietary meshed networking scheme allowing multiple Roboteq
products to operate together as a single system. This protocol is extremely simple and
lean, yet practically limitless in its abilities. It is the preferred protocol to use by user who
just wish to make multiple controllers work together with the minimal effort.

In RoboCAN, every controller can send commands to, and can read operational data from,
any other node on the network. One or more controller can act as a USB to CAN or Serial
to CAN gateway, allowing several controllers to be thus managed from a single PC or mi-
crocomputer.

Using a small set of dedicated Microbasic function, scripts can be written to exchange
data between controllers in order to create automation systems without the need for a
PLC or external computer.

In addition, RoboCAN includes support for processing raw can data as defined in the
RawCAN specification (See page 154), in order to incorporate simple CAN compatible 3rd
party devices in the network.

CAN

USB or
RS232

Microcomputer

3rd Party CAN Accessory

Magnetic Guide Sensor

CAN
Adapter

RoboCAN Networking

168	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Network Operation
RoboCAN requires only that a controller has a unique node number (other than 0)
assigned and that the RoboCAN mode is selected and enabled. All nodes must be
configured to operate at the same bit rate. Each enabled node will emit a special
heartbeat at a set and unchangeable rate of 128ms so that each node can create and
maintain a map of all nodes alive in the network.

RoboCAN via Serial & USB

Important notice: On many controller models, CAN and USB cannot be operated at the
same time. Please see product datasheet to verify if this is the case on the model used.
In case USB is not available, this section only applies to RS232 connections.

RoboCAN commands and queries can be sent from a USB or serial port using a modi-
fied syntax of the normal serial protocol: By simply adding the @ character followed by
the node as a 2 digit hex address, a command or query is sent to the desired node. This
scheme works with every Command (! Character), Query (?), Configuration setting (^),
Configuration read (~), and most Maintenance commands (%)

Runtime Commands
Below is an Command example:

!G 1 500

This is the normal command for giving a 50% power level command to motor 1 of the
controller that is attached to the computer.

@04!G 1 500

This will send the same 50% command to motor 1 of the controller at node address 4.

The reply to a local command is normally a + or - sign when a command is acknowledged
or rejected in normal serial mode.

When a command is sent to a remote node, the reply is also a + or – sign. However, in
addition, the reply can be a * sign to indicate that the destination node does not exist or is
not alive. Note that the + sign only indicates that the command syntax is valid and that the
destination node is alive.

Broadcast Command
Node address 00 is used to broadcast a command simultaneously to all the nodes in the
network. For example

@00!G 1 500

Will apply 50% power to all motor 1 at all nodes, including the local node

RoboCAN Networking

	 Advanced Digital Motor Controller User Manual� 169

Realtime Queries
Queries are handled the same way but the reply to a query includes the responding
node’s address. Below is a Query example:

?V 2

This is the normal query for reading the battery voltage of the local controller. The control-
ler will reply V=123

@04?V 2

This will send the same query to node address 4

The reply of the remote node is @04 V=123

Replies to remote nodes queries are identical to these to a local controller with the excep-
tion of an added latency. Since the reply must be retrieved from the remote node depend-
ing on the selected bit rate, the reply may come up to 10ms after the query was sent.

Remote Queries restrictions
Remote queries can only return a single value whereas local queries can be used to read
an array of values. For example

?AI

Is a local query that will return the values of all analog capture channels in a single string
as

AI=123:234:345:567

@04?AI

Is a remote query and it will return only the first analog capture channel as

@04 AI=123

Remote queries are not being added in the Query history.

Broadcast remote queries are not supported. For example @00?V 1 will not be executed.

Queries that return strings, such as ?FID or ?TRN are not supported. They will return the
value 0

See the Command Reference section in the manual for the complete list and description
of available queries

RoboCAN Networking

170	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Configurations Read/Writes
Configuration settings, like Amp Limit or Operating Modes can be read and changed on a
remote node via the CAN bus. For example

@04^ALIM 1 250 will set the current limit of channel 1 of node 4 at 25.0A

@04~OVL will read the Overvoltage limit of node 4.

Note that changing a configuration via CAN only makes that change temporary until the
remote controller is powered down. The %EESAV maintenance command must be send
to the remote node to make the configuration change permanent.

A configuration write can be broadcast to all nodes simultaneously by using the node Id
00. For example

@00^OVL 250

Will set the overvoltage limit of all nodes at 25.0 Volts

Configuration reads cannot be broadcast.

See the Commands Reference section for the complete list and description of available
configurations

Remote Configurations Read restrictions
Remote Configuration Reads can only return a single value whereas local Configuration
Reads can be used to read an array of parameters. For example

~AMOD

Will return the operating mode of all analog capture channels in a single string as

AI=01:01:00:01:02

@04~AMOD

Will return only the mode first analog capture channel as

@04 AI=01

Configuration reads cannot be broadcast.

Remote Maintenance Commands
Maintenance Commands are not supported in RoboCAN.

RoboCAN Networking

	 Advanced Digital Motor Controller User Manual� 171

Self Addressed Commands and Queries
For sake of consistency commands sent to the local node number are executed the same
way as they would be on a remote node. However the no CAN frame is sent to the net-
work. For example if node 04 receive the command

@04!G 1 500

No data will be sent on the network and it will be interpreted and executed the same way as

!G 1 500

RoboCAN via MicroBasic Scripting

A set of functions have been added to the MicroBasic language in order to easily send
commands to, and read data from any other node on the network. Functions are also
available to read and write configurations at a remote node. Maintenance commands are
not supported.

Sending Commands and Configuration
Sending commands or configuration values is done using the functions

SetCANCommand(id, cc, ch, vv)

SetCANConfig(id, cc, ch, vv).

Where:

id is the remote Node Id in decimal

cc is the Command code, eg _G

ch is the channel number. Put 1 for commands that do not normally require a channel
number

vv is the value

Example:

SetCANCommand(04, _G, 1, 500)

Will apply 50% power to motor 1 of node 4

SetCANConfig(0, _OVL, 1, 250)

RoboCAN Networking

172	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Will set the overvoltage limit of all nodes to 25.0V. Note that even though the Overvoltage
is set for the controller and does not normally require that a Channel, the value 1 must be
put in order for the instruction to compile.

Script execution is not paused when one of these function is used. The frame is sent on
the CAN network within one millisecond of the function call.

Reading Operating values Configurations

When reading an operating value such as Current Counter or Amps, or a configurations
such as Overvoltage Limit from another node, since the data must be fetched from the
network, and in order to avoid forcing a pausing of the script execution, data is accessed
in the following manner:

1.	 Send a request to fetch the node data
2.	 Wait for data to be received
3.	 Read the data

The wait step can be done using one of the 3 following ways

1.	 Pause script execution for a few milliseconds using a wait() instruction in line.
2.	 Perform other functions and read the results a number of loop cycles later
3.	 Monitor a data ready flag

The following functions are available in microbasic for requesting operating values and
configurations from a remote node.

FetchCANValue(id, cc, ch)

FetchCANConfig(id, cc, ch)

Where:

id is the remote Node Id in decimal
cc is the Command code, eg _G
cc is the channel number. Put 1 for commands that do not normally require a channel number

The following functions can be used to wait for the data to be ready for reading:

IsCANValueReady()

IsCANConfigReady()

These functions return a Boolean true/false value. They take no argument and apply to the
last issued FetchCANValue or FetchCANConfig function

The retrieved value can then be read using the following functions:

ReadCANValue()

ReadCANConfig()

These functions return an integer value. They take no argument and apply to the last is-
sued FetchCANValue or FetchCANConfig function

RoboCAN Networking

	 Advanced Digital Motor Controller User Manual� 173

Below is a sample script that continuously reads and print the counter value of node 4

top:
FetchCANValue(4, _C, 1) ‘ request data from remote node
while(IsCANValueReady = false) ‘ wait until data is received
end while
Counter = ReadCANValue() ‘ read value
print (Counter, “\r”) ‘ print value followed by new line
goto top ‘ repeat forever

Continuous Scan
In many applications, it is necessary to monitor the value of an operating parameter on a
remote node. A typical example would be reading continuously the value of a counter. In
order to improve efficiency and reduce overhead, a technique is implemented to automat-
ically scan a desired parameter from a given node, and make the value available for read-
ing without the need to send a Fetch command.

A function is provided to initiate the automatic sending of a value from the remote node,
at a specific periodic rate, and to be stored to user selected location in a receive buffer.

The remote node will then send the data continuously without further commands.

A function is then provided to detect the arrival of a new value in that buffer location, and
another to read the value from that location.

Since the scan rate is known, the execution of the script can be timed so that it is not
necessary to check the arrival of a new value.

Request value to be issued at
every t ms, to buffer location n

[Check if new value arrived]
Read from Scan buffer

Remote node

Local Scan Buffer

A scan is initiated with the function:

ScanCANValue(id, cc, ch, tt, bb)

Where:

id is the remote Node Id in decimal

RoboCAN Networking

174	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

cc is the Query code, eg _V

ch is the channel number. Put 1 for queries that do not normally require a channel number

tt is the scan rate in ms

bb is the buffer location

The scan rate can be up to 255ms. Setting a scan rate of 0 stops the automatic sending
from this node.

Unless otherwise specified, the buffer can store up to 32 values.

The arrival of a new value is checked with the function

IsScannedCANReady(aa)

Where

aa is the location in the scan buffer.

The function returns a Boolean true/false value

The new value is then read with the function

ReadScannedCANValue(aa)

Where

aa is the location in the scan buffer.

The function returns an integer value. If no new value was received since the previous
read, the old value will be read.

The following example shows the use of the Scan functions

‘ Initiate scan of counter every 10ms from node 4 and store to
buffer location 0
ScanCANValue(4, _C, 1, 10, 0)
‘ initiate scan of voltage every 100ms from node 4 and store to
buffer location 1
ScanCANValue(5, _V, 1, 100, 1)

top:

wait(10) ‘ Executer loop every 10 ms

‘ check if scanned volts arrived
if(IsScannedCANReady(1))
 ‘ read and print volts
 Volts = ReadScannedCANValue(1)
 print (Volts,”\r”)
end if

‘ No need to check if counter is ready since scan rate = loop cy-
cle
Counter = ReadScannedCANValue(0)
print (Counter,”\r”)

goto top ‘ Loop continuously

RoboCAN Networking

	 Advanced Digital Motor Controller User Manual� 175

Checking the presence of a Node
No error is reported in MicroBasic if an exchange is initiated with a node that does not ex-
ist. A command or configuration sent to a non-existent node will simply not be executed.
A query sent to a non existing or dead node will return the value 0. A function is therefore
provided for verifying the presence of a live node. A live node is one that sends the dis-
tinct RoboCAN heartbeat frame every 128ms. The function syntax is:

IsCANNodeAlive(id)

Where:

id is the remote Node Id in decimal
The function returns a Boolean true/false value.

Self Addressed Commands and Queries
Functions addressed to the local node have no effect. The following function will not
work if executed on node 4

SetCANCommand(04, _G, 1, 500)

The regular function must be used instead

SetCommand(_G, 1, 500)

Broadcast Command
Node address 00 is used to broadcast a command, or a configuration write simultaneous-
ly to all the nodes in the network.

The local node, however, will not be reached by the broadcast command.

Remote MicroBasic Script Download

RoboCAN includes a mechanism for loading MicroBasic scripts into any node in the net-
work. Use the “To Remote” button in the Scripting Tab of the Roborun PC utility. A win-
dow will pop-up asking for the destination node Id. Details of the command used to enter
the download mode and transferring scripts is outside the scope of this manual.

RoboCAN Networking

176	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Use and benefits of CANopen

	 Advanced Digital Motor Controller User Manual� 177

SECTION 17	 CANopen
Interface

This section describes the configuration of the CANopen communication protocol and the
commands accepted by the controller using the CANopen protocol. It will help you to en-
able CANopen on your Roboteq controller, configure CAN communication parameters, and
ensure efficient operation in CANopen mode.

The section contains CANopen information specific to Roboteq controllers. Detailed information
on the physical CAN layer and CANopen protocol can be found in the DS301 documentation.

Use and benefits of CANopen
CANopen protocol allows multiple controllers to be connected into an extensible unified
network. Its flexible configuration capabilities offer easy access to exposed device param-
eters and real-time automatic (cyclic or event-driven) data transfer.

The benefits of CANopen include:

•	 Standardized in EN50325-4
•	 Widely supported and vendor independent
•	 Highly extensible
•	 Offers flexible structure (can be used in a wide variety of application areas)
•	 Suitable for decentralized architectures
•	 Wide support of CANopen monitoring tools and solutions

CAN Connection

CANH

CANL

120 Ohm
Termination
Resistor

120 Ohm

Controller Controller
Other

CAN Device

FIGURE 17-1. CAN connection

CANopen Interface

178	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Connection to a CAN bus is as simple as shown on the diagram above. 120 Ohm Termina-
tion Resistors must be inserted at both ends of the bus cable. CAN network can be up to
1000m long. See CAN specifications for maximum length at the various bit rates.

CAN Bus Configuration
To configure communication parameters via the RoborunPlus PC utility, your controller
must be connected to a PC via an RS232/USB port

Use the CAN menu in the Configuration tab in order to enable the CANopen mode. Addi-
tionally, the utility can be used to configure the following parameters:

•	 Node ID
•	 Bit rate
•	 Heartbeat (ms)
•	 Autostart
•	 TPDO Enable and Send rate

Node ID
Every CANopen network device must have a unique Node ID, between 1 and 127. The val-
ue of 0 is used for broadcast messaging and cannot be assigned to a network node.

Bit Rate
The CAN bus supports bit rates ranging from 10Kbps to 1Mbps. The default rate used in
the current CANopen implementation is set to 125kbps. Valid bit bates supported by the
controller are:

•	 1000K
•	 800K
•	 500K
•	 250K
•	 125K

Heartbeat
A heartbeat message is sent to the bus in millisecond intervals. Heartbeats are useful for de-
tecting the presence or absence of a node on the network. The default value is set to 1000ms.

Autostart
When autostart is enabled, the controller automatically enters the Operational Mode of
CANopen. The controller autostart is enabled by default. Disabling the parameter will pre-
vent the controller from starting automatically after the reset occurs. When disabled, the
controller can only be enabled when receiving a CANopen management command.

Commands Accessible via CANopen

	 Advanced Digital Motor Controller User Manual� 179

Commands Accessible via CANopen
Practically all of the controller’s real-time queries and real-time commands that can be ac-
cessed via Serial/USB communication can also be accessed via CANopen. The meaning,
effect, range, and use of these commands is explained in detail in Commands Reference
section of the manual.
All supported commands are mapped in a table, or Object Dictionary that is compliant
with the CANopen specification. See “Object Dictionary” on page 181 for a complete
set of commands.

CANopen Message Types
The controller operating in the CANopen mode can accept the following types of mes-
sages:

•	 Service Data Objects, or SDO messages to read/write parameter values
•	 Process Data Objects, or PDO mapped messages to automatically transmit param-

eters and/or accept commands at runtime
•	 Network Management, or NMT as defined in the CANopen specification

Service Data Object (SDO) Read/Write Messages
Runtime queries and runtime commands can be sent to the controller in real-time using
the expedited SDO messages.

SDO messages provide generic access to Object Dictionary and can be used for obtaining
parameter values on an irregular basis due to the excessive network traffic that is generat-
ed with each SDO request and response message.

The list of commands accessible with SDO messages can be found in the “Object Dictio-
nary” on page 181.

Transmit Process Data Object (TPDO) Messages
Transmit PDO (TPDO) messages are one of the two types of PDO messages that are
used during operation.

TPDOs are runtime operating parameters that are sent automatically on a periodic basis
from the controller to one or multiple nodes. TPDOs do not alter object data; they only
read internal controller values and transmit them to the CAN bus.

TPDOs are identified on a CANopen network by the bit pattern in the 11-bit header of the
CAN frame.

4 bits 7 bits} }

Object Type NodeID

TPDO1: 0x180 + Node ID
TPDO2: 0x280 + Node ID
TPDO3: 0x380 + Node ID
TPDO4: 0x480 + Node ID

CANopen allows up to four TPDOs for any node ID. Unless otherwise specified in the
product datasheet, TPDO1 to TPDO4 are used to transmit up to 8 user variables which
may be loaded with any operating parameters using MicroBasic scripting.

CANopen Interface

180	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Each of the 4 TPDOs can be configured to be sent at user-defined periodic intervals. This is
done using the CTPS parameter (See “CTPS - CANOpen TPDO Send Rate” on page 363).

TABLE 17-1. Commands mapped on TPDOs

TPDO Object Index-Sub Size Object Mapped

TPDO1 0x2106-1 S32 User VAR 1

0x2106-2 User VAR 2

TPDO2 0x2106-3 S32 User VAR 3

0x2106-4 User VAR 4

TPDO3 0x2106-5 S32 User VAR 5

0x2106-6 User VAR 6

TPDO4 0x2106-7 S32 User VAR 7

0x2106-8 User VAR 8

S32: signed 32-bit word

Receive Process Data Object (RPDO) Messages
RPDOs are configured to capture runtime data destined to the controller.

RPDOs are CAN frames identified by their 11-bit header.

4 bits 7 bits} }

Object Type NodeID

RPDO1: 0x200 + Node ID
RPDO2: 0x300 + Node ID
RPDO3: 0x400 + Node ID
RPDO4: 0x500 + Node ID

Roboteq CANopen implementation supports RPDOs. Unless otherwise specified in the
product’s datasheet, data received using RPDOs are stored in 8 user variables from where
they can be processed using MicroBasic scripting.

TABLE 17-2. Commands mapped on RPDOs

RPDO Object Index-Sub Size Object Mapped

RPDO1 0x2005-9 S32 User VAR 9

0x2005-10 User VAR 10

RPDO2 0x2005-11 S32 User VAR 11

0x2005-12 User VAR 12

RPDO3 0x2005-13 S32 User VAR 13

0x2005-14 User VAR 14

RPDO4 0x2005-15 S32 User VAR 15

0x2005-16 User VAR 16

S32: signed 32-bit word

CANopen Message Types

	 Advanced Digital Motor Controller User Manual� 181

Object Dictionary
The CANopen dictionary shown in this section is subject to change. The CANopen EDS
file can be downloaded from the roboteq web site.

The Object Dictionary given in the table below contains the runtime queries and runtime
commands that can be accessed with SDO/PDO messages during controller operation.

TABLE 17-3. Motor Controllers Object Dictionary

 Index Sub (Hex) Entry Name
Data Type
& Access Command Name

Runtime Commands

0x2000 01 Set Motor Command, ch1 CG CANGO

02 Set Motor Command, ch2

0x2001 01 to mm (1) Set Position, ch.1 S32 WO P

0x2002 01 to mm (1) Set Velocity S16 WO S

0x2003 01 to ee (2) Set Encoder Counter S32 WO C

0x2004 01 to mm (1) Set Brushless Counter S32 WO CB

0x2005 01 -vv (3) Set User Integer Variable S32 WO VAR

0x2006 01 to mm (1) Set Acceleration S32 WO AC

0x2007 01 to mm (1) Set Deceleration S32 WO DC

0x2008 00 Set All Digital Out bits U8 WO DS

0x2009 00 Set Individual Digital Out bits U8 WO D1

0x200A 00 Reset Individual Digital Out bits U8 WO D0

0x200B 01 to ee (2) Load Home Counter U8 WO H

0x200C 00 Emergency Shutdown U8 WO EX

0x200D 00 Release Shutdown U8 WO MG

0x200E 00 Stop in all modes U8 WO MS

0x200F 01 to mm (1) Set Pos Relative S32 WO PR

0x2010 01 to mm (1) Set Next Pos Absolute S32 WO PX

0x2011 01 to mm (1) Set Next Pos Relative S32 WO PRX

0x2012 01 to mm (1) Set Next Acceleration S32 WO AX
0x2013 01 to mm (1) Set Next Deceleration S32 WO DX

0x2014 01 to mm (1) Set Next Velocity S32 WO SX

0x2015 01 to bb (4) Set User Bool Variable S32 WO B

0x2017 00 Save Config to Flash U8 WO EES

Runtime Queries

0x2100 01 Read Motor Amps S16 RO A

0x2101 01 to mm (1) Read Actual Motor Command S16 RO M

0x2102 01 to mm (1) Read Applied Power Level S16 RO P

0x2103 01 to ee (2) Read Encoder Motor Speed, ch.1 S16 RO S

CANopen Interface

182	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

TABLE 17-3. Motor Controllers Object Dictionary

 Index Sub Entry Name
Data Type
& Access Command Name

0x2104 01 to ee (2) Read Absolute Encoder Count S32 RO C

0x2105 01 to mm (1) Read Absolute Brushless
Counter

S32 RO CB

0x2106 01 to vv (3) Read User Integer Variable 1 S32 RO VAR

0x2107 01 to ee (2) Read Encoder Motor Speed as
1/1000 of Max

S16 RO SR

0x2108 01 to ee (2) Read Encoder Count Relative S32 RO CR

0x2109 01 to mm (1) Read Brushless Count Relative S32 RO CBR

0x210A 01 to mm (1) Read BL Motor Speed in RPM S16 RO BS

0x210B 01 to mm (1) Read BL Motor Speed as 1/1000 of
Max

S16 RO BSR

0x210C 01 to mm (1) Read Battery Amps S16 RO BA

0x210D 01 to 03 Read VInt, VBat, 5VOut U16 RO V

0x210E 00 Read All Digital Inputs U32 RO D

0x210F 01 to tt+1 (5) Read MCU and Transistor
temperature

S8 RO T

0x2110 01 to mm (1) Read Feedback S16 RO F

0x2111 00 Read Status Flags U8 RO FS
0x2112 00 Read Fault Flags U8 RO FF
0x2113 00 Read Current Digital Outputs U8 RO DO
0x2114 01 to mm (1) Read Closed Loop Error S32 RO E
0x2115 01 to bb (4) Read User Bool Variable S32 RO B
0x2116 01 to mm (1) Read Internal Serial Command S32 RO CIS
0x2117 01 to mm (1) Read Internal Analog Command S32 RO CIA
0x2118 01 to mm (1) Read Internal Pulse Command S32 RO CIP
0x2119 00 Read Time U32 RO TM
0x211A 01 to 06 Read Spektrum Radio Capture U16 RO K
0x211B 01 to 06 Destination Pos Reached flag U8 RO DR
0x211D 01 to ss (9) Read Magsensor Track Detect U8 RO MGD
0x211E 01 to ss*3 (9) Read Magsensor Track Position, U8 RO MGT
0x211F 01 to ss*3 (9) Read Magsensor Markers U8 RO MGM
0x2120 01 to ss (9) Read Magsensor Status U16 RO MGS
0x2121 01 to ss (9) Read Magsensor Gyroscope S16 RO MGY
0x2122 01 to mm (1) Read Motor Status Flags U16 RO FM
0x2123 01 to mm (1) Read Hall Sensor States U8 RO HS
0x6400 01 to dd (6) Read Individual Digital Input S32 RO DI
0x2121 01 to 03 Read Magsensor Gyroscope S16 RO MGY
0x2122 01 to mm (1) Read Motor Status Flags U16 RO FM
0x2123 01 to mm (1) Read Hall Sensor States U8 RO HS
0x2125 01 to mm (1) Read Destination Tracking S32 RO TR

SDO Construction Details

	 Advanced Digital Motor Controller User Manual� 183

TABLE 17-3. Motor Controllers Object Dictionary

 Index Sub Entry Name
Data Type
& Access Command Name

0x2132 01 to mm (1) Read Rotor Angle S16 RO ANG
0x2135 01 to mm (1) Read FOC Angle Correction S16 RO FC
0x2136 01 to mm(1) Read Slip S16 RO SL
0x6401 01 to aa (7) Read Analog Input S16 RO AI
0x6402 01 to aa (7) Read Analog Input Converted S16 RO AIC
0x6403 01 to pp (8) Read Pulse Input S16 RO PI
0x6404 01 to pp (8) Read Pulse Input Converted S16 RO PIC

Notes: Product-specific parameters. See datasheet
(1) mm: Max number of motors
(2) ee: Max number of encoders
(3) vv: Max number of user integer variables
(4) bb: Max number of user boolean variables
(5) tt: Number of internal temperature sensors
(6) dd: Number of digital inputs
(7) aa: Number of analog inputs
(8) pp: Number of pulse inputs
(9) ss: Max number of Magsensors supported

SDO Construction Details
CANOpen SDO frames can easily be created manually and used to send commands
and queries to a Roboteq device. The directives below are a simplified description of the
CANOpen SDO mechanism. For more details please advise the CANOpen standard.

A CANOpen command/query towards a Roboteq device can be analyzed as shown below:

Header DLC

Payload

Byte0

Byte1-2 Byte 3 Bytes4-7bits 4-7 bits2-3 bits0-1

0x600+nd 8 css n xx index subindex data

•	 nd is the destination node id.
•	 ccs is the Client Command Specifier, if 2 it is command if 4 it is query.
•	 n is the Number of bytes in the data part, which do not contain data
•	 xx not necessary for basic operation. For more details advise CANOpen standard.
•	 index is the object dictionary index of the data to be accessed
•	 subindex is the subindex of the object dictionary variable
•	 data contains the data to be uploaded.

CANopen Interface

184	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

The Response from the roboteq device is as shown below:

Header DLC

Payload

Byte0

Byte1-2 Byte 3 Bytes4-7bits 4-7 bits2-3 bits0-1

0x580+nd 8 css n xx index subindex Data

•	 nd is the source node id.
•	 ccs is the Client Command Specifier, if 4 it is query response, 6 it is a successful

response to command, 8 is an error in message received.
•	 n is the Number of bytes in the data part, which do not contain data
•	 xx not necessary for the simplistic way. For more details advise CANOpen standard.
•	 index is the object dictionary index of the data to be accessed.
•	 subindex is the subindex of the object dictionary variable
•	 data contains the data to be uploaded. Applicable only if css=4.

SDO Example 1: Set Encoder Counter 2 (C) of node 1 value 10

•	 nd = 1, since the destination’s node id is 1.
•	 ccs = 2, since it is a command.
•	 n = 0 since all 4 bytes of the data are used (signed32).
•	 index = 0x2003 and subindex = 0x02 according to object dictionary.

Header DLC

Payload

Byte0

Byte1-2 Byte 3 Bytes4-7bits 4-7 bits2-3 bits0-1

0x600+1 8 2 0 0 0x2003 0x02 0x0A

601h 8 20 03 20 02 0A 00 00 00

The respective response will be:

Header DLC

Payload

Byte0

Byte1-2 Byte 3 Bytes4-7bits 4-7 bits2-3 bits0-1

0x580+1 8 6 0 0 0x2003 0x02 0x00

581h 8 60 03 20 02 00 00 00 00

SDO Example 2: Activate emergency shutdown (EX) for node 12

•	 nd = 12, since the destination’s node id is 12.
•	 ccs = 2, since it is a command.
•	 n = 3 since only one byte of the data is used (unsigned8).
•	 index = 0x200C and subindex = 0x00 according to object dictionary.

SDO Construction Details

	 Advanced Digital Motor Controller User Manual� 185

Header DLC

Payload

Byte0

Byte1-2 Byte 3 Bytes4-7bits 4-7 bits2-3 bits0-1

0x600+12 8 2 3 0 0x200C 0x00 0x01

601Ch 8 2C 0C 20 00 01 00 00 00

The respective response will be:

Header DLC

Payload

Byte0

Byte1-2 Byte 3 Bytes4-7bits 4-7 bits2-3 bits0-1

0x580+1 8 6 0 0 0x200C 0x00 0x00

58Ch 8 60 0C 20 00 00 00 00 00

SDO Example 3: Read Battery Volts (V) of node 1.

•	 nd = 1, since the destination’s node id is 1.
•	 ccs = 4, since it is a query.
•	 n = 2 since 2 bytes of the data are used (unsigned16).
•	 index = 0x210D and subindex = 0x02 according to object dictionary.

Header DLC

Payload

Byte0

Byte1-2 Byte 3 Bytes4-7bits 4-7 bits2-3 bits0-1

0x600+1 8 4 2 0 0x210D 0x02 0x00

601h 8 48 0D 21 02 0A 00 00 00

The respective response will be:
•	 nd = 1, since the source node id is 1.
•	 ccs = 4, since it is a query response.
•	 n = 2 since 2 bytes of the data are used (unsigned16).
•	 index = 0x210D and subindex = 0x02 according to object dictionary.
•	 data = 0x190 = 400 = 40 Volts.

Header DLC

Payload

Byte0

Byte1-2 Byte 3 Bytes4-7bits 4-7 bits2-3 bits0-1

0x580+1 8 4 2 xx 0x210D 0x02 0x190

581h 8 48 0D 21 02 90 01 00 00

TABLE 17-4. Magnetic Guide Sensor Object Dictionary

CANopen Interface

186	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Script Structure and Possibilities

	 Advanced Digital Motor Controller User Manual� 187

SECTION 18	 MicroBasic
Scripting

One of the Roboteq products’ most powerful and innovative features is their ability for the
user to write programs that are permanently saved into, and run from the device’s Flash
Memory. This capability is the equivalent, for example, of combining the motor controller
functionality and this of a PLC or Single Board Computer directly into the controller. Script
can be simple or elaborate, and can be used for various purposes:

•	 Complex sequences:
MicroBasic Scripts can be written to chain motion sequences based on the status
of analog/digital inputs, motor position, or other measured parameters. For exam-
ple, motors can be made to move to different count values based on the status of
pushbuttons and the reaching of switches on the path.

•	 Adapt parameters at runtime
MicroBasic Scripts can read and write most of the controller’s configuration set-
tings at runtime. For example, the Amps limit can be made to change during opera-
tion based on the measured heatsink temperature.

•	 Create new functions
Scripting can be used for adding functions or operating modes that may be needed
for a given application. For example, a script can compute the motor power by mul-
tiplying the measured Amps by the measured battery Voltage, and regularly send
the result via the serial port for Telemetry purposes.

•	 Autonomous operation
MicroBasic Scripts can be written to perform fully autonomous operations. For ex-
ample the complete functionality of a line following robot can easily be written and
fitted into the controller.

Script Structure and Possibilities
Scripts are written in a Basic-Like computer language. Because of its literal syntax that is
very close to the every-day written English, this language is very easy to learn and simple
scripts can be written in minutes. The MicroBasic scripting language also includes support
for structured programming, allowing fairly sophisticated programs to be written. Several
shortcuts borrowed from the C-language (++, +=, …) are also included in the scripting lan-
guage and may be optionally used to write shorter programs.

MicroBasic Scripting

188	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

The complete details on the language can be found in the MicroBasic Language
Reference on page 195.

Source Program and Bytecodes
Programs written in this Basic-like language are interpreted into an intermediate string of
Bytecode instructions that are then downloaded and executed in the controller. This two-
step structure ensures that only useful information is stored in the controller and results in
significantly higher performance execution over systems that interpret Basic code directly.
This structure is for the most part entirely invisible to the programmer as the source ed-
iting is the only thing that is visible on the PC, and the translation and done in the back-
ground just prior to downloading to the controller.

Depending on the product, programs can be from 8192 to 32768 Bytecodes long. This
translates to approximately 1500 to 6000 lines of MicroBasic source.

Variables Types and Storage
Scripts can store signed 32-bit integer variables and Boolean variable. Integer variables can
handle values up to +/– 2,147,483,647. Boolean variables only contain a True or False state.
The language also supports single dimensional arrays of integers and Boolean variables.

In total, up to 1024 or 4096 (depending on the product) Integer variables and up to 1024
Boolean variables can be stored in the controller. An array of n variables will take the stor-
age space of n variables.

The language only works with Integer or Boolean values. It is not possible to store or
manipulate decimal values. This constraint results in more efficient memory usage and
faster script execution. This constraint is usually not a limitation as it is generally sufficient
to work with smaller units (e.g. millivolts instead of Volts, or milliamps instead of Amps) to
achieve the same precision as when working with decimals.

The language does not support String variables and does not have string manipulation
functions. Basic string support is provided for the Print command.

Variable content after Reset
All integer variables are reset to 0 and all Boolean variables are reset to False after the
controller is powered up or reset. When using a variable for the first time in a script, its
value can be considered as 0 without the need to initialize it. Integer and Boolean vari-
ables are also reset whenever a new script is loaded.

When pausing and resuming a script, all variables keep the values they had at the time the
script was paused.

Controller Hardware Read and Write Functions
The MicroBasic scripting language includes special functions for reading and writing
configuration parameters. Most configuration parameters that can be read and changed
using the Configuration Tab in the Roborun PC utility or using the Configuration serial
commands, can be read and changed from within a script. The GetConfig and SetConfig
functions are used for this purpose.

The GetValue function is available for reading real-time operating parameters such as Ana-
log/Digital input status, Amps, Speed or Temperature.

Script Structure and Possibilities

	 Advanced Digital Motor Controller User Manual� 189

The SetCommand function is used to send motor commands or to activate the Digital
Outputs. Practically all controller parameters can be access using these 4 commands,
typically by adding the command name as defined in the Serial (RS232/USB) Operation on
page 141 preceded with the “_” character. For example, reading the Amps limit configura-
tion for channel 1 is done using getvalue(_ALIM, 1).

See the MicroBasic Language Reference on page 143 for details on these functions and
how to use them.

Timers and Wait
The language supports four 32-bit Timer registers. Timers are counters that can be loaded
with a value using a script command. The timers are then counting down every millisec-
ond independently of the script execution status. Functions are included in the language
to load a timer, read its current count value, pause/resume count, and check if it has
reached 0. Timers are very useful for implementing time-based motion sequences.

A wait function is implemented for suspending script execution for a set amount of time.
When such an instruction is encountered, script execution immediately stops and no
more time is allocated to script execution until the specified amounts of milliseconds have
elapsed. Script execution resumes at the instruction that follows the wait.

Execution Time Slot and Execution Speed
MicroBasic scripts are executed in the free time that is available every 1ms, after the con-
troller has completed all its motion control processing. The available time can therefore
vary depending on the functions that are enabled or disabled in the controller configura-
tion. For example more time is available for scripting if the controller is handling a single
motor in open loop than if two motors are operated in closed loop with encoders. At the
end of the allocated time, the script execution is suspended, motor control functions are
performed, and scripts resumed. An execution speed averaging 50,000 lines of MicroBa-
sic code, or higher, per second can be expected in most cases.

Protections
No protection against user error is performed at execution time. For example, writing or
reading in an array variable with an index value that is beyond the 1024 or 4096 variables
available in the controller may cause malfunction or system crash. Nesting more than 64
levels of subroutines (i.e. subroutines called from subroutines, …) will also cause potential
problems. It is up to the programmer to carefully check the script’s behavior in all conditions.

Print Command Restrictions
A print function is available in the language for outputting script results onto the serial or
USB port. Since script execution is very fast, it is easy to send more data to the serial
or USB port than can actually be output physically by these ports. The print command is
therefore limited to 32 characters per 1ms time slot. Printing longer strings will force a
1ms pause to be inserted in the program execution every 32 characters and/or loss of
characters.

MicroBasic Scripting

190	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Editing, Building, Simulating and Executing Scripts

Editing Scripts
An editor is available for scripting in the RoborunPlus PC utility. See Scripting Tab on page
368 (Roborun scripting) for details on how to launch and operate the editor.

The edit window resembles this of a typical IDE editor with, most noticeably, changes in
the fonts and colors depending on the type of entry that is recognized as it is entered. This
capability makes code easier to read and provides a first level of error checking.

Code is entered as free-form text with no restriction in term of length, indents use, or
other.

Building Scripts
Building is the process of converting the Basic source code in the intermediate Bytecode
language that is understood by the controller. This step is nearly instantaneous and nor-
mally transparent to the user, unless errors are detected in the program.

Build is called automatically when clicking on the “Download to Device” or “Simulate”
buttons.

Building can be called independently by clicking on the “Build” button. This step is normal-
ly not necessary but it can be useful in order to compare the memory usage efficiency of
one script compared to another.

Simulating Scripts
Scripts can be ran directly on the PC in simulation mode. Clicking on the Simulate button
will cause the script to be built and launch a simulator in which the code is executed. This
feature is useful for writing, testing and debugging scripts. The simulator works exactly
the same way as the controller with the following exceptions.

•	 Execution speed is different.
•	 Controller configurations and operating parameters are not accessible from the

simulator
•	 Controller commands cannot be sent from the simulator
•	 The four Timers operate differently in the simulator
•	 RoboCAN commands and queries have no effect

In the simulator, any attempt to read a Controller configuration (example Amps limit) or a
Controller Runtime parameter (e.g. Volts, Temperature) will cause a prompt to be displayed
for the user to enter a value. Entering no value and hitting Enter, will cause the same value
that was entered last for the same parameter to be used. If this is the first time the user
is prompted for a given parameter, 0 will be entered if hitting Enter with no data.

When a function in the simulator attempts to write a configuration or a command, then
the console displays the parameter name and parameter value in the console.

Script execution in the simulator starts immediately after clicking on the Simulate button
and the console window opens.

Simulated scripts are stopped when closing the simulator console.

Editing, Building, Simulating and Executing Scripts

	 Advanced Digital Motor Controller User Manual� 191

Downloading MicroBasic Scripts to the controller
The Download to Device button will cause the MicroBasic script to be built and then trans-
ferred into the controller’s flash memory where it will remain permanently unless over-
written by a new script.

The download process requires no other particular attention. There is no warning that a
script may already be present in Flash. A progress bar will appear for the duration of the
transfer which can be from a fraction of a second to a few seconds. When the download
is completed successfully, no message is displayed, and control is returned to the editor A
downloaded script cannot be read out..

An error message will appear only if the controller is not ready to receive or if an error oc-
curred during the download phase.

Downloading a new script while a script is already running will cause the running script to
stop execution. All variables will also be cleared when a new script is downloaded. When
using multiple controllers over a CAN network with the RoboCAN protocol, it is possible
to download the script into any node. Use the Download to Device button from the
Scripting tab of the PC Utility.

In networked systems using the RoboCAN protocol, scripts can be loaded in any active
node by using the Download to Remote button in the PC utility.

Saving and Loading Scripts in Hex Format
Compiled scripts can be saved as a .hex format file from the PC Utility. The bytecodes can
then be loaded into the controller using the “Update Script” button on the Console tab.
Using this technique is a good way of keeping the source code secret and/or safe while
allowing field updates.

The bytecodes in the .hex file can also be loaded in the controller by any microcomputer
using the following sequence:

Send the string:

%sld 321654987

the controller will reply with

HLD

to indicate it is waiting for data

then send the hex file, one line at a time. At the end of each line received, the controller
will send a +

Beware that if no data is received for more than 1s, the controller will exit the HLD mode.

Executing MicroBasic Scripts
Once stored in the Controller’s Flash memory, scripts can be executed either “Manually”
or automatically every time the controller is started.

MicroBasic Scripting

192	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Manual launch is done by sending commands via the Serial or USB port. When connected
to the PC running the PC utility, the launch command can be entered from the Console
tab. The commands for running as stopping scripts are:

•	 !r :	 Start or Resume Script
•	 !r 0: 	 Pause Script execution
•	 !r 1: 	 Resume Script from pause point. All integer and Boolean variables have val-

ues they had at the time the script was paused.
•	 !r 2: 	 Restarts Script from start. Set all integer variables to 0, sets all Boolean vari-

ables to False. Clears and stops the 4 timers.

On CAN networks running the RoboCAN protocol, a script on a remote node can be
launched or stopped by using the above commands with the RoboCAN prefix. For example

•	 @06!r : Start or Resume Script on device at RoboCAN node 6

If the controller is connected to a microcomputer, it is best to have the microcomputer
start script execution by sending the !r command via the serial port or USB.

Scripts can be launched automatically after controller power up or after reset by setting
the Auto Script configuration to Enable in the controller configuration memory. When en-
abled, if a script is detected in Flash memory after reset, script execution will be enabled
and the script will run as when the !r command is manually entered. Once running, scripts
can be paused and resumed using the commands above.

Important Warning

Prior to set a script to run automatically at start-up, make sure that your script will
not include errors that can make the controller processor crash. Once set to auto-
matically start, a script will always start running shortly after power up. If a script
contains code that causes system crash, the controller will never reach a state
where it will be possible to communicate with it to stop the script and/or load a
new one. If this ever happens, the only possible recovery is to connect the controller
to a PC via the serial port and run a terminal emulation software. Immediately after
receiving the Firmware ID, type and send !r 0 to stop the script before it is actually
launched. Alternatively, you may reload the controller’s firmware.

Debugging Microbasic Scripts
While running a script with the source code visible in the Scripting tab, it is possible to
view the state of all variable in real time. Click on the “Inspect Variable” buttons and over
the variable in the source code. The variable value will appear near the mouse. To see
changes to the variable, move the mouse away and then back on the variable.

Using print statements in questionable parts of the code is also a very effective debug
tool. Run script from the console in order to be able to view the script output.

Script Command Priorities
When sending a Motor or Digital Output command from the script, it will be interpreted
by the controller the same way as a serial command (RS232 or USB). This means that the
RS232 watchdog timer will trigger in if no commands are sent from the script within the

MicroBasic Scripting Techniques

	 Advanced Digital Motor Controller User Manual� 193

watchdog timeout. If a serial command is received from the serial/USB port at the same
time a command is sent from the script, both will be accepted and this can cause con-
flicts if they are both relating to the same channel. Care must be taken to keep to avoid,
for example, cases where the script commands one motor to go to a set level while a se-
rial command is received to set the motor to a different level. To avoid this problem when
using the Roborun PC utility, click on the mute button to stop commands sending from
the PC.

Script commands also share the same priority level as Serial commands. Use the Com-
mand Priority Setting (See “Command Priorities” on page 146) to set the priority of com-
mands issued from the script vs. commands received from the Pulse Inputs or Analog
Inputs.

MicroBasic Scripting Techniques
Writing scripts for the Roboteq controllers is similar to writing programs for any other
computer. Scripts can be called to run once and terminate when done. Alternatively,
scripts can be written so that they run continuously.

Single Execution Scripts
These scripts are programs that perform a number of functions and eventually terminate.
These kind of scripts can be summarized in the flow chart below. The amount of process-
ing can be simple or very complex but the script has a clear begin and end.

Processing

Start

End

FIGURE 18-1. Single execution scripts

Continuous Scripts
More often, scripts will be active permanently, reacting differently based on the status of
analog/ digital inputs, or operating parameters (Amps, Volts, Temperature, Speed, Count,
…), and continuously updating the motor power and/or digital outputs. These scripts have
a beginning but no end as they continuously loop back to the top. A typical loop construc-
tion is shown in the flow chart below.

MicroBasic Scripting

194	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

top

Initialization Steps

Process Events
Time, Input or

Controller events

Wait

Y

N

Start

FIGURE 18-2. Continuous execution scripts

Often, some actions must be done only once when script starts running. This could be
setting the controller in an initial configuration or computing constants that will then be
used in the script’s main execution loop.

The main element of a continuous script is the scanning of the input ports, timers, or
controller operating parameters. If specific events are detected, then the script jumps to
steps related to these events. Otherwise, no action is taken.

Prior to looping back to the top of the loop, it is highly recommended to insert a wait time.
The wait period should be only as short as it needs to be in order to avoid using process-
ing resources unnecessarily. For example, a script that monitors the battery and triggers
an output when the battery is low does not need to run every millisecond. A wait time of
100ms would be adequate and keep the controller from allocating unnecessary time to
script execution.

Optimizing Scripts for Integer Math
Scripts only use integer values as variables and for all internal calculation. This leads to
very fast execution and lower computing resource usage. However, it does also cause lim-
itation. These can easily be overcome with the following techniques.

First, if precision is needed, work with smaller units. In this simple Ohm-law example,
whereas 10V divided by 3A results in 3 Ohm, the same calculation using different units
will give a higher precision result: 10000mV divided by 3A results in 3333 mOhm

Second, the order in which terms are evaluated in an expression can make a very big
difference. For example (10 / 20) * 1000 will produce a result of 0 while (10 * 1000)/20 pro-
duces 5000. The two expressions are mathematically equivalent but not if numbers can
only be integers.

MicroBasic Language Reference

	 Advanced Digital Motor Controller User Manual� 195

Script Examples
Several sample scripts are available from the download page on Roboteq’s web site.

Below is an example of a script that continuously checks the heat sink temperature at
both sides of the controller enclosure and lowers the amps limit to 50A when the average
temperature exceeds 50oC. Amps limit is set at 100A when temperature is below 50o.
Notice that as temperature is changing slowly, the loop update rate has been set at a rela-
tively slow 100ms rate.

‘ This script regularity reads the current temperature at both sides
‘ of the heat sink and changes the Amps limit for both motors to 50A
‘ when the average temperature is above 50oC. Amps limit is set to
‘ 100A when temperature is below or equal to 50oC.
‘ Since temperature changes slowly, the script is repeated every 100ms

‘ This script is distributed “AS IS”; there is no maintenance
‘ and no warranty is made pertaining to its performance or applicability

top: ‘ Label marking the beginning of the script.

‘ Read the actual command value
Temperature1 = getvalue(_TEMP,1)
Temperature2 = getvalue(_TEMP,2)
TempAvg = (Temperature1 + Temperature2) / 2

‘ If command value is higher than 500 then configure
‘ acceleration and deceleration values for channel 1 to 200

if TempAvg > 50 then
	 setconfig(_ALIM, 1, 500)
	 setconfig(_ALIM, 2, 500)
else
‘ If command value is lower than or equal to 500 then configure
‘ acceleration and deceleration values for channel 1 to 5000
	 setconfig(_ALIM, 1, 1000)
	 setconfig(_ALIM, 2, 1000)
end if

‘ Pause the script for 100ms
wait(100)
‘ Repeat the script from the start
goto top

MicroBasic Language Reference

Introduction
The Roboteq Micro Basic is high level language that is used to generate programs that
runs on Roboteq motor controllers. It uses syntax nearly like Basic syntax with some ad-
justments to speed program execution in the controller and make it easier to use.

MicroBasic Scripting

196	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Comments
A comment is a piece of code that is excluded from the compilation process. A comment
begins with a single-quote character. Comments can begin anywhere on a source line,
and the end of the physical line ends the comment. The compiler ignores the characters
between the beginning of the comment and the line terminator. Consequently, comments
cannot extend across multiple lines.

‘Comment goes here till the end of the line.

Boolean
True and False are literals of the Boolean type that map to the true and false state, re-
spectively.

Numbers
Micro Basic supports only integer values ranged from -2,147,483,648 (0x80000000) to
2,147,483,647 (0x7FFFFFFF).

Numbers can be preceded with a sign (+ or -), and can be written in one of the following
formats:

•	 Decimal Representation

Number is represented in a set of decimal digits (0-9).

120 5622 504635

Are all valid decimal numbers.

•	 Hexadecimal Representation

Number is represented in a set of hexadecimal digits (0-9, A-F) preceded by 0x.

0xA1 0x4C2 0xFFFF

	 Are all valid hexadecimal numbers representing decimal values 161, 1218 and
65535 respectively.

•	 Binary Representation

Number is represented in a set of binary digits (0-1) preceded by 0b.

0b101 0b1110011 0b111001010

	 Are all valid binary numbers representing decimal values 5, 115 and 458 respectively.

Strings
Strings are any string of printable characters enclosed in a pair of quotation marks. Non
printing characters may be represented by simple or hexadecimal escape sequence. Micro
Basic only handles strings using the Print command. Strings cannot be stored in variable
and no string handling instructions exist.

•	 Simple Escape Sequence
	 The following escape sequences can be used to print non-visible or characters:

MicroBasic Language Reference

	 Advanced Digital Motor Controller User Manual� 197

Sequence Description
\’ Single quote

\” Double quote

\\ Backslash

\0 Null

\a Alert

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\v Vertical tab

•	 Hexadecimal Escape Sequence
	 Hexadecimal escape sequence is represented in a set of hexadecimal digits (0-9,

A-F) preceded by \x in the string (such as \x10 for character with ASCII 16).

	 Since a hexadecimal escape sequence can have a variable number of hex digits,
the string literal “\x123” contains a single character with hex value 123. To create
a string containing the character with hex value 12 followed by the character 3, one
could write “\x00123”.

So, to represent a string with the statement “Hello World!” followed by a new line, you
may use the following syntax:

“Hello World!\n”

Blocks and Labels
A group of executable statements is called a statement block. Execution of a statement
block begins with the first statement in the block. Once a statement has been executed,
the next statement in lexical order is executed, unless a statement transfers execution
elsewhere.

A label is an identifier that identifies a particular position within the statement block that
can be used as the target of a branch statement such as GoTo, GoSub or Return.

Label declaration statements must appear at the beginning of a line. Label declaration
statements must always be followed by a colon (:) as the following:

Print_Label:
 Print(“Hello World!”)

Label name should start with alphabetical character and followed by zero or more alphanu-
meric characters or underscore. Label names cannot start with underscore. Labels names
cannot match any of Micro Basic reserved words.

MicroBasic Scripting

198	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Label names are case insensitive that is PrintLabel is identical to printLabel.

The scope of a label extends whole the program. Labels cannot be declared more than
once in the program.

Variables
Micro Basic contains only two types of variable (Integer and Boolean) in addition to
arrays of these types. Boolean and arrays must be declared before use, but Integer vari-
ables may not be declared unless you use the Option Explicit compiler directive.

Option Explicit

Variables can be declared using DIM keyword (see Dim (Variable Declaration) on
page 200).

Variable name should start with alphabetical character and followed by zero or more alpha-
numeric characters or underscore. Variable names cannot start with underscore. Variable
names cannot match any of Micro Basic reserved words.

Variable names are case insensitive, that is VAR is identical to var.

The scope of a variable extends whole the program. Variables cannot be declared more
than once in the program.

Arrays
Arrays is special variables that holds a set of values of the variable type. Arrays are de-
clared using DIM command (see Dim (Variable Declaration) on page 200).

To access specific element in the array you can use the indexer [] (square brackets). Arrays
indices are zero based, so index of 5 refer to the 6th element of the array.

arr[0] = 10	 ‘Set the value of the first element in the array to 10.

a = arr[5]	 ‘Store the 6th element of the array into variable a.

Terminology
In the following sections we will introduce Micro Basic commands and how it is used, and
here is the list of terminology used in the following sections:

•	 Micro Basic commands and functions will be marked in blue and cyan respectively.
•	 Anything enclosed in < > is mandatory and must be supplied.
•	 Anything enclosed in [] is optional, except for arrays where the square brackets is

used as indexers.
•	 Anything enclosed in { } and separated by | characters are multi choice options.
•	 Any items followed by an ellipsis, ... , may be repeated any number of times.

•	 Any punctuation and symbols, except those above, are part of the structure and
must be included.

var is any valid variable name including arrays.

arr is any valid array name.

expression is any expression returning a result.

MicroBasic Language Reference

	 Advanced Digital Motor Controller User Manual� 199

condition is any expression returning a boolean result.

stmt is single Micro Basic statement.

block is zero or more Micro Basic statements.

label is any valid label name.

n is a positive integer value.

str is a valid string literal.

Keywords
A keyword is a word that has special meaning in a language construct. All keywords are
reserved by the language and may not be used as variables or label names. Below is a list
of all Micro Basic keywords:

#define And AndWhile As Boolean

Continue Dim Do Else ElseIf

End Evaluate Exit Explicit False

For GoSub GoTo If Integer

Loop Mod Next Not Option

Or Print Return Step Terminate

Then To ToBool True Until

While XOr

Operators
Micro Basic provides a large set of operators, which are symbols or keywords that specify
which operations to perform in an expression. Micro Basic predefines the usual arithmetic
and logical operators, as well as a variety of others as shown in the following table.

Category Operators

Arithmetic + - * / Mod

Logical (boolean and bitwise) And Or XOr Not True False

Increment, decrement ++ --

Shift << >>

Relational = <> < > <= >=

Assignment = += -= *= /= <<= >>=

Indexing []

Micro Basic Functions
The following is a set of Micro Basic functions

Abs	 Returns the absolute value of a given number.

Atan	 Returns the angle whose arc tangent is the specified number.

Cos	 Returns the cosine of the specified angle.

Sin	 Returns the sine of the specified angle.

Sqrt	 Returns the square root of a specified number.

MicroBasic Scripting

200	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Controller Configuration and Commands
The following is a set of device functions for interacting with the Controller:

SetConfig Set a configuration parameter

SetCommand Send a Real Time command

GetConfig Read a configuration parameter

GetValue Read an operating value

A set of similar commands are available for accessing/changing configurations, sending
commands and reading operating values of remote nodes on CAN networks using the
RoboCAN protocol.

Timers Commands
The following is a set of functions for interacting with the timers:

SetTimerCount Set number of milliseconds for timer to count.

SetTimerState Set state of a specific timer.

GetTimerCount Read timer count.

GetTimerState Read state of a specific timer.

Pre-Processor Directives (#define)
The #define creates a macro, which is the association of an identifier with a token expres-
sion. After the macro is defined, the compiler can substitute the token expression for each
occurrence of the identifier in the source file.

#define <var> <expression>

The following example illustrates how use pre-processor directive:

#define CommandID _GO + 5

Print(CommandID)

Option (Compilation Options)
Micro Basic by default treats undeclared identifiers as integer variables. If you want the
compilers checks that every variable used in the program is declared and generate com-
pilation error if a variable is not previously declared, you may use Option explicit compiler
option by pacing the following at the beginning of the program:

Option Explicit

Dim (Variable Declaration)
Micro Basic contains only two types of variable (Integer and Boolean) in addition to arrays
of these types. Boolean and arrays must be declared before use, but Integer variables
may not be declared unless you use the Option Explicit compiler directive.

Dim var As { Integer | Boolean }

MicroBasic Language Reference

	 Advanced Digital Motor Controller User Manual� 201

The following example illustrates how to declare Integer variable:

Dim intVar As Integer

Arrays declaration uses a different syntax, where you should specify the array length be-
tween square brackets []. Array length should be integer value greater than 1.

Dim arr[n] As { Integer | Boolean }

The following example illustrates how to declare array of 10 integers:

Dim arr[10] As Integer

To access array elements (get/set), you may need to take a look to Arrays section (see Ar-
rays on page 198).

Variable and arrays names should follow specification stated in the Variables section (see
Variables on page 198).

If...Then Statement

•	 Line If

	 If <condition> Then <stmt> [Else <stmt>]

•	 Block If

	 If <condition> [Then]
 <block>
	 [ElseIf <condition> [Then]
 <block>]
	 [ElseIf <condition> [Then]
 <block>]
	 ...
	 [Else
 <block>]
	 End If

An If...Then statement is the basic conditional statement. If the expression in the If
statement is true, the statements enclosed by the If block are executed. If the expres-
sion is false, each of the ElseIf expressions is evaluated. If one of the ElseIf expres-
sions evaluates to true, the corresponding block is executed. If no expression evaluates to
true and there is an Else block, the Else block is executed. Once a block finishes execut-
ing, execution passes to the end of the If...Then statement.

The line version of the If statement has a single statement to be executed if the If ex-
pression is true and an optional statement to be executed if the expression is false. For
example:

Dim a As Integer
Dim b As Integer

a = 10
b = 20
‘ Block If statement.
If a < b Then
 a = b

MicroBasic Scripting

202	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Else
 b = a
End If

‘ Line If statement
If a < b Then a = b Else b = a

Below is an example where ElseIf takes place:

If score >= 90 Then
 grade = 1
ElseIf score >= 80 Then
 grade = 2
ElseIf score >= 70 Then
 grade = 3
Else
 grade = 4
End If

For...Next Statement
Micro Basic contains two types of For...Next loops:

•	 Traditional For...Next:
Traditional For...Next exists for backward compatibility with Basic, but it is not rec-
ommended due to its inefficient execution.

	 Traditional For...Next is the same syntax as Basic For...Next statement.

•	 C-Style For...Next:
This is a new style of For...Next statement optimized to work with Roboteq control-
lers and it is recommended to be used. It is the same semantics as C++ for loop,
but with a different syntax.

For <var> = <expression> AndWhile <condition> [Evaluate
<stmt>]
	 <block>
Next

	 The c-style for loop is executed by initialize the loop variable, then the loop contin-
ues while the condition is true and after execution of single loop the evaluate state-
ment is executed then continues to next loop.

Dim arr[10] As Integer
For i = 0 AndWhile i < 10
	 arr[i] = -1
Next

	 The previous example illustrates how to initialize array elements to -1.

 	 The following example illustrates how to use Evaluate to print even values from
0-10 inclusive:

For i = 0 AndWhile i <= 10 Evaluate i += 2
	 Print(i, “\n”)
Next

MicroBasic Language Reference

	 Advanced Digital Motor Controller User Manual� 203

While/Do Statements

•	 While...End While Statement

While <condition>
	 <block>
End While

 	 Example:

a = 10
While a > 0
	 Print(“a = “, a, “\n”)
	 a--
End While
Print(“Loop ended with a = “, a, “\n”)

•	 Do While...Loop Statement

Do While <condition>
	 <block>
Loop

	 The Do While...Loop statement is the same as functionality of the While...
End While statement but uses a different syntax.

a = 10
Do While a > 0
	 Print(“a = “, a, “\n”)
	 a--
Loop
Print(“Loop ended with a = “, a, “\n”)

•	 Do Until...Loop Statement

Do Until <condition>
	 <block>
Loop

	 Unlike Do While...Loop statement, Do Until...Loop statement exist the
loop when the expression evaluates to true.

a = 10
Do Until a = 0
	 Print(“a = “, a, “\n”)
	 a--
Loop
Print(“Loop ended with a = “, a, “\n”)

•	 Do...Loop While Statement

Do
	 <block>
Loop While <condition>

	 Do...Loop While statement grantees that the loop block will be executed at 		
	 least once as the condition is evaluated and checked after executing the block.

MicroBasic Scripting

204	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

a = 10
Do
	 Print(“a = “, a, “\n”)
	 a--
Loop While a > 0
Print(“Loop ended with a = “, a, “\n”)

•	 Do...Loop Until Statement

Do
		 <block>
Loop Until <condition>

	 Unlike Do...Loop While statement, Do...Loop Until statement exist the loop when
the expression evaluates to true.

 a = 10
 Do
 Print(“a = “, a, “\n”)
 a--
 Loop Until a = 0
 Print(“Loop ended with a = “, a, “\n”)

Terminate Statement
The Terminate statement ends the execution of the program.

Terminate

Exit Statement
The following is the syntax of Exit statement:

Exit { For | While | Do }

An Exit statement transfers execution to the next statement to immediately containing
block statement of the specified kind. If the Exit statement is not contained within the
kind of block specified in the statement, a compile-time error occurs.

The following is an example of how to use Exit statement in While loop:

While a > 0
	 If b = 0 Then Exit While
End While

Continue Statement
The following is the syntax of Continue statement:

Continue { For | While | Do }

A Continue statement transfers execution to the beginning of immediately containing
block statement of the specified kind. If the Continue statement is not contained within
the kind of block specified in the statement, a compile-time error occurs.

MicroBasic Language Reference

	 Advanced Digital Motor Controller User Manual� 205

The following is an example of how to use Continue statement in While loop:

While a > 0
	 If b = 0 Then Continue While
End While

GoTo Statement
A GoTo statement causes execution to transfer to the specified label. GoTo keyword
should be followed by the label name.

GoTo <label>

The following example illustrates how to use GoTo statement:

GoTo Target_Label
Print(“This will not be printed.\n”)
Target_Label:
	 Print(“This will be printed.\n”)

GoSub/Return Statements
GoSub used to call a subroutine at specific label. Program execution is transferred to the
specified label. Unlike the GoTo statement, GoSub remembers the calling point. Upon
encountering a Return statement the execution will continue the next statement after the
GoSub statement.

GoSub <label>

Return

Consider the following example:

Print(“The first line.”)
GoSub PrintLine
Print(“The second line.”)
GoSub PrintLine
Terminate

PrintLine:
	 Print(“\n”)
	 Return

The program will begin with executing the first print statement. Upon encountering the
GoSub statement, the execution will be transferred to the given PrintLine label. The pro-
gram prints the new line and upon encountering the Return statement the execution will
be returning back to the second print statement and so on.

MicroBasic Scripting

206	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

ToBool Statement
Converts the given expression into boolean value. It will be return False if expression
evaluates to zero, True otherwise.

ToBool(<expression>)

Consider the following example:

Print(ToBool(a), “\n”)

The previous example will output False if value of a equals to zero, True otherwise.

Print Statement
Output the list of expression passed.

Print({str | expression | ToBool(<expression>)}[,{str | expression
| ToBool(<expression>)}]...)

The print statement consists of the Print keyword followed by a list of expressions sepa-
rated by comma. You can use ToBool keyword to force print of expressions as Boolean.
Strings are C++ style strings with escape characters as described in the Strings section
(see Stringspage 196).

a = 3
b = 5
Print(“a = “, a, “, b = “, b, “\n”)
Print(“Is a less than b = “, ToBool(a < b), “\n”)

+ Operator
The + operator can function as either a unary or a binary operator.

+ expression
expression + expression

- Operator
The - operator can function as either a unary or a binary operator.

- expression
expression - expression

* Operator
The multiplication operator (*) computes the product of its operands.

expression * expression

/ Operator
The division operator (/) divides its first operand by its second.

expression * expression

MicroBasic Language Reference

	 Advanced Digital Motor Controller User Manual� 207

Mod Operator
The modulus operator (Mod) computes the remainder after dividing its first operand by its
second.

expression Mod expression

And Operator
The (And) operator functions only as a binary operator. For numbers, it computes the
bitwise AND of its operands. For boolean operands, it computes the logical AND for its
operands; that is the result is true if and only if both operands are true.

expression And expression

Or Operator
The (Or) operator functions only as a binary operator. For numbers, it computes the bit-
wise OR of its operands. For boolean operands, it computes the logical OR for its oper-
ands; that is, the result is false if and only if both its operands are false.

expression Or expression

XOr Operator
The (XOr) operator functions only as a binary operator. For numbers, it computes the
bitwise exclusive-OR of its operands. For boolean operands, it computes the logical exclu-
sive-OR for its operands; that is, the result is true if and only if exactly one of its operands
is true.

expression XOr expression

Not Operator
The (Not) operator functions only as a unary operator. For numbers, it performs a bitwise
complement operation on its operand. For boolean operands, it negates its operand; that
is, the result is true if and only if its operand is false.

Not expression

True Literal
The True keyword is a literal of type Boolean representing the boolean value true.

False Literal
The False keyword is a literal of type Boolean representing the boolean value false.

++ Operator
The increment operator (++) increments its operand by 1. The increment operator can ap-
pear before or after its operand:

++ var
var ++

MicroBasic Scripting

208	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

The first form is a prefix increment operation. The result of the operation is the value of
the operand after it has been incremented.

The second form is a postfix increment operation. The result of the operation is the value
of the operand before it has been incremented.

a = 10
Print(a++, “\n”)
Print(a, “\n”)
Print(++a, “\n”)
Print(a, “\n”)

The output of previous program will be the following:

10
11
12
12

-- Operator
The decrement operator (--) decrements its operand by 1. The decrement operator can ap-
pear before or after its operand:

-- var
var --

The first form is a prefix decrement operation. The result of the operation is the value of
the operand after it has been decremented.

The second form is a postfix decrement operation. The result of the operation is the value
of the operand before it has been decremented.

a = 10
Print(a--, “\n”)
Print(a, “\n”)
Print(--a, “\n”)
Print(a, “\n”)

The output of previous program will be the following:

10
9
8
8

<< Operator
The left-shift operator (<<) shifts its first operand left by the number of bits specified by its
second operand.

expression << expression

The high-order bits of left operand are discarded and the low-order empty bits are ze-
ro-filled. Shift operations never cause overflows.

MicroBasic Language Reference

	 Advanced Digital Motor Controller User Manual� 209

>> Operator
The right-shift operator (>>) shifts its first operand right by the number of bits specified by
its second operand.

expression >> expression

<> Operator
The inequality operator (<>) returns false if its operands are equal, true otherwise.

expression <> expression

< Operator
Less than relational operator (<) returns true if the first operand is less than the second,
false otherwise.

expression < expression

> Operator
Greater than relational operator (>) returns true if the first operand is greater than the sec-
ond, false otherwise.

expression > expression

<= Operator
Less than or equal relational operator (<=) returns true if the first operand is less than or
equal to the second, false otherwise.

expression <= expression

> Operator
Greater than relational operator (>) returns true if the first operand is greater than the sec-
ond, false otherwise.

expression > expression

>= Operator
Greater than or equal relational operator (>=) returns true if the first operand is greater
than or equal to the second, false otherwise.

expression >= expression

+= Operator
The addition assignment operator.

var += expression

An expression using the += assignment operator, such as

x += y

MicroBasic Scripting

210	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

is equivalent to

x = x + y

-= Operator
The subtraction assignment operator.

var -= expression

An expression using the -= assignment operator, such as

x -= y

is equivalent to

x = x - y

*= Operator
The multiplication assignment operator.

var *= expression

An expression using the *= assignment operator, such as

x *= y

is equivalent to

x = x * y

/= Operator
The division assignment operator.

var /= expression

An expression using the /= assignment operator, such as

x /= y

is equivalent to

x = x / y

<<= Operator
The left-shift assignment operator.

var <<= expression

An expression using the <<= assignment operator, such as

x <<= y

MicroBasic Language Reference

	 Advanced Digital Motor Controller User Manual� 211

is equivalent to

x = x << y

>>= Operator
The right-shift assignment operator.

var >>= expression

An expression using the >>= assignment operator, such as

x >>= y

is equivalent to

x = x >> y

[] Operator
Square brackets ([]) are used for arrays (see Arrays on page 198).

Abs Function
Returns the absolute value of an expression.

Abs(<expression>)

Example:

a = 5
b = Abs(a – 2 * 10)

Atan Function

Returns the angle whose arc tangent is the specified number.

Number is devided by 1000 before applying atan.

The return value is multiplied by 10.

Atan(<expression>)

Example:

angle = Atan(1000) ‘450 = 45.0 degrees

Cos Function
Returns the cosine of the specified angle.

The return value is multiplied by 1000.

MicroBasic Scripting

212	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Abs(<expression>)

Example:

value = Cos(0) ‘1000
[title] Sin Function
Returns the sine of the specified angle.
The return value is multiplied by 1000.
Sin(<expression>)

Example:

value = Sin(90) ‘1000
Sqrt Function
Returns the square root of a specified number.
The return value is multiplied by 1000.
Sqrt(<expression>)

Example:

value = Sqrt(2) ‘1414

GetValue
This function is used to read operating parameters from the controller at runtime. The
function requires an Operating Item, and an optional Index as parameters. The Operating
Item can be any one from the table below. The Index is used to select one of the Value
Items in multi channel configurations. When accessing a unique Operating Parameter that
is not part of an array, the index may be omitted, or an index value of 0 can be used.

Details on the various operating parameters that can be read can be found in the Control-
ler’s User Manual. (See “Serial (RS232/USB) Operation” on page 141)

GetValue(OperatingItem, [Index])

Current2 = GetValue(_BATAMPS, 2) ‘ Read Battery Amps for Motor 2

Sensor = GetValue(_ANAIN, 6) ‘ Read voltage present at Analog Input 1

Counter = GetValue(_BLCOUNTER) ‘ Read Brushless counter

SetCommand
This function is used to send operating commands to the controller at runtime. The func-
tion requires a Command Item, an optional Index and a Value as parameters. The Com-
mand Item can be any one from the table below. Details on the various commands, their
effects and acceptable ranges can be found in the Controller’s User Manual (See “Serial
(RS232/USB) Operation” on page 141).

SetCommand(CommandItem, Value)

SetCommand(_GO, 1, 500) ‘ Set Motor 1 command level at 500

SetCommand(_DSET, 2) ‘ Activate Digital Output 2

MicroBasic Language Reference

	 Advanced Digital Motor Controller User Manual� 213

SetConfig / GetConfig
These two functions are used to read or/and change one of the controller’s configuration
parameters at runtime. The changes are made in the controller’s RAM and take effect im-
mediately. Configuration changes are not stored in EEPROM.

SetConfig Set a configuration parameter
GetConfig Read a configuration parameter

Both commands require a Configuration Item, and an optional Index as parameters. The
Configuration Item can be one of the valid controller configuration commands listed in the
Command Reference Section. Refer to Set/Read Configuration Commands on page 210
for syntax. Simply add the underscore character “_” to read or write this configuration
from within a script. The Index is used to select one of the Configuration Item in multi
channel configurations. When accessing a configuration parameter that is not part of an
array, index can be omitted or an index value of 0 can be used. Details on the various con-
figurations items, their effects and acceptable values can be found in the Controller’s User
Manual.

Note that most but not all configuration parameters are accessible via the SetConfig or
GetConfig function. No check is performed that the value you store is valid so this func-
tion must be handled with care.

When setting a configuration parameter, the new value of the parameter must be given in
addition to the Configuration Item and Index.

GetConfig(ConfigurationItem, [Index], value)
SetConfig(ConfigurationItem, [Index])

Accel2 = GetConfig(_MAC, 2) ‘ Read Acceleration parameter for Motor 2
PWMFreq = GetConfig(_PWMF) ‘ Read Controller’s PWM frequency
SetConfig(_MAC, 2, Accel2 * 2) ‘ Make Motor2 acceleration twice as slow

SetTimerCount/GetTimerCount
These two functions used to set/get timer count.

SetTimerCount(<index>, <milliseconds>)
GetTimerCount(<index>)

Where:

<index> : 0 - 4 for old controller models

	 0 - 7 for new controller models

<milliseconds> : number of milliseconds to count

SetTimerState/GetTimerState
These two functions used to set/get timer state (started or stopped).

SetTimerState(<index>, <state>)
GetTimerState(<index>)

MicroBasic Scripting

214	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Replace entire sentence with:

Where:

<index> : 0 - 4 for old controller models

	 0 - 7 for new controller models

<state> : 0 - Timer Running

	 1 - Timer has completed/stopped (reached 0ms)

Sending RoboCAN Commands and Configuration
Sending commands or configuration values to remote nodes on RoboCAN is done using
the functions.

SetCANCommand(<id>, <cc>, <ch>, <vv>)
SetCANConfig(<id>, <cc>, <ch>, <vv>)

Where:
 id is the remote Node Id in decimal.
 cc is the Command code, eg. _G.
 cc is the channel number. Put 1 for commands that do not normally require a channel
number.
 vv is the value.

Reading RoboCAN Operating Values Configurations
The following functions are available in Micro Basic for requesting operating values and
configurations from a remote node on RoboCAN.

FetchCANValue(<id>, <cc>, <ch>)
FetchCANConfig(<id>, <cc>, <ch>)

Where:
 id is the remote Node Id in decimal
 cc is the Command code, eg. _G
 cc is the channel number. Put 1 for commands that do not normally require a channel
number.

The following functions can be used to wait for the data to be ready for reading.

IsCANValueReady()
IsCANConfigReady()
These functions return a Boolean true/false value. They take no argument and apply to the
last issued FetchCANValue or FetchCANConfig function.

The retrieved value can then be read using the following functions.

ReadCANValue()
ReadCANConfig()
These functions return an integer value. They take no argument and apply to the last is-
sued FetchCANValue or FetchCANConfig function.

MicroBasic Language Reference

	 Advanced Digital Motor Controller User Manual� 215

RoboCAN Continuous Scan
A scan of a remote RoboCAN node is initiated with the function.

ScanCANValue(<id>, <cc>, <ch>, <tt>, <bb>)

Where:
id is the remote Node Id in decimal.
cc is the Query code, eg. _V.
cc is the channel number. Put 1 for commands that do not normally require a channel
number.
tt is the scan rate in ms.
bb is the buffer location.
The scan rate can be up to 255ms. Setting a scan rate of 0 stops the automatic sending
from this node.

Unless otherwise specified, the buffer can store up to 32 values.

The arrival of a new value is checked with the function.

IsScannedCANReady(<aa>)

Where:

aa is the location in the scan buffer.
The function returns a Boolean true/false value.

The new value is then read with the function.

ReadScannedCANValue(<aa>)

Where:
 aa is the location in the scan buffer.
The function returns an integer value. If no new value was received since the previous
read, the old value will be read.

Checking the Presence of a RoboCAN Node
No error is reported in MicroBasic if an exchange is initiated with a node that does not ex-
ist. A command or configuration sent to a non-existent node will simply not be executed.
A query sent to a non existing or dead node will return the value 0. A function is therefore
provided for verifying the presence of a live node. A live node is one that sends the dis-
tinct RoboCAN heartbeat frame every 128ms. The function syntax is:

IsCANNodeAlive(<id>)

Where:
id is the remote Node Id in decimal
The function returns a Boolean true/false value.

MicroBasic Scripting

216	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Commands Types

	 Advanced Digital Motor Controller User Manual� 217

SECTION 19	 Commands
Reference

This section lists all the commands accepted by the controller. Commands are typically
sent via the serial (RS232 or USB) ports (See “Serial (RS232/USB) Operation” on page
141). Except for a few maintenance commands, they can also be issued from within a user
script written using the MicroBasic language (See “MicroBasic Scripting” on page 179).

Commands Types
The controller will accept and recognize four types of commands:

Runtime commands

These start with “!” when called via the serial communication (RS232 or USB), or using
the setcommand() MicroBasic function. These are usually motor or operation commands
that will have immediate effect (e.g. to turn on the motor, set a speed or activate digital
output). Most of Runtime commands are mapped inside a CANopen Object Directory,
allowing the controller to be remotely operated on a CANopen standard network (See
“CANopen Interface” on page 172). See “Runtime Commands” on page 164 for the full
list and description of these commands.

Runtime queries

These start with “?” when called via the serial communication (RS232 or USB), or using
the getvalue() Microbasic function. These are used to read operating values at runtime
(e.g. read Amps, Volts, power level, counter values). All runtime queries are mapped in-
side a CANopen Object Directory, allowing the controller to be remotely interrogated on a
CANopen standard network (See “CANopen Interface” on page 172). See Runtime com-
mands are commands that can be sent at any time during controller operation and are tak-
en into consideration immediately. Runtime commands start with “!” and are followed by
one to three letters. Runtime commands are also used to refresh the watchdog timer to
ensure safe communication. Runtime commands can be called from a MicroBasic script
using the setcommand() function..

Maintenance commands

These are only available trough serial (RS232 or USB) and start with “%”. They are used
for all of the maintenance commands such as (e.g. set the time, save configuration to EE-
PROM, reset, load default, etc.).

Commands Reference

218	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Set/Read Configuration commands

These start with “~” for read and “^” for write when called via the serial communication
(RS232 or USB), or using the getconfig() and setconfig() MicroBasic functions. They are
used to read or configure all the operating parameters of the controller (e.g. set or read
amps limit). See “Set/Read Configuration Commands” on page 218 for the full list and
description of these commands.

Runtime Commands
Runtime commands are commands that can be sent at any time during controller oper-
ation and are taken into consideration immediately. Runtime commands start with “!”
and are followed by one to three letters. Runtime commands are also used to refresh the
watchdog timer to ensure safe communication. Runtime commands can be called from a
MicroBasic script using the setcommand() function.

TABLE 19-1. Runtime Commands

Command Arguments Description

AC Channel Acceleration Set Acceleration

AX Channel Acceleration Next Acceleration

B VarNbr Value Set User Boolean Variable

BND [Channel] Mutli-purpose Bind

C Channel Value Set Encoder Counters

CB Channel Value Set Brushless Counter

CG Channel Value Set Motor Command via CAN

CS Element Value CAN Send

D0 OutputNbr Reset Individual Digital Out bits

D1 OutputNbr Set Individual Digital Out bits

DC Channel Deceleration Set Deceleration

DS Value Set all Digital Out bits

DX Channel Value Next Decceleration

EES None Save Configuration in EEPROM

EX None Emergency Shutdown

G Channel Value Go to Speed or to Relative Position

H Channel Load Home counter

MG None Emergency Stop Release

MS Channel Stop in all modes

P Channel Destination Go to Absolute Desired Position

PR Channel Delta Go to Relative Desired Position

PRX Channel Delta Next Go to Relative Desired Position

PX Channel Delta Next Go to Absolute Desired Position

R [Option] MicroBasic Run

RC Channel Value Set Pulse Out

S Channel Value Set Motor Speed

SX Channel Value Next Velocity

VAR VarNbr Value Set User Variable

Runtime Commands

	 Advanced Digital Motor Controller User Manual� 219

AC - Set Acceleration

Alias: ACCEL	 HexCode: 07	 CANOpen id: 0x2006

Description:

Set the rate of speed change during acceleration for a motor channel. This command is
identical to the MACC configuration command but is provided so that it can be changed
rapidly during motor operation. Acceleration value is in 0.1 * RPM per second. When using
controllers fitted with encoder, the speed and acceleration value are actual RPMs. Brush-
less motor controllers use the hall sensor for measuring actual speed and acceleration will
also be in actual RPM/s. When using the controller without speed sensor, the acceleration
value is relative to the Max RPM configuration parameter, which itself is a user-provided
number for the speed normally expected at full power. Assuming that the Max RPM pa-
rameter is set to 1000, and acceleration value of 10000 means that the motor will go from
0 to full speed in exactly 1 second, regardless of the actual motor speed.

Syntax Serial:	 !AC cc nn

Syntax Scripting:	 setcommand(_AC, cc, nn)

		 setcommand(_ACCEL, cc, nn)

Number of Arguments: 2

Argument 1: 	 Channel
		 Min: 1	 Max: Total Number of Motors

Argument 2: 	 Acceleration	 Type: Signed 32-bit
		 Min: 0	 Max: 500000

Where:
 cc = Motor channel
nn = Acceleration value in 0.1 * RPM/s

Example:

!AC 1 2000 : Increase Motor 1 speed by 200 RPM every second if speed is measured by
encoder
!AC 2 20000 : Time from 0 to full power is 0.5s if no speed sensors are present and Max
RPM is set to 1000

AX - Next Acceleration

Alias: NXTACC	 HexCode: 14	 CANOpen id: 0x2012

Description:

This command is used for chaining commands in Position Count mode. It is similar to
AC except that it stores an acceleration value in a buffer. This value will become the next
acceleration the controller will use and becomes active upon reaching a previous desired
position. If omitted, the command will be chained using the last used acceleration value.

Syntax Serial:	 !AX cc nn

Commands Reference

220	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Syntax Scripting:	 setcommand(_AX, cc, nn)

		 setcommand(_NXTACC, cc, nn)

Number of Arguments: 2

Argument 1: Channel	

	 Min: 1	 Max: Total Number of Motors

Argument 2: Acceleration	 Type: Signed 32-bit

	 Min: 0	 Max: 500000

Where:

cc = Motor channel
nn = Acceleration value in 0.1 * RPM/s

B - Set User Boolean Variable

Alias: BOOL	 HexCode: 16	 CANOpen id: 0x2015

Description:

Set the state of user boolean variables inside the controller. These variables can then be
read from within a user MicroBasic script to perform specific actions.

Syntax Serial:	 !B nn mm

Syntax Scripting:	 setcommand(_B, nn, mm)

		 setcommand(_BOOL, nn, mm)

Number of Arguments: 2

Argument 1: VarNbr	

	 Min: 1	 Max: Total nbr of Bool Vars

Argument 2: Value	 Type: Boolean

	 Min: 0	 Max: 1

Where:

nn = Variable number

mm = 0 or 1

Note:
The total number of user variables depends on the controller model and can be found in
the product datasheet.

Runtime Commands

	 Advanced Digital Motor Controller User Manual� 221

BND - Mutli-purpose Bind

Alias: BIND	 HexCode: 1C	 CANOpen id:

Description:

This command is used to perform a, usually, one-time setup in several situations. When
the controller is configured in sinusoidal mode for brushless motor and encoder feedback,
!BND will energize the motor to a reference position and set the encoder counter to the
zero degree reference angle that will remain active until power down. When used with
Sin/Cos or SPI/SSI angle sensors the same reference search is performed but the cap-
tured zero-reference can then be stored into flash permanently. When used on controllers
with Spektrum RC radio interface the BND command is used to pair the receiver with its
transmitter.

Syntax Serial:	 !BND [cc]

Syntax Scripting:	 setcommand(_BND, cc)
		 setcommand(_BIND, cc)

Number of Arguments: 1

Argument 1: [Channel]	 Type: Unsigned 8-bit

	 Min: None	 Max: Total Number of Motors

Where:

 cc = Motor channel

Example:

!BND 1 : Searches zero angle reference for motor 1 when in sinusoidal mode
!BND : Binds Spektrum receiver with its transmitter, on supporting controller models

C - Set Encoder Counters

Alias: SENCNTR	 HexCode: 04	 CANOpen id: 0x2003

Description:

This command loads the encoder counter for the selected motor channel with the value
contained in the command argument. Beware that changing the controller value while op-
erating in closed-loop mode can have adverse effects.

Syntax Serial:	 !C [cc] nn

Syntax Scripting:	 setcommand(_C, cc, nn)
		 setcommand(_SENCNTR, cc, nn)

Number of Arguments: 2

Commands Reference

222	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Argument 1: Channel	

	 Min: 1	 Max: Total Number of Encoders

Argument 2: Value	 Type: Signed 32-bit

	 Min: -2147M	 Max: +2147M

Where:

 cc = Motor channel
nn = Counter value

Example:

!C 2 -1000 : Loads -1000 in encoder counter 2
!C 1 0 : Clears encoder counter 1

CB - Set Brushless Counter

Alias: SBLCNTR	 HexCode: 05	 CANOpen id: 0x2004

Description:

This command loads the brushless counter with the value contained in the command
argument. Beware that changing the controller value while operating in closed-loop mode
can have adverse effects.

Syntax Serial:	 !CB [cc] nn

Syntax Scripting:	 setcommand(_CB, cc, nn)
		 setcommand(_SBLCNTR, cc, nn)

Number of Arguments: 2

Argument 1: Channel	

	 Min: 1	 Max: Total Number of Motors

Argument 2: Value	 Type: Signed 32-bit

	 Min: -2147M	 Max: +2147M

Where:

 cc = Motor channel
nn = Counter value

Example:

!CB 1 -1000 : Loads -1000 in brushless counter 1
!CB 2 0 : Clears brushless counter 2

CG - Set Motor Command via CAN

Alias: CANGO	 HexCode: 19	 CANOpen id: 0x2000

Runtime Commands

	 Advanced Digital Motor Controller User Manual� 223

Description:

This command is identical to the G (GO) command except that it is meant to be used for
sending motor commands via CANOpen. See the G command for details

Syntax Serial:	 !CG cc nn

Syntax Scripting:	 setcommand(_CG, cc, nn)
		 setcommand(_CANGO, cc, nn)

Number of Arguments: 2

Argument 1: Channel	

	 Min: 1	 Max: Total Number of Motors

Argument 2: Value	 Type: Signed 32-bit

	 Min: -1000	 Max: +1000

Where:

cc = Motor channel
nn = Command value

CS - CAN Send

Alias: CANSEND	 HexCode: 18	 CANOpen id:

Description:

This command is used in CAN-enabled controllers to build and send CAN frames in the
RawCAN mode (See RawCAN section in manual). It can be used to enter the header,
bytecount, and data, one element at a time. The frame is sent immediately after the byte-
count is entered, and so it should be entered last.

Syntax Serial:	 !CS ee nn

Syntax Scripting:	 setcommand(_CS, ee, nn)
		 setcommand(_CANSEND, ee, nn)

Number of Arguments: 2

Argument 1: Element	

	 Min: 1	 Max: 10

Argument 2: Value	 Type: Unsigned 8-bit

	 Min: 0	 Max: 255

Commands Reference

224	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Where:

 ee =
1 : Header
2 : Bytecount
3 to 10 : Data0 to data7
nn = value

Example:

!CS 1 5 : Enter 5 in header
!CS 3 2 : Enter 2 in data 0
!CS 4 3 : Enter 3 in data 1
!CS 2 2 : Enter 2 in bytecount and send CAN frame

D0 - Reset Individual Digital Out bits

Alias: DRES	 HexCode: 09	 CANOpen id: 0x200A

Description:

The D0 command will turn off the single digital output selected by the number that fol-
lows.

Syntax Serial:	 !D0 nn

Syntax Scripting:	 setcommand(_D0, nn)
		 setcommand(_DRES, nn)

Number of Arguments: 1

Argument 1: OutputNbr	 Type: Unsigned 8-bit

	 Min: 1	 Max: Total number of Digital Outs

Where:

 nn = Output number

Example:

!D0 2 : will deactivate output 2

Note:

Digital Outputs are Open Collector. Activating an outputs will force it to ground. Deactivat-
ing an output will cause it to float.

D1 - Set Individual Digital Out bits

Alias: DSET	 HexCode: 0A	 CANOpen id: 0x2009

Description:

The D1 command will activate the single digital output that is selected by the parameter
that follows.

Runtime Commands

	 Advanced Digital Motor Controller User Manual� 225

Syntax Serial:	 !D1 nn

Syntax Scripting:	 setcommand(_D1, nn)
		 setcommand(_DSET, nn)

Number of Arguments: 1

Argument 1: OutputNbr	 Type: Unsigned 8-bit

	 Min: 1	 Max: Total number of Digital Outs

Where:

 nn = Output number

Example:

!D1 1 : will activate output 1

Note:

Digital Outputs are Open Collector. Activating an outputs will force it to ground. Deactivat-
ing an output will cause it to float.

DC - Set Deceleration

Alias: DECEL	 HexCode: 08	 CANOpen id: 0x2007

Description:

Set the rate of speed change during decceleration for a motor channel. This command is
identical to the MDEC configuration command but is provided so that it can be changed
rapidly during motor operation. Decceleration value is in 0.1 * RPM per second. When
using controllers fitted with encoder, the speed and decceleration value are actual RPMs.
Brushless motor controllers use the hall sensor for measuring actual speed and deccel-
eration will also be in actual RPM/s. When using the controller without speed sensor, the
decceleration value is relative to the Max RPM configuration parameter, which itself is a
user-provided number for the speed normally expected at full power. Assuming that the
Max RPM parameter is set to 1000, and decceleration value of 10000 means that the mo-
tor will go from full speed to 0 in exactly 1 second, regardless of the actual motor speed.

Syntax Serial:	 !DC cc nn

Syntax Scripting:	 setcommand(_DC, cc, nn)
		 setcommand(_DECEL, cc, nn)

Number of Arguments: 2

Argument 1: Channel	

	 Min: 1	 Max: Total Number of Motors

Argument 2: Deceleration	 Type: Signed 32-bit

	 Min: 0	 Max: 500000

Commands Reference

226	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Where:

cc = Motor channel
nn = Deceleration value in 0.1 * RPM/s

Example:

!DC 1 2000 : Reduce Motor 1 speed by 200 RPM every second if speed is mea-
sured by encoder
!DC 2 20000 : Time from full power to stop is 0.5s if no speed sensors are present and
Max RPM is set to 1000

DS - Set all Digital Out bits

Alias: DOUT	 HexCode: 09	 CANOpen id: 0x2008

Description:

The D command will turn ON or OFF one or many digital outputs at the same time. The
number can be a value from 0 to 255 and binary representation of that number has 1bit
affected to its respective output pin.

Syntax Serial:	 !DS nn

Syntax Scripting:	 setcommand(_DS, nn)
		 setcommand(_DOUT, nn)

Number of Arguments: 1

Argument 1: Value	 Type: Unsigned 8-bit

	 Min: 0	 Max: 255

Where:

 nn = Bit pattern to be applied to all output lines at once

Example:

!DS 03 : will activate outputs 1 and 2. All others are off

Note:

Digital Outputs are Open Collector. Activating an outputs will force it to ground. Deactivat-
ing an output will cause it to float.

DX - Next Decceleration

Alias: NXTDEC	 HexCode: 15	 CANOpen id: 0x2013

Description:

This command is used for chaining commands in Position Count mode. It is similar to
DC except that it stores a decceleration value in a buffer. This value will become the next

Runtime Commands

	 Advanced Digital Motor Controller User Manual� 227

decceleration the controller will use and becomes active upon reaching a previous desired
position. If omitted, the command will be chained using the last used decceleration value.

Syntax Serial:	 !DX cc nn

Syntax Scripting:	 setcommand(_DX, cc, nn)
		 setcommand(_NXTDEC, cc, nn)

Number of Arguments: 2

Argument 1: Channel	

	 Min: 1	 Max: Total Number of Motors

Argument 2: Value	 Type: Signed 32-bit

	 Min: 0	 Max: 500000

Where:

 cc = Motor channel
nn = Acceleration value

EES - Save Configuration in EEPROM

Alias: EESAV	 HexCode: 1B	 CANOpen id: 0x2017

Description:

This command causes any changes to the controller’s configuration to be saved to Flash.
Saved configurations are then loaded again next time the controller is powered on. This
command is a duplication of the EESAV maintenance command. It is provided as a
Real-Time command as well in order to make it possible to save configuration changes
from within MicroBasic scripts.

Syntax Serial:	 !EES

Syntax Scripting:	 setcommand(_EES, 1)
		 setcommand(_EESAV, 1)

Number of Arguments: 0

Note:

Do not save configuration while motors are running. Saving to EEPROM takes several mil-
liseconds, during which the control loop is suspended.
Number of EEPROM write cycles are limited to around 10000. Saving to EEPROM must
be done scarcely.

Commands Reference

228	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

EX - Emergency Stop

Alias: ESTOP	 HexCode: 0E	 CANOpen id: 0x200C

Description:

The EX command will cause the controller to enter an emergency stop in the same
way as if hardware emergency stop was detected on an input pin. The emergency
stop condition will remain until controller is reset or until the MG release command is
received.

Syntax Serial:	 !EX

Syntax Scripting:	 setcommand(_EX, 1)
		 setcommand(_ESTOP, 1)

Number of Arguments: 0

G - Go to Speed or to Relative Position

Alias: GO	 HexCode: 00	 CANOpen id: Use CG

Description:

G is the main command for activating the motors. The command is a number ranging
1000 to +1000 so that the controller respond the same way as when commanded using
Analog or Pulse, which are also -1000 to +1000 commands. The effect of the command
differs from one operating mode to another.

In Open Loop Speed mode the command value is the desired power output level to be
applied to the motor.

In Closed Loop Speed mode, the command value is relative to the maximum speed that is
stored in the MXRPM configuration parameter.

In Closed Loop Position Relative and in the Closed Loop Tracking mode, the command is
the desired relative destination position mode.

The G command has no effect in the Position Count mode.

In Torque mode, the command value is the desired Motor Amps relative to the Amps Limit
configuration parameters

Syntax Serial:	 !G [nn] mm

Syntax Scripting:	 setcommand(_G, nn, mm)
		 setcommand(_GO, nn, mm)

Runtime Commands

	 Advanced Digital Motor Controller User Manual� 229

Number of Arguments: 2

Argument 1: Channel	

	 Min: 1	 Max: Total Number of Motors

Argument 2: Value	 Type: Signed 32-bit

	 Min: -1000	 Max: 1000

Where:

 cc = Motor channel
nn = Command value

Example:

!G 1 500 : In Open Loop Speed mode, applies 50% power to motor channel 1
!G 1 500 : In Closed Loop Speed mode, assuming that 3000 is contained in Max RPM pa-
rameter (MXRPM), motor will go to 1500 RPM
!G 1 500 : In Closed Loop Relative or Closed Loop Tracking modes, the motor will move to
75% position of the total -1000 to +1000 motion range
!G 1 500 : In Torque mode, assuming that Amps Limit is 60A, motor power will rise until
30A are measured.

H - Load Home counter

Alias: HOME	 HexCode: 0D	 CANOpen id: 0x200B

Description:

This command loads the Home count value into the Encoder or Brushless Counters. The
Home count can be any user value and is set using the EHOME and BHOME configura-
tion parameters. Beware that loading the counter with the home value while the controller
is operating in closed loop can have adverse effects.

Syntax Serial:	 !H [cc]

Syntax Scripting:	 setcommand(_H, cc)
		 setcommand(_HOME, cc)

Number of Arguments: 1

Argument 1: Channel	 Type: Unsigned 8-bit

	 Min: 1	 Max: Total Number of Encoders

Where:

 cc = Motor channel

Example:

!H 1: Loads encoder counter 1 and brushless counter 1 with their preset home values

Commands Reference

230	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

MG - Emergency Stop Release

Alias: MGO	 HexCode: 0F	 CANOpen id: 0x200D

Description:

The MG command will release the emergency stop condition and allow the controller to
return to normal operation. Always make sure that the fault condition has been cleared
before sending this command

Syntax Serial:	 !MG

Syntax Scripting:	 setcommand(_MG, 1)
		 setcommand(_MGO, 1)

Number of Arguments: 0

MS - Stop in all modes

Alias: MSTOP	 HexCode: 10	 CANOpen id: 0x200E

Description:

The MS command is similar to the EX emergency stop command except that it is applied
to the specified motor channel

Syntax Serial:	 !MS [cc]

Syntax Scripting:	 setcommand(_MS, cc)
		 setcommand(_MSTOP, cc)

Number of Arguments: 1

Argument 1: Channel	 Type: Unsigned 8-bit

	 Min: 1	 Max: Total Number of Motors

Where:

 cc = Motor channel

P - Go to Absolute Desired Position

Alias: MOTPOS	 HexCode: 02	 CANOpen id: 0x2001

Description:

This command is used in the Position Count mode to make the motor move to a specified
encoder or hall count value.

Runtime Commands

	 Advanced Digital Motor Controller User Manual� 231

Syntax Serial:	 !P [cc] nn

Syntax Scripting:	 setcommand(_P, cc, nn)
		 setcommand(_MOTPOS, cc, nn)

Number of Arguments: 2

Argument 1: Channel	

	 Min: 1	 Max: Total Number of Motors

Argument 2: Destination	 Type: Signed 32-bit

	 Min: -2147M	 Max: +2147M

Where:

 cc = Motor channel
nn = Absolute count destination

Example:

!P 1 10000 : make motor go to absolute count value 10000.

PR - Go to Relative Desired Position

Alias: MPOSREL	 HexCode: 11	 CANOpen id: 0x200F

Description:

This command is used in the Position Count mode to make the motor move to an encoder
count position that is relative to its current desired position.

Syntax Serial:	 PR [cc] nn

Syntax Scripting:	 setcommand(_PR, cc, nn)
		 setcommand(_MPOSREL, cc, nn)

Number of Arguments: 2

Argument 1: Channel	

	 Min: 1	 Max: Total Number of Motors

Argument 2: Delta	 Type: Signed 32-bit

	 Min: -2147M	 Max: +2147M

Where:

cc = Motor channel
nn = Relative count position

Example:

!PR 1 10000 : while motor is stopped after power up and counter = 0, motor 1 will go to
+10000

Commands Reference

232	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

!PR 2 10000 : while previous command was absolute goto position !P 2 5000, motor will
go to +15000

Note:

Beware that counter will rollover at counter values +/-2’147’483’648.

PRX - Next Go to Relative Desired Position

Alias: NXTPOSR	 HexCode: 13	 CANOpen id: 0x2011

Description:

This command is similar to PR except that it stores a relative count value in a buffer. This
value becomes active upon reaching a previous desired position and will become the next
destination the controller will go to. See Position Command Chaining in manual.

Syntax Serial:	 !PRX [cc] nn

Syntax Scripting:	 setcommand(_PRX, cc, nn)
		 setcommand(_NXTPOSR, cc, nn)

Number of Arguments: 2

Argument 1: Channel	

	 Min: 1	 Max: Total Number of Motors

Argument 2: Delta	 Type: Signed 32-bit

	 Min: -2147M	 Max: +2147M

Where:

cc = Motor channel
nn = Relative count position

Example:

!P 1 5000 followed by !PRX 1 -10000 : will cause motor to go to count position 5000 and
upon reaching the destination move to position -5000.

PX - Next Go to Absolute Desired Position

Alias: NXTPOS	 HexCode: 12	 CANOpen id: 0x2010

Description:

This command is similar to P except that it stores an absolute count value in a buffer. This
value will become the next destination the controller will go to and becomes active upon
reaching a previous desired position. See Position Command Chaining in manual.

Syntax Serial:	 !PX [nn] cc

Runtime Commands

	 Advanced Digital Motor Controller User Manual� 233

Syntax Scripting:	 setcommand(_PX, nn, cc)
		 setcommand(_NXTPOS, nn, cc)

Number of Arguments: 2

Argument 1: Channel	

	 Min: 1	 Max: Total Number of Motors

Argument 2: Delta	 Type: Signed 32-bit

	 Min: -2147M	 Max: +2147M

Where:

cc = Motor channel
nn = Absolute count position

Example:

!P 1 5000 followed by !PX 1 -10000 : will cause motor to go to count position 5000 and
upon reaching the destination move to position -10000.

R - MicroBasic Run

Alias: BRUN	 HexCode: 0C	 CANOpen id: 0x2018

Description:

This command is used to start, stop and restart a MicroBasic script if one is loaded in the
controller.

Syntax Serial:	 !R [nn]

Syntax Scripting:	 setcommand(_R, nn)
		 setcommand(_BRUN, nn)

Number of Arguments: 1

Argument 1: [Option]	 Type: Unsigned 8-bit

	 Min: None	 Max: 2

Where:

nn =
None : Start/resume script
0 : Stop script
1 : Start/resume script
2 : Reinitialize and restart script

Commands Reference

234	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

RC - Set Pulse Out

Alias: RCOUT	 HexCode: 1A	 CANOpen id: 0x2016

Description:

Set the pulse widht on products with pulse outputs. Command ranges from -1000 to
+1000, resulting in pulse widht of 1.0ms to 1.5ms respectively.

Syntax Serial:	 !RC cc nn

Syntax Scripting:	 setcommand(_RC, cc, nn)
		 setcommand(_RCOUT, cc, nn)

Number of Arguments: 2

Argument 1: Channel	

	 Min: 1	 Max: Number or Pulse Outs

Argument 2: Value	 Type: Signed 16-bit

	 Min: -1000	 Max: 1000

Where:

 cc = Channel number
nn = Value

S - Set Motor Speed

Alias: MOTVEL	 HexCode: 03	 CANOpen id: 0x2002

Description:

In the Closed-Loop Speed mode, this command will cause the motor to spin at the de-
sired RPM speed. In Closed-Loop Position modes, this commands determines the speed
at which the motor will move from one position to the next. It will not actually start the
motion.

Syntax Serial:	 !S [cc] nn

Syntax Scripting:	 setcommand(_S, cc, nn)
		 setcommand(_MOTVEL, cc, nn)

Number of Arguments: 2

Argument 1: Channel	

	 Min: 1	 Max: Total Number of Motors

Argument 2: Value	 Type: Signed 32-bit

	 Min: -500000	 Max: 500000

Runtime Commands

	 Advanced Digital Motor Controller User Manual� 235

Where:

cc = Motor channel
nn = Speed value in RPM

Example:

!S 2500 : set motor 1 position velocity to 2500 RPM

SX - Next Velocity

Alias: NXTVEL	 HexCode: 17	 CANOpen id: 0x2014

Description:

This command is used in Position Count mode. It is similar to S except that it stores a ve-
locity value in a buffer. This value will become the next velocity the controller will use and
becomes active upon reaching a previous desired position. If omitted, the command will
be chained using the last used velocity value. See Position Command Chaining in manual.

Syntax Serial:	 !SX cc nn

Syntax Scripting:	 setcommand(_SX, cc, nn)
		 setcommand(_NXTVEL, cc, nn)

Number of Arguments: 2

Argument 1: Channel	

	 Min: 1	 Max: Total Number of Motors

Argument 2: Value	 Type: Signed 32-bit

	 Min: -500000	 Max: 500000

Where:

cc = Motor channel
nn = Velocity value

VAR - Set User Variable

Alias: VAR	 HexCode: 06	 CANOpen id: 0x2005

Description:

This command is used to set the value of user variables inside the controller. These vari-
ables can be then read from within a user MicroBasic script to perform specific actions.
The total number of variables depends on the controller model and can be found in the
product datasheet. Variables are signed 32-bit integers.

Syntax Serial:	 !VAR nn mm

Commands Reference

236	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Syntax Scripting:	 setcommand(_VAR, nn, mm)

		 setcommand(_VAR, nn, mm)

Number of Arguments: 2

Argument 1: VarNbr	
	 Min: 1	 Max: Total nbr of User Variables

Argument 2: Value	 Type: Signed 32-bit

	 Min: -2147M	 Max: 2147M

Where:

nn = Variable number
mm = Value

Runtime Queries
Runtime queries can be used to read the value of real-time measurements at any time
during the controller operation. Real-time queries are very short commands that start with
“?” followed by one to three letters. In some instances, queries can be sent with or with-
out a numerical parameter.

Without parameter, the controller will reply with the values of all channels. When a numer-
ical parameter is sent, the controller will respond with the value of the channel selected
by that parameter.

Example:

 	 Q:?T
R: T=20:30:40

	 Q: ?T2
R: T=30

All queries are stored in a history buffer that can be made to automatically recall the
past 16 queries at a user-selectable time interval. See “Query History Commands” on
page 271.

Routine queries can be sent from within a MicroBasic Script using the getvalue() function.

TABLE 19-2. Runtime Queries

Command Argument Description

A Channel Read Motor Amps

AI InputNbr Read Analog Inputs

AIC InputNbr Read Analog Input after Conversion

ANG Channel Read Rotor Angle

ASI Channel Read Raw Sin/Cos sensor

B VarNbr Read User Boolean Variable

BA Channel Read Battery Amps

BCR Channel Read Brushless Count Relative

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 237

TABLE 19-2. Runtime Queries

Command Argument Description

BS Channel Read BL Motor Speed in RPM

BSR Channel Read BL Motor Speed as 1/1000 of Max RPM

C Channel Read Encoder Counter Absolute

CAN Element Read Raw CAN frame

CB Channel Read Absolute Brushless Counter

CF None Read Raw CAN Received Frames Count

CIA Channel Read Converted Analog Command

CIP Channel Read Internal Pulse Command

CIS Channel Read Internal Serial Command

CL Group Read RoboCAN Alive Nodes Map

CR Channel Read Encoder Count Relative

D None Read Digital Inputs

DI InputNbr Read Individual Digital Inputs

DO None Read Digital Output Status

DR Channel Read Destination Reached

E Channel Read Closed Loop Error

F Channel Read Feedback

FC Channel Read FOC Angle Adjust

FF None Read Fault Flags

FID None Read Firmware ID

FM Channel Read Runtime Status Flag

FS None Read Status Flags

HS Channel Read Hall Sensor States

ICL NodeId Is RoboCAN Node Alive

K Channel Read Spektrum Receiver

LK None Read Lock status

M Channel Read Motor Command Applied

MA AmpsChannel Read Field Oriented Control Motor Amps

MGD [SensorNumber] Read Magsensor Track Detect

MGM [SensorNumber] Read Magsensor Markers

MGS [SensorNumber] Read Magsensor Status

MGT [Channel] Read Magsensor Track Position

MGY [Channel] Read Magsensor Gyroscope

P Channel Read Motor Power Output Applied

PI InputNbr Read Pulse Inputs

PIC InputNbr Read Pulse Input after Conversion

S Channel Read Encoder Motor Speed in RPM

Commands Reference

238	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

TABLE 19-2. Runtime Queries

Command Argument Description

SCC None Read Script Checksum

SR Channel Read Encoder Speed Relative

T SensorNbr Read Temperature

TM [Element] Read Time

TR [Channel] Read Position Relative Tracking

TRN None Read Control Unit type and Controller Model

UID Element Read MCU Id

V SensorNumber Read Volts

VAR VarNumber Read User Integer Variable

A - Read Motor Amps

Alias: MOTAMPS	 HexCode: 00	 CANOpen id: 0x2100

Description:

Measures and reports the motor Amps for all operating channels. Note that the current
flowing through the motors is often higher than this flowing through the battery.

Syntax Serial:	 ?A [cc]

Argument: 	 Channel	
		 Min: 1	 Max: Total Number of Motors

Syntax Scripting:	 result = getvalue(_A, cc)
		 result = getvalue(_MOTAMPS, cc)

Reply:

A = aa	 Type: Signed 16-bit	 Min: 0 	

Where:

cc = Motor channel
aa = Amps *10 for each channel

Example:

Q: ?A
R: A=100:200
Q: ?A 2
R: A=200

Note:

Single channel controllers will report a single value. Some power board units measure the
Motor Amps and calculate the Battery Amps, while other models measure the Battery

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 239

Amps and calculate the Motor Amps. The measured Amps is always more precise than
the calculated Amps. See controller datasheet to find which Amps is measured by your
particular model.

AI - Read Analog Inputs

Alias: ANAIN	 HexCode: 10	 CANOpen id: 0x6401

Description:

Reports the raw value in mV of each of the analog inputs that are enabled. Input that is
disabled will report 0. The total number of Analog input channels varies from one control-
ler model to another and can be found in the product datasheet.

Syntax Serial:	 ?AI [cc]

Argument:	 InputNbr
		 Min: 1	 Max: Max Number of Analog Inputs

Syntax Scripting:	 result = getvalue(_AI, cc)
		 result = getvalue(_ANAIN, cc)

Reply:

AI=nn	 Type: Signed 16-bit	 Min: 0 	 Max: 5300

Where:

cc = Analog Input number
nn = Millivolt for each channel

AIC - Read Analog Input after Conversion

Alias: ANAINC	 HexCode: 23	 CANOpen id: 0x6402

Description:

Returns value of an Analog input after all the adjustments are performed to convert it to a
command or feedback value (Min/Max/Center/Deadband/Linearity). If an input is disabled,
the query returns 0. The total number of Analog input channels varies from one controller
model to another and can be found in the product datasheet.

Syntax Serial:	 ?AIC [cc]

Argument:	 InputNbr
		 Min: 1	 Max: Total Number of Analog Inputs

Syntax Scripting:	 result = getvalue(_AIC, cc)
		 result = getvalue(_ANAINC, cc)

Reply:

AIC=nn	 Type: Signed 16-bit	 Min: -1000 	 Max: 1000

Commands Reference

240	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Where:

cc = Analog Input number
nn = Converted analog input value +/-1000 range

ANG - Read Rotor Angle

Alias: ANG	 HexCode: 42	 CANOpen id: 0x2132

Description:

On brushless controller operating in sinusoidal mode, this query returns the real time val-
ue of the rotor’s angle sensor of brushless motor. This query is useful for verifying trouble-
shooting sin/cos and SPI/SSI sensors. Angle are reported in 0-511 degrees.

Syntax Serial:	 ?ANG [cc]

Argument:	 Channel
			 Min: 1	 Max: Total Number of Motors

Syntax Scripting:	 result = getvalue(_ANG, cc)

Reply:

ANG=nn	Type: Unsigned 16-bit	 Min: 0 	 Max: 511

Where:

cc = Motor channel
nn = Rotor electrical angle

ASI - Read Raw Sin/Cos sensor

Alias: ASI	 HexCode: 33	 CANOpen id:

Description:

Returns real time values of ADC connected to sin/cos sensors of each motor . This query
is useful for verifying troubleshooting sin/cos sensors.

Syntax Serial:	 ?ASI [cc]

Argument:	 Channel
		 Min: 1	 Max: 2 * Number of Motors

Syntax Scripting:	 result = getvalue(_ASI, cc)

Reply:

ASI=nn	 Type: Unsigned 16-bit	 Min: 0 	 Max: 4095

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 241

Where:

cc =
1 : Sin input 1
2 : Cos input 1
3 : Sin input 2
4 : Cos input 2
nn = ADC value

B - Read User Boolean Variable

Alias: BOOL	 HexCode: 16	 CANOpen id: 0x6407

Description:

Read the value of boolean internal variables that can be read and written to/from within
a user MicroBasic script. It is used to pass boolean states between user scripts and a
microcomputer connected to the controller. The total number of user boolean variables
varies from one controller model to another and can be found in the product datasheet.

Syntax Serial:	 ?B [nn]

Argument:	 VarNbr
		 Min: 1	 Max: Total Number of Bool Variables

Syntax Scripting:	 result = getvalue(_B, nn)
		 result = getvalue(_BOOL, nn)

Reply:

B=bb	 Type: Boolean	 Min: 0 	 Max: 1

Where:

nn = Boolean variable number
bb = 0 or 1 state of the variable

BA - Read Battery Amps

Alias: BATAMPS	 HexCode: 0C	 CANOpen id: 0x210C

Description:

Measures and reports the Amps flowing from the battery in Amps * 10. Battery Amps are
often lower than motor Amps.

Syntax Serial:	 ?BA [cc]

Argument:	 Channel:
		 Min: 1	 Max: Total Number of Motors

Commands Reference

242	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Syntax Scripting:	 result = getvalue(_BA, cc)
		 result = getvalue(_BATAMPS, cc)

Reply:

BA=aa	 Type: Signed 16-bit	 Min: 0 	

Where:

cc = Motor channel
aa = Amps *10 for each channel

Example:

Q: ?BA R:
BA=100:200

Note:

Some controller models measure the Motor Amps and Calculate the Battery Amps, while
other models measure the Battery Amps and calculate the Motor Amps. The measured
Amps is always more precise than the calculated Amps. See controller datasheet to find
which Amps is measured by your particular model.

BCR - Read Brushless Count Relative

Alias: BLRCNTR	 HexCode: 09	 CANOpen id: 0x2109

Description:

Returns the amount of Hall sensor counts that have been measured from the last time
this query was made. Relative counter read is sometimes easier to work with, compared
to full counter reading, as smaller numbers are usually returned.

Syntax Serial:	 ?BCR [cc]

Argument:	 Channel
		 Min: 1	 Max: Total Number of Motors

Syntax Scripting:	 result = getvalue(_BCR, cc)
		 result = getvalue(_BLRCNTR, cc)

Reply:

BCR=nn	Type: Signed 32-bit	 Min: -2147M 	 Max: 2147M

Where:

cc = Motor channel
nn = Value

BS - Read BL Motor Speed in RPM

Alias: BLSPEED	 HexCode: 0A	 CANOpen id: 0x210A

Description:

On brushless motor controllers, reports the actual speed measured using the motor’s Hall
sensors as the actual RPM value. To report RPM accurately, the correct number of motor
poles must be loaded in the BLPOL configuration parameter.

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 243

Syntax Serial:	 ?BS [cc]

Argument:	 Channel
		 Min: 1	 Max: Total Number of Motors

Syntax Scripting:	 result = getvalue(_BS, cc)
		 result = getvalue(_BLSPEED, cc)

Reply:

BS=nn	 Type: Signed 16-bit	 Min: -32768 	 Max: 32767

Where:

cc = Motor channel
nn = Speed in RPM

BSR - Read BL Motor Speed as 1/1000 of Max RPM

Alias: BLRSPEED	 HexCode: 0B	 CANOpen id: 0x210B

Description:

On brushless motor controllers, returns the measured motor speed as a ratio of the Max
RPM configuration parameter. The result is a value of between 0 and +/-1000. Note that
if the motor spins faster than the Max RPM, the return value will exceed 1000. However,
a larger value is ignored by the controller for its internal operation. To report an accurate
result, the correct number of motor poles must be loaded in the BLPOL configuration pa-
rameter.

Syntax Serial:	 ?BSR

Argument:	 Channel
		 Min: 1	 Max: Total Number of Motors

Syntax Scripting:	 result = getvalue(_BSR,)
		 result = getvalue(_BLRSPEED,)

Reply:

BSR=nn	Type: Signed 16-bit	 Min: -1000 	 Max: 1000

Where:

nn = Speed relative to max

Example:

Q: ?BSR
R: BSR=500: speed is 50%of the RPM value stored in the Max RPM configuration

C - Read Encoder Counter Absolute

Alias: ABCNTR	 HexCode: 04	 CANOpen id: 0x2104

Description:

Returns the encoder value as an absolute number. The counter is 32-bit with a range of
+/- 2147483648 counts.

Commands Reference

244	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Syntax Serial:	 ?C [cc]

Argument:	 Channel
		 Min: 1	 Max: Total Number of Encoders

Syntax Scripting:	 result = getvalue(_C, cc)
		 result = getvalue(_ABCNTR, cc)

Reply:

C=nn	 Type: Signed 32-bit	 Min: -2147M 	 Max: 2147M

Where:

cc = Encoder channel number
nn = Absolute counter value

CAN - Read Raw CAN frame

Alias: CAN	 HexCode: 27	 CANOpen id:

Description:

This query is used in CAN-enabled controllers to read the content of a received CAN
frame in the RawCAN mode. Data will be available for reading with this query only after
a ?CF query is first used to check how many received frames are pending in the FIFO
buffer. When the query is sent without arguments, the controller replies by outputting all
elements of the frame separated by colons.

Syntax Serial:	 ?CAN [ee]

Argument:	 Element	
		 Min: 1	 Max: 10

Syntax Scripting:	 result = getvalue(_CAN, ee)

Reply:

CAN = dd1:dd2:dd3: ... :dd10	 Type: Unsigned 16-bit	 Min: 0 	 Max: 255

Where:

ee = Byte in frame

dd1 = Header

dd2= Bytecount
dd3 to dd10 = Data0 to data7

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 245

Example:

Q: ?CAN
R: CAN=5:4:11:12:13:14:0:0:0:0
Q: ?CAN 3
R: CAN=11

CB - Read Absolute Brushless Counter

Alias: BLCNTR	 HexCode: 05	 CANOpen id: 0x2105

Description:

On brushless motor controllers, returns the running total of Hall sensor transition value as
an absolute number. The counter is 32-bit with a range of +/- 2147483648 counts.

Syntax Serial:	 ?CB [cc]

Argument:	 Channel
		 Min: 1	 Max: Total Number of Motors

Syntax Scripting:	 result = getvalue(_CB, cc)
		 result = getvalue(_BLCNTR, cc)

Reply:

CB=nn	 Type: Signed 32-bit	 Min: -2147M 	 Max: 2147M

Where:

cc = Motor channel
nn = Absolute counter value

CF - Read Raw CAN Received Frames Count

Alias: CF	 HexCode: 28	 CANOpen id:

Description:

This query is used to read the number of received CAN frames pending in the FIFO buf-
fer and copies the oldest frame into the read buffer, from which it can then be accessed
using the ?CAN query. Sending ?CF again, copies the next frame into the read buffer. The
controller can buffer up to 16 CAN frames

Syntax Serial:	 ?CF

Argument:	 None		

Syntax Scripting:	 result = getvalue(_CF, 1)

Commands Reference

246	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Reply:

CF=nn	 Type: Unsigned 8-bit	 Min: 0 	 Max: 16

Where:

nn = Number of frames in receive queue

CIA - Read Converted Analog Command

Alias: CMDANA	 HexCode: 1A	 CANOpen id: 0x2117

Description:

Returns the motor command value that is computed from the Analog inputs whether or
not the command is actually applied to the motor. The Analog inputs must be con-
figured as Motor Command. This query can be used, for example, to read the com-
mand joystick from within a MicroBasic script or from an external microcomputer,
even though the controller may be currently responding to RS232 or Pulse com-
mand because of a higher priority setting. The returned value is the raw Analog input
value with all the adjustments performed to convert it to a command (Min/Max/Center/
Deadband/Linearity).

Syntax Serial:	 ?CIA [cc]

Argument:	 Channel
		 Min: 1	 Max: Total Number of Motors

Syntax Scripting:	 result = getvalue(_CIA, cc)
		 result = getvalue(_CMDANA, cc)

Reply:

CIA=nn	 Type: Signed 32-bit	 Min: -1000 	 Max: 1000

Where:

cc = Motor channel
nn = Command value in +/-1000 range

CIP - Read Internal Pulse Command

Alias: CMDPLS	 HexCode: 1B	 CANOpen id: 0x2118

Description:

Returns the motor command value that is computed from the Pulse inputs whether or
not the command is actually applied to the motor. The Pulse input must be configured
as Motor Command. This query can be used, for example, to read the command
joystick from within a MicroBasic script or from an external microcomputer, even
though the controller may be currently responding to RS232 or Analog command because
of a higher priority setting. The returned value is the raw Pulse input value with all the ad-
justments performed to convert it to a command (Min/Max/Center/Deadband/Linearity).

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 247

Syntax Serial:	 ?CIP [cc]

Argument:	 Channel
		 Min: 1	 Max: Total Number of Motors

Syntax Scripting:	 result = getvalue(_CIP, cc)
		 result = getvalue(_CMDPLS, cc)

Reply:

CIP=nn	 Type: Signed 32-bit	 Min: -1000 	 Max: 1000

Where:

cc = Motor channel
nn = Command value in +/-1000 range

CIS - Read Internal Serial Command

Alias: CMDSER	 HexCode: 19	 CANOpen id: 0x2116

Description:

Returns the motor command value that is issued from the serial input or from a MicroBa-
sic script whether or not the command is actually applied to the motor. This query
can be used, for example, to read from an external microcomputer the command
generated inside MicroBasic script, even though the controller may be currently respond-
ing to a Pulse or Analog command because of a higher priority setting.

Syntax Serial:	 ?CIS [cc]

Argument:	 Channel
		 Min: 1	 Max: Total Number of Motors

Syntax Scripting:	 result = getvalue(_CIS, cc)
		 result = getvalue(_CMDSER, cc)

Reply:

CIS=nn	 Type: Signed 32-bit	 Min: -1000 	 Max: 1000

Where:

cc = channel
nn = command value in +/-1000 range

CL - Read RoboCAN Alive Nodes Map

Alias: CALIVE	 HexCode: 26	 CANOpen id:

Description:

With CL it is possible to see which nodes in a RoboCAN are alive and what type of de-
vice is present at each node. A complete state of the network is represented in sixteen
32-bit numbers. Within each 32-bit word are 8 groups of 4-bits. The 4-bits contain the

Commands Reference

248	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

done information. E.g. bits 0-3 of first number is for node 0, bits 8-11 of first number is
for node 2, bits 4-7 of second number is for node 5 and bits 12-15 of fourth number is
for node 11, etc.

Syntax Serial:	 ?CL nn

Argument:	 Group
		 Min: 1	 Max: 16

Syntax Scripting:	 result = getvalue(_CL, nn)
		 result = getvalue(_CALIVE, nn)

Reply:

CL=mm	Type: Unsigned 32-bit	 Min: 0 	 Max: 4194M

Where:

nn =
1 : nodes 0-3
2 : nodes 4-7
...
...
15 : nodes 120-123
16 : nodes 124-127
mm = 4 words of 4 bits. Each 4-bit word:
0b0000 : Inactive node
0b0001 : Active motor controller
0b0011 : Active magsensor
0b0101 : Active RIOX

CR - Read Encoder Count Relative

Alias: RELCNTR	 HexCode: 08	 CANOpen id: 0x2108

Description:

Returns the amount of counts that have been measured from the last time this query was
made. Relative counter read is sometimes easier to work with, compared to full counter
reading, as smaller numbers are usually returned.

Syntax Serial:	 ?CR [cc]

Argument:	 Channel
		 Min: 1	 Max: Total Number of Encoders

Syntax Scripting:	 result = getvalue(_CR, cc)
		 result = getvalue(_RELCNTR, cc)

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 249

Reply:

CR=nn	 Type: Signed 32-bit	 Min: -2147M 	 Max: 2147

Where:

cc = Motor channel
nn = Counts since last read using ?CR

D - Read Digital Inputs

Alias: DIGIN	 HexCode: 0E	 CANOpen id: 0x210E

Description:

Reports the status of each of the available digital inputs. The query response is a single
digital number which must be converted to binary and gives the status of each of the in-
puts. The total number of Digital input channels varies from one controller model to anoth-
er and can be found in the product datasheet.

Syntax Serial:	 ?D

Argument:	 None		

Syntax Scripting:	 result = getvalue(_D, 1)
		 result = getvalue(_DIGIN, 1)

Reply:

D=nn	 Type: Unsigned 32-bit	 	

Where:

nn = b1 + b2*2 + b3*4 + ... +bn*2^n-1

Example:

Q: ?D
R: D=17 : Inputs 1 and 5 active, all others inactive

DI - Read Individual Digital Inputs

Alias: DIN	 HexCode: 0F	 CANOpen id: 0x6400

Description:

Reports the status of an individual Digital Input. The query response is a boolean value (0
or 1). The total number of Digital input channels varies from one controller model to anoth-
er and can be found in the product datasheet.

Syntax Serial:	 ?DI [cc]

Argument:	 InputNbr
		 Min: 1	 Max: Total Number of Digital Inputs

Commands Reference

250	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Syntax Scripting:	 result = getvalue(_DI, cc)
		 result = getvalue(_DIN, cc)

Reply:

DI=nn	 Type: Boolean	 Min: 0 	 Max: 1

Where:

cc = Digital Input number
nn = 0 or 1 state for each input

Example:

Q: ?DI
R: DI=1:0:1:0:1:0
Q: ?DI 1
R: DI=0

DO - Read Digital Output Status

Alias: DIGOUT	 HexCode: 17	 CANOpen id: 0x6408

Description:

Reads the actual state of all digital outputs. The response to that query is a single number
which must be converted into binary in order to read the status of the individual output
bits. When querying an individual output, the reply is 0 or 1 depending on its status. The
total number of Digital output channels varies from one controller model to another and
can be found in the product datasheet.

Syntax Serial:	 ?DO

Argument:	 None		

Syntax Scripting:	 result = getvalue(_DO, 1)
		 result = getvalue(_DIGOUT, 1)

Reply:

DO=nn	 Type: Unsigned 16-bit	 Min: 0 	 Max: 65536

Where:

nn = d1 + d2*2 + d3*4 + ... + dn * 2^n-1

Example:

Q: ?DO
R: DO=17 : Outputs 1 and 5 active, all others inactive

DR - Read Destination Reached

Alias: DREACHED	 HexCode: 22	 CANOpen id: 0x211B

Description:

This query is used when chaining commands in Position Count mode, to detect that a
destination has been reached and that the next destination values that were loaded in the

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 251

buffer have become active. The Destination Reached bit is latched and is cleared once it
has been read.

Syntax Serial:	 ?DR [cc]

Argument:	 Channel
		 Min: 1	 Max: Total Number of Motors

Syntax Scripting:	 result = getvalue(_DR, cc)
		 result = getvalue(_DREACHED, cc)

Reply:

DR=nn	 Type: Unsigned 8-bit	 Min: 0 	 Max: 1

Where:

cc = Motor channel
nn =
0 : Not yet reached
1 : Reached

E - Read Closed Loop Error

Alias: LPERR	 HexCode: 18	 CANOpen id: 0x6409

Description:

In closed-loop modes, returns the difference between the desired speed or position and
the measured feedback. This query can be used to detect when the motor has reached
the desired speed or position. In open loop mode, this query returns 0.

Syntax Serial:	 ?E [cc]

Argument:	 Channel
		 Min: 1	 Max: Total Number of Motors

Syntax Scripting:	 result = getvalue(_E, cc)
		 result = getvalue(_LPERR, cc)

Reply:

E=nn	 Type: Signed 32-bit	 Min: -2147M 	 Max: 2147M

Where:

cc = Motor channel
nn = Error value

F - Read Feedback

Alias: FEEDBK	 HexCode: 13	 CANOpen id: 0x6404

Commands Reference

252	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Description:

Reports the value of the feedback sensors that are associated to each of the channels in
closed-loop modes. The feedback source can be Encoder, Analog or Pulse. Selecting the
feedback source is done using the encoder, pulse or analog configuration parameters. This
query is useful for verifying that the correct feedback source is used by the channel in the
closed-loop mode and that its value is in range with expectations.

Syntax Serial:	 ?F [cc]

Argument:	 Channel
		 Min: 1	 Max: Total Number of Motors

Syntax Scripting:	 result = getvalue(_F, cc)
		 result = getvalue(_FEEDBK, cc)

Reply:

F=nn	 Type: Signed 16-bit	 Min: -1000 	 Max: 1000

Where:

cc = Motor channel
nn = Feedback values

FC - Read FOC Angle Adjust

Alias: FC	 HexCode: 47	 CANOpen id: 0x2135

Description:

Read in real time the angle correction that is currently applied by the Field Oriented algo-
rithm in order achieve optimal performance

Syntax Serial:	 ?FC [cc]

Argument:	 Channel	
		 Min: 1	 Max: Total Number of Motors

Syntax Scripting:	 result = getvalue(_FC, cc)

Reply:

FC = nn	 Type: Signed 16-bit	 Min: -512 	 Max: 512

Where:

cc = Motor channel
nn = Angle correction

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 253

FF - Read Fault Flags

Alias: FLTFLAG	 HexCode: 15	 CANOpen id: 0x6406

Description:

Reports the status of the controller fault conditions that can occur during operation. The
response to that query is a single number which must be converted into binary in order to
evaluate each of the individual status bits that compose it.

Syntax Serial:	 ?FF

Argument:	 None		

Syntax Scripting:	 result = getvalue(_FF, 1)
		 result = getvalue(_FLTFLAG, 1)

Reply:

FF = f1 + f2*2 + f3*4 + ... + fn*2n-1	
Type: Unsigned 8-bit	 Min: 0 	 Max: 255

Where:

f1 = Overheat
f2 = Overvoltage
f3 = Undervoltage
f4 = Short circuit
f5 = Emergency stop
f6 = Brushless sensor fault
f7 = MOSFET failure
f8 = Default configuration loaded at startup

Example:

Q: ?FF
R: FF=2 : Overvoltage fault

FID - Read Firmware ID

Alias: FID	 HexCode: 1E	 CANOpen id:

Description:

This query will report a string with the date and identification of the firmware revision of
the controller.

Syntax Serial:	 ?FID

Argument:	 None		

Syntax Scripting:	 result = getvalue(_FID, 1)

Commands Reference

254	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Reply:

FID=ss	 Type: String	 	

Where:

ss = Firmware ID string

Example:

Q: ?FID
R: FID=Roboteq v1.6 RCB500 05/01/2016

FM - Read Runtime Status Flag

Alias: MOTFLAG	 HexCode: 30	 CANOpen id: 0x2122

Description:

Report the runtime status of each motor. The response to that query is a single number
which must be converted into binary in order to evaluate each of the individual status bits
that compose it.

Syntax Serial:	 ?FM [cc]

Argument:	 Channel
		 Min: 1	 Max: Total Number of Motors

Syntax Scripting:	 result = getvalue(_FM, cc)
		 result = getvalue(_MOTFLAG, cc)

Reply:

FM = f1 + f2*2 + f3*4 + ... + fn*2n-1

	 Type: Unsigned 16-bit	 Min: 0 	 Max: 255

Where:

cc = Motor channel
f1 = Amps Limit currently active
f2 = Motor stalled
f3 = Loop Error detected
f4 = Safety Stop active
f5 = Forward Limit triggered
f6 = Reverse Limit triggered
f7 = Amps Trigger activated

Example:

Q: ?FM 1
R: FM=6 : Motor 1 is stalled and loop error detected

Note:

f2, f3 and f4 are cleared when the motor command is returned to 0. When f5or f6 are on,
the motor can only be commanded to go in the reverse direction.

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 255

FS - Read Status Flags

Alias: STFLAG	 HexCode: 14	 CANOpen id: 0x6405

Description:

Report the state of status flags used by the controller to indicate a number of internal
conditions during normal operation. The response to this query is the single number for all
status flags. The status of individual flags is read by converting this number to binary and
look at various bits of that number.

Syntax Serial:	 ?FS

Argument:	 None		

Syntax Scripting:	 result = getvalue(_FS, 1)
		 result = getvalue(_STFLAG, 1)

Reply:

FS = f1 + f2*2 + f3*4 + ... + fn*2^n-1	 Type: Unsigned 8-bit	 Min: 0 	 Max:
255

Where:

f1 = Serial mode
f2 = Pulse mode
f3 = Analog mode
f4 = Power stage off
f5 = Stall detected
f6 = At limit
f7 = Unused
f8 = MicroBasic script running

Note:

 On controller models supporting Spektrum radio mode f4 is used to indicate Spektrum.
f4 to f6 are shifted to f5 to f7

HS - Read Hall Sensor States

Alias: HSENSE	 HexCode: 31	 CANOpen id: 0x2123

Description:

Reports that status of the hall sensor inputs. This function is mostly useful for trouble-
shooting. When no sensors are connected, all inputs are pulled high and the value 7 will
be replied. All inputs high and all inputs low (0) are invalid combinations. In normal condi-
tions, all values from 1 to 6 should appear at one time or the other as the motor shaft is
rotated

Syntax Serial:	 ?HS [cc]

Commands Reference

256	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Argument:	 Channel
		 Min: 1	 Max: Total Number of Motors

Syntax Scripting:	 result = getvalue(_HS, cc)
		 result = getvalue(_HSENSE, cc)

Reply:

HS= ha + 2*hb + 4*hc	 Type: Unsigned 8-bit	 Min: 0 	 Max: 7

Where:

cc = channel
ha = hall sensor A
hb = hall sensor B
hc = hall sensor C
Example:
Q: ?HS 1
R: HS=5 : sensors A and C are high, sensor B is low

Note:

Function not available on HBLxxxxx products

ICL - Is RoboCAN Node Alive

Alias: ICL	 HexCode: 46	 CANOpen id:

Description:

This query is used to determine if specific RoboCAN node is alive on CAN bus.

Syntax Serial:	 ?ICL cc

Argument:	 NodeId
		 Min: 1	 Max: 127

Syntax Scripting:	 result = getvalue(_ICL, cc)

Reply:

ICL=nn	 Type: Unsigned 8-bit	 Min: 0 	 Max: 1

Where:

cc = Node Id
nn =
0 : Not present
1 : Alive

K - Read Spektrum Receiver

Alias: SPEKTRUM	 HexCode: 21	 CANOpen id: 0x211A

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 257

Description:

On controller models with Spektrum radio support, this query is used to read the raw
values of each of up to 6 receive channels. When signal is received, this query returns the
value 0.

Syntax Serial:	 ?K [cc]

Argument:	 Channel
		 Min: 1	 Max: 6

Syntax Scripting:	 result = getvalue(_K, cc)
		 result = getvalue(_SPEKTRUM, cc)

Reply:

K=nn		 Min: 0 	 Max: 1024

Where:

cc = Radio channel
nn = Raw joystick value, or 0 if transmitter is off or out of range

LK - Read Lock status

Alias: LOCKED	 HexCode: 1D	 CANOpen id:

Description:

Returns the status of the lock flag. If the configuration is locked, then it will not be possi-
ble to read any configuration parameters until the lock is removed or until the parameters
are reset to factory default. This feature is useful to protect the controller configuration
from being copied by unauthorized people.

Syntax Serial:	 ?LK

Argument:	 None		

Syntax Scripting:	 result = getvalue(_LK, 1)
		 result = getvalue(_LOCKED, 1)

Reply:

LK=ff	 Type: Unsigned 8-bit	 Min: 0 	 Max: 1

Where:

ff =
0 : unlocked
1 : locked

Commands Reference

258	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

M - Read Motor Command Applied

Alias: MOTCMD	 HexCode: 01	 CANOpen id: 0x2101

Description:

Reports the command value that is being used by the controller. The number that is
reported will be depending on which mode is selected at the time. The choice of one
command mode vs. another is based on the command priority mechanism. In the RS232
mode, the reported value will be the command that is entered in via the RS232 or USB
port and to which an optional exponential correction is applied. In the Analog and Pulse
modes, this query will report the Analog or Pulse input after it is being converted using
the min, max, center, deadband, and linearity corrections. This query is useful for viewing
which command is actually being used and the effect of the correction that is being ap-
plied to the raw input.

Syntax Serial:	 ?M [cc]

Argument:	 Channel
		 Min: 1	 Max: Total Number of Motors

Syntax Scripting:	 result = getvalue(_M, cc)
		 result = getvalue(_MOTCMD, cc)

Reply:

M=nn	 Type: Signed-16-bit	 Min: -1000 	 Max: 1000

Where:

cc = Motor channel
nn = Command value used for each motor. 0 to +/-1000 range

Example:

Q: ?M
R: M=800:-1000
Q: ?M 1 R:
M=800

MA - Read Field Oriented Control Motor Amps

Alias: MEMS	 HexCode: 25	 CANOpen id: 0x211C

Description:

On brushless motor controllers operating in sinusoidal mode, this query returns the
Torque (also known as Quadrature or Iq) current, and the Flux (also known as Direct, or Id)
current. Current is reported in Amps x 10.

Syntax Serial:	 ?MA nn
Argument:	 AmpsChannel
		 Min: 1	 Max: 2 * Total Number of Motors

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 259

Syntax Scripting:	 result = getvalue(_MA, nn)
		 result = getvalue(_MEMS, nn)

Reply:

MA=mm	 Type: Signed 16-bit	 	

Where:

nn =
1 : Flux Amps 1 (Id)
2 : Torque Amps 1 (Iq)
3 : Flux Amps 2 (Id)
4 : Torque Amps 2 (Iq)
mm = Amps * 10

MGD - Read Magsensor Track Detect

Alias: MGDET	 HexCode: 29	 CANOpen id: 0x211D

Description:

When one or more MGS1600 Magnetic Guide Sensors are connected to the controller,
this query reports whether a magnetic tape is within the detection range of the sensor. If
no tape is detected, the output will be 0. If only one sensor is connected to any pulse in-
put, no argument is needed for this query. If more than one sensor is connected to pulse
inputs and these inputs are enabled and configured in Magsensor MultiPWM mode, then
the argument following the query is used to select the sensor

Syntax Serial:	 ?MGD [cc]

Argument:	 SensorNumber
		 Min: None	 Max: Total Number of Pulse Inputs

Syntax Scripting:	 result = getvalue(_MGD, cc)
		 result = getvalue(_MGDET, cc)

Reply:

MGD=nn	 Type: Unsigned 8-bit	 Min: 0 	 Max: 1

Where:

cc = (When only one sensor enabled)
None or 1 : Current sensor
cc = (When several sensors enabled)
1 : Sensor at pulse input 1
2 : Sensor at pulse input 2
...
p : Sensor at pulse input p
nn =
0 : No track detected
1 : Track detected

Commands Reference

260	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

MGM - Read Magsensor Markers

Alias: MGMRKR	 HexCode: 2B	 CANOpen id: 0x211F

Description:

When one or more MGS1600 Magnetic Guide Sensors are connected to the controller,
this query reports whether left or right markers are present under sensor.If only one sen-
sor is connected to any pulse input this query will report the data of that sensor, regard-
less which pulse input it is connected to. If more than one sensor is connected to pulse
inputs and these inputs are enabled and configured in Magsensor MultiPWM mode, then
the argument following the query is used to select the sensor

Syntax Serial:	 ?MGM [cc]

Argument:	 SensorNumber
		 Min: 1	 Max: 2 * Total Number of Pulse Inputs

Syntax Scripting:	 result = getvalue(_MGM, cc)
		 result = getvalue(_MGMRKR, cc)

Reply:

MGM=mm	 Type: Unsigned 8-bit	 Min: 0 	 Max: 1

Where:

cc = (When only one sensor enabled)
1 : Left Marker
2 : Right Marker
cc = (When several sensors enabled)
1 : Left Marker of sensor at pulse input 1
2 : Right Marker of sensor at pulse input 1
3 : Left Marker of sensor at pulse input 2
4 : Right Marker of sensor at pulse input 2
...
((p-1)* 2)+1 : Left Marker of sensor at pulse input p
((p-1)* 2)+2 : Right Marker of sensor at pulse input p
nn =
0 : No marker detected
1 : Marker detected

MGS - Read Magsensor Status

Alias: MGSTATUS	 HexCode: 2C	 CANOpen id: 0x2120

Description:

When one or more MGS1600 Magnetic Guide Sensors are connected to the controller,
this query reports the state of the sensor. If only one sensor is connected to any pulse in-
put, no argument is needed for this query. If more than one sensor is connected to pulse
inputs and these inputs are enabled and configured in Magsensor MultiPWM mode, then
the argument following the query is used to select the sensor.

Syntax Serial:	 ?MGS

Argument:	 SensorNumber
		 Min: None	 Max: Total Number of Pulse Inputs

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 261

Syntax Scripting:	 result = getvalue(_MGS,)
		 result = getvalue(_MGSTATUS,)

Reply:

MGS=f1 + f2*2 + f3*4 + ... + fn*2n-1	 Type: Unsigned 16-bit	 	

Where:

cc = (When only one sensor enabled)
None or 1 : Current sensor
cc = (When only several sensors enabled)
1 : Sensor at pulse input 1
2 : Sensor at pulse input 2

...

p : Sensor at pulse input p
f1 : Tape detect
f2 : Left marker present
f3 : Right marker present
f9 : Sensor active

MGT - Read Magsensor Track Position

Alias: MGTRACK	 HexCode: 2A	 CANOpen id: 0x211E

Description:

When one or more MGS1600 Magnetic Guide Sensors are connected to the controller,
this query reports the position of the tracks detected under the sensor. If only one sensor
is connected to any pulse input, the argument following the query selects which track to
read. If more than one sensor is connected to pulse inputs and these inputs are enabled
and configured in Magsensor MultiPWM mode, then the argument following the query is
used to select the sensor. The reported position of the magnetic track in millimeters, us-
ing the center of the sensor as the 0 reference.

Syntax Serial:	 ?MGT cc

Argument:	 Channel
		 Min: 1	 Max: 3 * Total Number of Pulse Inputs

Syntax Scripting:	 result = getvalue(_MGT, cc)
		 result = getvalue(_MGTRACK, cc)

Reply:

MGM = nn	 Type: Signed 16-bit	 	

Where:

cc = (When only one sensor enabled)
1 : Left Track
2 : Right Track
3 : Active Track
cc = (When several sensors enabled)

Commands Reference

262	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

1 : Left Track of sensor at pulse input 1
2 : Right Track of sensor at pulse input 1
3 : Active Track of sensor at pulse input 1
4 : Left Track of sensor at pulse input 2
5 : Right Track of sensor at pulse input 2
6 : Active Track of sensor at pulse input 2

...

((p-1)* 3)+1 : Left Track of sensor at pulse input p
((p-1)* 3)+2 : Right Track of sensor at pulse input p
((p-1)* 3)+3 : Active Track of sensor at pulse input p
nn = position in millimeters

MGY - Read Magsensor Gyroscope

Alias: MGYRO	 HexCode: 2D	 CANOpen id: 0x2121

Description:

When one or more MGS1600 Magnetic Guide Sensors are connected to the controller,
this query reports the state of the optional gyroscope inside the sensor. If only one sen-
sor is connected to any pulse input, no argument is needed for this query. If more than
one sensor is connected to pulse inputs and these inputs are enabled and configured in
Magsensor MultiPWM mode, then the argument following the query is used to select the
sensor

Syntax Serial:	 ?MGY [cc]

Argument:	 Channel]
		 Min: None	 Max: Total Number of Pulse Inputs

Syntax Scripting:	 result = getvalue(_MGY, cc)
		 result = getvalue(_MGYRO, cc)

Reply:

MGY=nn	 Type: Signed 16-bit	 Min: -32768 	 Max: 32767

Where:

cc = (When only one sensor enabled)
None or 1 : Current sensor
cc = (When several sensors enabled)
1 : sensor at pulse input 1
2 : sensor at pulse input 2

...

p : sensor at pulse input p
nn = Gyroscope value

P - Read Motor Power Output Applied

Alias: MOTPWR	 HexCode: 02	 CANOpen id: 0x2102

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 263

Description:

Reports the actual PWM level that is being applied to the motor at the power output
stage. This value takes into account all the internal corrections and any limiting resulting
from temperature or over current. A value of 1000 equals 100% PWM. The equivalent
voltage at the motor wire is the battery voltage * PWM level.

Syntax Serial:	 ?P [cc]

Argument:	 Channel
		 Min: 1	 Max: Total Number of Motors

Syntax Scripting:	 result = getvalue(_P, cc)
		 result = getvalue(_MOTPWR, cc)

Reply:

P=nn	 Type: Signed 16-bit	 Min: -1000 	 Max: 1000

Where:

cc = Motor channel
nn = 0 to +/-1000 power level

Example:

Q: ?P 1
R: P=800

PI - Read Pulse Inputs

Alias: PLSIN	 HexCode: 11	 CANOpen id: 0x6402

Description:

Reports the value of each of the enabled pulse input captures. The value is the raw num-
ber in microseconds when configured in Pulse Width mode. In Frequency mode, the
returned value is in Hertz. In Duty Cycle mode, the reported value ranges between 0 and
4095 when the pulse duty cycle is 0% and 100% respectively.

Syntax Serial:	 ?PI [cc]

Argument:	 InputNbr
		 Min: 1	 Max: Total Number of Pulse Input

Commands Reference

264	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Syntax Scripting:	 result = getvalue(_PI, cc)
		 result = getvalue(_PLSIN, cc)

Reply:

PI=nn	 Type: Unsigned 16-bit	 Min: 0 	 Max: 65536

Where:

cc = Pulse capture input number

nn = Value

Note:

The total number of Pulse input channels varies from one controller model to another and
can be found in the product datasheet.

PIC - Read Pulse Input after Conversion

Alias: PLSINC	 HexCode: 24	 CANOpen id: 0x6404

Description:

Returns value of a Pulse input after all the adjustments were performed to convert it to a
command or feedback value (Min/Max/Center/Deadband/Linearity). If an input is disabled,
the query returns 0.

Syntax Serial:	 ?PIC [cc]

Argument:	 InputNbr
		 Min: 1	 Max: Total Number of Pulse Input

Syntax Scripting:	 result = getvalue(_PIC, cc)
		 result = getvalue(_PLSINC, cc)

Reply:

PIC=nn	 Type: Signed 16-bit	 Min: -1000 	 Max: 1000

Where:

cc = Pulse input number
nn = Converted input value to +/-1000 range

S - Read Encoder Motor Speed in RPM

Alias: ABSPEED	 HexCode: 03	 CANOpen id: 0x2103

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 265

Description:

Reports the actual speed measured by the encoders as the actual RPM value. To report
RPM accurately, the correct Pulses per Revolution (PPR) must be

stored in the encoder configuration

Syntax Serial:	 ?S [cc]

Argument:	 Channel
		 Min: 1	 Max: Total Number of Encoders

Syntax Scripting:	 result = getvalue(_S, cc)
		 result = getvalue(_ABSPEED, cc)

Reply:

S = nn	 Type: Signed 16-bit	 Min: -32768 	 Max: 32767

Where:

cc =Motor channel
nn = Speed in RPM

SCC - Read Script Checksum

Alias: SCC	 HexCode: 45	 CANOpen id: 0x2133

Description:

Scans the script storage memory and computes a checksum number that is unique to
each script. If not script is loaded the query outputs the value 0xFFFFFFFF. Since a stored
script cannot be read out, this query is useful for determining if the correct version of a
given script is loaded.

Syntax Serial:	 ?SCC

Argument:	 None		

Syntax Scripting:	 result = getvalue(_SCC, 1)

Reply:

SCC = nn	 Type: Unsigned 32-bit	 	

Where:

nn = Checksum number

SR - Read Encoder Speed Relative

Alias: RELSPEED	 HexCode: 07	 CANOpen id: 0x2107

Commands Reference

266	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Description:

Returns the measured motor speed as a ratio of the Max RPM (MXRPM) configuration
parameter. The result is a value of between 0 and +/1000. As an example, if the Max RPM
is set at 3000 inside the encoder configuration parameter and the motor spins at 1500
RPM, then the returned value to this query will be 500, which is 50% of the 3000 max.
Note that if the motor spins faster than the Max RPM, the returned value will exceed
1000. However, a larger value is ignored by the controller for its internal operation.

Syntax Serial:	 ?SR [cc]

Argument:	 Channel
		 Min: 1	 Max: Total Number of Encoders

Syntax Scripting:	 result = getvalue(_SR, cc)
		 result = getvalue(_RELSPEED, cc)

Reply:

SR = nn	Type: Signed 16-bit	 Min: -1000 	 Max: 1000

Where:

cc = Motor channel
nn = Speed relative to max

T - Read Temperature

Alias: TEMP	 HexCode: 12	 CANOpen id: 0x6403

Description:

Reports the temperature at each of the Heatsink sides and on the internal MCU silicon
chip. The reported value is in degrees C with a one degree resolution.

Syntax Serial:	 ?T [cc]

Argument:	 SensorNbr
		 Min: 1	 Max: Total Number of Motors + 1

Syntax Scripting:	 result = getvalue(_T, cc)
		 result = getvalue(_TEMP, cc)

Reply:

T= cc	 Type: Signed 8-bit	Min: -40 	Max: 125

Where:

cc =
1 : MCU temperature
2 : Channel 1 side

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 267

3 : Channel 2 side
tt = temperature in degrees

Note:

On some controller models, additional temperature values may reported. These are mea-
sured at different points and not documented. You may safely ignore this extra data. Other
controller models only have one heatsink temperature sensor and therefore only report
one value in addition to the Internal IC temperature.

TM - Read Time

Alias: TIME	 HexCode: 1C	 CANOpen id: 0x2119

Description:

Reports the value of the time counter in controller models equipped with Real-Time
clocks with internal or external battery backup. On older controller models, time is count-
ed in a 32-bit counter that keeps track the total number of seconds, and that can be
converted into a full day and time value using external calculation. On newer models, the
time is kept in multiple registers for seconds, minutes, hours (24h format), dayofmonth,
month, year in full

Syntax Serial:	 ?TM [ee]

Argument:	 Element
		 Min: None	 Max: 6

Syntax Scripting:	 result = getvalue(_TM, ee)
		 result = getvalue(_TIME, ee)

Reply:

TM = nn	Type: Unsigned 32-bit	 Min: 0 	

Where:

ee = date element in new controller model
1 : Seconds
2 : Minutes
3 : Hours (24h format)
4 : Dayofmonth
5 : Month
6 : Year in full
nn = Value

TR - Read Position Relative Tracking

Alias: TRACK	 HexCode: 20	 CANOpen id:

Description:

Reads the real-time value of the expected motor position in the position tracking closed
loop mode and in speed position

Commands Reference

268	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Syntax Serial:	 ?TR [cc]

Argument:	 Channel
		 Min: 1	 Max: Total Number of Motors

Syntax Scripting:	 result = getvalue(_TR, cc)
		 result = getvalue(_TRACK, cc)

Reply:

TR=nn	 Type: Signed 32-bit	 Min: -2147M 	 Max: 2147M

Where:

cc = Motor channel
nn = Position

TRN - Read Control Unit type and Controller Model

Alias: TRN	 HexCode: 1F	 CANOpen id:

Description:

Reports two strings identifying the Control Unit type and the Controller Model type. This
query is useful for adapting the user software application to the controller model that is
attached to the computer.

Syntax Serial:	 ?TRN

Argument:	 None		

Syntax Scripting:	 result = getvalue(_TRN, 1)

Reply:

TRN=ss	Type: String	 	

Where:

ss = Control Unit Id String:Controller Model Id String

Example:

Q: ?TRN

R:TRN=RCB500:HDC2460

UID - Read MCU Id

Alias: UID	 HexCode: 32	 CANOpen id:

Runtime Queries

	 Advanced Digital Motor Controller User Manual� 269

Description:

Reports MCU specific information. This query is useful for determining the type of MCU:
100 = STM32F10X, 300 = STM32F30X. The query also produces a unique Id number that
is stored on the MCU silicon.

Syntax Serial:	 ?UID [ee]

Argument:	 Element
		 Min: 1	 Max: 5

Syntax Scripting:	 result = getvalue(_UID, ee)

Reply:

UID = nn	 Type: Unsigned 32-bit	 Min: 1 	 Max: 4294M

Where:

ee = Data element
1 : MCU type
2 : MCU Device Id
3-5 : MCU Unique ID
nn = value

V - Read Volts

Alias: VOLTS	 HexCode: 0D	 CANOpen id: 0x210D

Description:

Reports the voltages measured inside the controller at three locations: the main battery
voltage, the internal voltage at the motor driver stage, and the voltage that is available on
the 5V output on the DSUB 15 or 25 front connector. For safe operation, the driver stage
voltage must be above 12V. The 5V output will typically show the controllerâ€™s internal
regulated 5V minus the drop of a diode that is used for protection and will be in the 4.7V
range. The battery voltage is monitored for detecting the undervoltage or overvoltage con-
ditions.

Syntax Serial:	 ?V [ee]

Argument:	 SensorNumber
		 Min: 1	 Max: 3

Syntax Scripting:	 result = getvalue(_V, ee)
		 result = getvalue(_VOLTS, ee)

Reply:

V = nn	 Type: Unsigned 16-bit	 	

Commands Reference

270	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Where:

ee =
1 : Internal volts
2 : Battery volts
3 : 5V output
nn = Volts * 10 for internal and battery volts. Milivolts for 5V output

Example:

Q: ?V
R:V=135:246:4730
Q: ?V 3
R:V=4730

VAR - Read User Integer Variable

Alias: VAR	 HexCode: 06	 CANOpen id: 0x2106

Description:

Read the value of dedicated 32-bit internal variables that can be read and written to/from
within a user MicroBasic script. It is used to pass 32-bit signed number between user
scripts and a microcomputer connected to the controller. The total number of user integer
variables varies from one controller model to another and can be found in the product
datasheet.
Syntax Serial:	 ?VAR [ee]

Argument:	 VarNumber
		 Min: 1	 Max: Total Number of User Variables

Syntax Scripting:	 result = getvalue(_VAR, ee)

Reply:

VAR=nn	Type: Signed 32-bit	 Min: -2147M 	 Max: 2147M

Where:

ee = Variable number
nn = Value

SL - Read Slip Frequency

Alias: SL 	 HexCode: 48 	 CANOpen id: 0x2136

Description:

This query is only used in AC Induction boards. Read the value of the Slip Frequency be-
tween the rotor and the stator of an AC Induction motor.

Syntax Serial: ?SL [cc]

Argument: 	 VarNumber

		 Min: 1 Max: Total Number of Motors

Syntax Scripting: result = getvalue(_SL, cc)

Query History Commands

	 Advanced Digital Motor Controller User Manual� 271

Reply:

SL=nn 	 Type: Signed 16-bit 	 Min: -32768	 Max: 32768

Where:

cc = Motor channel

nn = Slip Frequency in Hertz * 10

Query History Commands
Every time a Real Time Query is received and executed, it is stored in a history buffer
from which it can be recalled. The buffer will store up to 16 queries. If more than 16 que-
ries are received, the new one will be added to the history buffer while the firsts are re-
moved in order to fit the 16 query buffer.

Queries can then be called from the history buffer using manual commands, or automati-
cally, at user selected intervals. This feature is very useful for monitoring and telemetry.

Additionally, the history buffer can be loaded with a set of user selected queries at power
on so that the controller can automatically issue operating values immediately after power
up. See “TELS - Telemetry String” configuration command for details on how to set up
the startup Telemetry string.

A command set is provided for managing the history buffer. These special commands
start with a “#” character.

TABLE 19-3. Query History Commands

Command Description

Send the next value. Stop automatic sending

C Clear buffer history

nn Start automatic sending

- Send Next History Item / Stop Automatic Sending

A # alone will call and execute the next query in the buffer. If the controller was in the
process of automatically sending queries from the buffer, then receiving a # will cause the
sending to stop.

When a query is executed from the history buffer, the controller will only display the que-
ry result (e.g. A=10:20). It will not display the query itself.

Syntax:

	 #

Reply:	 QQ

Where:

	 QQ = is reply to query in the buffer.

Commands Reference

272	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

C - Clear Buffer History

This command will clear the history buffer of all queries that may be stored in it. If the
controller was in the process of automatically sending queries from the buffer, then re-
ceiving this command will also cause the sending to stop

Syntax:

	 # C

Reply:	 None

nn - Start Automatic Sending

This command will initiate the automatic retrieving and execution of queries from the
history buffer. The number that follows the command is the time in milliseconds between
repetition. A single query is fetched and executed at each time interval.

Syntax:

	 # nn

Reply:	 QQ at every nn time intervals

Where:

	 QQ = is reply to query in the buffer.
	 nn = time in ms

Range:	 nn = 1 to 32000ms

Maintenance Commands
This section contains a few commands that are used occasionally to perform mainte-
nance functions.

TABLE 19-4. Maintenance Commands

Command Arguments Description

CLMOD Key Calibrate Sin/Cos sensors

CLRST Key Reset configuration to factory defaults

CLSAV Key Save calibrations to Flash

DFU Key Update Firmware via USB

EELD None Load Parameters from EEPROM

EERST Key Reset Factory Defaults

EESAV None Save Configuration in EEPROM

LK Key Lock Configuration Access

RESET Key Reset Controller

SLD Key Script Load

STIME Time Set Time

UK Key Unlock Configuration Access

Maintenance Commands

	 Advanced Digital Motor Controller User Manual� 273

CLMOD - Calibrate Sin/Cos sensors

Argument: Key

Description:
This command is used to enter the calibration mode for sin/cos sensors on brushless
motor controllers. After calibration is complete, the sensor data must be saved using the
%CLSAV command.

Syntax:
%CLMOD nn

Where:
0 : Exit Calibration Mode
2 : Calibrate SinCos Sensor for channel 1
3 : Calibrate SinCos Sensor for channel 2
4 : Calibrate Sensorless Start-up for channel 1
5 : Calibrate Sensorless Start-up for channel 2

CLRST - Reset configuration to factory defaults

Argument: Key

Description:
This command resets all configurations to their factory default

Syntax:
%CLRST safetykey

Where:
safetykey = 321654987

CLSAV - Save calibrations to Flash

Argument: Key

Description:
Saves changes to calibration to Flash. Calibration parameters are stored permanently until
new values are stored.. This command must be used with care and must be followed by
a 9-digit safety key to prevent accidental use.

Syntax:
%CLSAV safetykey

Where:
safetykey = 321654987

DFU - Update Firmware via USB

Argument: Key

Commands Reference

274	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Description:
Firmware update can be performed via the RS232 port or via USB. When done via USB,
the DFU command is used to cause the controller to enter in the firmware upgrade mode.
This command must be used with care and must be followed by a 9-digit safety key to
prevent accidental use. Once the controller has received the DFU command, it will no
longer respond to the PC utility and no longer be visible on the PC. When this mode is en-
tered, you must launch the separate upgrade utility to start the firmware upgrade process.

Syntax:
%DFU safetykey

Where:
safetykey = 321654987

EELD - Load Parameters from EEPROM

Argument: None

Description:
This command reloads the configuration that are saved in EEPROM back into RAM and
activates these settings.

Syntax:
%EELD

EERST - Reset Factory Defaults

Argument: Key

Description:
The EERST command will reload the controller’s™ RAM and EEPROM with the
factory default configuration. Beware that this command may cause the controller
to no longer work in your application since all your configurations will be erased
back to factory defaults. This command must be used with care and must be followed
by a 9-digit safety key to prevent accidental use.

Syntax:
%EERST safetykey

Where:
safetykey = 321654987

EESAV - Save Configuration in EEPROM

Argument: None

Description:
Controller configuration that have been changed using any Configuration Command
can then be saved in EEPROM. Once in EEPROM, it will be loaded automatically in the
controller every time the unit is powered on. If the EESAV command is not called after
changing a configuration, the configuration will remain in RAM and active only until the
controller is turned off. When powered on again, the previous configuration that was in
the EEPROM is loaded. This command uses no parameters

Syntax:
%EESAV

Maintenance Commands

	 Advanced Digital Motor Controller User Manual� 275

LK - Lock Configuration Access

Argument: Key

Description:
This command is followed by any user-selected secret 32-bit number. After receiving it,
the controller will lock the configuration and store the key inside the controller, in area
which cannot be accessed. Once locked, the controller will no longer respond to configu-
ration reads. However, it is still possible to store or to set new configurations.

Syntax:
%LK secretkey

Where:
secretkey = 32-bit number (1 to 4294967296)

RESET - Reset Controller

Argument: Key

Description:
This command will cause the controller to reset similarly as if it was powered OFF and
ON. This command must be used with care and must be followed by a 9-digit
safety key to prevent accidental reset.

Syntax:
%RESET safetykey

Where:
safetykey = 321654987

SLD - Script Load

Argument: Key

Description:
After receiving this command, the controller will enter the script loading mode. It will
reply with HLD and stand ready to accept script bytecodes in intel Hex Format. The exact
download and data format is described in the MicroBasic section of the manual

Syntax:
%SLD

STIME - Set Time

Argument: Hours Mins Secs

Description:
This command sets the time inside the controller’s™ clock that is available in some con-
troller models. The clock circuit will then keep track of time as long as the clock remains
under power. On older controller models, the clock is a single 32-bit counter in which the

Commands Reference

276	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

number of seconds from a preset day and time is stored (for example 02/01/00 at 3:00).
On newer model, the clock contains 6 registers for seconds, dates, minuted, hours, day-
ofmonth, month, year. The command syntax will be different for each of these models.

Syntax:
%STIME nn : Older models%STIME ee nn : Newer models

Where:
Older models:nn = number of secondsNewer modelsee = 1: Seconds2: Minutes3: Mours
(24h format)4: Dayofmonth5: Month6: Year in fullnn = Value

UK - Unlock Configuration Access

Argument: Key

Description:
This command will release the lock and make the configuration readable again. The
command must be followed by the secret key which will be matched by the controller
internally against the key that was entered with the LK command to lock the con-
troller. If the keys match, the configuration is unlocked and can be read.

Syntax:
%UK secretkey

Where:
secretkey = 32-bit number (1 to 4294967296)

Set/Read Configuration Commands
These commands are used to set or read all the operating parameters needed by the con-
troller for its operation. Parameters are loaded from EEPROM into RAM, from where they
are and then used every time the controller is powered up or restarted.

Important Notices

The total number of configuration parameters is very large. To simplify the config-
uration process and avoid errors, it is highly recommended to use the RoborunPlus
PC utility to read and set configuration.
Some configuration parameters may be absent depending on the presence or ab-
sence of the related feature on a particular controller model.

Setting Configurations

The general format for setting a parameter is the “^” character followed by the command
name followed by parameter(s) for that command. These will set the parameter in the con-
troller’s RAM and this parameter becomes immediately active for use. The parameter can
also be permanently saved in EEPROM by sending the %EESAV maintenance command.

Some parameters have a unique value that applies to the controller in general. For ex-
ample, overvoltage or PWM frequency. These configuration commands are therefore fol-
lowed by a single parameter:

Set/Read Configuration Commands

	 Advanced Digital Motor Controller User Manual� 277

^PWM 180 : Sets PWM frequency to 18.0 kHz
^OVL 400 : Sets Overvoltage limit to 40.0V

Other parameters have multiple value, with typically one value applying to a different
channel. Multiple value parameters are numbered from 1 to n. For example, Amps limit
for a motor channel or the configuration of an analog input channel.

^ALIM 1 250 : Sets Amps limit for channel 1 to 25.0A
^AMIN 4 2000 : Sets low range of analog input 4 to 2000

Using 0 as the first parameter value will cause all elements to be loaded with the same
content.

^ADB 0 10 : Sets the deadband of all analog inputs to 10%

Important Notice

Saving configuration into EEPROM can take up to 20ms per parameter. The control-
ler will suspend the loop processing during this time, potentially affecting the con-
troller operation. Avoid saving configuration to EEPROM during motor operation.

Reading Configurations

Configuration parameters are read by issuing the “~” character followed by the command
name and with an optional channel number parameter. If no parameter is sent, the con-
troller will give the value of all channels. If a channel number is sent, the controller will
give the value of the selected channel.

The reply to parameter read command is the command name followed by “=” followed
by the parameter value. When the reply contains multiple values, then the different values
are separated by “:”. The list below describes every configuration command of the control-
ler. For Example:
		 ~ALIM : Read Amps limit for all channels

Reply: ALIM= 750:650
		 ~ALIM 2: Read Amps limit for channel 2

Reply: ALIM= 650

Configuration parameters can be read from within a MicroBasic script using the getcon-
fig() function. The setconfig() function is used to load a new value in a configuration pa-
rameter.

Important Warning

Configuration commands can be issued at any time during controller operation.
Beware that some configuration parameters can alter the motor behavior. Change
configurations with care. Whenever possible, change configurations while the
motors are stopped.

Commands Reference

278	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Configuration Read Protection

The controller may be locked to prevent the configuration parameters to be read. Given
the large number of possible configurations, this feature provides effective system-level
copy protection. The controller will reply to configuration read requests only if the read
protection is unlocked. If locked, the controller will respond a “-” character.

General Configuration and Safety
The commands in this group are used to configure the controller’s general and safety
settings.

TABLE 19-5. General and Safety Configurations

Command Arguments Description

ACS Enable Analog Center Safety

AMS Enable Analog within Min & Max Safety

BEE Address Value User Storage in Battery Backed RAM

BRUN Enable MicroBasic Auto Start

CLIN Channel Linearity Command Linearity

CPRI Level Command Command Priorities

DFC Channel Value Default Command value

ECHOF OffOn Enable/Disable Serial Echo

EE Address Data Store User Data in Flash

RSBR BitRate Set RS232 bit rate

RWD Timeout Serial Data Watchdog

SCRO Port Select Print output port for scripting

SKCTR Channel Center Spektrum Center

SKDB Channel Deadband Spektrum Deadband

SKLIN Channel Linearity Spektrum Linearity

SKMAX Channel Max Spektrum Max

SKMIN Channel Min Spektrum Min

SKUSE Channel Port Assign Spektrum port to
motor command

TELS String Telemetry string

ACS - Analog Center Safety

HexCode: 0B

Description:
This parameter enables the analog safety that requires that the input be at zero or
centered before it can be considered as good. This safety is useful when operating
with a joystick and requires that the joystick be centered at power up before motors can
be made to run. On mutli-channel controllers, this configuration acts on all analog com-
mand inputs, meaning that all joysticks must be centered before any one becomes active.

General Configuration and Safety

	 Advanced Digital Motor Controller User Manual� 279

Syntax Serial:	 ^ACS nn
		 ~ACS

Syntax Scripting:	 setconfig(_ACS, nn)

Number of Arguments: 1

Argument 1: Enable

	 Type: Unsigned 8-bit
	 Min: 0	 Max: 1
	 Default: 1

Where:
nn =
0: Safety disabled
1: Safety enabled

AMS - Analog within Min & Max Safety

HexCode: 0C

Description:
This configuration is used to make sure that the analog input command is always within
a user preset minimum and maximum safe value. It is useful to detect, for example, that
the wire connection to a command potentiometer is broken. If the safety is enabled and
the input is outside the safe range, the Analog input command will be considered invalid.
The controller will then apply a motor command based on the priority logic..

Syntax Serial:	 ^AMS nn
		 ~AMS

Syntax Scripting:	 setconfig(_AMS, nn)

Number of Arguments: 1

Argument 1: Enable
	 Type: Unsigned 8-bit
	 Min: 0	 Max: 1
	 Default: 1 = Enabled

	
Where:
nn =
0: Disabled
1: Enabled

Commands Reference

280	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

BEE - User Storage in Battery Backed RAM

HexCode: 64

Description:
Store and retrieve user data in battery backed RAM. Storage is quasi permanent, limited
only by the on-board battery (usually several years) . Unlike storage in Flash using the EE
configuration commands, there are no limits in the amount or frequency of read and write
cycles with BEE. This feature is only available on selected models, see product data-
sheet. Battery must be installed in the controller for storage to be possible.

Syntax Serial:	 ^BEE aa dd
		 ~BEE aa

Syntax Scripting:	 setconfig(_BEE, aa, dd)

Number of Arguments: 2

Argument 1: Address
	
	 Min: 1	 Max: Total Number of BEE
	

Argument 2: Value	
	 Type: Signed 16-bit

	 Min: -32768	 Max: 32767
	 Default: 0

Where:
aa = Address

dd = Data

Example:

^BEE 1 555 : Store value 555 in Battery Backed RAM location 1
~BEE 1: Read data from RAM location 1

BRUN - MicroBasic Auto Start

HexCode: 48

Description:
This parameter is used to enable or disable the automatic MicroBasic script execution
when the controller powers up. When enabled, the controller checks that a valid script
is present in Flash and will start its execution 2 seconds after the controller has become
active. The 2 seconds wait time can be circumvented by putting 2 in the command argu-
ment. However, this must be done only on scripts that are known to be bug-free. A crash-
ing script will cause the controller to continuously reboot with little means to recover.

Syntax Serial:	 ^BRUN nn
		 ~BRUN

General Configuration and Safety

	 Advanced Digital Motor Controller User Manual� 281

Syntax Scripting:	 setconfig(_BRUN, nn)

Number of Arguments: 1

Argument 1: Enable
	 Type: Unsigned 8-bit
	 Min: 0	 Max: 2
	 Default: 0 = Disabled

	

Where:
nn =
0: Disabled
1: Enabled after 2 seconds
2: Enabled immediately

CLIN - Command Linearity

HexCode: 0D

Description:
This parameter is used for applying an exponential or a logarithmic transformation on the
command input, regardless of its source (serial, pulse or analog). There are 3 exponential
and 3 logarithmic choices. Exponential correction make the commands change less at the
beginning and become stronger at the end of the command input range. The logarithmic
correction will have a stronger effect near the start and lesser effect near the end. The
linear selection causes no change to the input. A linearity transform is also available for all
analog and pulse inputs. Both can be enabled although in most cases, it is best to use the
Command Linearity parameter for modifying command profiles

Syntax Serial:	 ^CLIN cc nn
		 ~CLIN [cc]

Syntax Scripting:	 setconfig(_CLIN, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors
	

Argument 2: Linearity	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 7
	 Default: 0 = Linear

Where:
cc = Motor channel

Commands Reference

282	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

nn =
0: Linear (no change)
1: Exp weak
2: Exp medium
3: Exp strong
4: Log weak
5: Log medium
6: Log strong

Example:

^CLIN 1 1 : Sets linearity for channel 1 to exponential weak

CPRI - Command Priorities

HexCode: 07

Description:
This parameter contains up to 3 variables (4 on controllers with Spektrum radio support)
and is used to set which type of command the controller will respond in priority and in
which order. The first item is the first priority, second â€“ second priority, third â€“ third
priority. Each priority item is then one of the three (four) command modes: Serial, Analog
(Spektrum) or RC Pulse. See Command Priorities in the User Manual. Default prority or-
ders are: 1-Serial, 2-Pulse, 3-None.

Syntax Serial:	 ^CPRI pp nn
		 ~CPRI [pp]

Syntax Scripting:	 setconfig(_CPRI, pp, nn)

Number of Arguments: 2

Argument 1: Level
	
	 Min: 1	 Max: 3 or 4
	 Default: See description

Argument 2: Command	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 2 or 3
	 Default: See description

Where:
pp = Priority rank

nn =
0: Serial
1: RC
2: Analog (or Spektrum)
3: None (or Alalog)
4: None

General Configuration and Safety

	 Advanced Digital Motor Controller User Manual� 283

Example:

^CPRI 1 2 : Set Analog as first priority
~CPRI 2 : Read what command mode is second priority

Note:

USB, RS232, CAN and Microbasic commands share the “Serial” type. When serial com-
mands come from different Serial source, they are executed in the order received.

DFC - Default Command value

HexCode: 0E

Description:
The default command values are the command applied to the motor when no valid com-
mand is fed to the controller. Value 1001 causes no change in position at power up until a
new position command is received

Syntax Serial:	 ^DFC cc nn
		 ~DFC [cc]

Syntax Scripting:	 setconfig(_DFC, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors
	

Argument 2: Value	
	 Type: Signed 16-bit

	 Min: -1000	 Max: 1001
	 Default: 0

Where:
cc : Motor channel

nn : Command value

Example:

^DFC 1 500 : Sets motor command to 500 when no command source are detected
^DFC 2 1001 : Motor takes present position as destination after power up. Motor doesn’t
move.

ECHOF - Enable/Disable Serial Echo

HexCode: 09

Commands Reference

284	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Description:
This command is used to disable/enable the echo on the serial or USB port. By default,
the controller will echo everything that enters the serial communication port. By setting
ECHOF to 1, commands are no longer being echoed. The controller will only reply to que-
ries and the acknowledgements to commands can be seen.

Syntax Serial:	 ^ECHOF nn
		 ~ECHOF

Syntax Scripting:	 setconfig(_ECHOF, nn)

Number of Arguments: 1

Argument 1: OffOn
	 Type: Unsigned 8-bit
	 Min: 0	 Max: 1
	 Default: 0 = Echo on

	
	
Where:
nn =
0: Echo is enabled
1: Echo is disabled

Example:

^ECHOF 1 : Disable echo

EE - Store User Data in Flash

HexCode: 00

Description:
Read and write user-defined values that can be permanently stored in Flash. Storage area
size is typically 32 x 16-bit words but can vary from one product to the other. The com-
mand alters data contained in a RAM area. The %EESAV Maintenance Command, or !EES
Real Time Command must be used to copy the RAM array to Flash. The Flash is copied to
RAM every time the device powers up.

Syntax Serial:	 ^EE aa dd
		 ~EE aa

Syntax Scripting:	 setconfig(_EE, aa, dd)

Number of Arguments: 2

Argument 1: Address
	
	 Min: 1 Max: Total Number of Storage words

General Configuration and Safety

	 Advanced Digital Motor Controller User Manual� 285

Argument 2: Data	
	 Type: Signed 16-bit

	 Min: -32768	 Max: +32767
	 Default: 0

Where:
aa = Address

dd = Data

Example:

^EE 1 555 : Store value 555 in RAM location 1
%EESAV or !EES : Copy data from temporary RAM to Flash
		 ~EE 1 : Read data from RAM location 1

Note:

See product datasheet to know the total available EE storage.
Do not transfer to Flash with %EESAV or !EES at high frequency as the number of write
cycles to Flash are limited to around 10000.
Avoid transfering to Flash while the product is performing critical operation
Write to address locations 1 and up. Writing at address 0 will fill all RAM location with the
value

RSBR - Set RS232 bit rate

HexCode: 0A

Description:
Sets the serial communication bit rate of the RS232 port. Choices are one of five most
common bit rates. On selected products, the port output can be inverted to allow a simpli-
fied connection to devices that have TTL serial ports instead of full RS232.

Syntax Serial:	 ^RSBR nn
		 ~RSBR

Syntax Scripting:	 setconfig(_RSBR, nn)

Number of Arguments: 1

Argument 1: BitRate
	 Type: Unsigned 8-bit
	 Min: 0	 Max: 4 or 9
	 Default: 0 = 115200

Where:
nn =
0: 115200
1: 57600

Commands Reference

286	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

2: 38400
3:19200
4: 9600
5: 115200 + Inverted RS232
6: 57600 + Inverted RS232
7: 38400 + Inverted RS232
8: 19200 + Inverted RS232
9: 9600 + Inverted RS232

Example:

^RSBR 3 : sets baud rate at 19200

Note:

This configuration can only be changed while connected via USB or via scripting. After
the baud rate has been changed, it will not be possible to communicate with the Roborun
PC utility using the srial port until the rate is changed back to 115200. Slow bit rates may
result in data loss if more characters are sent than can be handled. The inverted mode is
only available on selected products.

RWD - Serial Data Watchdog

HexCode: 08

Description:
This is the Serial Commands watchdog timeout parameter. It is used to detect when the
controller is no longer receiving commands and switch to the next priority level. Any Re-
altime Command arriving from RS232, USB, CAN or Microbasic Scripting, The watchdog
value is a number in ms (1000 = 1s). The watchdog function can be disabled by setting
this value to 0. The watchdog will only detect the loss of real-time commands that start
with â€œ!â€ . All other traffic on the serial port will not refresh the watchdog timer. As
soon as a valid command is received, motor operation will resume at whichever speed
motors were running prior to the watchdog timeout.

Syntax Serial:	 ^RWD nn
		 ~RWD

Syntax Scripting:	 setconfig(_RWD, nn)

Number of Arguments: 1

Argument 1: Timeout
	 Type: Unsigneed 16-bit
	 Min: 0	 Max: 65000
	 Default: 1000 = 1s

	

Where:
nn = Timeout value in ms

Example:

^RWD 2000 : Set watchdog to 2s
^RWD 0 : Disable watchdog

General Configuration and Safety

	 Advanced Digital Motor Controller User Manual� 287

SCRO - Select Print output port for scripting

HexCode: 5E

Description:
Selects which port the print statement sends data to. When 0, the last port which re-
ceived a valid character will be the one the script outputs to.

Syntax Serial:	 ^SCRO nn
		 ~SCRO

Syntax Scripting:	 setconfig(_SRO, nn)

Number of Arguments: 1

Argument 1: Port
	 Type: Unsigned 8-bit
	 Min: 0	 Max: 2
	 Default: 0 = Last used

	

Where:
nn =
0: Last used
1: Serial
2: USB

SKCTR - Spektrum Center

HexCode: 53

Description:
Value captured from Spektrum radio that will be considered as 0 command

Syntax Serial:	 ^SKCTR cc nn
		 ~SKCTR [cc]

Syntax Scripting:	 setconfig(_SKCTR, cc)

Number of Arguments:

Argument 1: Channel
	
	 Min: 1	 Max: 2
	

Argument 2: Center	
	 Type: Unsigned 16-bit

	 Min: 0	 Max: 1024
	 Default: 0

Commands Reference

288	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Where:
cc = Channel

nn = Center value

SKDB - Spektrum Deadband

HexCode: 54

Description:
Sets the deadband value for the Spektrum channel. It is defined as the percent number
from 0 to 50% and defines the amount of movement from joystick or sensor around the
center position before its converted value begins to change.

Syntax Serial:	 ^SKDB cc nn
		 ~SKDB [cc]

Syntax Scripting:	 setconfig(_SKDB, cc)

Number of Arguments:

Argument 1: Channel
	
	 Min: 1	 Max: 2
	

Argument 2: Deadband	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 50
	 Default: 0

Where:
cc = Channel

nn = Deadband

SKLIN - Spektrum Linearity

HexCode: 55

Description:
This parameter is used for applying an exponential or a logarithmic transformation a
Spektrum command input. There are 3 exponential and 3 logarithmic choices. Exponential
correction will make the commands change less at the beginning and become stronger
at the end of the joystick movement. The logarithmic correction will have a stronger effect
near the start and lesser effect near the end. The linear selection causes no change to the
input.

Syntax Serial:	 ^SKLIN cc nn
		 ~SKLIN [cc]

General Configuration and Safety

	 Advanced Digital Motor Controller User Manual� 289

Syntax Scripting:	 setconfig(_SKLIN, cc)

Number of Arguments:

Argument 1: Channel
	
	 Min: 1	 Max: 2
	

Argument 2: Linearity	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 6
	 Default: 0 = Linear

Where:
cc = Input channel number

nn =
0 : linear (no change)
1: exp weak
2: exp medium
3: exp strong
4: log weak
5: log medium
6: log strong

SKMAX - Spektrum Max

HexCode: 52

Description:
Value captured from Spektrum radio that will be considered as +1000 command

Syntax Serial:	 ^SKMAX cc nn
		 ~SKMAX [cc]

Syntax Scripting:	 setconfig(_SKMAX, cc)

Number of Arguments:

Argument 1: Channel
	
	 Min: 1	 Max: 2
	

Argument 2: Max	
	 Type: Unsigned 16-bit

	 Min: 0	 Max: 1024
	 Default: 0

Where:
cc = Channel

nn = Max value

Commands Reference

290	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

SKMIN - Spektrum Min

HexCode: 51

Description:
Value captured from Spektrum radio that will be considered as -1000 command

Syntax Serial:	 ^SKMIN cc nn
		 ~SKMIN [cc]

Syntax Scripting:	 setconfig(_SKMIN, cc)

Number of Arguments:

Argument 1: Channel
	
	 Min: 1	 Max: 2
	

Argument 2: Min	
	 Type: Unsigned 16-bit

	 Min: 0	 Max: 1024
	 Default: 0

Where:
cc = Channel

nn: Min value

SKUSE - Assign Spektrum port to motor command

HexCode: 50

Description:
Chose which of the 6 joysticks from the Spektrum RC receiver is to be assigned to which
motor command channel.

Syntax Serial:	 ^SKUSE cc nn
		 ~SKUSE [cc]

Syntax Scripting:	 setconfig(_SKUSE, cc)

Number of Arguments:

Argument 1: Channel
	
	 Min: 1	 Max: 2

General Configuration and Safety

	 Advanced Digital Motor Controller User Manual� 291

Argument 2: Port	
	 Type: Unsigned 8-bit

	 Min: 1	 Max: 6
	

Where:
cc = Channel number

nn = Radio port

TELS - Telemetry String

HexCode: 47

Description:
This parameter command lets you enter the telemetry string that will be used when the
controller starts up. The string is entered as a series of queries characters between a be-
ginning and an ending quote. Queries must be separated by “:” colon characters. Upon
the power up, the controller will load the query history buffer and it will automatically start
executing commands and queries based on the information in this string. Strings up to 48
characters long can be stored in this parameter.

Syntax Serial:	 ^TELS “string”
		 ~TELS

Syntax Scripting:	
Number of Arguments: 1

Argument 1: Telemetry
	 Type: String
	 Min: “”	 Max: 48 characters string
	 Default: “” = Empty string

	

Where:
string = string of ASCII characters between quotes

Example:

^TELS “?A:?V:?T:#200” = Controller will issue Amps, Volts and temperature information
automatically upon power up at 200ms intervals.

Commands Reference

292	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Analog, Digital, Pulse IO Configurations
These parameters configure the operating mode and how the inputs and outputs work.

TABLE 19-6. Input/Output Configurations

Command Arguments Description

ACTR InputNbr Center Set Analog Input Center (0) Level

ADB InputNbr Deadband Analog Deadband

AINA InputNbr Use Analog Input Use

ALIN InputNbr Linearity Analog Linearity

AMAX InputNbr Max Set Analog Input Max Range

AMAXA InputNbr Action Action at Analog Max

AMIN InputNbr Min Set Analog Input Min Range

AMINA InputNbr Action Action at Analog Min

AMOD InputNbr Mode Enable and Set Analog Input Mode

APOL InputNbr Polarity Analog Input Polarity

DINA InputNbr Action Digital Input Action

DINL ActiveLevels Digital Input Active Level

DOA OutputNbr Action Digital Output Action

DOL ActiveLevels Digital Outputs Active Level

PCTR InputNbr Center Pulse Center Range

PDB InputNbr Deadband Pulse Input Deadband

PINA InputNbr Use Pulse Input Use

PLIN InputNbr Linearity Pulse Linearity

PMAX InputNbr Max Pulse Max Range

PMAXA InputNbr Action Action on Pulse Max

PMIN InputNbr Min Pulse Min Range

PMINA InputNbr Action Action on Pulse Min

PMOD InputNbr Mode Pulse Mode Select

PPOL InputNbr Polarity Pulse Input Polarity

ACTR - Set Analog Input Center (0) Level

HexCode: 16

Description:
This parameter is the measured voltage on input that will be considered as the center or
the 0 value. The min, max and center are useful to set the range of a joystick or of a feed-
back sensor. Internally to the controller, commands and feedback values are converted to
1000, 0, +1000.

Syntax Serial:	 ^ACTR cc nn
		 ~ACTR [cc]

Analog, Digital, Pulse IO Configurations

	 Advanced Digital Motor Controller User Manual� 293

Syntax Scripting:	 setconfig(_ACTR, cc, nn)

Number of Arguments: 2

Argument 1: InputNbr
	
	 Min: 1 Max: Total Number of Analog Inputs
	

Argument 2: Center	
	 Type: Unsigned 16-bit

	 Min: 0	 Max: 10000
	 Default: 2500 mV

Where:
cc = Analog input channel

nn = 0 to 10000mV

Example:

^ACTR 3 2000 : Set Analog Input 3 Center to 2000mV

Note:

Center value must always be a number greater of equal to Min, and smaller or equal to
Max
Make the center value the same as the min value in order to produce a converted output
range that is positive only (0 to +1000)

ADB - Analog Deadband

HexCode: 17

Description:
This parameter selects the range of movement change near the center that should be
considered as a 0 command. This value is a percentage from 0 to 50% and is useful to
allow some movement of a joystick around its center position without change at the con-
verted output

Syntax Serial:	 ^ADB cc nn
		 ~ADB [cc]

Syntax Scripting:	 setconfig(_ADB, cc, nn)

Number of Arguments: 2

Argument 1: InputNbr
	
	 Min: 1	 Max: Total Number of Analog In-
puts
	

Commands Reference

294	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Argument 2: Deadband	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 50
	 Default: 5 = 5%

Where:
cc = Analog input channel

nn = Deadband in %

Example:

^ADB 6 10 : Sets Deadband for channel 6 at 10%

Note:

Deadband is not used when input is used as feedback

AINA - Analog Input Use

HexCode: 19

Description:
This parameter selects whether an input should be used as a command feedback or left
unused. When selecting command or feedback, it is also possible to select which channel
this command or feedback should act on. Feedback can be position feedback if potentiom-
eter is used or speed feedback if tachometer is used. Embedded in the parameter is the
motor channel to which the command or feedback should apply.

Syntax Serial:	 ^AINA cc (nn + mm)
		 ~AINA [cc]

Syntax Scripting:	 setconfig(_AINA, cc, nn)

Number of Arguments: 2

Argument 1: InputNbr
	
	 Min: 1	 Max: Total Number of Analog In-
puts
	

Argument 2: Use	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 255
	 Default: 0 = No action

Where:
cc = Analog input channel

nn =
0: No action
1: Command
2: Feedback

Analog, Digital, Pulse IO Configurations

	 Advanced Digital Motor Controller User Manual� 295

mm =
mot1*16 + mot2*32 + mot3*48

Example:

^AINA 1 17: Sets Analog channel 1 as command for motor 1. I.e. 17 = 1 (command) +16
(motor 1)

ALIN - Analog Linearity

HexCode: 18

Description:
This parameter is used for applying an exponential or a logarithmic transformation on an
analog input. There are 3 exponential and 3 logarithmic choices. Exponential correction
will make the commands change less at the beginning and become stronger at the end of
the joystick movement. The logarithmic correction will have a stronger effect near the start
and lesser effect near the end. The linear selection causes no change to the input.

Syntax Serial:	 ^ALIN cc nn
		 ~ALIN [cc]

Syntax Scripting:	 setconfig(_ALIN, cc, nn)

Number of Arguments: 2

Argument 1: InputNbr
	
	 Min: 1	 Max: Total Number of Analog In-
puts
	

Argument 2: Linearity	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 6
	 Default: 0 = Linear

Where:
cc = Analog input channel

nn =
0: Linear (no change)
1: Exp weak
2: Exp medium
3: Exp strong
4: Log weak
5: Log medium
6: Log strong

Example:

^ALIN 1 1 : Sets linearity for channel 1 to exp weak

Commands Reference

296	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

AMAX - Set Analog Input Max Range

HexCode: 15

Description:
This parameter sets the voltage that will be considered as the maximum command value.
The min, max and center are useful to set the range of a joystick or of a feedback sensor.
Internally to the controller, commands and feedback values are converted to -1000, 0,
+1000.

Syntax Serial:	 ^AMAX cc nn
		 ~AMAX [cc]

Syntax Scripting:	 setconfig(_AMAX, cc, nn)

Number of Arguments: 2

Argument 1: InputNbr
	
	 Min: 1	 Max: Total Number of Analog In-
puts
	

Argument 2: Max	
	 Type: Unsigned 16-bit

	 Min: 0	 Max: 10000
	 Default: 4900 mV

Where:
cc = Analog input channel

nn = 0 to 10000mV

Example:

^AMAX 4 4500 : Set Analog Input 4 Max range to 4500mV

Note:

Analog input can capture voltage up to around 5.2V. Setting the Analog maximum above
5200 mV, means the conversion will never be able to reach +1000

AMAXA - Action at Analog Max

HexCode: 1B

Description:
This parameter selects what action should be taken if the maximum value that is defined
in AMAX is reached. The list of action is the same as these of digital inputs. For
example, this feature can be used to create â€œsoftâ€ limit switches, in which case the
motor can be made to stop if the feedback sensor in a position mode has reached a max-
imum value.

Analog, Digital, Pulse IO Configurations

	 Advanced Digital Motor Controller User Manual� 297

Syntax Serial:	 ^AMAXA cc (aa + mm)
		 ~AMAXA [cc]

Syntax Scripting:	 setconfig(_AMAXA, cc, aa)

Number of Arguments: 2

Argument 1: InputNbr
	
	 Min: 1	 Max: Total Number of Analog In-
puts
	

Argument 2: Action	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 255
	 Default: 0 = No action

Where:
cc = Analog input channel

aa =
0: No action
1: Safety stop
2: Emergency stop
3: Motor stop
4: Forward limit switch
5: Reverse limit switch
6: Invert direction
7: Run MicroBasic script
8: Load counter with home value

mm = mot1*16 + mot2*32 + mot3*48

Example:

^AMAXA 3 33 : Stops motor 2. I.e. 33 = 1 (safety stop) + 32 (motor2)

AMIN - Set Analog Input Min Range

HexCode: 14

Description:
This parameter sets the raw value on the input that will be considered as the minimum
command value. The min, max and center are useful to set the range of a joystick or of a
feedback sensor. Internally to the controller, commands and feedback values are convert-
ed to -1000, 0, +1000.

Syntax Serial:	 ^AMIN cc nn
		 ~AMIN [cc]

Syntax Scripting:	 setconfig(_AMIN, cc, nn)

Commands Reference

298	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Number of Arguments: 2

Argument 1: InputNbr
	
	 Min: 1	 Max: Total Number of Analog In-
puts
	

Argument 2: Min	
	 Type: Unsigned 16-bit

	 Min: 0	 Max: 10000
	 Default: 100 mV

Where:
cc = Analog input channel

nn = 0 to 10000mV

Example:

^AMIN 5 250 : Set Analog Input 5 Min to 250mV

Note:

Analog input can capture voltage up to around 5.2V. Setting the Analog minimum between
5200 and 10000 mV means the conversion will always return 0

AMINA - Action at Analog Min

HexCode: 1A

Description:
This parameter selects what action should be taken if the minimum value that is defined
in AMIN is reached. The list of action is the same as these of the DINA configuration
command. For example, this feature can be used to create â€œsoftâ€ limit switches, in
which case the motor can be made to stop if the feedback sensor in a position mode has
reached a minimum value.

Syntax Serial:	 ^AMINA cc (aa + mm)
		 ~AMINA [cc]

Syntax Scripting:	 setconfig(_AMINA, cc, aa)

Number of Arguments: 2

Argument 1: InputNbr
	
	 Min: 1 Max: Total Number of Analog Inputs
	

Argument 2: Action	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 255
	 Default: 0 = No action

Analog, Digital, Pulse IO Configurations

	 Advanced Digital Motor Controller User Manual� 299

Where:
cc = Analog input channel

aa =
0: No action
1: Safety stop
2: Emergency stop
3: Motor stop
4: Forward limit switch
5: Reverse limit switch
6: Invert direction
7: Run MicroBasic script
8: Load counter with home value

mm = mot1*16 + mot2*32 + mot3*48

Example:

^AMINA 2 33 : Stops motor 2. I.e. 33 = 1 (safety stop) + 32 (motor2)

AMOD - Enable and Set Analog Input Mode

HexCode: 13

Description:
This parameter is used to enable/disable an analog input pin. When enabled, it can be
made to measure an absolute voltage from 0 to 5V, or a relative voltage that takes the
5V output on the connector as the 5V reference. The absolute mode is preferred when-
ever measuring a voltage generated by an outside device or sensor. The relative mode is
the mode to use when a sensor or a potentiometer is powered using the controllerâ€™s
5V output of the controller. Using the relative mode gives a correct sensor reading even
though the 5V output is imprecise.

Syntax Serial:	 ^AMOD cc nn
		 ~AMOD [cc]

Syntax Scripting:	 setconfig(_AMOD, cc, nn)

Number of Arguments: 2

Argument 1: InputNbr
	
	 Min: 1 Max: Total Number of Analog Inputs
	

Argument 2: Mode	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 2
	 Default: 0 = Disabled

Where:
cc = Analog input channel

Commands Reference

300	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

nn =
0: Disabled
1: Absolute
2: Relative

Example:

^AMOD 1 1 : Analog input 1 enabled in absolute mode

APOL - Analog Input Polarity

HexCode: 1C

Description:
Inverts the analog capture polarity value after conversion. When this configuration bit is
cleared, the pulse capture is converted into a -1000 to +1000 command or feedback value.
When set, the converted range is inverted to +1000 to -1000.

Syntax Serial:	 ^APOL cc nn
		 ~APOL [cc]

Syntax Scripting:	 setconfig(_APOL, cc, nn)

Number of Arguments: 2

Argument 1: InputNbr
	
	 Min: 1 Max: Total Number of Analog Inputs
	

Argument 2: Polarity	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 1
	 Default: 0 = Non inverted

Where:
cc = Analog input channel

nn =
0: Not inverted
1: Inverted

DINA - Digital Input Action

HexCode: 0F

Description:
This parameter sets the action that is triggered when a given input pin is activated. The
action list includes: limit switch for a selectable motor and direction, use as a deadman
switch, emergency stop, safety stop or invert direction. Embedded in the parameter is the
motor channel(s) to which the action should apply.

Analog, Digital, Pulse IO Configurations

	 Advanced Digital Motor Controller User Manual� 301

Syntax Serial:	 ^DINA cc (aa + [mm])
		 ~DINA [cc]

Syntax Scripting:	 setconfig(_DINA, cc, aa)

Number of Arguments: 2

Argument 1: InputNbr
	
	 Min: 0 Max: Total Number of Digital Inputs
	

Argument 2: Action	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 255
	 Default: 0 = No actions

Where:
cc = Input channel number

aa =
0: No action
1: Safety stop
2: Emergency stop
3: Motor stop
4: Forward limit switch
5: Reverse limit switch
6: Invert direction
7: Run MicroBasic script
8: Load counter with home value

mm = mot1*16 + mot2*32 + mot3*48

Example:

^DINA 1 33 : Input 1 as safety stop for Motor 1. I.e. 33 = 1 (safety stop) + 32 (Motor1)

DINL - Digital Input Active Level

HexCode: 10

Description:
This parameter is used to set the active level for each Digital input. An input can be made
to be active high or active low. Active high means that pulling it to a voltage will trigger
an action. Active low means pulling it to ground will trigger an action. This parameter is a
single number for all inputs.

Syntax Serial:	 ^DINL cc aa
		 ~DINL [cc]

Syntax Scripting:	 setconfig(_DINL, cc, aa)

Commands Reference

302	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Number of Arguments: 1

Argument 1: ActiveLevels
	 Type: Unsigned 32-bit
	 Min: 0 Max: 2 ^ Total Number of Digital Inputs

	 Default: 0 = All Active high
Where:

cc = Digital input number

aa=
0: Active High
1: Active Low

Example:

^DINL 2 1 : Sets digital input 2 to active low

DOA - Digital Output Action

HexCode: 11

Description:
This configuration parameter will set what will trigger a given output pin. The parameter
is a number in a list of possible triggers: when one or several motors are on, when one or
several motors are reversed, when an Overvoltage condition is detected or when an Over-
temperature condition is detected. Embedded in the parameter is the motor channel(s) to
which the action should apply.

Syntax Serial:	 ^DOA cc aa
		 ~DOA [cc]

Syntax Scripting:	 setconfig(_DOA, cc, aa)

Number of Arguments: 2

Argument 1: OutputNbr
	 Type: Unsigned 32-bit
	 Min: 1	 Max: Total Number of Digital Outputs
	

Argument 2: Action
	 Min: 0	
	 Default: See Note

Where:
cc = Output channel

aa =
0: Never

Analog, Digital, Pulse IO Configurations

	 Advanced Digital Motor Controller User Manual� 303

1: Motor on
2: Motor reversed
3: Overvoltage
4: Overtemperature
5: Mirror status LED
6: No MOSFET failure

Example:

^DOA 1 3 : Output 1 is active when Overvoltage is observed

Note:

Typical default configuration is Digital outputs 1 (2) are active when motor is on. Digital
output 2 (3) when no MOSFET failure is detected.
To activate an output via serial command or from a Microbasic script, set that output to
Never

DOL - Digital Outputs Active Level

HexCode: 12

Description:
This parameter configures whether an output should be set to ON or to OFF when it is
activated.

Syntax Serial:	 ^DOL cc aa
		 ~DOL

Syntax Scripting:	 setconfig(_DOL, cc, aa)

Number of Arguments: 1

Argument 1: ActiveLevels
	 Type: Unsigned 32-bit
	 Min: 0	 Max: 2 ^ Total Number of Digital
Outputs
	 Default: 0 = All active high

	

Where:
cc = Digital input number
aa=

0: On when active
1: Off when active

PCTR - Pulse Center Range

HexCode: 20

Commands Reference

304	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Description:
This defines the raw value of the measured pulse that would be considered as the 0 value
inside the controller. The default value is 1500 which is the center position of the pulse in
the RC radio mode.

Syntax Serial:	 ^PCTR cc nn
		 ~PCTR [cc]

Syntax Scripting:	 setconfig(_PCTR, cc, nn)

Number of Arguments: 2

Argument 1: InputNbr
	
	 Min: 1 Max: Total Number of Pulse Inputs
	

Argument 2: Center	
	 Type: Unsigned 16-bit

	 Min: 0	 Max: 65536
	 Default: 1500us

Where:
cc = Pulse input number

nn = 0 to 65536us

PDB - Pulse Input Deadband

HexCode: 21

Description:
This sets the deadband value for the pulse capture. It is defined as the percent number
from 0 to 50% and defines the amount of movement from joystick or sensor around the
center position before its converted value begins to change.

Syntax Serial:	 ^PDB cc nn
		 ~PDB [cc]

Syntax Scripting:	 setconfig(_PDB, cc, nn)

Number of Arguments: 2

Argument 1: InputNbr
	
	 Min: 1 Max: Total Number of Pulse Inputs
	

Argument 2: Deadband	
	 Type: Unsigned 8-bit

Analog, Digital, Pulse IO Configurations

	 Advanced Digital Motor Controller User Manual� 305

	 Min: 0	 Max: 50
	 Default: 5 = 5%

Where:
cc = Pulse input number

nn = Deadband in %

Note:

Deadband is not used when input is used as feedback

PINA - Pulse Input Use

HexCode: 23

Description:
This parameter selects whether an input should be used as a command feedback, posi-
tion feedback or left unused. Embedded in the parameter is the motor channel that this
command or feedback should act on. Feedback can be position feedback if potentiometer
is used or speed feedback if tachometer is used.

Syntax Serial:	 ^PINA cc (nn + mm)
		 ~PINA [cc]

Syntax Scripting:	 setconfig(_PINA, cc, nn)

Number of Arguments: 2

Argument 1: InputNbr
	
	 Min: 1 Max: Total Number of Pulse Inputs
	

Argument 2: Use	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 255
	 Default: See note

Where:
cc = Pulse input number

nn =
0: No action
1: Command
2: Feedback

mm =
mot1*16 + mot2*32 + mot3*48

Example:

^AINA 1 17: Sets Pulse input 1 as command for motor 1. I.e. 17 = 1 (command) +16 (mo-
tor 1)

Commands Reference

306	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Note:

Input 1 is generally enabled and set as motor command on single channel motor control-
lers. Inputs 1 and 2 are enabled and set as motor command on dual channel controllers

PLIN - Pulse Linearity

HexCode: 22

Description:
This parameter is used for applying an exponential or a logarithmic transformation on a
pulse input. There are 3 exponential and 3 logarithmic choices. Exponential correction will
make the commands change less at the beginning and become stronger at the end of the
joystick movement. The logarithmic correction will have a stronger effect near the start
and lesser effect near the end. The linear selection causes no change to the input.

Syntax Serial:	 ^PLIN cc nn
		 ~PLIN [cc]

Syntax Scripting:	 setconfig(_PLIN, cc, nn)

Number of Arguments: 2

Argument 1: InputNbr
	
	 Min: 1 Max: Total Number of Pulse Inputs
	

Argument 2: Linearity	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 6
	 Default: 0 = Linear

Where:
cc = Pulse input number

nn =
0: Linear (no change)
1: Exp weak
2: Exp medium
3: Exp strong
4: Log weak
5: Log medium
6: Log strong

PMAX - Pulse Max Range

HexCode: 1F

Description:
This parameter defines the raw pulse measurement number that would be considered as
the +1000 internal value to the controller. By default, it is set to 2000 which is the max
pulse width of an RC radio pulse.

Analog, Digital, Pulse IO Configurations

	 Advanced Digital Motor Controller User Manual� 307

Syntax Serial:	 ^PMAX cc nn
		 ~PMAX [cc]

Syntax Scripting:	 setconfig(_PMAX, cc, nn)

Number of Arguments: 2

Argument 1: InputNbr
	
	 Min: 1 Max: Total Number of Pulse Inputs

Argument 2: Max	
	 Type: Unsigned 16-bit

	 Min: 0	 Max: 65536
	 Default: 2000us

Where:
cc = Pulse input number

nn = 0 to 65536us

PMAXA - Action on Pulse Max

HexCode: 25

Description:
This parameter configures the action to take when the max value that is defined in PMAX
is reached. The list of action is the same as in the DINA digital input action list. Embedded
in the parameter is the motor channel(s) to which the action should apply.

Syntax Serial:	 ^PMAXA cc (aa + mm)
		 ~PMAXA [cc]

Syntax Scripting:	 setconfig(_PMAXA, cc, aa)

Number of Arguments: 2

Argument 1: InputNbr
	
	 Min: 1 Max: Total Number of Pulse Inputs
	

Argument 2: Action	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 255
	 Default: 0 = No action

Where:
cc = Pulse input number

Commands Reference

308	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

aa =
0: No action
1: Safety stop
2: Emergency stop
3: Motor stop
4: Forward limit switch
5: Reverse limit switch
6: Invert direction
7: Run MicroBasic script
8: Load counter with home value

mm = mot1*16 + mot2*32 + mot3*48

PMIN - Pulse Min Range

HexCode: 1E

Description:
This sets the raw value of the pulse capture that would be considered as the -1000 inter-
nal value to the controller. The value is in number of microseconds (1000 = 1ms). The de-
fault value is 1000 microseconds which is the typical minimum value on an RC radio
pulse.

Syntax Serial:	 ^PMIN cc nn
		 ~PMIN [cc]

Syntax Scripting:	 setconfig(_PMIN, cc, nn)

Number of Arguments: 2

Argument 1: InputNbr
	
	 Min: 1 Max: Total Number of Pulse Inputs
	

Argument 2: Min	
	 Type: Unsigned 16-bit

	 Min: 0	 Max: 65536
	 Default: 1000us

Where:
cc = Pulse input number

nn = 0 to 65536us

PMINA - Action on Pulse Min

HexCode: 24

Analog, Digital, Pulse IO Configurations

	 Advanced Digital Motor Controller User Manual� 309

Description:
This parameter selects what action should be taken if the minimum value that is defined
in PMIN is reached. The list of action is the same as these of the DINA digital input
actions. Embedded in the parameter is the motor channel(s) to which the action should
apply.

Syntax Serial:	 ^PMINA cc (aa + mm)
		 ~PMINA [cc]

Syntax Scripting:	 setconfig(_PMINA, cc, aa)

Number of Arguments: 2

Argument 1: InputNbr
	
	 Min: 1 Max: Total Number of Pulse Inputs
	

Argument 2: Action	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 255
	 Default: 0 = No action

Where:
cc = Pulse input number

aa =
0: No action
1: Safety stop
2: Emergency stop
3: Motor stop
4: Forward limit switch
5: Reverse limit switch
6: Invert direction
7: Run MicroBasic script
8: Load counter with home value

mm = mot1*16 + mot2*32 + mot3*48

PMOD - Pulse Mode Select

HexCode: 1D

Description:
This parameter is used to enable/disable the pulse input and select its operating mode,
which can be: pulse with measurement, frequency or duty cycle. Inputs can be measured
with a high precision over a large range of time or frequency. An input will be processed

Commands Reference

310	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

and converted to a command or a feedback value in the range of -1000 to +1000 for use
by the controller internally.

Syntax Serial:	 ^PMOD cc nn
		 ~PMOD [cc]
Syntax Scripting:	 setconfig(_PMOD, cc, nn)

Number of Arguments: 2

Argument 1: InputNbr
	
	 Min: 1 Max: Total Number of Pulse Inputs
	

Argument 2: Mode	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 4
	 Default: See note

Where:
cc = Pulse input number

nn =
0: Disabled
1: Pulse width
2: Frequency
3: Duty cycle
4: Magsensor

Example:

^PMOD 4 4 : Sets Pulse input 4 in Multi-PWM for Robteq’s MGS1600 magnetic guide
sensor

Note:

Pulse width is designed for capturing RC radio commands. Pulse width must be beween
500us and 3000us, and repeat rate 50Hz or higher
Input 1 is generally enabled and in RC mode on single channel motor controllers. Inputs 1
and 2 are enabled on dual channel controllers
On some products, enabling a pulse input will cause a an offset voltage to be present
when that same input is read as analog

Motor Configurations

	 Advanced Digital Motor Controller User Manual� 311

PPOL - Pulse Input Polarity

HexCode: 26

Description:
Inverts the pulse capture value after conversion. When this configuration bit is cleared, the
pulse capture is converted into a -1000 to +1000 command or feedback value. When set,
the converted range is inverted to +1000 to -1000. Center value must always be a number
greater of equal to Min, and smaller or equal to Max. Make the center value the same
as the min value in order to produce a converted output range that is positive only (0 to
+1000)

Syntax Serial:	 ^PPOL cc nn
		 ~PPOL

Syntax Scripting:	 setconfig(_PPOL, cc, nn)

Number of Arguments: 2

Argument 1: InputNbr
	
	 Min: 1 Max: Total Number of Pulse Inputs
	

Argument 2: Polarity	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 1
	 Default: 0 = Non inverted

Where:
cc = Pulse input number

nn =
0: Not inverted
1: Inverted

Motor Configurations
This section covers the various configuration parameter applying to motor operations.

Commands Reference

312	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

TABLE 19-7. Motor Configurations

Command Arguments Description

ALIM Channel Limit Amp Limit

ATGA Channel Action Amps Trigger Action

ATGD Channel Delay Amps Trigger Delay

ATRIG Channel Level Amps Trigger Level

BKD Delay Brake activation delay in ms

BLFB Channel Sensor Encoder or Hall Sensor Feedback for closed loop

BLSTD Channel Mode Stall Detection

CLERD Channel Mode Close Loop Error Detection

EHL Channel Value Encoder High Count Limit

EHLA Channel Action Encoder High Limit Action

EHOME Channel Value Encoder Counter Load at Home Position

ELL Channel Value Encoder Low Count Limit

ELLA Channel Action Encoder Low Limit Action

EMOD Channel Use Encoder Usage

EPPR Channel Value Encoder PPR Value

ICAP Channel Cap PID Integral Cap

KD Channel Gain PID Differential Gain

KI Channel Gain PID Integral Gain

KP Channel Gain PID Proportional Gain

MAC Channel Acceleration Motor Acceleration Rate

MDEC Channel Deceleration Motor Deceleration Rate

MMOD Channel Mode Operating Mode

MVEL Channel Velocity Default Position Velocity

MXMD Mode Separate or Mixed Mode Select

MXPF Channel MaxPower Motor Max Power Forward

MXPR Channel MaxPower Motor Max Power Reverse

MXRPM Channel RPM Max RPM Value

MXTRN Channel Turns Number of turns between limits

OVH Voltage Overvoltage hysteresis

OVL Voltage Overvoltage Cutoff Limit

PWMF Frequency PWM Frequency

THLD Threshold Short Circuit Detection Threshold

UVL Voltage Undervoltage Limit

ALIM - Amp Limit

HexCode: 2A

Motor Configurations

	 Advanced Digital Motor Controller User Manual� 313

Description:
This is the maximum Amps that the controller will be allowed to deliver to a motor regard-
less the load of that motor. The value is entered in Amps multiplied by 10. The value is the
Amps that are measured at the motor and not the Amps measured from a battery. When
the motor draws current that is above that limit, the controller will automatically reduce
the output power until the current drops below that limit.

Syntax Serial:	 ^ALIM cc nn
		 ~ALIM [cc]

Syntax Scripting:	 setconfig(_ALIM, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors
	

Argument 2: Limit	
	 Type: Unsigned 16-bit

	 Min: 10	 Max: Max Amps in datasheet
	 Default: See note

Where:
cc = Motor channel

nn = Amps *10

Example:

^ALIM1 455: Set Amp limit for Motor 1 to 45.5A

Note:

Default value is typically set to 75% of the controller’s max amps as defined in the data-
sheet

ATGA - Amps Trigger Action

HexCode: 2C

Description:
This parameter sets what action to take when the Amps trigger is activated. The list is the
same as in the DINA digital input actions. Typical use for that feature is as a limit switch
when, for example, a motor reaches an end and enters stall condition, the current will
rise, and that current increase can be detected and the motor be made to stop until the
direction is reversed. Embedded in the parameter is the motor channel(s) to which the
action should apply.

Syntax Serial:	 ^ATGA cc (aa + mm)
		 ~ATGA [cc]

Commands Reference

314	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Syntax Scripting:	 setconfig(_ATGA, cc, aa)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors
	

Argument 2: Action	
	 Type: Unsigned 8-bit

	 Min: 10	 Max: 255
	 Default: 0 = No action

Where:
cc = Motor channel

aa =
0 : No action
1: Safety stop
2: Emergency stop
3: Motor stop
4: Forward limit switch
5: Reverse limit switch
6: Invert direction
7: Run MicroBasic script
8: Load counter with home value

mm = mot1*16 + mot2*32 + mot3*48

ATGD - Amps Trigger Delay

HexCode: 2D

Description:
This parameter contains the time in milliseconds during which the Amps Trigger Level
(ATRIG) must be exceeded before the Amps Trigger Action (ATGA) is called. This parame-
ter is used to prevent Amps Trigger Actions to be taken in case of short duration spikes.

Syntax Serial:	 ^ATGD cc nn
		 ~ATGD [cc]

Syntax Scripting:	 setconfig(_ATGD, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors
	

Argument 2: Delay	
	 Type: Unsigned 16-bit

Motor Configurations

	 Advanced Digital Motor Controller User Manual� 315

	 Min: 0	 Max: 10000
	 Default: 500ms

Where:
cc = Motor channel

nn = Delay in ms

Example:

^ATGD 1 1000: Action will be triggered if motor Amps exceeds the value set with ATGL
for more than 1000ms

ATRIG - Amps Trigger Level

HexCode: 2B

Description:
This parameter lets you select Amps threshold value that will trigger an action. This
threshold must be set to be below the ALIM Amps limit. When that threshold is reached,
then list of action can be selected using the ATGA parameter.

Syntax Serial:	 ^ATRIG cc nn
		 ~ATRIG [cc]

Syntax Scripting:	 setconfig(_ATRIG, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors
	

Argument 2: Level	
	 Type: Unsigned 16-bit

	 Min: 10	 Max: Max Amps in datasheet
	 Default: Max Amps rating in datasheet

Where:
cc = Motor channel

nn = Amps *10

Example:

^ATRIG2 550: Set Amps Trigger to 55.0A

BKD - Brake activation delay in ms

HexCode: 0F

Commands Reference

316	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Description:
Set the delay in miliseconds from the time a motor stops and the time an output connect-
ed to a brake solenoid will be released. Applies to any Digital Ouput(s) that is configured
as motor brake. Delay value applies to all motors in multi-channel products.

Syntax Serial:	 ^BKD nn
		 ~BKD

Syntax Scripting:	 setconfig(_BKD, nn)

Number of Arguments: 1

Argument 1: Delay
	 Type: Unsigned 16-bit
	 Min: 0	 Max: 65536
	 Default: 250 = 250ms

	

Where:
nn = Delay in milliseconds

Example:

^BKD 1 1000 : Causes the digital output to go off, and therefore activate the brake, 1.0s
after motor stops being energized

BLFB - Encoder or Hall Sensor Feedback for closed loop

HexCode: 3B

Description:
This parameter is used to select which feedback sensor will be used to measure speed
or positions. On brushless motors system equipped with optical encoders, this parame-
ter lets you select the encoder or the brushless sensors (ie. Hall, Sin/Cos, or SPI) as the
source of speed or position feedback. Encoders provide higher precision capture and
should be preferred whenever possible. The choice “Other” is also used to select pulse or
analog feedback in some position modes.

Syntax Serial:	 ^BLFB cc nn
		 ~BLFB

Syntax Scripting:	 setconfig(_BLFB, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors
	

Argument 2: Sensor	
	 Type: Unsigned 8-bit

Motor Configurations

	 Advanced Digital Motor Controller User Manual� 317

	 Min: 0	 Max: 1
	 Default: 0 = Other Sensor

Where:
cc = Motor channel

nn =
0: Other feedback
1: Brushless sensor feedback (Hall, SPI, Sin/Cos)

BLSTD - Stall Detection

HexCode: 3A

Description:
This parameter controls the stall detection of brushless motors and of brushed
motors in closed loop speed mode. If no motion is sensed (i.e. counter remains un-
changed) for a preset amount of time while the power applied is above a given
threshold, a stall condition is detected and the power to the motor is cut until
the command is returned to 0. This parameter allows three combination of time &
power sensitivities. The setting also applies also when encoders are used in closed loop
speed mode on brushed or brushless motors

Syntax Serial:	 ^BLSTD cc nn
		 ~BLSTD [cc]

Syntax Scripting:	 setconfig(_BLSTD, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors
	

Argument 2: Mode	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 3
	 Default: 2 = 500ms at 25% Power

Where:
cc = Motor channel

nn =
0: Disabled
1: 250ms at 10% Power
2: 500ms at 25% Power
3: 1000ms at 50% Power

Example:

^BLSTD 2: Motor will stop if applied power is higher than 10% and no motion is detected
for more than 250ms

Commands Reference

318	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

CLERD - Close Loop Error Detection

HexCode: 38

Description:
This parameter is used to detect large tracking errors due to mechanical or sensor failures,
and shut down the motor in case of problem in closed loop speed or position system. The
detection mechanism looks for the size of the tracking error and the duration the error is
present. This parameter allows three combination of time & error level. This parameter
is also used to limit the loop error when operating in Count Position, and Speed Position
modes. When enabled, the desired position (tracking) will stop progressing when the loop
error is greater than 50% the detection threshold while power output is already at 100%.

Syntax Serial:	 ^CLERD cc nn
		 ~CLERS

Syntax Scripting:	 setconfig(_CLERD, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motor
Channels
	

Argument 2: Mode	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 3
	 Default: 2 = 500ms at Error > 250

Where:
cc = Motor channel

nn =
0: Detection disabled
1: 250ms at Error > 100
2: 500ms at Error > 250
3: 1000ms at Error > 500

Example:

^CLERD 2: Motor will stop if command - feedback is greater than 100 for more than
250ms

Note:

Disabling the loop error can lead to runaway or other dangerous conditions in case of sen-
sor failure

EHL - Encoder High Count Limit

HexCode: 4C

Motor Configurations

	 Advanced Digital Motor Controller User Manual� 319

Description:
Defines a maximum count value at which the controller will trigger an action when the
counter goes above that number. This feature is useful for setting up virtual or â€œsoftâ€
limit switches .This value, together with the Low Count Limit, are also used in the posi-
tion mode to determine the travel range when commanding the controller with a relative
position command. In this case, the High Limit Count is the desired position when a com-
mand of 1000 is received.

Syntax Serial:	 ^EHL cc nn
		 ~EHL [cc]

Syntax Scripting:	 setconfig(_EHL, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Encoders
	

Argument 2: Value	
	 Type: Signed 32-bit

	 Min: -2147M	 Max: 2147M
	 Default: +20000

Where:
cc = Encoder channel

nn = Counter value

EHLA - Encoder High Limit Action

HexCode: 4E

Description:
This parameter lets you select what kind of action should be taken when the high limit
count is reached on the encoder. The list of action is the same as in the DINA digital input
action list Embedded in the parameter is the motor channel(s) to which the action should
apply.

Syntax Serial:	 ^EHLA cc nn
		 ~EHLA [cc]

Syntax Scripting:	 setconfig(_EHLA, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Encoders
	

Commands Reference

320	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Argument 2: Action	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 255
	 Default: 0 = No action

Where:
cc = Encoder channel

aa =
0: No action
1: Safety stop
2: Emergency stop
3: Motor stop
4: Forward limit switch
5: Reverse limit switch
6: Invert direction
7: Run MicroBasic script
8: Load counter with home value

mm = mot1*16 + mot2*32 + mot3*48

EHOME - Encoder Counter Load at Home Position

HexCode: 4F

Description:
Contains a value that will be loaded in the selected encoder counter when a home switch
is detected, or when a Home command is received from the serial/USB, or issued from a
MicroBasic script.

Syntax Serial:	 ^EHOME cc nn
		 ~EHOME [cc]

Syntax Scripting:	 setconfig(_EHOME, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Encoders
	

Argument 2: Value	
	 Type: Signed 32-bit

	 Min: -2147M	 Max: 2147M
	 Default: 0

Where:
cc = Encoder channel

nn = Counter value to be loaded

Motor Configurations

	 Advanced Digital Motor Controller User Manual� 321

ELL - Encoder Low Count Limit

HexCode: 4B

Description:
Defines a minimum count value at which the controller will trigger an action when the
counter dips below that number. This feature is useful for setting up virtual or â€œsoftâ€
limit switches.This value, together with the High Count Limit, are also used in the position
mode to determine the travel range when commanding the controller with a relative posi-
tion command. In this case, the Low Limit Count is the desired position when a command
of -1000 is received.

Syntax Serial:	 ^ELL cc nn
		 ~ELL [cc]

Syntax Scripting:	 setconfig(_ELL, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Encoders
	

Argument 2: Value	
	 Type: Signed 32-bit

	 Min: -2147M	 Max: 2147M
	 Default: -20000

Where:
cc = Encoder channel

nn = Counter value

Example:

^ELL 1 -100000 : Set encoder 1 low limit to minus 100000

ELLA - Encoder Low Limit Action

HexCode: 4D

Description:
This parameter lets you select what kind of action should be taken when the low limit
count is reached on the encoder. The list of action is the same as in the DINA digital input
action list Embedded in the parameter is the motor channel(s) to which the action should
apply.

Syntax Serial:	 ^ELLA cc (aa + mm)
		 ~ELLA [cc]

Commands Reference

322	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Syntax Scripting:	 setconfig(_ELLA, cc, aa)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Encoders
	

Argument 2: Action	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 255
	 Default: 0 = No action

Where:
cc = Encoder channel

aa =
0: No action
1: Safety stop
2: Emergency stop
3: Motor stop
4: Forward limit switch
5: Reverse limit switch
6: Invert direction
7: Run MicroBasic script
8: Load counter with home value

mm = mot1*16 + mot2*32 + mot3*48

EMOD - Encoder Usage

HexCode: 49

Description:
This parameter defines what use the encoder is for. The encoder can be used to set com-
mand or to provide feedback (speed or position feedback). The use of encoder as feedback
devices is the most common. Embedded in the parameter is the motor to which the en-
coder is associated.

Syntax Serial:	 ^EMOD cc (aa + mm)
		 ~EMOD [cc]

Syntax Scripting:	 setconfig(_EMOD, cc, aa)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Encoders
	

Motor Configurations

	 Advanced Digital Motor Controller User Manual� 323

Argument 2: Use	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 255
	 Default: 0 = Unused

Where:
cc = Encoder channel

aa =
0: Unused
1: Command
2: Feedback

mm =
mot1*16 + mot2*32 + mot3*48

Example:

^EMOD 1 18 = Encoder used as feedback for channel 1

EPPR - Encoder PPR Value

HexCode: 4A

Description:
This parameter will set the pulse per revolution of the encoder that is attached to the con-
troller. The PPR is the number of pulses that is issued by the encoder when making a full
turn. For each pulse there will be 4 counts which means that the total number of a count-
er increments inside the controller will be 4x the PPR value. Make sure not to confuse the
Pulse Per Revolution and the Count Per Revolution when setting up this parameter. Enter-
ing a negative number will invert the counter and the measured speed polarity

Syntax Serial:	 ^EPPR cc nn
		 ~EPPR [cc]

Syntax Scripting:	 setconfig(_EPPR, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Encoders
	

Argument 2: Value	
	 Type: Signed 16-bit

	 Min: -32768	 Max: 32767
	 Default: 100

Where:
cc = Encoder channel

nn = PPR value

Commands Reference

324	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Example:

^EPPR 2 200 : Sets PPR for encoder 2 to 200

ICAP - PID Integral Cap

HexCode: 32

Description:
This parameter is the integral cap as a percentage. This parameter will limit maximum
level of the Integral factor in the PID. It is particularly useful in position systems with long
travel movement, and where the integral factor would otherwise become very large be-
cause of the extended time the integral would allow to accumulate. This parameter can
be used to dampen the effect of the integral parameter without reducing the gain. This
parameter may adversely affect system performance in closed loop speed mode as the
Integrator must be allowed to reach high values in order for good speed control.

Syntax Serial:	 ^ICAP cc nn
		 ~ICAP [cc]

Syntax Scripting:	 setconfig(_ICAP, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors
	

Argument 2: Cap	
	 Type: Unsigned 8-bit

	 Min: 1	 Max: 100
	 Default: 100%

Where:
cc = Motor channel

nn = Integral cap in %

KD - PID Differential Gain

HexCode: 30

Description:
Sets the PID’s Differential Gain for that channel. The value is set as the gain multiplied by
10. This gain is used in all closed loop modes. In Torque mode, when sinusoidal mode is
selected on brushless contontrollers, the FOC’s PID is used instead the this parameter
has no effect.

Syntax Serial:	 ^KD cc nn
		 ~KD [cc]

Motor Configurations

	 Advanced Digital Motor Controller User Manual� 325

Syntax Scripting:	 setconfig(_KD, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors
	

Argument 2: Gain	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 255
	 Default: 0

Where:
cc = Motor channel

nn = Differential Gain *10

Example:

^KD 1 155: Set motor channel 1 Differential Gain to 15.5

Note:

Do not use default values. As a starting point, se P=2, I=0, D=0 in position modes (includ-
ing Speed Position mode). Use P=0, I=1, D=0 in closed loop speed mode and in torque
mode. Perform full tuning after that.

KI - PID Integral Gain

HexCode: 2F

Description:
Sets the PID’s Integral Gain for that channel. The value is set as the gain multiplied by 10.
This gain is used in all closed loop modes. In Torque mode, when sinusoidal mode is se-
lected on brushless controllers, the FOC’s PID is used instead the this parameter has no
effect.

Syntax Serial:	 ^KI cc nn
		 ~KI

Syntax Scripting:	 setconfig(_KI, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors
	

Argument 2: Gain	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 255
	 Default: 20 = 2.0

Commands Reference

326	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Where:
cc = Motor channel

nn = Integral Gain *10

Example:

^KI 1 155: Set motor channel 1 Integral Gain to 15.5

Note:

Do not use default values. As a starting point, se P=2, I=0, D=0 in position modes (includ-
ing Speed Position mode). Use P=0, I=1, D=0 in closed loop speed mode and in torque
mode. Perform full tuning after that.

KP - PID Proportional Gain

HexCode: 2E

Description:
Sets the PID’s Proportional Gain for that channel. The value is set as the gain multiplied by
10. This gain is used in all closed loop modes. In Torque mode, when sinusoidal mode is
selected on brushless controllers, the FOC’s PID is used instead the this parameter has
no effect.

Syntax Serial:	 ^KP cc nn
		 ~KP

Syntax Scripting:	 setconfig(_KP, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors
	

Argument 2: Gain	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 255
	 Default: 20 = 2.0

Where:
cc = Motor channel

nn = Proportional Gain *10

Example:

^KP 1 155 = Set motor channel 1 Proportional Gain to 15.5

Note:

Do not use default values. As a starting point, se P=2, I=0, D=0 in position modes. Use
P=0, I=1, D=0 in closed loop speed mode and in torque mode. Perform full tuning after that

Motor Configurations

	 Advanced Digital Motor Controller User Manual� 327

On brushless motor controller with FOC support, KP is not used for torque control. A sep-
arate PID is used for current control

MAC - Motor Acceleration Rate

HexCode: 33

Description:
Set the rate of speed change during acceleration for a motor channel. This command is
identical to the AC realtime command. Acceleration value is in 0.1*RPM per sec-
ond. When using controllers fitted with encoder, the speed and acceleration value
are actual RPMs. Brushless motor controllers use the hall sensor for measuring actual
speed and acceleration will also be in actual RPM/s. When using the controller without
speed sensor, the acceleration value is relative to the Max RPM configuration parameter,
which itself is a user-provide number for the speed normally expected speed at full power.
Assuming that the Max RPM parameter is set to 1000, and acceleration value of 10000
means that the motor will go from 0 to full speed in exactly 1 second, regardless of the
actual motor speed.

Syntax Serial:	 ^MAC cc nn
		 ~MAC [cc]

Syntax Scripting:	 setconfig(_MAC, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors
	

Argument 2: Acceleration	
	 Type: Signed 32-bit

	 Min: 0	 Max: 500000
	 Default: 10000 = 1000.0 RPM/s

Where:
cc = Motor channel

nn = Acceleration time in 0.1 RPM per seconds

MDEC - Motor Deceleration Rate

HexCode: 34

Description:
Set the rate of speed change during deceleration for a motor channel. This command is
identical to the DC realtime command. Acceleration value is in 0.1*RPM per sec-
ond. When using controllers fitted with encoder, the speed and deceleration value
are actual RPMs. Brushless motor controllers use the hall sensor for measuring actual
speed and acceleration will also be in actual RPM/s. When using the controller without
speed sensor, the deceleration value is relative to the Max RPM configuration parameter,

Commands Reference

328	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

which itself is a user-provide number for the speed normally expected speed at full power.
Assuming that the Max RPM parameter is set to 1000, and deceleration value of 10000
means that the motor will go from full speed to 0 1 second, regardless of the actual motor
speed.

Syntax Serial:	 ^MDEC cc nn
		 ~MDEC [cc]

Syntax Scripting:	 setconfig(_MDEC, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	 Type: Unsigned 8-bit
	 Min: 1	 Max: Total Number of Motor
Channels
	

Argument 2: Deceleration	
	 Type: Signed 32-bit

	 Min: 0	 Max: 500000
	 Default: 10000 = 1000.0 RPM/s

Where:
cc = Motor channel

nn = Deceleration time in 0.1 RPM per second

MDIR - Motor Direction

HexCode: 0x77

Description:

This parameter lets you set the motor direction to inverted or direct.

Syntax Serial: ^MDIR cc nn

Where:

cc = Motor Channel

nn = 0: Not inverted

 1: Inverted

Syntax Scripting: setconfig(_MDIR, cc, nn)

MMOD - Operating Mode

HexCode: 27

Description:
This parameter lets you select the operating mode for that channel. See manual for de-
scription of each mode.

Motor Configurations

	 Advanced Digital Motor Controller User Manual� 329

Syntax Serial:	 ^MMOD cc nn
		 ~MMOD [cc]

Syntax Scripting:	 setconfig(_MMOD, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors
	

Argument 2: Mode	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 6
	 Default: 0 = Open loop

Where:
cc = Motor channel

nn =
0: Open-loop
1: Closed-loop speed
2: Closed-loop position relative
3: Closed-loop count position
4: Closed-loop position tracking
5: Torque
6: Closed-loop speed position

Example:

^MMOD 2 : Select Closed loop position relative

MVEL - Default Position Velocity

HexCode: 35

Description:
This parameter is the default speed at which the motor moves while in position mode.
Values are in RPMs. To change velocity while the controller is in operation, use the !S run-
time command.

Syntax Serial:	 ^MVEL cc nn
		 ~MVEL [cc]

Syntax Scripting:	 setconfig(_MVEL, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors
	

Commands Reference

330	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Argument 2: Velocity	
	 Type: Signed 32-bit

	 Min: 0	 Max: 30000
	 Default: 1000 RPM

Where:
cc = Motor channel

nn = Velocity value in RPM

MXMD - Separate or Mixed Mode Select

HexCode: 05

Description:
Selects the mixed mode operation. It is applicable to dual channel controllers and serves
to operate the two channels in mixed mode for tank-like steering. There are 3 possible
values for this parameter for selecting separate or one of the two possible mixed mode
algorithms. Details of each mixed mode is described in manual

Syntax Serial:	 ^MXMD nn
		 ~MXMD

Syntax Scripting:	 setconfig(_MXMD, nn)

Number of Arguments: 1

Argument 1: Mode
	 Type: Unsigned 8-bit
	 Min: 0	 Max: 2
	 Default: 0 = Separate

Where:
nn =
0: Separate
1: Mode 1
2: Mode 2

Example:

^MXMD 0 : Set mode to separate

MXPF - Motor Max Power Forward

HexCode: 28

Description:
This parameter lets you select the scaling factor for the PWM output, in the forward direc-
tion, as a percentage value. This feature is used to connect motors with voltage rating that
is less than the battery voltage. For example, using a factor of 50% it is possible to con-
nect a 12V motor onto a 24V system, in which case the motor will never see more than
12V at its input even when the maximum power is applied.

Motor Configurations

	 Advanced Digital Motor Controller User Manual� 331

Syntax Serial:	 ^MXPF cc nn
		 ~MXPF [cc]

Syntax Scripting:	 setconfig(_MXPF, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors
	

Argument 2: MaxPower	
	 Type: Unsigned 8-bit

	 Min: 25	 Max: 100
	 Default: 100%

Where:
cc = Motor channel

nn = Max Power

MXPR - Motor Max Power Reverse

HexCode: 29

Description:
This parameter lets you select the scaling factor for the PWM output, in the reverse direc-
tion, as a percentage value. This feature is used to connect motors with voltage rating that
is less than the battery voltage. For example, using a factor of 50% it is possible to con-
nect a 12V motor onto a 24V system, in which case the motor will never see more than
12V at its input even when the maximum power is applied.

Syntax Serial:	 ^MXPR cc nn
		 ~MXPR [cc]

Syntax Scripting:	 setconfig(_MXPR, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors
	

Argument 2: MaxPower	
	 Type: Unsigned 8-bit

	 Min: 25	 Max: 100
	 Default: 100%

Where:
cc = Motor channel

nn = Max Power

Commands Reference

332	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

MXRPM - Max RPM Value

HexCode: 36

Description:
Commands sent via analog, pulse or the !G command only range between -1000 to
+1000. The Max RPM parameter lets you select which actual speed, in RPM, will be con-
sidered the speed to reach when a +1000 command is sent. In open loop, this parameter
is used together with the acceleration and deceleration settings in order to figure the
ramping time from 0 to full power.

Syntax Serial:	 ^MXRPM cc nn
		 ~MXRPM [cc

Syntax Scripting:	 setconfig(_MXRPM, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors
	

Argument 2: RPM	
	 Type: Unsigned 16-bit

	 Min: 10	 Max: 65535
	 Default: 1000 RPM

Where:
cc = Motor channel

nn = Max RPM value

MXTRN - Number of turns between limits

HexCode: 37

Description:
This parameter is used in position mode to measure the speed when an analog or pulse
feedback sensor is used. The value is the number of motor turns between the feedback
value of -1000 and +1000. When encoders are used for feedback, this parameter is auto-
matically computed from the encoder configuration, and can thus be omitted. See â€œ-
Closed Loop Relative and Tracking Position Modesâ€ for a detailed discussion.

Syntax Serial:	 ^MXTRN cc nn
		 ~MXTRN [cc]
Syntax Scripting:	 setconfig(_MXTRN, cc, nn)

Number of Arguments: 2

Motor Configurations

	 Advanced Digital Motor Controller User Manual� 333

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors
	

Argument 2: Turns	
	 Type: Signed 32-bit

	 Min: 10	 Max: 100000
	 Default: 10000 = 1000.0 turns

Where:
cc = Motor channel

nn = Number of turns * 10

Example:

^MXTRN 1 2000: Set max turns for motor 1 to 200.0 turns

OVH - Overvoltage hysteresis

HexCode: 42

Description:
This voltage gets subtracted to the overvoltage limit to set the voltage at which the over-
voltage condition will be cleared. For instance, if the overvoltage limit is set to 500 (50.0)
and the hysteresis is set to 50 (5.0V), the MOSFETs will turn off when the voltage reach-
es 50V and will remain off until the voltage drops under 45V

Syntax Serial:	 ^SXM nn
		 ~SXM

Syntax Scripting:	 setconfig(_SXM, nn)

Number of Arguments: 1

Argument 1: Voltage
	 Type: Unsigned 8-bit
	 Min: 0	 Max: 255 = 25.5V
	 Default: 50 = 5.0V

	

Where:
nn = Volts *10

Example:

^OVH 45 : Sets hysteresis at 4.5V

Note:

Make sure that overvoltage limit minus hysteresis is above the supply voltage.

Commands Reference

334	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

OVL - Overvoltage Cutoff Limit

HexCode: 02

Description:
Sets the voltage level at which the controller must turn off its power stage and signal an
Overvoltage condition. Value is in volts multiplied by 10 (e.g. 450 = 45.0V) . The power
stage will turn back on when voltage dips below the Overvoltage Clearing threshold that
is set with the the OVH configuration command.

Syntax Serial:	 ^OVL nn
		 ~OVL

Syntax Scripting:	 setconfig(_OVL, nn)

Number of Arguments: 1

Argument 1: Voltage
	 Type: Unsigned 16-bit
	 Min: 100 = 10.0V	 Max: See Product Datasheet
	 Default: See Product Datasheet

	

Where:
nn = Volts *10

Example:

^OVL 400 : Set Overvoltage limit to 40.0V

Note:

On firmware versions 1.5 and earlier, no hysteresis exists and the overvoltage condition is
cleared as soon as the voltage dips below the overvoltage limit.

PWMF - PWM Frequency

HexCode: 06

Description:
This parameter sets the PWM frequency of the switching output stage. It can be set from
1 kHz to 20 kHz. The frequency is entered as kHz value multiplied by 10 (e.g. 185 = 18.5
kHz). Beware that a too low frequency will create audible noise and would result in lower
performance operation.

Syntax Serial:	 ^PWMF nn
		 ~PWMF

Syntax Scripting:	 setconfig(_PWMF, nn)

Number of Arguments: 1

Motor Configurations

	 Advanced Digital Motor Controller User Manual� 335

Argument 1: Frequency
	 Type: Unsigned 16-bit
	 Min: 100	 Max: 500
	 Default: 160 = 16.0kHz

	

Where:
nn = PWM Frequency *10

Example:

^PWMF 200 := Set PWM frequency to 20kHz

Note:

Do not change the default PWM frequency when operating brushless motors in sinusoi-
dal mode.

THLD - Short Circuit Detection Threshold

HexCode: 04

Description:
This configuration parameter sets the threshold level for the short circuit detection. There
are 4 sensitivity levels from 0 to 3.

Syntax Serial:	 ^THLD nn
		 ~THLD

Syntax Scripting:	 setconfig(_THLD, nn)

Number of Arguments: 1

Argument 1: Threshold
	 Type: Unsigned 8-bit
	 Min: 0	 Max: 3
	 Default: 1 = Medium Sensitivity

	

Where:
nn =
0: Very high sensitivity
1: Medium sensitivity
2: Low sensitivity
3: Short circuit protection disabled

Example:

^THLD 1 : Set short circuit detection sensitivity to medium.

Note:

You should never disable the short circuit protection.

Commands Reference

336	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

UVL - Undervoltage Limit

HexCode: 03

Description:
Sets the voltage below which the controller will turn off its power stage. The voltage is
entered as a desired voltage value multiplied by 10. Undervoltage condition is cleared as
soon as voltage rises above the limit.

Syntax Serial:	 ^UVL nn
		 ~UVL

Syntax Scripting:	 setconfig(_UVL, nn)

Number of Arguments: 1

Argument 1: Voltage
	 Type: Unsigned 16-bit
	 Min: 50 = 5.0V	 Max: Max Voltage in Product
Datasheet
	 Default: 50 = 5.0V

	

Where:
nn = Volts *10

Example:

		 ^UVL 100 : Set undervoltage limit to 10.0 V

Brushless Specific Commands

TABLE 19-8. Brushless Specific Commands

Command Arguments Description

BADJ Channel Angle Brushless zero angle

BADV Channel Value Brushless timing angle adjust

BFBK Channel Sensor Brushless feedback sesnor

BHL Channel Value Brushless Counter High Limit

BHLA Channel Action Brushless Counter High Limit Action

BHOME Channel Value Brushless Counter Load at Home Position

BLL Channel Value Brushless Counter Low Limit

BLLA Channel Action Brushless Counter Low Limit Action

BMOD Channel Mode Brushless operating mode

BPOL Channel NbrPoles Number of pole pairs of Brushless Motor and
Speed Polarity

Brushless Specific Commands

	 Advanced Digital Motor Controller User Manual� 337

TABLE 19-8. Brushless Specific Commands

Command Arguments Description

BZPW Channel Amps Brushless zero seek power level

HPO InputNbr Value Hall Type

HSM InputNbr Value Hall Sensor Map

KIF AmpsChannel Gain FOC PID Integral Gain

KPF AmpsChannel Gain FOC PID Proportional Gain

SPOL Channel Poles Sin/Cos or Resolver number of poles

SSP MotorPower Sensorless Start-Up Power

SST Ticks Sensorless Start-Up Time

SWD InputNbr Value Swap Windings

TID Channel Amps FOC Target Id

ZSMC InputNbr Value SinCos Calibration

BADJ - Brushless zero angle

HexCode: 60

Description:
In sinusoidal mode and SIn/Cos and SPI feedback sensors are used, this configuration
command stores results of automatic zero degrees angle search after performing the
!BND command. The angle represents the mechanical offset between the sensor’s zero
position and the rotor’s zero position. The value is in electrical degrees ranging from 0 to
511 for a full electrical turn. The value can then be fine tuned manually. The BADJ values
are stored permanently in the calibration section of the controller’s flash memory so that
they are not lost when updating firmware.

Syntax Serial:	 ^BADJ cc nn
		 ~BADJ [cc]

Syntax Scripting:	 setconfig(_BADJ, cc)

Number of Arguments:

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors
	

Argument 2: Angle	
	 Type: Signed 16-bit

	 Min: -511	 Max: 511
	 Default: 0

Where:
cc = Motor channel

nn = Angle

Commands Reference

338	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Example:

^BADJ 1 220 : Manually set the zero to 220 degrees
%CLSAV 3216549987 : Save change permanently to non-voltatile calibration memory
space

Note:

Use %CLSAV to save the values to EEPROM. Clicking on Save to Controller on the PC
Utility will not save the data.

BADV - Brushless timing angle adjust

HexCode: 61

Description:
When operating in sinusoidal mode, this parameter shifts by number of degrees to the 3
phases rotating magnetic field. This value works symetrically to produce the same results
in both rotation direction. The value is in electrical degrees ranging from 0 to 511 for a full
electrical turn.

Syntax Serial:	 ^BADV cc nn
		 ~BADV [cc]

Syntax Scripting:	 setconfig(_BADV, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors
	

Argument 2: Value	
	 Type: Signed 16-bit
	 Min: -511	 Max: 511

	 Default: 0
Where:
cc = Motor channel

nn = Angle

Example:

^BADV 1 20 : Advance motor 1 timing by 20 degrees

BFBK - Brushless feedback sesnor

HexCode: 63

Description:
Selects the type of rotor angle sensor to be used for brushless motors when operated in
sinusoidal mode.

Brushless Specific Commands

	 Advanced Digital Motor Controller User Manual� 339

Syntax Serial:	 ^BFBK cc nn
		 ~BFBK [cc]

Syntax Scripting:	 setconfig(_BFBK, cc)

Number of Arguments:

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors
	

Argument 2: Sensor	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 4
	 Default: 0 = Encoder

Where:
cc = Motor channel

nn =
0: Encoder
1: Hall
2: Hall + Encoder
3: SPI
4: Sin/Cos

BHL - Brushless Counter High Limit

HexCode: 3E

Description:
This parameter allows you to define a minimum brushless count value at which the
controller will trigger an action when the counter rises above that number. This feature
is useful for setting up virtual or â€œsoftâ€ limit switches. This value, together with the
Low Count Limit, are also used in the position mode to determine the travel range when
commanding the controller with a relative position command. In this case, the Low Limit
Count is the desired position when a command of 1000 is received

Syntax Serial:	 ^BHL cc nn
		 ~BHL [cc]

Syntax Scripting:	 setconfig(_BHL, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors
	

Commands Reference

340	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Argument 2: Value	
	 Type: Signed 32-bit

	 Min: -2147M	 Max: +2147M
	 Default: 20000

Where:
cc = Motor channel

nn = Counter value

Example:

^BHL 10000 : Set brushless counter high limit

Note:

Counter is not an absolute position. A homing sequence is necessary to set a reference
position.

BHLA - Brushless Counter High Limit Action

HexCode: 40

Description:
This parameter lets you select what kind of action should be taken when the high limit
count is reached on the brushless counter. The list of action is the same as in the DINA
digital input action list. Embedded in the parameter is the motor channel(s) to which the
action should apply.

Syntax Serial:	 ^BHLA cc nn
		 ~BHLA [cc]

Syntax Scripting:	 setconfig(_BHLA, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motor
	

Argument 2: Action	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 255
	 Default: 0 = No action

Where:
cc = Motor channel

aa =
0 : No action
1: Safety stop
2: Emergency stop
3: Motor stop

Brushless Specific Commands

	 Advanced Digital Motor Controller User Manual� 341

4: Forward limit switch
5: Reverse limit switch
6: Invert direction
7: Run MicroBasic script
8: Load counter with home value

mm = mot1*16 + mot2*32 + mot3*48

Example:

^BHLA 1 36 : Forward limit switch for motor 2 (5 + 32)

BHOME - Brushless Counter Load at Home Position

HexCode: 3C

Description:
This parameter contains a value that will be loaded in the brushless hall sensor counter
when a home switch is detected, or when a Home command is received from the serial/
USB, or issued from a MicroBasic script.

Syntax Serial:	 ^BHOME cc nn
		 ~BHOME [cc]

Syntax Scripting:	 setconfig(_BHOME, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors
	

Argument 2: Value	
	 Type: Signed 32-bit

	 Min: -2147M	 Max: +2147M
	 Default: 0

Where:
cc = Motor channel

nn = Counter value to be loaded

Example:

^BHOME 1 10000 : load brushless counter with 10000 when Home command is received

Note:

Change counter only while in open loop if brushless counter is used for speed or position
feedback

Commands Reference

342	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

BLL - Brushless Counter Low Limit

HexCode: 3D

Description:
This parameter defines a minimum brushless count value at which the controller will trig-
ger an action when the counter dips below that number. This feature is useful for setting
up virtual or â€œsoftâ€ limit switches. This value, together with the High Count Limit, are
also used in the position mode to determine the travel range when commanding the con-
troller with a relative position command. In this case, the Low Limit Count is the desired
position when a command of -1000 is received

Syntax Serial:	 ^BLL cc nn
		 ~BLL [cc]

Syntax Scripting:	 setconfig(_BLL, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors
	

Argument 2: Value	
	 Type: Signed 32-bit

	 Min: -2147M	 Max: +2147M
	 Default: -20000

Where:
cc = Motor channel

nn = Counter value

Example:

^BLL 1 -10000 : Set motor 1 brushless counter low limit

Note:

Counter is not an absolute position. A homing sequence is necessary to set a reference
position.

BLLA - Brushless Counter Low Limit Action

HexCode: 3F

Description:
This parameter lets you select what kind of action should be taken when the low limit
count is reached on the brushless counter. The list of action is the same as in the DINA
digital input action list. Embedded in the parameter is the motor channel(s) to which the
action should apply.

Brushless Specific Commands

	 Advanced Digital Motor Controller User Manual� 343

Syntax Serial:	 ^BLLA cc aa
		 ~BLLA [cc]

Syntax Scripting:	 setconfig(_BLLA, cc, aa)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors
	

Argument 2: Action	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 255
	 Default: 0 = No action

Where:
cc = Motor channel

aa =
0: No action
1: Safety stop
2: Emergency stop
3: Motor stop
4: Forward limit switch
5: Reverse limit switch
6: Invert direction
7: Run MicroBasic script
8: Load counter with home value

mm = mot1*16 + mot2*32 + mot3*48

Example:

^BLLA 1 37 : Reverse limit switch for motor 2 (5 + 32)

BMOD - Brushless operating mode

HexCode: 5F

Description:
Selects the operating mode when controlling brushless motors. Additional settings apply
for each mode.

Syntax Serial:	 ^BMOD cc nn
		 ~BMOD [cc]

Syntax Scripting:	 setconfig(_BMOD, cc, nn)

Number of Arguments: 2

Commands Reference

344	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors
	

Argument 2: Mode	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 2
	 Default: 0 = Trapezoidal

Where:
cc = Motor channel

nn =
0: Trapezoidal
1: Sinusoidal
2: Sensorless
3: AC Induction

Note:

After changing this setting, the motor will perform a reference searched when selecting
sinusoidal mode with encoder feedback.

BPOL - Number of Pole Pairs and Speed Polarity of Brushless Motor

HexCode: 39

Description:
This parameter is used to define the number of pole pairs of the brushless motor con-
nected to the controller. This value is used to convert the hall sensor transition counts into
actual RPM and number of motor turns. Entering a negative number will invert the count-
er and the measured speed polarity.

Syntax Serial:	 ^BPOL cc nn
		 ~BPOL

Syntax Scripting:	 setconfig(_BPOL, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors
	

Argument 2: Number of Pole Pairs	
	 Type: Signed 8-bit

	 Min: -127	 Max: +127
	 Default: 2

Where:
cc = Motor channel

nn = Number of pole pairs

Brushless Specific Commands

	 Advanced Digital Motor Controller User Manual� 345

BZPW - Brushless zero seek power level

HexCode: 62

Description:
Sets the level of Amps to be applied to the motor coils during the zero-angle reference
search in sinusoidal mode. Zero reference is automatically initiated every time the con-
troller is powered up when sinusoidal with encoder feedback is selected. Zero reference
search is initiated manually with the !BND command in sinusoidal mode with sin/cos and
SPI feedback.

Syntax Serial:	 ^BZPW cc nn
		 ~BZPW [cc]

Syntax Scripting:	 setconfig(_BZPW, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors
	

Argument 2: Amps	
	 Type: Unsigned 16-bit

	 Min: 0	
	 Default: 50 = 5.0A

Where:
cc = Motor channel

nn = Amps x 10

HPO - Hall Sensor Position

HexCode: A5

Description:

This parameter selects the Hall sensor spacing in the motor. Practically all brushless mo-
tors use Hall sensors with 120 degrees spacing. Some motors have Hall sensors with 60
degrees. Change this parameter only if the motor’s manual clearly specifies 60 degrees
spacing.

Syntax Serial: ^HPO cc nn

	 ~HPO [cc]

Syntax Scripting: setconfig(_HPO, cc, nn)

Number of Arguments: 2

Commands Reference

346	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Argument 1: Channel

	 Min: 1 	 Max: Total Number of Motors

Argument 2: Hall Position

	 Type: Unsigned 8-bit

	 Min: 0 	 Max: 1

	 Default: 0

Where:

cc = Motor channel

nn = Hall Sensor Position

	 0: 120degree

	 1: 60degree

Example:

^HPO 1 1: Configure that the Hall Sensor of motor 1 are spaced by 60 degrees.

HSM - Hall Sensor Map

HexCode: A3

Description:

Configure this parameter to match the ABC hall sensor cable pattern with the UVW mo-
tor windings wire pattern connected to the controller. For each hall sensor cable order
and motor wire order, there are 6 combinations, one of which will make the motor spin
smoothly and efficiently in both directions. Try each of the 6 available values of HSM (0-
5) and retain the one that will make the motor spin in both directions while drawing the
same low current.

Syntax Serial: ^HSM cc nn

	 ~ HSM [cc]

Syntax Scripting: setconfig(_HSM, cc, nn)

Number of Arguments: 2

Argument 1: Channel

	 Min: 1 	 Max: Total Number of Motors

Argument 2: Hall Sensor Map

	 Type: Unsigned 8-bit

	 Min: 0 	 Max: 5

	 Default: 0

Brushless Specific Commands

	 Advanced Digital Motor Controller User Manual� 347

Where:

cc = Motor channel

nn = Motor’s Hall Sensor Map

Example:

^HSM 1 1: Set Hall Sensor Map for motor 1 to value 1.

KIF - FOC PID Integral Gain

HexCode: 8E

Description:
On brushless motor controller operating in sinusoidal mode, this parameter sets the In-
tegral gain in the PI that is used for Field Oriented Control. Two gains can be set for each
motor channel, in order to control the Flux and Torque current.

Syntax Serial:	 ^KIF cc nn
		 ~KIF [cc]

Syntax Scripting:	 setconfig(_KIF, cc)

Number of Arguments:

Argument 1: AmpsChannel
	
	 Min: 1	 Max: 2 * Total Number of Motors
	

Argument 2: Gain	
	 Type: Unsigned 8-bit

	 Min: 0	 Max: 255
	

Where:
cc (single channel) =
1: Flux Gain
2: Torque Gain

cc (dual channel) =
1: Flux Gain for motor 1
2: Flux Gain for motor 2
3: Torque Gain for motor 1
4: Torque Gain for motor 2

nn = Gain * 10

Commands Reference

348	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

KPF - FOC PID Proportional Gain

HexCode: 8D

Description:
On brushless motor controller operating in sinusoidal mode, this parameter sets the Pro-
portional gain in the PI that is used for Field Oriented Control. Two gains can be set for
each motor channel, in order to control the Flux and Torque current.

Syntax Serial:	 ^KIF cc nn
		 ~KIF [cc]

Syntax Scripting:	 setconfig(_KIF, cc)

Number of Arguments:

Argument 1: AmpsChannel
	
	 Min: 1	 Max: 2 * Total Number of Motors
	

Argument 2: Gain	
	 Type: TYPE_ID_U8

	 Min: 0	 Max: 255
	 Default: 5

Where:
cc (single channel) =
1: Flux Gain
2: Torque Gain

cc (dual channel) =
1: Flux Gain for motor 1
2: Flux Gain for motor 2
3: Torque Gain for motor 1
4: Torque Gain for motor 2

nn = Gain * 10

SPOL - Sin/Cos or Resolver number of poles

HexCode: 41

Description:
Number of poles of the Sin/Cos or resolver angle sensor used in sinusoidal mode with
brushless motors

Syntax Serial:	 ^SPOL cc nn
		 ~SPOL [cc]

Brushless Specific Commands

	 Advanced Digital Motor Controller User Manual� 349

Syntax Scripting:	 setconfig(_SPOL, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors
	

Argument 2: Number	
	 Type: Unsigned 8-bit

	 Min: 1	 Max: 255
	 Default: 1

Where:
cc = Motor channel

nn = Number of poles

SSP - Sensorless Start-Up Power

HexCode: 93

Description:
This parameter sets the start-up Power in Sensorless mode. It is the minimum power to
apply to the motor in order to make it start. The value is number from 0 to 1000 which
represents 0 - 100% of PWM.

Syntax Serial:	 ^SSP cc nn
		 ~SSP [cc]

Syntax Scripting:	 setconfig(_SSP, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors
	

Argument 2: Power	
	 Type: Unsigned 16-bit

	 Min: 0	 Max: 1000
	 Default: 75

Where:
cc = Motor channel

nn = Startup Motor Power

Example:

^SSP 1 150 : Set Start-Up motor power for motor 1 to 15.0% PWM Level

Commands Reference

350	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

SST - Sensorless Start-Up Time

HexCode: 94

Description:
This parameter is used to define the initial period of the commutation timer in Sensorless
mode. The smaller this value the quicker the initial commutation frequency. This value is
determined by executing the sensorless start-up calibration, and can be modified accord-
ingly depending on the specifications of the motor. The value is number from 0 to 65535.

Syntax Serial:	 ^SST cc nn
		 ~SST [cc]

Syntax Scripting:	 setconfig(_SST, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors
Argument 2: Time	
	 Type: Unsigned 16-bit

	 Min: 0	 Max: 65535
	 Default: 65535

Where:
cc = Motor channel

nn = Startup Time

Example:

^SST 1 20000: Set Start-Up Time of the commutation timer for motor1 to 20000 ticks.

SWD - Swap Windings

HexCode: A4

Description:

This parameter is used in sinusoidal mode and will swap the UVW so that the motor turns
in the opposite direction. Configure this parameter to match the sensor (encoder, Sin/Cos,
SPI/SSI, Resolver) counting direction with the motor rotation direction. This configuration
change is similar to swapping two of the motor wires on the controller.

Syntax Serial: ^SWD cc nn

	 ~ SWD [cc]

Syntax Scripting: setconfig(_SWD, cc, nn)

Brushless Specific Commands

	 Advanced Digital Motor Controller User Manual� 351

Number of Arguments: 2

Argument 1: Channel

	 Min: 1 	 Max: Total Number of Motors

Argument 2: Swap Windings

	 Type: Unsigned 0-bit

	 Min: 0 	 Max: 1

	 Default: 0

Where:

cc = Motor channel

nn = Motor’s Swap Windings

 0: Angle up-counting for clockwise direction

 1: Angle down-counting for clockwise direction

Example:

^SWD 1 1: Set angle down-counting for clockwise direction for motor 1.

TID - FOC Target Id

HexCode: 8F

Description:
In brunshless motors operating in sinusoidal mode, this command sets the desired Flux
(also known as Direct Current Id) for Field Oriented Control. This value must be 0 in typical
application. A non-zero value creates field weakening and can be used to achieve higher
rotation speed

Syntax Serial:	 ^TID cc nn
		 ~TID [cc]

Syntax Scripting:	 setconfig(_TID, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors
	

Argument 2: Amps	
	 Type: Signed 32-bit

	 Min: 0	
	 Default: 0

Commands Reference

352	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Where:
cc = Motor Channel

nn = Amps * 10

ZSMC - SinCos Calibration

HexCode: 46

Description:
Shows Sin/Cos calibration value that are captured after the completion of the auto calibra-
tion step. Values are not to be altered manually. When non-zero values are returned after
querying ZSMC, this indicates that a calibration has been successfuly completed at one
time or another. Values are permanently stored in the calibration Flash area after sending
%CLSAV 321654987

Syntax Serial:	 ^ZSMC cc nn
		 ~ZSMC [cc]

Syntax Scripting:	 setconfig(_ZSMC, cc)

Number of Arguments:

Argument 1: InputNbr
	
	 Min: 1	 Max: 6
	

Argument 2: Value	
	 Type: Signed 16-bit

		
	

Where:
cc =
1: Sine Zero Point for motor 1
2: Cosine Zero Point for motor 1
3: Cosine/Sine Ratio for motor 1
4: Sine Zero Point for motor 2
5: Cosine Zero Point for motor 2
6: Cosine/Sine Ratio for motor 2

nn = Calibration value

Brushless Specific Commands

	 Advanced Digital Motor Controller User Manual� 353

AC Induction Specific Command

TABLE 19-9. AC Induction Specific Command

Command Arguments Description

ILM Inductance Mutual Inductance

ILLR Inductance Rotor Leakage Inductance

IRR Resistance Rotor Resistance

MPW MotorPower Minimum Power

MXS SlipFrequency Optimal Slip Frequency

RFC Channel Amps Rotor Flux Current

VPH VoltsperHertz AC Induction Motor Volts per HZ

VPH - AC Induction Volts per Hertz

HexCode: 95

Description:
This parameter is only used for AC Induction controllers. Each motor has as specification a
Volts per Hertz value with which the frequency can be determined when specific voltage
is applied.

Syntax Serial:	 ^VPH cc nn
		 ~VPH [cc]

Syntax Scripting:	 setconfig(_VPH, cc, nn)

Number of Arguments: 2

Argument 1: Channel
	
	 Min: 1	 Max: Total Number of Motors
	

Argument 2: VoltsPerHz	
	 Type: Unsigned 16-bit

	 Min: 0	 Max: 65535
	 Default: 20000

Where:
cc = Motor channel

nn = Motor’s Volts per Hertz * 1000

Example:

^VPH 1 200: Set Volts per Hertx to value 0.200

ILM - Mutual Inductance

HexCode: 9B	

Commands Reference

354	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Description:

This parameter is only used for AC Induction controllers when operating in FOC mode and
contains motor’s mutual inductance (coupled to both stator and rotor).

Syntax Serial: ^ILM cc nn

	 ~ ILM [cc]

Syntax Scripting: setconfig(_ILM, cc, nn)

Number of Arguments: 2

Argument 1: Channel

	 Min: 1 	 Max: Total Number of Motors

Argument 2: Mutual Inductance	

	 Type: Unsigned 32-bit

	 Min: 0 	 Max: 10000

	 Default: 10

Where:

cc = Motor channel

nn = Motor’s Mutual Inductance in μH.

Example:

^RFC 1 961: Set Mutual Inductance of motor 1 to value 961μH.

ILLR - Rotor Leakage Inductance

HexCode: 9A

Description:

This parameter is only used for AC Induction controllers when operating in FOC mode
and contains the rotor’s per phase leakage inductance of the motor. This value can be ob-
tained from the motor supplier.

Syntax Serial: ^ILLR cc nn

	 ~ ILLR [cc]

Syntax Scripting: setconfig(_ILLR, cc, nn)

Number of Arguments: 2

Brushless Specific Commands

	 Advanced Digital Motor Controller User Manual� 355

Argument 1: Channel

	 Min: 1 	 Max: Total Number of Motors

Argument 2: Rotor Leakage Inductance	

	 Type: Unsigned 32-bit

	 Min: 0 	 Max: 10000

	 Default: 10

Where:

cc = Motor channel

nn = Motor’s Rotor Leakage Inductance in μH.

Example:

^RFC 1 67: Set Rotor Leakage Inductance of motor 1 to value 67μH.

IRR - Rotor Resistance

HexCode: 99

Description:

This parameter is only used for AC Induction controller when operating in FOC mode and
contains the resistance per phase of the rotor. This value can be obtained from the motor
supplier.

Syntax Serial: ^IRR cc nn

	 ~ IRR [cc]

Syntax Scripting: setconfig(_IRR, cc, nn)

Number of Arguments: 2

Argument 1: Channel

	 Min: 1 	 Max: Total Number of Motors

Argument 2: Rotor Resistance

	 Type: Unsigned 32-bit

	 Min: 1 	 Max: 500000

	 Default: 20000

Commands Reference

356	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Where:

cc = Motor channel

nn = Motor’s Rotor Resistance in micro-ohm.

Example:

^IRR 1 24500: Set Rotor Resistance of motor 1 to value 24500μΩ.

MPW - Minimum Power

HexCode: 97

Description:

This parameter is only used for AC Induction controllers when operating in Volts per Hertz
mode. It defines a minimum PWM output value so that there is always a minimal of rotor
flux to create induction.

Syntax Serial: ^MPW cc nn

	 ~MPW [cc]

Syntax Scripting: setconfig(_MPW, cc, nn)

Number of Arguments: 2

Argument 1: Channel

	 Min: 1 	 Max: Total Number of Motors

Argument 2: Minimum Power

	 Type: Unsigned 16-bit

	 Min: 0 	 Max: 1000

	 Default: 100

Where:

cc = Motor channel

nn = Motor’s Minimum Power in % of PWM Level

Example:

^MPW 1 200: Set Minimum Power for motor 1 to value 20.0% PWM Level.

Brushless Specific Commands

	 Advanced Digital Motor Controller User Manual� 357

MXS - Optimal Slip Frequency

HexCode: 96

Description:

This parameter is only used for AC Induction controllers. The optimal slip is the value that
the controller will work to maintain while operating in Constant Slip mode.

Syntax Serial: ^MXS cc nn

	 ~MXS [cc]

Syntax Scripting: setconfig(_MXS, cc, nn)

Number of Arguments: 2

Argument 1: Channel

	 Min: 1 	 Max: Total Number of Motors

Argument 2: Optimal Slip Frequency

	 Type: Unsigned 16-bit

	 Min: 0 	 Max: 65535

	 Default: 50

Where:

cc = Motor channel

nn = Motor’s Optimal Slip Frequency in Hertz * 10

Example:

^MXS 1 60: Set Optimal Slip for motor 1 to value 6.0Hz

RFC - Rotor Flux Current

HexCode: 98

Description:

This parameter is only used for AC Induction controller. This value is the stator current
component (Id) for rotor flux production when FOC modes are selected.

Syntax Serial: ^RFC cc nn

	 ~ RFC [cc]

Commands Reference

358	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Syntax Scripting: setconfig(_RFC, cc, nn)

Number of Arguments: 2

Argument 1: Channel

	 Min: 1 	 Max: Total Number of Motors

Argument 2: Rotor Flux Current

	 Type: Unsigned 16-bit

	 Min: 0 	 Max: 500

	 Default: 10

Where:

cc = Motor channel

nn = Motor’s Rotor Flux Current in Amps * 10

Example:

^RFC 1 50: Set Rotor Flux Current for motor 1 to value 5A.

CAN Communication Commands
This section describes all the configuration parameters uses for CANbus operation.

TABLE 19-10. CANbus Commands

Command Arguments Description

CAS Rate CANOpen Auto start

CBR BitRate CAN Bit Rate

CEN Mode CAN Enable

CHB HeartBeat CAN Heartbeat

CLSN Address CAN Listening Node

CNOD Address CAN Node Address

CSRT Rate MiniCAN SendRate

CTPS TPDOnbr Rate CANOpen TPDO SendRate

CAS - CANOpen Auto start

HexCode: 5A

Description:
Determines if device is an active CANOpen at power up. When set, unit is active on
CANOpen at power up without the need to receive a start command.

CAN Communication Commands

	 Advanced Digital Motor Controller User Manual� 359

Syntax Serial:	 ^CAS nn
		 ~CAS

Syntax Scripting:	 setconfig(_CAS, nn)

Number of Arguments: 1

Argument 1: Rate
	 Type: Unsigned 8-bit
	 Min: 0	 Max: 1
	 Default: 0 = Off

Where:
nn =
0: Device is inactive
1: Device is active on CANOpen at power-up

CBR - CAN Bit Rate

HexCode: 58

Description:
Sets the CAN bus bit rate

Syntax Serial:	 ^CBR nn
		 ~CBR

Syntax Scripting:	 setconfig(_CBR, nn)

Number of Arguments: 1

Argument 1: BitRate
	 Type: Unsigned 8-bit
	 Min: 0	 Max: 5
	 Default: 3 = 250K

	

Where:
nn =
0: 1000K
1: 800K
2: 500K
3: 250K
4: 125K

CEN - CAN Enable

HexCode: 56

Commands Reference

360	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Description:
Enables CAN and selects the CAN protocol

Syntax Serial:	 ^CEN nn
		 ~CNOD

Syntax Scripting:	 setconfig(_CEN, nn)

Number of Arguments: 1

Argument 1: Mode
	 Type: Unsigned 8-bit
	 Min: 0	 Max: 5
	
Where:
nn =
0: Disabled
1: CANOpen
2: MiniCAN
3: RawCAN
4: RoboCAN
5: MiniJ1939

CHB - CAN Heartbeat

HexCode: 59

Description:
Sets the rate in miliseconds at which the controller will send a heartbeat frame on the
CAN bus. Heartbeat is sent when either MiniCAN, RawCAN, CANOpen are selected. A
dedicated, non-user-alterable Heartbeat frame is sent when RoboCAN is selected

Syntax Serial:	 ^CHB nn

Syntax Scripting:	 setconfig(_CHB, nn)

Number of Arguments: 1

Argument 1: HeartBeat
	 Type: Unsigned 16-bit
	 Min: 0	 Max: 65536
	 Default: 100ms

	

Where:
nn = Heartbeat rate in ms

CLSN - CAN Listening Node

HexCode: 5B

CAN Communication Commands

	 Advanced Digital Motor Controller User Manual� 361

Description:
In RawCAN and MiniCAN mode, this parameter filters the incoming frames in order to
capture only these originating from a given node address. In RawCAN, entering 0 disables
the filter and will cause all incoming frames to be captured

Syntax Serial:	 ^CLSN nn
		 ~CSLD

Syntax Scripting:	 setconfig(_CLSN, nn)

Number of Arguments: 1

Argument 1: Address
	 Type: Unsigned 8-bit
	 Min: 0	 Max: 127
	 Default: Product dependent

	

Where:
nn =
0: Listent to all nodes (RawCAN only)
1-127: Capture frames from specific node id only

CNOD - CAN Node Address

HexCode: 57

Description:
Stores the product’s address on the CAN bus

Syntax Serial:	 ^CNOD nn
		 ~CNOD

Syntax Scripting:	 setconfig(_CNOD, nn)

Number of Arguments: 1

Argument 1: Address
	 Type: Unsigned 8-bit
	 Min: 0	 Max: 127
	 Default: See datasheet

	

Where:
nn = Node address

CSRT - MiniCAN SendRate

HexCode: 5C

Commands Reference

362	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Description:
Rate in ms at which MiniCAN frames are sent

Syntax Serial:	 ^CSRT nn
		 ~CSRT

Syntax Scripting:	 setconfig(_CSRT, nn)

Number of Arguments: 1

Argument 1: Rate
	 Type: Unsigned 8-bit
	 Min: 0	 Max: 65536
	 Default: 100ms

	

Where:
nn = Rate in ms. No frames sent. if value is 0

CTPS - CANOpen TPDO SendRate

HexCode: 5D

Description:
Sets the send rate for each of the 4 TPDOs when CANOpen is enabled.

Syntax Serial:	 ^CTPS nn mm

Syntax Scripting:	 setconfig(_CTPS, nn, mm)

Number of Arguments: 2

Argument 1: TPDOnbr
	
	 Min: 1	 Max: 4
	

Argument 2: Rate	
	 Type: Unsingned 16-bit

	 Min: 0	 Max: 65536
	 Default: 0 = Off

Where:
nn = TPDO number, 1 to 4

mm = Rate in ms

Note:

If mm = 0, the TPDO is not transmitted

System Requirements

	 Advanced Digital Motor Controller User Manual� 363

SECTION 20	 Using the
Roborun
Configuration
Utility

A PC-based Configuration Utility is available, free of charge, from Roboteq. This program
makes configuring and operating the controller much more intuitive by using pull-down
menus, buttons and sliders. The utility can also be used to update the controller’s software
in the field as described in “Updating the Controller’s Firmware” on page 241.

System Requirements
To run the utility, the following is needed:

•	 PC compatible computer running any recent version of Windows
•	 A USB connector for controllers with USB connectivity
•	 If communicating with the controller via RS232, an unused serial communication

port on the computer with a 9-pin, female connector for controllers using RS232
communication

•	 An Internet connection for downloading the latest version of the Roborun Utility or
the Controller’s Firmware

If the PC is not equipped with an RS232 serial port, one may be added using a USB to
RS232 converter.

Downloading and Installing the Utility
The Configuration Utility must be obtained from the Support page on Roboteq’s web site
at www.roboteq.com.

•	 Download the program and run the file setup.exe inside the Roborun Setup folder
•	 Follow the instructions displayed on the screen

Using the Roborun Configuration Utility

364	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

•	 After the installation is complete, run the program from your Start Menu > Pro-
grams > Roboteq

The controller does not need to be connected to the PC to start the Utility. For installa-
tions on older versions of Windows, it may be necessary to install .NET Framework ver-
sion 3.5. On Windows 10 systems, you may need to enable .net framework version 3.5.

The Roborun+ Interface
The Roborun+ utility is provided as a tool for easily configuring the Roboteq controller and
running it for testing and troubleshooting purposes.

Header

Tabs

Status

 FIGURE 20-1. The Roborun+ Interface

The screen has a header, status bar and 4 tabs:

•	 Configuration tab for setting all the different configuration parameters;
•	 Run tab for testing and monitoring the status of the controller at runtime;
•	 Console tab for performing a number of low-level operations that are useful for

upgrading, testing and troubleshooting;
•	 Scripting tab for writing, simulating, and downloading custom scripts to the con-

troller.

The Roborun+ Interface

	 Advanced Digital Motor Controller User Manual� 365

Header Content
The header is always visible and contains an “Emergency Stop” button that can be hit at
any time to stop the controller’s operation. Hitting the button again will resume the con-
troller operation.

The header also displays inside a text box the Controller type that has been detected

The “View Pinout” button will pop open a window showing the pinout of the detected
controller model. For each analog, digital or pulse input/output, the table shows the de-
fault label (e.g. DIN1, AIN2, ...) or a user defined label (e.g. Limit1, eStop, ...). User defini-
tion of label names for I/O pins is done in the Configuration tab.

FIGURE 20-2. Pinout view pop-up window

Clicking in the Work Offline checkbox allows you to manually select a controller model
and populate the Configuration and Run trees with the features and functions that are
available for that model. Working offline is useful for creating/editing configuration profiles
without the need to have an actual controller attached to the PC.

The COM Port pull down menu lets you manually select the communication port. In the Auto
mode, the PC will scan all the available ports and look for a controller. Use the manual mode when
more than one controller is attached, or when connected to the controller via a RF modem.

The Run, Pause, Restart buttons are used to control script execution.

Status Bar Content
The status bar is located at the bottom of the window and is split in 4 areas. From left to right:

•	 List of COM ports found on the PC
•	 COM port used for communication with the controller. “Port Open” indicates that

communication with the controller is established.

Using the Roborun Configuration Utility

366	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

•	 Firmware ID string as reported by the controller. Contains revision number and date.
•	 Connected/Disconnected LED. When lit green, it indicates that the communication

with the controller is OK.

Program Launch and Controller Discovery
After launching the Roborun Utility, if the controller is connected, or after you connect the
controller, the Roborun will automatically scan all the PC’s available communication ports.

The automatic scanning is particularly useful for controllers connected via USB, since it is
not usually possible to know ahead of time which communication port the PC will assign
to the controller.

If a controller is found on any of those ports, Roborun will:

•	 Display the controller model in the window header.
•	 Display the Connection COM port number, report the Firmware revision, and turn

on the Connect LED in the Status bar.
•	 Pop up a message box asking you if you wish to read the configuration.

FIGURE 20-3. Pop up message when Controller is detected

Answering ‘Yes’, the Roborun will read all the configuration parameters that are stored into
the controller’s memory.

Note: If two or more controllers are connected to the same PC, Roborun will only detect
one. Roborun will normally first detect the one assigned to the lowest COM port number,
however, this is not entirely predictable. It is recommended that you only connect one
controller at a time when using the PC utility.

Conf﻿iguration Tab
The configuration tab is used to read, modify and write the controller’s many possible
operating modes. It provides a user friendly interface for viewing and editing the configu-
ration parameters described in “Set/Read Configuration Commands” on page 210.

Program Launch and Controller Discovery

	 Advanced Digital Motor Controller User Manual� 367

FIGURE 20-4. Configuration tab

The configuration tab contains two configuration trees: the one on the left deals mostly
with the I/O and control signals, while the tree on the right deals with the power output
and motor parameters. The exact content and layout of a tree depends on the controller
model that is detected.

The trees are, for the most part, self explanatory and easy to follow.

Each node will expand when clicking on the small triangle next to it. When selecting a tree
item, the value of that item will show up as an underscored value. Clicking on it enables a
menu list or a free-form field that you can select to enter a new configuration values.

After changing a configuration, an orange star * appears next to that item, indicating that
this parameter has been changed, but not yet saved to the controller.

Clicking on the “Save to the controller” button, moves this parameter into the control-
ler’s RAM and it becomes effective immediately. This also saves the parameter into the
controller’s EEPROM so that it is loaded the next time the controller is powered up again.

Entering Parameter Values
Depending on the node type, values can be entered in one of many forms:

•	 Numerical
•	 Boolean (e.g. Enable/Disable)

Using the Roborun Configuration Utility

368	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

•	 Selection List
•	 Text String

When entering a numerical value, that value is checked against the allowed minimum and
maximum range for that parameter. If the entered value is lower than the minimum, then
the minimum value will be used instead, if above the maximum, then the maximum value
will be used as the entered parameter.

Boolean parameters, such as Enabled/Disabled will appear as a two-state menu list.

Some parameters, like Commands or Actions have the option to apply to one or the other
of the motor channels. For this type of parameters, next to the menu list are checkboxes –
one for each of the channels. Checking one or the other tells the controller to which chan-
nel this input or action should apply.

 FIGURE 20-5. Parameter applying to one or more tabs channels

String parameters are entered in plain text and they are checked against the maximum
number of characters that are allowed for that string. If entering a string that is longer, the
string is truncated to the maximum number of allowed characters.

Important Notice about Decimals

The use of Period vs Coma when entering a decimal configuration value depends
on the regional settings of Windows. On USA PC’s, use periods. On European PC’s
use comas. If unsure, load the configuration back from the controller after changing
and saving. Verify that the value that was stored in the controller is the one that was
entered.

Automatic Analog and Pulse input Calibration
Analog and Pulse inputs can be configured to have a user-defined minimum, maximum
and center range. These parameters can be viewed and edited manually by expanding the
Range subnode.

The minimum, maximum and center values can also be captured automatically by clicking
on the “Calibrate” link.

FIGURE 20-6. Min/Max/Center parameters and auto calibrations for Analog and Pulse inputs

Program Launch and Controller Discovery

	 Advanced Digital Motor Controller User Manual� 369

When clicking on the “Calibrate” link, a window pops up that displays a bar showing the
live value of that analog or pulse input in real time.

The window contains three cursors that move in relation to the input, capturing the mini-
mum and maximum detected values. It is possible to further manually adjust further these
settings by moving the sliders. The Center value will be either the value of the inputs (or
the joystick position) at the time when clicking on the “Done” button. The Center value
can also be automatically computed to be the middle between Min and Max when en-
abling the “Auto Center” checkbox. Clicking on “Reset” resets the Min, Max and Center
sliders and lets you restart the operation.

FIGURE 20-7. Auto calibration window

After clicking on the “Done” button, the capture values will appear in the Min, Max
and Center nodes in the tree with the orange * next to them, indicating that they have
changed but not yet be saved in the controller. At this point, they can be adjusted further
manually and saved in the controller.

Input/Output Labeling
Each analog, digital or pulse input/output, is given default label (e.g. DIN1, AIN2, ...). Al-
ternatively, it is possible to assign or a user defined label name (e.g. Limit1, eStop, ...) to
each of these signals. This label will then appear in the Run Tab next to the LED or Value
box. The label will also appear in the Pin View window (See Figure 67, “Pinout view pop-
up window,” on page 227). Custom labels make it much easier to monitor the controller’s
activity in the Run tab.

FIGURE 20-8. Labeling an Input/Output

To label an Input or Output, simply select it in the tree. A text field will appear in which
you can enter the label name. Beware that while it is possible to enter a long label, names
with more than 8 letters will typically appear truncated in the Run tab.

Using the Roborun Configuration Utility

370	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Loading, Saving Controller Parameters

The buttons on the right of the Configuration tab let you load parameters from the control-
ler at any time and save parameters typically after a new parameter has been changed in
the trees.

You can save a configuration profile to disk and load it back into the tree.

The “Reset Defaults ...” button lets you reset the controller back to the factory settings.
This button will also clear the custom labels if any were created.

FIGURE 20-9. Loading & Saving parameters button

Locking & Unlocking Configuration Access
The “Add/Remove Lock” button is used to lock the configuration so that it cannot be
read by unauthorized users. Given the many configuration possibilities of the controller,
this locking mechanism can provide a good level of Intellectual Property protection to the
system integrator.

FIGURE 20-10. Add/Remove Lock button

If the controller is not already locked, clicking on this buttons pops up a window in which
you can enter a secret number. The number is a 32-bit value and so can range from 1 to
4294967296.

FIGURE 20-11. Lock creation window

Configuration Parameters Grouping & Organization

	 Advanced Digital Motor Controller User Manual� 371

That secret number gets stored inside the controller with no way to read it.

Once locked, any time there is an attempt to read the controller configuration (as for ex-
ample, when the controller is first detected), a message box will pop open to indicate that
the configuration cannot be read. The user is prompted to enter the key to unlock the con-
troller and read the configuration.

FIGURE 20-12 Controller unlock window

Note that configuration can be set even when the controller is locked, only read cannot be
performed.

Configuration Parameters Grouping & Organization
The total number of configuration parameters is quite large. While most system will oper-
ate well using the default values, when change is necessary, viewing and editing param-
eters is made easy thanks to a logical graphical organization of these parameters inside
collapsible tree lists.

The configuration tab contains two trees. The left tree includes all parameters that deal
with the Analog, Digital, Pulse I/O, encoder and communication. The right tree includes
all parameters related to the power drive section. The exact content of the trees changes
according to the controller that is attached to the PC.

Startup Parameters
This menus defines the controller’s behavior immediately after startup.

FIGURE 20-13. Startup Menus

Using the Roborun Configuration Utility

372	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

The Script Autostart enables or disables script execution. Make sure that the script is bug
free before enabling.

Then a number of Command Safety parameters can also be configured. These are the
Watchdog timeout when receiving Serial commands, and the safety ranges for analog
commands.

The Telemetry parameter contains the string that is executed whenever controller is first
powered up. This parameter is typically composed of a series of real-time queries that
the controller automatically and periodically perform. Queries must be separated with the
“:” colon character. The string is normally terminated with the command to repeat (“#”)
followed by the repeated rate in milliseconds. See “TELS - Telemetry String” on page 198
and “Query History Commands”on page 263 for details on Telemetry

Commands Parameters
In the commands menu we can set the command priorities, the linearization or exponenti-
ation that must be performed on that input.

FIGURE 20-14. Commands parameters

A number of Command Safety parameters can be configured. These are the Watchdog
timeout when receiving Serial commands, and the safety ranges for pulse and analog
commands.

FIGURE 20-15. Command Safety parameters

CAN Communication Parameters
CANbus node address, bit rate, choice of protocol and other parameter can be set from
this set of menus.

Configuration Parameters Grouping & Organization

	 Advanced Digital Motor Controller User Manual� 373

FIGURE 20-16. Can Menus

Encoder Parameters

In the Encoder node are all the parameters relevant to the usage of the encoder. The
first parameter is the Use and is used to select what this encoder will be used for and to
which motor channel it applies. Additional parameters let you set a number of Pulse Per
Revolution, Maximum Speed and actions to do when certain limit counts are reached.

FIGURE 20-17. Encoder parameters

Digital Input and Output Parameters
For Digital inputs, you can set the Active Level and select which action input should cause
when it is activated and on which motor channel that action should apply.

FIGURE 20-18. Digital Input parameters

Using the Roborun Configuration Utility

374	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

For Digital Output, you can set the Active Level and the trigger source that will activate
the Output.

FIGURE 20-19. Digital Out Menu

Analog Input Parameters
For Analog inputs, all the parameters that can be selected include the enabling and con-
version type what this input should be used for and for which channel the input range
limits the deadband and which actions to perform when the minimum or maximum values
are reached.

FIGURE 20-20. AnalogIn Menu

Pulse Input Parameters
For Pulse inputs, the tree lets us enable that input and select what it is used for and what
type of capture it is to make. The range, deadband and actions to take on when Min and
Max are reached is also selectable.

Power Output Parameters

	 Advanced Digital Motor Controller User Manual� 375

FIGURE 20-21. Puksein Menu

Power Output Parameters
The on the right side of the configuration screen are the parameters that relate to the mo-
tor driver and power stage of the controller.

General Settings
There is one tree for setting parameters that apply to all channels of the controller. These
are: the PWM Frequency, the low and high side Voltage Limits, the Short Circuit Protec-
tion and the mixed mode.

FIGURE 20-22. General Power Stage configuration parameters

Motor Parameters
The parameters for each motor are typically duplicated so that they can be set separately
for each motor.

The Motor Configuration group contains menus for configuring the motor’s characteristics,
and especially these of brushless motors.

The Motor Output group contains menus for setting Amps limits, Acceleration/Decelera-
tion, operating modes, and Control Loop gains and other operating parameters

Details on each of the possible configurations can be found throughout this manual.

Using the Roborun Configuration Utility

376	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Run Tab
The Run tab lets you exercise the motors and visualize all the inputs and outputs of the
controller.

A powerful chart recorder is provided to plot real-time controller parameters on the PC,
and/or log to a file for later analysis.

FIGURE 20-23. RUN tab

Each group of monitored parameters can be disabled with a checkbox at the upper left
corner of their frame. By default, all are enabled. Disabling one or more will increase the
capture resolution in the chart and log of the remaining ones.

Status and Fault Monitoring
Status LEDs show the real-time state of key operating flags. The meaning of each LED is
displayed next to it and can vary from one controller to another.

The Fault LEDs indicate all fault conditions. Any one LED that is lit will cause the controller
to disable the power to all motor output channels. The meaning of each LED is displayed
next to it and can vary from one controller to another.

The Def Config Fault LED indicates that an invalid configuration is read from the controller
and the controller has reverted to its factory default configuration. This would be an ex-
tremely unlikely occurrence, but if it happens, reload your custom configuration and verify
that the new configuration is not lost when restarting the controller a few times. If the
controller loses its configuration, this means it is faulty that it should not be used.

Run Tab

	 Advanced Digital Motor Controller User Manual� 377

The DefConfig Fault LED will also turn on the first time the controller is restarted after a
new firmware release has be installed and default configuration first reloaded.

Applying Motor Commands
The command sliders will cause the command value to be applied to the controller. Click-
ing on the “+”, “++”, “-”, “--” buttons lets you fine-tune the command that is applied to the
controller. The numerical value can be entered manually by entering a number in the text
box.

The “Mute” checkbox can be selected to stop all commands from being sent to the
controller. When this is done, only parameter reads are performed. When commands are
muted and if the watchdog timer is enabled, the controller will detect a loss of commands
arriving from the serial port and depending on the priorities it will switch back to the RC or
Analog mode.

If a USB Joystick is connected to the PC and the “Enable” box is checked, the slider will
update in real-time with the captured joystick position value. This makes it possible to
operate the motor with the joystick. The “Configure Joystick” button lets you perform ad-
ditional adjustments such as inverting and swapping joystick input.

FIGURE 20-24

Digital, Analog and Pulse Input Monitoring
The status of Digital inputs and the value Analog and Pulse can be monitored in real-time.
Analog and Pulse inputs will update only if the selected channel is enabled. The labels for
the digital inputs, digital outputs, analog inputs and pulse inputs can be made to take the
value that has been entered in the configuration tree as described in Input/Output Label-
ing. Using a nickname for that signal makes it easier to monitor that information.

Digital Output Activation and Monitoring
The Digital output LEDs reflect the actual state of each of the controller’s Output. If an
output is not changed by the controller using one of the available automatic Output Trig-
gers (see “DOA” on page 200), clicking on the LED will cause the selected output to tog-
gle On and Off.

Using the Chart Recorder
A powerful chart recorder is provided for real-time capture and plotting of operating param-
eters. This chart can display up to eight operating parameters at the same time. Each of
the chart’s channels has a pull-down menu that shows all of the operating parameters that
can be viewed and plotted. The colors can be changed by clicking on the color icon and
selecting another color.

When selecting a parameter to display, this parameter will appear in the chart and change
in real-time. The three boxes show a numerical representation of the actual value and the
Min and Max value reached by this input. Clicking on the “Clear” button for that channel

Using the Roborun Configuration Utility

378	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

resets the Min and Max. The chart can be paused or it can be cleared and the recorded
values can be saved in an Excel format for later analysis.

FIGURE 20-25. Chart recorder

“Handles” on the left vertical axis may be used to zoom in a particular vertical range. Simi-
lar handles on the horizontal axis can be used to change the scrolling speed of the chart.

Console Tab
The console tab is useful for practicing low-level commands and viewing the raw data
exchanged by the controller and the PC. The Console tab also contains the buttons for per-
forming field updates of the controller.

Text-Mode Commands Communication
The console mode allows you to send low-level commands and view the raw controller re-
sponses. Ten text fields are provided in which you can type commands and send them in
any sequence by clicking on the respective “Send” button. All the traffic that is exchanged
by the controller and the PC is logged in the console box on the right. It is then possible
to copy that information and paste it into a word processor or an Excel spreadsheet for
further analysis.

The “Stop” button sends the “#” command to the controller and will stop the automatic
query updating if it is currently active.

Run Tab

	 Advanced Digital Motor Controller User Manual� 379

FIGURE 20-26. Console tab

Updating the Controller’s Firmware
The controller’s firmware can be updated in the field. This function allows the controller to
be always be up-to date with the latest features or to install custom firmware. Update can
be done via the serial port or via USB.

To update the controller firmware via the serial port, click on the “Update Controller Firm-
ware via COM port” button and you can let controller automatically process the update
after you have browsed for and selected the new firmware file. The log and checkboxes
show the progress of the operation.

Using the Roborun Configuration Utility

380	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

FIGURE 20-27. Update Controller Firmware window

When updating via USB, click on the “Update Controller firmware with USB”. This will
cause the COM port to close and the device to disappear from PC utility. The controller
then enters a special update mode and will automatically launch the Roboteq “DFU Load-
er” utility that is found in the Start menu. Selecting and updating the file will perform the
firmware update via USB. After completion, cycling power will restart the controller. It will
then be found by the PC utility.

FIGURE 20-28. Dfu Loader

Scripting Tab

	 Advanced Digital Motor Controller User Manual� 381

Updating Script
It is possible to load a new script into the controller using the “Update Script” button.
After clicking, select a script object file in .hex format. The hex file is generated from the
Scripting tab.

Updating the Controller Logic
Some controller models have one or two programmable logic parts which can also be up-
dated in the field. Updating the logic must only be done only using the COM port, when
the power stage is off and the controller is powered only with the power control wire. No
I/O must be connected on the front connectors either. COM port number must range be-
tween 1 and 10. Use the Device Manager to reassign the port number if higher.

To update the logic, click on the “Update Power Board Logic” or “Update Controller Logic”, se-
lect the file and click on the “Program” button. The log shows the steps that are taking place
during the process. The process last approximately 60 sec., do not cancel the programming in
the middle of programming even if it looks that there is no progress. Cancel only after over a
minute of inactivity. Never turn off the power while programming is in progress.

After updating the logic, you should turn off and turn on the controller in order for the
changes to be fully accounted for.

Scripting Tab
One of the controller’s most powerful and innovative features is the ability for the user
to write programs that are permanently saved into, and run from the controller’s Flash
Memory. This capability is the equivalent of combining the motor controller functionality
and this of a PLC or Single Board Computer directly into the controller. The scripting tab is
used to write, simulate, and download custom scripts to the controller.

FIGURE 20-29. Scripting window

Using the Roborun Configuration Utility

382	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Edit Window
The main window in this tab is used to enter the scripts. The editor automatically changes
the color and style of the entered text so that comments, keywords, commands and text
strings are immediately recognizable. The editor has simple text editing features needed
to write source code. More information on the scripting language and its capabilities can
be found in the “MicroBasic Language Reference” on page 187.

Download to Device button
Clicking on the “To Device” button will cause the source code to be immediately interpret-
ed in low level instructions that are understandable by the controller. If no errors are found
during the translation, the code is automatically transferred in the controller’s flash memo-
ry where it is then ready for execution.

Download to Remote Device button
Clicking on the “To Remote” button will cause the source code to be interpreted and
downloaded to a remote controller on a RoboCAN network. After clicking a pop up win-
dow will list in a pull down menu all controllers found alive on the CAN network. Select
the node you wish the script to be downloaded to.

Build button
Clicking on this button will cause the source code to be immediately interpreted in low lev-
el instructions that are understandable by the controller. A window then pops up showing
the result of the translation. The code is not downloaded into the controller. This command
is generally not needed. It may be used to see how many bytes will be taken by the script
inside the controller’s flash.

Exporting Script Object Hex Files
It is possible to save the compiled code of a given script. This way a script can be loaded in
a controller without giving away the source code. To do this, click on the Export Hex button.
The Hex file can then be loaded from the Console tab using the Update Script button.

Simulation button
Clicking on the “Simulate” button will cause the source code to be interpreted and run
in simulation mode on the PC. This function is useful for simplifying script development
and debug. The simulator will operate identically to the real controller except for all com-
mands that normally read or write controller configuration and operation data. For these
commands, the simulated program will prompt the programmer for values to be entered
manually, or output data to the console.

Correcting Compilation Errors
When building or trying to download a script that contains errors, the compile errors will
be listed in the bottom half of the window. Double clicking on the error will move the cur-
sor to the place in the source code where the error was found.

Scripting Tab

	 Advanced Digital Motor Controller User Manual� 383

FIGURE 20-30. Script compile error

Beware that not all programming errors are detected. Be especially careful with variable
names. Use the #option explicit directive to enforce variable declarations. Beware not to
mix setconfig() and setcommand() when changing a configuration or a command. A faulty
script can cause the controller to crash. Enable the scripting Auto Start configuration only
on known working scripts.

Executing Scripts
Scripts are not automatically executed after the transfer. To execute manually, you must
Run or Restart buttons that are in the Utility’s header. Alternatively, click on the Console
click on the Console tab and send the !r command via the console. Unless a script in-
cludes print statements, it will run silently with no visible signs in the console. Clicking on
!r 0 will stop a script, !r or !r 1 will resume a stopped script. !r 2 will clear all variables and
restart a script. The Runscript LED in the Run tab will be on when script is running.

Executing a script on a remote controller on a CANbus network using the RoboCAN
protocol s done using the @nn!r command, where nn is the remote node address in hex
format.

Using the Roborun Configuration Utility

384	 Advanced Digital Motor Controller User Manual	 V1.8, August 28, 2017

Debugging Scripts
A number of techniques can be used to debug a script that is not behaving as expected.

You can view the value of variable in real time during program execution by clicking on the
Inspect Variables button. Then hover the mouse over a variable in the program listing. The
variable value will be read and displayed at the mouse location. The variable value is read
only once when first hovering over the variable. To read the value again, move the mouse
away and return over that variable.

Embedding print statements is another common technique. Place print statements in
specific places of the script to verify that a given part of the code gets executed. Print the
value of variables you wish to see. To avoid large data dumps on the screen, add code to
print conditionally, for example when a variable changes or reaches a given value range.

	Advanced Brushed and BrushlessDigital MotorControllers
	Revision History
	 Introduction
	Refer to the Datasheet for Hardware-Specific Issues
	User Manual Structure and Use
	SECTION 1 Connecting Power and Motors to the Controller
	SECTION 2 Safety Recommendations
	SECTION 3 Connecting Sensors and Actuators to Input/Outputs
	SECTION 4 I/O Configuration and Operation
	SECTION 5 Magentic Sensor
	SECTION 6 Command Modes
	SECTION 7 Motor Operating Features and Options
	SECTION 8 Brushless Motor Connections and Operation
	SECTION 9 AC Induction MotorOperation
	SECTION 10 Closed Loop Speed and Speed Position Modes
	SECTION 11 Closed Loop Relative and Tracking Position Modes
	SECTION 12 Closed Loop Count Position Mode
	SECTION 13 Closed Loop Torque Mode
	SECTION 14 Serial (RS232/USB) Operation
	SECTION 15 CAN Networking on Roboteq Controllers
	SECTION 16 RoboCAN Networking
	SECTION 17 CANopen Interface
	SECTION 18 MicroBasic Scripting
	SECTION 19 Commands Reference
	SECTION 20 Using the Roborun Configuration Utility

	SECTION 1: ConnectingPower andMotors to theController
	Power Connections
	Controller Power
	Controller Powering Schemes
	Mandatory Connections
	Connection for Safe Operation with Discharged Batteries (note 1)
	Use precharge Resistor to prevent switch arcing (note 2)
	Protection against Damage due to Regeneration (notes 3 and 4)
	Connect Case to Earth if connecting AC equipment (note 5)
	Avoid Ground loops when connecting I/O devices (note 6)

	Connecting the Motors
	Single Channel Operation
	Power Fuses
	Wire Length Limits
	Electrical Noise Reduction Techniques
	Battery Current vs. Motor Current
	Measured and Calculated Currents
	Power Regeneration Considerations
	Using the Controller with a Power Supply

	SECTION 2: SafetyRecommendations
	Possible Failure Causes
	Motor Deactivation in Normal Operation
	Motor Deactivation in Case of Output Stage Hardware Failure
	Manual Emergency Power Disconnect
	Remote Emergency Power Disconnect
	Protection using Supervisory Microcomputer
	Self Protection against Power Stage Failure

	SECTION 3: ConnectingSensors andActuators toInput/Outputs
	Controller’s Inputs and Outputs
	Connecting devices to Digital Outputs
	Connecting Resistive Loads to Outputs
	Connecting Inductive loads to Outputs

	Connecting Switches or Devices to Inputs shared with Outputs
	Connecting Switches or Devices to direct Digital Inputs
	Connecting a Voltage Source to Analog Inputs
	Reducing noise on Analog Inputs
	Connecting Potentiometers to Analog Inputs
	Connecting Potentiometers for Commands with Safety band guards

	Connecting Tachometer to Analog Inputs
	Connecting External Thermistor to Analog Inputs
	Using the Analog Inputs to Monitor External Voltages
	Connecting Sensors to Pulse Inputs
	Connecting to RC Radios
	Connecting to PWM Joysticks and Position Sensors

	Connecting Optical Encoders
	Optical Incremental Encoders Overview
	Recommended Encoder Types

	Connecting the Encoder
	Cable Length and Noise Considerations
	Motor - Encoder Polarity Matching

	SECTION 4:
I/O Configurationand Operation
	Basic Operation
	Input Selection
	Digital Inputs Configurations and Uses
	Analog Inputs Configurations and Use
	Analog Min/Max Detection
	Min, Max and Center adjustment
	Deadband Selection
	Command Correction
	Use of Analog Input

	Pulse Inputs Configurations and Uses
	Use of Pulse Input

	Digital Outputs Configurations and Triggers
	Encoder Configurations and Use
	Hall and other Rotor Sensor Inputs

	SECTION 5: Magnetic GuideSensor Connectionand Operation
	Introduction to MGS1600 Magnetic Guide Sensor
	MagSensor MultiPWM interface
	Enabling MagSensor MultiPWM Communication
	Accessing Sensor Information

	Connecting Multiple Magnetic Guide Sensor
	Accessing Multiple Sensor Information Sequentially
	Accessing Multiple Sensor Information Simultaneously

	SECTION 6 :
CommandModes
	Input Command Modes and Priorities
	USB vs Serial Communication Arbitration
	CAN Commands Arbitration
	Commands issued from MicroBasic scripts

	Operating the Controller in RC mode
	Input RC Channel Selection
	Input RC Channel Configuration
	Joystick Range Calibration
	Deadband Insertion
	Command Correction
	Reception Watchdog

	Using Sensors with PWM Outputs for Commands
	Operating the Controller In Analog Mode
	Input Analog Channel Selection
	Input Analog Channel Configuration
	Analog Range Calibration
	Using Digital Input for Inverting direction
	Safe Start in Analog Mode
	Protecting against Loss of Command Device
	Safety Switches

	Monitoring and Telemetry in RC or Analog Modes
	Using the Controller with a Spektrum Satellite Receiver
	Using the Controller in Serial (USB/RS232) Mode

	SECTION 7: Motor OperatingFeatures andOptions
	Power Output Circuit Operation
	Global Power Configuration Parameters
	PWM Frequency
	Overvoltage Protection
	Undervoltage Protection
	Temperature-Based Protection
	Short Circuit Protection
	Mixed Mode Select

	Motor Channel Parameters
	User Selected Current Limit Settings
	Selectable Amps Threshold Triggering
	Programmable Acceleration & Deceleration
	Forward and Reverse Power Adjustment Gain

	Selecting the Motor Control Modes
	Open Loop Speed Control
	Closed Loop Speed Control
	Closed Loop Speed Position Control
	Closed Loop Position Relative Control
	Closed Loop Count Position
	Closed Loop Position Tracking

	Torque Mode

	SECTION 8:
Brushless MotorConnectionsand Operation
	Introduction to Brushless Motors
	Number of Poles

	Trapezoidal Switching
	Hall Sensor Wiring
	Hall Sensor Verification
	Hall Sensor Alignment and Wiring Order
	Determining the Wiring Order Empirically
	Sensorless Trapezoidal Commutation
	Setting and Operating Trapezoidal Modes
	Sensorless Configuration and Calibration
	Verifying Commutation Timing

	Sinusoidal Commutation
	Wiring Order
	Angle Feedback Sensors
	Sinusoidal Configurations and Calibrations
	Setup and Test Encoder Feedback Mode
	Setup and Test Hall Encoder Feedback Mode
	Setup and Test the SPI Encoder Feedback Mode
	Setup and Test the Sin/Cos Encoder Feedback Mode

	Operating Brushless Motors
	Stall Detection
	Speed Measurement using the angle feedback Sensors
	Distance Measurement using Hall, SPI or other Sensors

	Field Oriented Control (FOC
	FOC Testing and Troubleshooting
	Field Weakening

	SECTION 9: AC InductionMotorOperation
	Introduction to AC Induction Motors
	Asynchronous Rotation and Slip
	Connecting the Motor
	Selecting and Connecting the Encoder
	Testing the Encoder

	Open Loop Variable Frequency Drive Operation
	Figuring the Motor’s Volts per Hertz
	Maintaining Slip within Safe Range

	Closed Loop Speed Mode with Constant Slip Control
	Field Oriented Control (FOC) mode Operation
	Configuring FOC Torque Mode
	Configuring FOC Speed Mode

	SECTION 10: Closed Loop Speed andSpeed-Position Modes
	Modes Description
	Closed Loop Speed Mode
	Motor Sensors
	Tachometer or Encoder Mounting
	Tachometer wiring
	Brushless Hall Sensors as Speed Sensors
	Speed Sensor and Motor Polarity
	Controlling Speed in Closed Loop
	PID Description
	PID tuning in Closed Loop Speed Mode
	PID Tuning in Speed Position Mode
	Error Detection and Protection

	SECTION 11: Closed LoopRelative andTracking PositionModes
	Modes Description
	Position Relative Mode
	Position Tracking Mode

	Selecting the Position Modes
	Position Feedback Sensor Selection
	Sensor Mounting
	Feedback Sensor Range Setting
	Adding Safety Limit Switches
	Using Current Trigger as Protection
	Operating in Closed Loop Relative Position Mode
	Operating in Closed Loop Tracking Mode
	Position Mode Relative Control Loop Description
	PID tuning in Position Mode
	PID Tuning Differences between Position Relative andPosition Tracking
	Loop Error Detection and Protection

	SECTION 12: Closed LoopCount PositionMode
	Mode description
	Sensor Types and Mounting
	Encoder Home reference

	Preparing and Switching to Closed Loop
	Count Position Commands
	Position Command Chaining
	Position Accuracy Considerations
	PID Tunings
	Loop Error Detection and Protection

	SECTION 13: Closed LoopTorque Mode
	Torque Mode Description
	Torque Mode Selection, Configuration and Operation
	Torque Mode Tuning
	Configuring the Loop Error Detection
	Torque Mode Limitations
	Torque Mode Using an External Amps Sensor

	SECTION 14: Serial (RS232/USB) Operation
	Use and benefits of Serial Communication
	Serial Port Configuration
	Connector RS232 Pin Assignment
	Setting Different Bit Rates
	Cable configuration
	Extending the RS232 Cable

	Connecting to Arduino and other TTL Serial Microcomputers
	USB Configuration
	Command Priorities
	USB vs. Serial Communication Arbitration
	CAN Commands
	Script-generated Commands
	Communication Protocol Description
	Character Echo
	Command Acknowledgment
	Command Error
	Watchdog time-out
	Controller Present Check

	SECTION 15: CAN Networkingon RoboteqControllers
	Supported CAN Modes
	Connecting to CAN bus
	Introduction to CAN Hardware signaling
	CAN Bus Pinout

	CAN and USB Limitations
	Basic Setup and Troubleshooting
	Cable polarity, integrity and termination resistor
	Check CANbus activity using a voltmeter
	Check CANbus activity using a CAN sniffer

	Mode Selection and Configuration
	Common Configurations

	MiniCAN Configurations
	RawCAN Configurations

	Using RawCAN Mode
	Checking Received Frames
	Reading Raw Received Frames
	Transmitting Raw Frames

	Using MiniCAN Mode
	Transmitting Data
	Receiving Data
	MiniCAN Usage Example

	SECTION 16: RoboCAN Networking
	Network Operation
	RoboCAN via Serial & USB
	Runtime Commands
	Broadcast Command
	Realtime Queries
	Remote Queries restrictions
	Configurations Read/Writes
	Remote Configurations Read restrictions
	Remote Maintenance Commands
	Self Addressed Commands and Queries

	RoboCAN via MicroBasic Scripting
	Sending Commands and Configuration
	Reading Operating values Configurations
	Continuous Scan
	Checking the presence of a Node
	Self Addressed Commands and Queries
	Broadcast Command
	Remote MicroBasic Script Download

	SECTION 17: CANopenInterface
	Use and benefits of CANopen
	CAN Connection
	CAN Bus Configuration
	Node ID
	Bit Rate
	Heartbeat
	Autostart

	Commands Accessible via CANopen
	CANopen Message Types
	Service Data Object (SDO) Read/Write Messages
	Transmit Process Data Object (TPDO) Messages
	Receive Process Data Object (RPDO) Messages
	Object Dictionary

	SDO Construction Details
	SDO Example 1: Set Encoder Counter 2 (C) of node 1 value 10
	SDO Example 3: Read Battery Volts (V) of node 1.

	SECTION 18: MicroBasicScripting
	Script Structure and Possibilities
	Source Program and Bytecodes
	Variables Types and Storage
	Variable content after Reset
	Controller Hardware Read and Write Functions
	Timers and Wait
	Execution Time Slot and Execution Speed
	Protections
	Print Command Restrictions

	Editing, Building, Simulating and Executing Scripts
	Editing Scripts
	Building Scripts
	Simulating Scripts
	Downloading MicroBasic Scripts to the controller
	Saving and Loading Scripts in Hex Format
	Executing MicroBasic Scripts
	Debugging Microbasic Scripts

	Script Command Priorities
	MicroBasic Scripting Techniques
	Single Execution Scripts
	Continuous Scripts
	Optimizing Scripts for Integer Math
	Script Examples

	MicroBasic Language Reference
	Introduction
	Comments
	Boolean
	Numbers
	Strings
	Blocks and Labels
	Variables
	Arrays
	Terminology
	Keywords
	Operators
	Micro Basic Functions
	Controller Configuration and Commands
	Timers Commands
	Pre-Processor Directives (#define)
	Option (Compilation Options)
	Dim (Variable Declaration)
	If...Then Statement
	For...Next Statement
	While/Do Statements
	Terminate Statement
	Exit Statement
	Continue Statement
	GoTo Statement
	GoSub/Return Statements
	ToBool Statement
	Print Statement
	+ Operator
	- Operator
	* Operator
	/ Operator
	Mod Operator
	And Operator
	Or Operator
	XOr Operator
	Not Operator
	True Literal
	False Literal
	++ Operator
	-- Operator
	<< Operator
	>> Operator
	<> Operator
	< Operator
	> Operator
	<= Operator
	> Operator
	>= Operator
	+= Operator
	-= Operator
	*= Operator
	/= Operator
	<<= Operator
	>>= Operator
	[] Operator
	Abs Function
	Atan Function
	Cos Function
	GetValue
	SetCommand
	SetConfig / GetConfig
	SetTimerCount/GetTimerCount
	SetTimerState/GetTimerState
	Sending RoboCAN Commands and Configuration
	Reading RoboCAN Operating Values Configurations
	RoboCAN Continuous Scan
	Checking the Presence of a RoboCAN Node

	SECTION 19: CommandsReference
	Commands Types
	Runtime commands
	Runtime queries
	Maintenance commands
	Set/Read Configuration commands

	Runtime Commands
	AC - Set Acceleration
	AX - Next Acceleration
	B - Set User Boolean Variable
	BND - Mutli-purpose Bind
	C - Set Encoder Counters
	CB - Set Brushless Counter
	CG - Set Motor Command via CAN
	CS - CAN Send
	D0 - Reset Individual Digital Out bits
	D1 - Set Individual Digital Out bits
	DC - Set Deceleration
	DS - Set all Digital Out bits
	DX - Next Decceleration
	EES - Save Configuration in EEPROM
	EX - Emergency Stop
	G - Go to Speed or to Relative Position
	H - Load Home counter
	MG - Emergency Stop Release
	MS - Stop in all modes
	P - Go to Absolute Desired Position
	PR - Go to Relative Desired Position
	PRX - Next Go to Relative Desired Position
	PX - Next Go to Absolute Desired Position
	R - MicroBasic Run
	RC - Set Pulse Out
	S - Set Motor Speed
	SX - Next Velocity
	VAR - Set User Variable

	Runtime Queries
	A - Read Motor Amps
	AI - Read Analog Inputs
	AIC - Read Analog Input after Conversion
	ANG - Read Rotor Angle
	ASI - Read Raw Sin/Cos sensor
	B - Read User Boolean Variable
	BA - Read Battery Amps
	BCR - Read Brushless Count Relative
	BS - Read BL Motor Speed in RPM
	BSR - Read BL Motor Speed as 1/1000 of Max RPM
	C - Read Encoder Counter Absolute
	CAN - Read Raw CAN frame
	CB - Read Absolute Brushless Counter
	CF - Read Raw CAN Received Frames Count
	CIA - Read Converted Analog Command
	CIP - Read Internal Pulse Command
	CIS - Read Internal Serial Command
	CL - Read RoboCAN Alive Nodes Map
	CR - Read Encoder Count Relative
	D - Read Digital Inputs
	DI - Read Individual Digital Inputs
	DO - Read Digital Output Status
	DR - Read Destination Reached
	E - Read Closed Loop Error
	F - Read Feedback
	FC - Read FOC Angle Adjust
	FF - Read Fault Flags
	FID - Read Firmware ID
	FM - Read Runtime Status Flag
	FS - Read Status Flags
	HS - Read Hall Sensor States
	ICL - Is RoboCAN Node Alive
	K - Read Spektrum Receiver
	LK - Read Lock status
	M - Read Motor Command Applied
	MA - Read Field Oriented Control Motor Amps
	MGD - Read Magsensor Track Detect
	MGM - Read Magsensor Markers
	MGS - Read Magsensor Status
	MGT - Read Magsensor Track Position
	MGY - Read Magsensor Gyroscope
	P - Read Motor Power Output Applied
	PI - Read Pulse Inputs
	PIC - Read Pulse Input after Conversion
	S - Read Encoder Motor Speed in RPM
	SCC - Read Script Checksum
	SR - Read Encoder Speed Relative
	T - Read Temperature
	TM - Read Time
	TR - Read Position Relative Tracking
	TRN - Read Control Unit type and Controller Model
	UID - Read MCU Id
	V - Read Volts
	VAR - Read User Integer Variable
	SL - Read Slip Frequency

	Query History Commands
	# - Send Next History Item / Stop Automatic Sending
	# C - Clear Buffer History
	# nn - Start Automatic Sending

	Maintenance Commands
	CLMOD - Calibrate Sin/Cos sensors
	CLRST - Reset configuration to factory defaults
	CLSAV - Save calibrations to Flash
	DFU - Update Firmware via USB
	EELD - Load Parameters from EEPROM
	EERST - Reset Factory Defaults
	EESAV - Save Configuration in EEPROM
	LK - Lock Configuration Access
	RESET - Reset Controller
	SLD - Script Load
	STIME - Set Time
	UK - Unlock Configuration Access

	Set/Read Configuration Commands
	Setting Configurations
	Reading Configurations
	Configuration Read Protection

	General Configuration and Safety
	ACS - Analog Center Safety
	AMS - Analog within Min & Max Safety
	BEE - User Storage in Battery Backed RAM
	BRUN - MicroBasic Auto Start
	CLIN - Command Linearity
	CPRI - Command Priorities
	DFC - Default Command value
	ECHOF - Enable/Disable Serial Echo
	EE - Store User Data in Flash
	RSBR - Set RS232 bit rate
	RWD - Serial Data Watchdog
	SCRO - Select Print output port for scripting
	SKCTR - Spektrum Center
	SKDB - Spektrum Deadband
	SKLIN - Spektrum Linearity
	SKMAX - Spektrum Max
	SKMIN - Spektrum Min
	SKUSE - Assign Spektrum port to motor command
	TELS - Telemetry String

	Analog, Digital, Pulse IO Configurations
	ACTR - Set Analog Input Center (0) Level
	ADB - Analog Deadband
	AINA - Analog Input Use
	ALIN - Analog Linearity
	AMAX - Set Analog Input Max Range
	AMAXA - Action at Analog Max
	AMIN - Set Analog Input Min Range
	AMINA - Action at Analog Min
	AMOD - Enable and Set Analog Input Mode
	APOL - Analog Input Polarity
	DINA - Digital Input Action
	DINL - Digital Input Active Level
	DOA - Digital Output Action
	DOL - Digital Outputs Active Level
	PCTR - Pulse Center Range
	PDB - Pulse Input Deadband
	PINA - Pulse Input Use
	PLIN - Pulse Linearity
	PMAX - Pulse Max Range
	PMAXA - Action on Pulse Max
	PMIN - Pulse Min Range
	PMINA - Action on Pulse Min
	PMOD - Pulse Mode Select
	PPOL - Pulse Input Polarity
	Motor Configurations
	ALIM - Amp Limit
	ATGA - Amps Trigger Action
	ATGD - Amps Trigger Delay
	ATRIG - Amps Trigger Level
	BKD - Brake activation delay in ms
	BLFB - Encoder or Hall Sensor Feedback for closed loop
	BLSTD - Stall Detection
	CLERD - Close Loop Error Detection
	EHL - Encoder High Count Limit
	EHLA - Encoder High Limit Action
	EHOME - Encoder Counter Load at Home Position
	ELL - Encoder Low Count Limit
	ELLA - Encoder Low Limit Action
	EMOD - Encoder Usage
	EPPR - Encoder PPR Value
	ICAP - PID Integral Cap
	KD - PID Differential Gain
	KI - PID Integral Gain
	KP - PID Proportional Gain
	MAC - Motor Acceleration Rate
	MDEC - Motor Deceleration Rate
	MDIR - Motor Direction
	MMOD - Operating Mode
	MVEL - Default Position Velocity
	MXMD - Separate or Mixed Mode Select
	MXPF - Motor Max Power Forward
	MXPR - Motor Max Power Reverse
	MXRPM - Max RPM Value
	MXTRN - Number of turns between limits
	OVH - Overvoltage hysteresis
	OVL - Overvoltage Cutoff Limit
	PWMF - PWM Frequency
	THLD - Short Circuit Detection Threshold
	UVL - Undervoltage Limit
	Brushless Specific Commands
	BADJ - Brushless zero angle
	BADV - Brushless timing angle adjust
	BFBK - Brushless feedback sesnor
	BHL - Brushless Counter High Limit
	BHLA - Brushless Counter High Limit Action
	BHOME - Brushless Counter Load at Home Position
	BLL - Brushless Counter Low Limit
	BLLA - Brushless Counter Low Limit Action
	BMOD - Brushless operating mode
	BPOL - Number of Pole Pairs and Speed Polarity of Brushless Motor
	BZPW - Brushless zero seek power level
	HPO - Hall Sensor Position
	HSM - Hall Sensor Map
	KIF - FOC PID Integral Gain
	KPF - FOC PID Proportional Gain
	SPOL - Sin/Cos or Resolver number of poles
	SSP - Sensorless Start-Up Power
	SST - Sensorless Start-Up Time
	SWD - Swap Windings
	TID - FOC Target Id
	ZSMC - SinCos Calibration
	AC Induction Specific Command
	VPH - AC Induction Volts per Hertz
	ILM - Mutual Inductance
	ILLR - Rotor Leakage Inductance
	IRR - Rotor Resistance
	MPW - Minimum Power
	MXS - Optimal Slip Frequency
	RFC - Rotor Flux Current
	CAN Communication Commands
	CAS - CANOpen Auto start
	CBR - CAN Bit Rate
	CEN - CAN Enable
	CHB - CAN Heartbeat
	CLSN - CAN Listening Node
	CNOD - CAN Node Address
	CSRT - MiniCAN SendRate
	CTPS - CANOpen TPDO SendRate

	SECTION 20: Using the Roborun Configuration Utility
	System Requirements
	Downloading and Installing the Utility
	The Roborun+ Interface
	Header Content
	Status Bar Content

	Program Launch and Controller Discovery
	Conf﻿iguration Tab
	Entering Parameter Values
	Automatic Analog and Pulse input Calibration
	Input/Output Labeling
	Loading, Saving Controller Parameters
	Locking & Unlocking Configuration Access

	Configuration Parameters Grouping & Organization
	Startup Parameters
	Commands Parameters
	CAN Communication Parameters
	Encoder Parameters
	Digital Input and Output Parameters
	Analog Input Parameters
	Pulse Input Parameters

	Power Output Parameters
	General Settings
	Motor Parameters

	Run Tab
	Status and Fault Monitoring
	Applying Motor Commands
	Digital, Analog and Pulse Input Monitoring
	Digital Output Activation and Monitoring
	Using the Chart Recorder
	Console Tab
	Text-Mode Commands Communication
	Updating the Controller’s Firmware
	Updating Script
	Updating the Controller Logic

	Scripting Tab
	Edit Window
	Download to Device button
	Download to Remote Device button
	Build button
	Exporting Script Object Hex Files
	Simulation button
	Correcting Compilation Errors
	Executing Scripts
	Debugging Scripts

