

Robotics with the Boe-Bot
Student Guide

VERSION 2.2

WARRANTY
Parallax Inc. warrants its products against defects in materials and workmanship for a period of 90 days from receipt
of product. If you discover a defect, Parallax Inc. will, at its option, repair or replace the merchandise, or refund the
purchase price. Before returning the product to Parallax, call for a Return Merchandise Authorization (RMA)
number. Write the RMA number on the outside of the box used to return the merchandise to Parallax. Please enclose
the following along with the returned merchandise: your name, telephone number, shipping address, and a description
of the problem. Parallax will return your product or its replacement using the same shipping method used to ship the
product to Parallax.

14-DAY MONEY BACK GUARANTEE
If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a
full refund. Parallax Inc. will refund the purchase price of the product, excluding shipping/handling costs. This
guarantee is void if the product has been altered or damaged. See the Warranty section above for instructions on
returning a product to Parallax.

COPYRIGHTS AND TRADEMARKS

This documentation is copyright 2003-2004 by Parallax Inc. By downloading or obtaining a printed copy of this
documentation or software you agree that it is to be used exclusively with Parallax products. Any other uses are not
permitted and may represent a violation of Parallax copyrights, legally punishable according to Federal copyright or
intellectual property laws. Any duplication of this documentation for commercial uses is expressly prohibited by
Parallax Inc. Duplication for educational use is permitted, subject to the following Conditions of Duplication:
Parallax Inc. grants the user a conditional right to download, duplicate, and distribute this text without Parallax's
permission. This right is based on the following conditions: the text, or any portion thereof, may not be duplicated for
commercial use; it may be duplicated only for educational purposes when used solely in conjunction with Parallax
products, and the user may recover from the student only the cost of duplication.

This text is available in printed format from Parallax Inc. Because we print the text in volume, the consumer price is
often less than typical retail duplication charges.

BASIC Stamp, Stamps in Class, Board of Education, SumoBot, and SX-Key are registered trademarks of Parallax,
Inc. If you decide to use registered trademarks of Parallax Inc. on your web page or in printed material, you must
state that "(registered trademark) is a registered trademark of Parallax Inc.” upon the first appearance of the
trademark name in each printed document or web page. Boe-Bot, HomeWork Board, Parallax, the Parallax logo, and
Toddler are trademarks of Parallax Inc. If you decide to use trademarks of Parallax Inc. on your web page or in
printed material, you must state that "(trademark) is a trademark of Parallax Inc.”, “upon the first appearance of the
trademark name in each printed document or web page. Other brand and product names are trademarks or registered
trademarks of their respective holders.

ISBN 1-928982-03-4

DISCLAIMER OF LIABILITY
Parallax Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of
warranty, or under any legal theory, including lost profits, downtime, goodwill, damage to or replacement of
equipment or property, or any costs of recovering, reprogramming, or reproducing any data stored in or used with
Parallax products. Parallax Inc. is also not responsible for any personal damage, including that to life and health,
resulting from use of any of our products. You take full responsibility for your BASIC Stamp application, no matter
how life-threatening it may be.

WEB SITE AND DISCUSSION LISTS
The Parallax Inc. web site (www.parallax.com) has many downloads, products, customer applications and on-line
ordering for the components used in this text. We also maintain several e-mail discussion lists for people interested in
using Parallax products. These lists are accessible from www.parallax.com via the Support → Discussion Groups
menu. These are the lists that we operate:

 BASIC Stamps – This list is widely utilized by engineers, hobbyists and students who share their BASIC
Stamp projects and ask questions.

 Stamps in Class – Created for educators and students, subscribers discuss the use of the Stamps in Class
curriculum in their courses. The list provides an opportunity for both students and educators to ask
questions and get answers.

 Parallax Educators –Exclusively for educators and those who contribute to the development of Stamps in
Class. Parallax created this group to obtain feedback on our curricula and to provide a forum for educators
to develop and obtain Teacher’s Guides.

 Parallax Translators – The purpose of this list is to provide a conduit between Parallax and those who
translate our documentation to languages other than English. Parallax provides editable Word documents
to our translating partners and attempts to time the translations to coordinate with our publications.

 Toddler Robot – A customer created this discussion list to discuss applications and programming of the
Parallax Toddler robot.

 SX Tech – Discussion of programming the SX microcontroller with Parallax assembly language tools and
3rd party BASIC and C compilers.

 Javelin Stamp – Discussion of application and design using the Javelin Stamp, a Parallax module that is
programmed using a subset of Sun Microsystems’ Java® programming language.

ERRATA
While great effort is made to assure the accuracy of our texts, errors may still exist. If you find an error, please let us
know by sending an email to editor@parallax.com. We continually strive to improve all of our educational materials
and documentation, and frequently revise our texts. Occasionally, an errata sheet with a list of known errors and
corrections for a given text will be posted to our web site, www.parallax.com. Please check the individual product
page’s free downloads for an errata file.

 Table of Contents · Page i

 Table of Contents

Preface...5
Foreword...5
Audience...6
Support and Discussion Groups ...6
The Stamps in Class Curriculum ..7
Foreign Translations ...8
Special Contributors ...8

Chapter 1: Your Boe-Bot’s Brain ..1
Hardware and Software ..2
Activity #1: Getting the Software...4
Activity #2: Installing the Software ..10
Activity #3: Setting up the Hardware and Testing the System......................................13
Activity #4: Your First Program ...22
Activity #5: Looking up Answers ...30
Activity #6: Introducing ASCII Code..33
Activity #7: When You’re Done ...35
Summary ..37

Chapter 2: Your Boe-Bot’s Servo Motors ..41
Introducing the Continuous Rotation Servo ..41
Activity #1: How to Track Time and Repeat Actions...42
Activity #2: Tracking Time and Repeating Actions with a Circuit45
Activity #3: Connecting the Servo Motors...58
Activity #4: Centering the Servos..66
Activity #5: How to Store Values and Count ...71
Activity #6: Testing the Servos ...75
Summary ..86

Chapter 3: Assemble and Test Your Boe-Bot..91
Activity #1: Assembling the Boe-Bot ...91
Activity #2: Re-Test the Servos ..101
Activity #3: Start/Reset Indicator Circuit and Program..105
Activity #4: Testing Speed Control with the Debug Terminal......................................111
Summary ..118

Chapter 4: Boe-Bot Navigation ...123
Activity #1: Basic Boe-Bot Maneuvers..123
Activity #2: Tuning the Basic Maneuvers..129
Activity #3: Calculating Distances...132
Activity #4: Maneuvers – Ramping ...137

Page ii · Robotics with the Boe-Bot

Activity #5: Simplify Navigation with Subroutines ...140
Activity #6: Building Complex Maneuvers in EEPROM ..146
Summary ..157

Chapter 5: Tactile Navigation with Whiskers .. 165
Tactile Navigation ...165
Activity #1: Building and Testing the Whiskers...166
Activity #2: Field Testing the Whiskers ...174
Activity #3: Navigation with Whiskers ...177
Activity #4: Artificial Intelligence and Deciding When You’re Stuck............................182
Summary ..188

Chapter 6: Light Sensitive Navigation with Photoresistors 193
Introducing the Photoresistor..193
Activity #1: Building and Testing Photoresistor Circuits ...194
Activity #2: Roam and Avoid Shadows Like Objects ..200
Activity #3: A More Responsive Shadow Controlled Boe-Bot.....................................203
Activity #4: Getting More Information from Your Photoresistors.................................205
Activity #5: Flashlight Beam Following Boe-Bot ...210
Activity #6: Roaming Toward the Light ...219
Summary ..227

Chapter 7: Navigating with Infrared Headlights.. 235
Using Infrared Headlights to See the Road ..235
Activity #1: Building and Testing the IR Pairs ...237
Activity #2: Field Testing for Object Detection and Infrared Interference242
Activity #3: Infrared Detection Range Adjustments ..247
Activity #4: Object Detection and Avoidance..249
Activity #5: High Performance IR Navigation..252
Activity #6: The Drop-Off Detector..255
Summary ..262

Chapter 8: Robot Control with Distance Detection .. 269
Determining Distance with the Same IR LED/Detector Circuit269
Activity #1: Testing the Frequency Sweep ...269
Activity #2: Boe-Bot Shadow Vehicle ...277
Activity #3: Following a Stripe...286
Summary ..294

Appendix A: PC to BASIC Stamp Communication Trouble-Shooting.............. 301
Appendix B: BASIC Stamp and Carrier Board Components and Features 305
Appendix C: Resistor Color Codes .. 309
Appendix D: Breadboarding Rules .. 311

 Table of Contents · Page iii

Appendix E: Boe-Bot Parts Lists ..317
Appendix F: Balancing Photoresistors ..321
Appendix G: Tuning IR Distance Detection ...329
Appendix H: Boe-Bot Navigation Contests ...335
Index ..339

Preface · Page v

Preface

FOREWORD
Robots are used in the auto, medical, and manufacturing industries, in all manner of
exploration vehicles, and, of course, in many science fiction films. The word "robot" first
appeared in a Czechoslovakian satirical play, Rossum's Universal Robots, by Karel
Capek in 1920. Robots in this play tended to be human-like. From this point onward, it
seemed that many science fiction stories involved these robots trying to fit into society
and make sense out of human emotions. This changed when General Motors installed the
first robots in its manufacturing plant in 1961. These automated machines presented an
entirely different image from the “human form” robots of science fiction.

Building and programming a robot is a combination of mechanics, electronics, and
problem solving. What you're about to learn while doing the activities and projects in
this text will be relevant to "real world" applications that use robotic control, the only
difference being the size and sophistication. The mechanical principles, example
program listings, and circuits you will use are very similar to, and sometimes the same as,
industrial applications developed by engineers.

The goal of this text is to get students interested in and excited about the fields of
engineering, mechatronics, and software development as they design, construct, and
program an autonomous robot. This series of hands-on activities and projects will
introduce students to basic robotic concepts using the Parallax Boe-Bot™ robot, called
the "Boe-Bot". Its name comes from the Board of Education® carrier board that is
mounted on its wheeled chassis. An example of a Boe-Bot with an infrared obstacle
detection circuit built on the Board of Education solderless prototyping area is shown in
Figure P-1.

Figure P-1
Parallax Inc’s Boe-Bot™
Autonomous Wheeled Robot.

Page vi · Robotics with the Boe-Bot

The activities and projects in this text begin with an introduction to your Boe-Bot’s brain,
the Parallax BASIC Stamp® 2 microcontroller, and then move on to construction, testing,
and calibration of the Boe-Bot. After that, you will program the Boe-Bot for basic
maneuvers, and then proceed to adding sensors and writing programs that make it react to
its surroundings and perform autonomous tasks.

AUDIENCE
The Robotics with the Boe-Bot Student Guide was created for ages 13+ as a subsequent
text to “What’s a Microcontroller?”. Like all of the Stamps in Class curriculum, this
series of experiments teaches new techniques and circuits with minimal overlap between
the other texts. The general topics introduced in this series are: basic Boe-Bot navigation
under program control, navigation using a variety of sensor inputs, navigation using
feedback and various control techniques, and navigation using programmed artificial
intelligence. Each topic is addressed in an introductory format designed to impart a
conceptual understanding along with some hands-on experience. Those who intend to
delve further into industrial technology, electronics, or robotics are likely to benefit
significantly from initial experiences with these topics.

SUPPORT AND DISCUSSION GROUPS
The following two Yahoo! Discussion Groups are available for those who would like
support in using this text. These groups are accessible from www.parallax.com under
Discussion Groups on the Support menu.

Stamps In Class Group: Open to students, educators, and independent learners, this forum
allows members to ask each other questions and share answers as they work through the
activities, exercises and projects in this text.

Parallax Educator’s Group: This moderated forum provides support for educators and
welcomes feedback as we continue to develop our Stamps in Class curriculum. To join
this group you must have proof of your status as an educator verified by Parallax. The
Teacher’s Guide for this text is available as a free download through this forum.

Educational Support: stampsinclass@parallax.com Contact the Parallax Stamps in Class
Team directly if you are having difficulty subscribing to either of these Yahoo! Groups,
or have questions about the material in this text, our Stamps in Class Curriculum, our
Educator’s Courses, or any of our educational services.

Preface · Page vii

Educational Sales: sales@parallax.com Contact our Sales Team for information about
educational discount pricing and classroom packs for our Stamps in Class kits and other
selected products.

Technical Support: support@parallax.com Contact our Tech Support Team for general
questions regarding the set-up and use of any of our hardware or software products.

THE STAMPS IN CLASS CURRICULUM
This text can be successfully completed with no prerequisites. However, What’s a
Microcontroller? is the recommended first (gateway) text to our Stamps in Class
curriculum.

“What’s a Microcontroller?”, Student Guide, Version 2.2, Parallax Inc., 2004

After completing this text, you can continue your studies with any of the kits and student
guides or other manuals discussed below. All of these publications are available for free
download from www.parallax.com. The versions cited below were current at the time of
this printing. We continually strive to improve our educational program. Please check
our web sites, www.parallax.com and www.stampsinclass.com, for the latest revisions.

Stamps in Class Student Guides:

For a well-rounded introduction to the design practices that go into modern devices and
machinery, working through the activities and projects in the following Student Guides is
highly recommended.

“Applied Sensors”, Student Guide, Version 1.3, Parallax Inc., 2003
“Basic Analog and Digital”, Student Guide, Version 1.3, Parallax Inc., 2004
“Process Control”, Student Guide, Version 2.0, Parallax Inc., 2004

More Robotics Kits:

After completing this text, you will be ready for either or both of these more advanced
robotics texts and kits:

“Advanced Robotics: with the Toddler”, Student Guide, Version 1.2, Parallax
Inc., 2003
“SumoBot” Manual, Version 2.0, Parallax Inc., 2004

Page viii · Robotics with the Boe-Bot

Educational Project Kits:

Elements of Digital Logic, Understanding Signals and Experiments with Renewable
Energy focus more closely on topics in electronics, while StampWorks provides a variety
of projects that are useful to hobbyists, inventors and product designers interested in
trying a variety of projects.

“Elements of Digital Logic”, Student Guide, Version 1.0, Parallax Inc., 2003
“Experiments with Renewable Energy”, Student Guide, Version 1.0, Parallax
Inc., 2004
“StampWorks”, Manual, Version 1.2, Parallax Inc., 2000-2001
“Understanding Signals”, Student Guide, Version 1.0, Parallax Inc., 2003

Reference

The BASIC Stamp Manual is an essential reference for all Stamps in Class Student
Guides. It is packed with information on the BASIC Stamp microcontrollers, the BASIC
Stamp Editor, and the PBASIC programming language.

 “BASIC Stamp Manual”, Version 2.0c, Parallax Inc., 2000

FOREIGN TRANSLATIONS
Parallax educational texts may be translated to other languages with our permission (e-
mail stampsinclass@parallax.com). If you plan on doing any translations please contact
us so we can provide the correctly-formatted MS Word documents, images, etc. We also
maintain a discussion group for Parallax translators that you may join. It’s called the
Parallax Translators Yahoo! Group, and directions for finding it are included on the
inside cover of this text. See section entitled: WEB SITE AND DISCUSSION LISTS on
the page before the Table of Contents.

SPECIAL CONTRIBUTORS
Chuck Schoeffler, Ph.D., authored portions of the v1.2 text in conjunction with Parallax,
Inc. At that time, Dr. Schoeffler was a professor at University of Idaho's Industrial
Technology Education department. He designed the original Board of Education Robot
(Boe-Bot) shown in Figure P-2 along with similar robot derivatives with many unique
functions. After several revisions, Chuck's design was adopted as the basis of the
Parallax Boe-Bot that is used in this text. Russ Miller of Parallax designed the Boe-Bot
based on this prototype.

Preface · Page ix

Figure P-2
Original Boe-Bot
Prototype

Andrew Lindsay, Parallax Chief Roboticist, has since rewritten this text and its activities
with three goals in mind. First, to support all activities in the text with carefully written
“how to” instructions. Second, to expose the reader and student to new circuit,
programming, engineering, and robotic concepts in each chapter. Third, to ensure that
the experiments can be performed with a high degree of success using the most up-to-
date Parallax equipment. As of this version, the most up-to-date equipment is the Board
of Education Rev C or the BASIC Stamp HomeWork Board.

Thanks to Dale Kretzer for editorial review, which was incorporated into v1.4. Thanks
also to the following Stamps in Class e-group participants for their input: Richard Breen,
Robert Ang, Dwayne Tunnell, Marc Pierloz, and Nagi Babu. These participants
submitted one or more of the following: error corrections, useful editorial suggestions, or
new material for v1.4. Thanks to student Laura Wong and to Rob Gerber for their
respective contributions to v1.5. A special thanks to the Parallax, Inc. staff. Each and
every member of the Parallax team has in some way contributed to making the Stamps in
Class program a success.

Version 2.0 of this Student Guide was a major revision and complete rewrite, featuring
new activities, PBASIC 2.5 support, and BASIC Stamp HomeWork Board support. This
revision would not have been possible without the following people. Parallaxians: Andy
Lindsay – author, Rich Allred – technical illustration, Stephanie Lindsay – technical
editing, Kris Magri – reviewer and robotics guru. Also, thanks go to Stamps in Class
outside reviewers and contributors Robert Ang and Sid Weaver.

Page x · Robotics with the Boe-Bot

If you have suggestions, think you found a mistake, or would like to contribute an
activity or chapter to forthcoming Robotics with the Boe-Bot versions or More Robotics
with the Boe-Bot texts, contact us at stampsinclass@parallax.com. Subscribe and stay
tuned to the StampsInClass Yahoo! Group for the latest in free hardware offers for
Robotics with the Boe-Bot contributions. See the WEB SITE AND DISCUSSION LISTS
section on the page before the Table of Contents.

Chapter 1: Your Boe-Bot’s Brain · Page 1

Chapter 1: Your Boe-Bot’s Brain

Parallax, Inc’s Boe-Bot™ robot is the focus of the activities, projects, and contests in this
book. The Boe-Bot and a close-up of its BASIC Stamp® 2 programmable
microcontroller brain are shown in Figure 1-1. The BASIC Stamp 2 module is both
powerful and easy to use, especially with a robot.

Figure 1-1
BASIC
Stamp® 2
module on a
Boe-Bot™
robot.

The activities in this text will guide you through writing simple programs that make the
BASIC Stamp and your Boe-Bot do four essential robotic tasks:

1. Monitor sensors to detect the world around it
2. Make decisions based on what it senses
3. Control its motion (by operating the motors that make its wheels turn)
4. Exchange information with its Roboticist (that will be you!)

The programming language you will use to accomplish these tasks is called PBASIC, which
stands for:

• Parallax - Company that invented and makes BASIC Stamp microcontrollers.
• Beginners - Made for beginners to use to learn how to program computers
• All-purpose - Powerful and useful for solving many different kinds of problems
• Symbolic - Using symbols (terms that resemble English word/phrases)
• Instruction - To instruct a computer how to solve problems
• Code - In terms that you and the computer understand

Page 2 · Robotics with the Boe-Bot

What’s a Microcontroller? It’s a programmable device that is designed into your digital
wristwatch, cell phone, calculator, clock radio, etc. In these devices, the microcontroller has
been programmed to sense when you press a button, make electronic beeping noises, and
control the device’s digital display. They are also built into factory machinery, cars,
submarines, and spaceships because they can be programmed to read sensors, make
decisions, and orchestrate devices that control moving parts.

The What’s a Microcontroller? Student Guide is the recommended first text for beginners. It
is full of examples of how to use microcontrollers, and how to make the BASIC Stamp the
brain of your own microcontrolled inventions. It’s available for free download from
www.parallax.com, and it's also included on the Parallax CD. Many electronics outlets carry
the What’s a Microcontroller Kits and printed Student Guides. If you have any difficulty
finding them locally, they can also be purchased directly from Parallax, either on-line at
www.parallax.com or by phone at (888) 512-1024.

HARDWARE AND SOFTWARE
Getting started with BASIC Stamp programming is similar to getting started with a
brand-new PC or laptop. The first things that most people do when they get a new PC or
laptop is take it out of the box, plug it in, install and test some software, and maybe even
write some software of their own using a programming language. If this is your first time
using BASIC Stamp microcontrollers, you will be doing all these same activities. This
chapter shows you how to get up and running with BASIC Stamp programming as it
guides you through:

• Finding and installing the programming software
• Connecting your BASIC Stamp module to a battery power supply
• Connecting your BASIC Stamp module to the computer for programming
• Writing your first few PBASIC programs
• Disconnecting power when you’re done

If you are in a class, the BASIC Stamp may already be all set up for you. If this is the
case, your teacher may have other instructions. If not, the activities in this chapter will
take you through all the steps of getting your new BASIC Stamp microcontroller up and
running.

√ If you have already completed the What’s a Microcontroller? Student Guide,
skip to the next chapter.

√ Likewise, if you are already familiar with your BASIC Stamp and Board of
Education or BASIC Stamp HomeWork Board, skip to the next chapter.

Chapter 1: Your Boe-Bot’s Brain · Page 3

Both this text and What’s a Microcontroller? contain instructions for getting started with
BASIC Stamp hardware and software in Chapter 1. These instructions are almost identical.

Introducing the BASIC Stamp and Board of Education
A BASIC Stamp 2 module and a Board of Education® carrier board are shown in Figure
1-2. As mentioned earlier, a BASIC Stamp module is like a very small computer. This
very small computer plugs into the Board of Education carrier board. As you will soon
see, the Board of Education makes it easy to connect a power supply and serial cable to
the BASIC Stamp module. In later activities, you will also see how the Board of
Education makes it easy to build circuits and connect them to the BASIC Stamp.

Figure 1-2
BASIC Stamp® 2 Module
(left)

Board of Education®
Carrier Board (right)

Introducing the BASIC Stamp HomeWork Board
The BASIC Stamp® HomeWork Board™ project platform is shown below in Figure 1-3.
This board is like a Board of Education with the BASIC Stamp 2 microcontroller built in.
You can use either a BASIC Stamp 2 module with Board of Education carrier board or
the BASIC Stamp HomeWork Board as your project platform for the activities in this
text. Be sure to follow the directions for the specific project platform you are using, since
they differ in a few places.

Page 4 · Robotics with the Boe-Bot

Figure 1-3
BASIC Stamp®
HomeWork Board™
project platform.

What’s the difference?

Using a Board of Education carrier board and BASIC Stamp module gives you additional
features such as headers for plugging in servo motors, control over the type of power supply
the servos receive, and a handy, 3-position switch you can use to control what parts of the
system receive power. The BASIC Stamp 2 module is removable, and can be replaced.

The BASIC Stamp HomeWork Board has no servo ports, external power supply jack or
power switch, but it also costs less. You have to build your own servo connections, and to
control power by disconnecting it from the board, or by building your own power control
circuits. The BASIC Stamp 2 microcontroller is build right into the board, and each I/O pin is
protected by a surface-mounted 220 Ω resistor.

See also: Appendix B: BASIC Stamp and Carrier Board Components and Features

ACTIVITY #1: GETTING THE SOFTWARE
The BASIC Stamp Editor (version 2.0 or higher) is the software you will use in most of
the activities and projects in this text. This software allows you to write programs on
your computer and download them into your Boe-Bot’s BASIC Stamp brain. It also
displays messages on your computer screen sent by the BASIC Stamp, allowing your
Boe-Bot one way to report what it is doing and sensing to you, the roboticist.

Chapter 1: Your Boe-Bot’s Brain · Page 5

The BASIC Stamp Editor is free software, and the two easiest ways to get it are:

• Download from the Internet: Look for “BASIC Stamp Windows Editor Version
2.0…” on the www.parallax.com → Downloads → BASIC Stamp Software page.

• Included on the Parallax CD: Follow the Software link on the Welcome page.
Make sure the date printed on the CD is more recent than April 2003.

In a Hurry? Get your copy of the BASIC Stamp Windows Editor version 2.0 (or higher) and
install it on your PC or laptop. Then, skip to: Activity #3: Setting up the Hardware and
Testing the System.

If you have questions along the way, Activity #1 can be used as a step-by-step reference
for getting the software, and Activity #2 can be used as a reference for installing the
software on your PC or laptop.

Computer System Requirements

You will need either a PC or laptop computer to run the BASIC Stamp Editor software.
Getting started with the BASIC Stamp is easiest if your PC or laptop has the following
features:

• Windows 98 or newer operating system
• A serial or USB port
• A CD-ROM drive, World Wide Web access, or both

USB Port Adapter: If your computer only has USB ports, you will need a USB to Serial
Adapter. See the information box on page 14 for details.

Downloading the Software from the Internet

It’s easy to download the BASIC Stamp Editor software from the Parallax web site. The
web page shown in Figure 1-4 may look different from the web page you see when you
visit the site. Nonetheless, the steps for downloading the software should still be similar
to these:

√ Using a web browser, go to www.parallax.com (shown in Figure 1-4).
√ Point at the Downloads menu to display the options.
√ Point at the BASIC Stamp Software link and click to select it.

Page 6 · Robotics with the Boe-Bot

Figure 1-4
The Parallax Web
Site:

www.parallax.com

√ When you get to the BASIC Stamp Software page, find a BASIC Stamp

Windows Editor download with a version number of 2.0 or higher.
√ Click the Download icon. In Figure 1-5, the Download icon looks like a file folder

to the right of the description: “BASIC Stamp Windows Editor Version 2.0 Beta
1 (6MB)”.

Figure 1-5
The Parallax
Web Site
Downloads
Page

√ When the File Download window shown in Figure 1-6 appears, select: Save this

program to disk.
√ Click the OK button.

Chapter 1: Your Boe-Bot’s Brain · Page 7

Figure 1-6
File Download
Window

Figure 1-7 shows the Save As window that appears next. You can use the Save in field to
browse your computer’s hard drives to find a convenient place to save the file.

√ After choosing where to save the file you are downloading, click the Save button.

Figure 1-7
Save As Window

Selecting a place
to save the file

√ Wait while the BASIC Stamp Editor installation program downloads (shown in

Figure 1-8). This may take a while if you are using a modem connection.

Page 8 · Robotics with the Boe-Bot

Figure 1-8
Download
Progress Window

√ When the download is complete, leave the window shown in Figure 1-9 open

while you skip to the next section - Activity #2: Installing the Software.

Figure 1-9
Download
Complete
Window

Go to Activity #2:
Installing the
Software.

Other free downloads at the Parallax web site include:

• This text and other Stamps in Class texts
• Robot videos
• More free software
• Hundreds of applications and experiments you can try!

Finding the Software on the Parallax CD

You can also install the BASIC Stamp Editor from the Parallax CD, but the CD has to be
newer than April, 2003 so that you can get the version of the BASIC Stamp Editor that is
compatible with the examples in this text. You can find the Parallax CD’s Year and
Month by examining the labeling on the front of the CD.

√ Place the Parallax CD into your computer’s CD drive. The Parallax CD browser
is called the Welcome application. It’s shown in Figure 1-10 and it should run as
soon as you load the CD into your computer’s CD drive.

Chapter 1: Your Boe-Bot’s Brain · Page 9

√ If the Welcome application does not automatically run, double-click My Computer,
then double-click your CD drive, and then double-click Welcome.

√ Click the Software link shown in Figure 1-10.

Figure 1-10
The Parallax CD
Browser

√ Click the + next to the BASIC Stamps folder shown in Figure 1-11.
√ Click the + next to the Windows folder.
√ Click the floppy diskette icon labeled “Stamp 2/2e/2sx/2p/2pe (stampw.exe)”.
√ Continue through Activity #2: Installing the Software.

Page 10 · Robotics with the Boe-Bot

Figure 1-11
The Parallax CD
Browser

Select the
BASIC Stamp
Editor
installation
program from
the Software
page.

Free downloads at the Parallax web site are included in the Parallax CD, but only up to
the date the CD was created. The date on the front of the CD indicates when it was
created. If the CD is just a month or two old, you will probably have the most up-to-date
material. If it’s an older CD, consider requesting a new one from Parallax or downloading
the files you need from the Parallax web site.

ACTIVITY #2: INSTALLING THE SOFTWARE
By now, you have either downloaded the BASIC Stamp Editor Installer from the Parallax
web site or located it on the Parallax CD. Now it’s time to run the BASIC Stamp Editor
Installer.

Installing the Software Step by Step

√ If you downloaded the BASIC Stamp Editor Installer from the Internet, click the
Open button on the Download Complete window shown in Figure 1-12.

Chapter 1: Your Boe-Bot’s Brain · Page 11

Figure 1-12
Download
Complete
Window

If you skipped
here from the
“Downloading the
Software from the
Internet” section,
click the Open
button now.

√ If you located the software on the Parallax CD, click the Install button shown in

Figure 1-13.

Figure 1-13
The Parallax CD
Browser

Install button
located near
bottom of window.

√ When the BASIC Stamp Editor…InstallShield Wizard window opens, click the

Next button shown in Figure 1-14.

Figure 1-14
InstallShield
Wizard for the
BASIC Stamp
Editor

Page 12 · Robotics with the Boe-Bot

√ Select Typical for your setup type as shown in Figure 1-15.
√ Click the Next button.

Figure 1-15
Setup Type

√ When the InstallShield Wizard tells you it is “Ready to Install the Program”,

click the Install button shown in Figure 1-16.

Figure 1-16
Ready to Install

Click the Install
button.

√ When the InstallShield Wizard window tells you “InstallShield Wizard

Completed” as shown in Figure 1-17, click Finish.

Congratulations! Your BASIC Stamp Editor is now installed.

Chapter 1: Your Boe-Bot’s Brain · Page 13

Figure 1-17
InstallShield
Wizard
Completed

ACTIVITY #3: SETTING UP THE HARDWARE AND TESTING THE
SYSTEM
The BASIC Stamp needs to be connected to power for it to run. It also needs to be
connected to a PC so it can be programmed. After making these connections, you can
use the BASIC Stamp Editor to test the system. This activity will show you how.

Computer Serial Cable Setup

The Board of Education or BASIC Stamp HomeWork Board should be connected to your
PC or laptop by either a serial cable or a USB to Serial Adapter.

√ If you are using a serial cable, connect it to an available COM port on the back
of your computer as shown in Figure 1-18.

Com

Figure 1-18
PC or Laptop
COM Port

Plug the serial
cable into an
available COM
port on your PC
or laptop.

Page 14 · Robotics with the Boe-Bot

√ If you are using a USB to Serial Adapter, follow the hardware and software
installation instructions that are supplied with the product.

FTDI’s US232B/LC USB to Serial Adapter:

At the time of this writing, the US232B/LC USB to Serial Adapter made by Future
Technology Devices International is the recommended adapter for use with Parallax
products. The US232B/LC comes with the hardware shown in Figure 1-19 and a mini-CD
ROM with drivers for use with various operating systems including Microsoft Windows®.

US232B/LC Driver Software Downloads: The software drivers and other information about
this product can be downloaded from: http://www.ftdichip.com/FT232.htm.

Figure 1-19

FTDI’s US232B/LC USB to Serial
Adapter

This adapter is Parallax Stock# 800-
00030. It comes with a software CD
(not shown).

Now that your programming cable is connected to your computer, it’s time to assemble
the hardware.

√ If you have a BASIC Stamp and Board of Education, follow the instructions in
the next section, Board of Education Connection Instructions.

√ If you have a BASIC Stamp HomeWork board, skip to the BASIC Stamp
HomeWork Board Connection Instructions on page 18.

√ If your equipment is already hooked up, skip to the Testing for Communication
section on page 21.

Chapter 1: Your Boe-Bot’s Brain · Page 15

Board of Education Connection Instructions

If you have a BASIC Stamp and Board of Education, Figure 1-20 shows the hardware
you will need to get started.

Required Hardware

(1) Strip of four rubber feet
(1) Battery pack
(1) BASIC Stamp 2
(1) Board of Education
(4) New AA alkaline batteries (not included)

Figure 1-20
Getting Started Hardware
for the BASIC Stamp and
Board of Education

Connecting the Hardware

The rubber feet are shown in Figure 1-21, and they should be affixed to the underside of
your Board of Education. The Board of Education has circles on its underside that show
where each rubber foot should be attached.

√ Remove each rubber foot from the adhesive strip and affix it to the underside of
the Board of Education.

Page 16 · Robotics with the Boe-Bot

Figure 1-21
Rubber Feet (left)
Affixed to Underside
of the Board of
Education (right)

The Board of Education Rev C has a 3-position switch (see Figure 1-22). Position-0 is
for turning the power to the Board of Education completely off. Regardless of whether or
not you have a battery or power supply connected to the Board of Education Rev C, when
the 3-posiiton switch is set to 0, the device is off.

√ Set the 3-position switch on the Board of Education to position-0.

0 1 2

Figure 1-22
3-position Switch

Set to position-0 to turn
off the power.

Only the Board of Education Rev C has a 3-position switch.

If you have a Board of Education Rev A or B:

• When directed to set the 3-position switch to position-0, turn off power by
disconnecting the battery pack (the reverse of Figure 1-24, step 3).

• When directed to set the 3-position switch to either position-1 or position-2, plug
the battery pack in as shown in Figure 1-24, step 3.

√ Load the batteries into the battery pack as shown in Figure 1-23. Make sure to
follow the polarity (+ and -) markings on the inside of the battery pack's plastic
case when inserting each battery.

Chapter 1: Your Boe-Bot’s Brain · Page 17

Figure 1-23
Battery Pack

Polarity
indicators on
molded plastic
(left) and
loaded with
correct polarity
(right).

√ If your BASIC Stamp is not already plugged into your Board of Education, insert
it into the socket shown in Figure 1-24, step-1.

Make sure your BASIC Stamp is right-side-up (as shown in Figure 1-24) before you
insert it into the socket! If the BASIC Stamp is plugged into the socket upside-down, it
could be damaged when you plug in power.

√ Make sure the pins are lined up properly with the holes in the socket, then press

down firmly to seat it. The module should sink in about 1/8 inch (3 mm).

2

1

www.stampsinclass.com

Reset

STAMPS CLASS
in

Board of Education

Pwr

9 Vdc
Battery

6-9VDC

Sout
Sin
ATN
Vss
P0
P1
P2
P3
P4
P5
P6
P7

P11

P9
P8

Vin

P10

P15
P14
P13
P12

Vdd
Rst
Vss

Black
Red

X4 X5

15 14 13 12

1

X1

Vss
P1
P3
P5
P7
P9
P11
P13
P15
Vin

Vss
P0
P2
P4
P6
P8
P10
P12
P14
Vdd

U1

TM

0 1 2

© 2000-2003

Vdd

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

X3
Vdd VssVin3

Figure 1-24
Board of
Education,
BASIC
Stamp,
Battery, and
Serial Cable

Connect
components
in the order
shown in
the
diagram.

Page 18 · Robotics with the Boe-Bot

√ Plug the serial cable into the Board of Education as shown in Figure 1-24, step-2.
√ Plug the battery pack into the 6-9 VDC battery jack as shown in Figure 1-24,

step-3.
√ Move the 3-position switch from position-0 to position-1 to turn the power on.

0 1 2

Figure 1-25
3-position Switch

Set to position-1 to
turn the power back
on.

√ The green light labeled Pwr on the Board of Education should now be on.

Figure 1-26
BASIC Stamp and Board of
Education Connected and
Ready to Program

√ Skip to the Testing for Communication section on page 21.

BASIC Stamp HomeWork Board Connection Instructions

This section will guide you through connecting your BASIC Stamp to your computer and
a (battery) power supply if you have a BASIC Stamp HomeWork Board.

Required Hardware

√ Collect the following parts from your kit, shown in Figure 1-27
 (1) Basic Stamp HomeWork Board

(1) Strip of four rubber feet
(1) New 9 V battery (not included)

Chapter 1: Your Boe-Bot’s Brain · Page 19

(1) BASIC Stamp HomeWork Board

Figure 1-27
Getting Started Hardware
for the BASIC Stamp
HomeWork Board

√ Remove each rubber foot from its adhesive strip and affix it to the underside of

the HomeWork Board next to each plated hole at each corner of the board as
shown in Figure 1-28, making sure not to cover up the holes.

Figure 1-28
Rubber Feet

√ Connect the serial cable and battery to the HomeWork Board (Figure 1-29, steps

1 and 2).

Page 20 · Robotics with the Boe-Bot

1

Reset

(916) 624-8333
www.parallaxinc.com
www.stampsinclass.com

Rev A
STAMPS CLASS

in

© 2002

Power

BASIC Stamp HomeWork Board®

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

X3
Vdd VssVin

2

A
lkaline Battery

Pow
ercell

Figure 1-29
HomeWork Board
and Serial Cable

Plug the serial
cable and 9 V
battery into the
HomeWork
Board.

Figure 1-30 shows the BASIC Stamp HomeWork Board connected to its battery power
supply and serial programming cable.

The green Pwr light does not come on when you connect the battery. It will light up
only when you have a program running.

You are now ready to test the programming connection between the BASIC Stamp and
your PC/laptop.

Chapter 1: Your Boe-Bot’s Brain · Page 21

Figure 1-30
BASIC Stamp
HomeWork Board
Ready to Program

Testing for Communication

√ First, run your BASIC Stamp Editor by double-clicking the shortcut on your
desktop. It should look similar to the one shown in Figure 1-31.

Figure 1-31
BASIC Stamp
Editor Shortcut

Look for a
shortcut similar to
this one on your
computer’s
desktop.

The Windows Start Menu can also be used to run the BASIC Stamp Editor. Click your
Windows Start Button, then select Programs → Parallax, Inc. → Stamp Editor 2…, then
click the BASIC Stamp Editor Icon.

Your BASIC Stamp Editor window should look similar to the one shown in Figure 1-32.

The first time you run your BASIC Stamp Editor, it may display some messages and a list of
your COM ports found by the software.

√ If you know the number of the COM port your BASIC Stamp is connected to,
check to make sure it is included in the list.

√ If it is not included in the list, follow the BASIC Stamp Editor's instructions for
adding a COM port.

√ If you're not sure about your COM port, click OK for now.

Page 22 · Robotics with the Boe-Bot

√ To make sure your BASIC Stamp is communicating with your computer, click
the Run menu, then select Identify.

Figure 1-32
BASIC
Stamp Editor

An Identification window similar to the one shown in Figure 1-33 will appear. The
example in the figure shows that a BASIC Stamp 2 has been detected on COM2.

Figure 1-33
Identification
Window

Example: BASIC
Stamp 2 found on
COM2.

√ Check the Identification window to make sure a BASIC Stamp 2 has been

detected on one of the COM ports. If the BASIC Stamp 2 has been detected,
then you are ready for Activity #4: Your First Program.

√ If the Identification window does not detect a BASIC Stamp 2 on any of the
COM ports, go to page 301 (Appendix A: PC to BASIC Stamp Communication
Trouble-Shooting).

ACTIVITY #4: YOUR FIRST PROGRAM
The first program you will write and test will tell the BASIC Stamp to send a message to
your PC or laptop. Figure 1-34 shows how the BASIC Stamp sends a stream of ones and
zeros to communicate the text characters displayed by the PC or laptop. These ones and
zeros are called binary numbers. The BASIC Stamp Editor software has the ability to
detect and display these messages as you will soon see.

Chapter 1: Your Boe-Bot’s Brain · Page 23

1 0 0

1 1
 0

 1
 0

1 1 1 0 0
1

 1 0 0
0 0 0 0 0 1 1 0 0 0 0

1 1
 0

 1
 0

 1
 0

 1
 0

 0
 1

 0
0 1 1 1 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 1 00

www.stampsinclass.com

STAMPS CLASS
in

9 Vdc
Battery

6-9VDC

Sout
Sin
ATN
Vss
P0
P1
P2
P3
P4
P5
P6
P7

P11

P9
P8

Vin

P10

P15
P14
P13
P12

Vdd
Rst
Vss

1

U1

TM

Figure 1-34
Messages from the
BASIC Stamp to Your
Computer

Your First Program

The example programs that you will type into the BASIC Stamp Editor and download to
the BASIC Stamp will always be shown with a gray background. Here is an example:

Example Program: HelloBoeBot.bs2
' Robotics with the Boe-Bot - HelloBoeBot.bs2
' BASIC Stamp sends a text message to your PC/laptop.

' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG "Hello, this is a message from your Boe-Bot."

END

You will enter this program into the BASIC Stamp Editor. Some lines of the program are
made automatically by clicking buttons on the toolbar. Other lines are made by typing
them in from the keyboard.

Page 24 · Robotics with the Boe-Bot

√ Begin by clicking the BS2 icon (the green diagonal chip) on the toolbar,
shown highlighted in Figure 1-35. If you hold your cursor over this button, its
flyover help description “Stamp Mode: BS2” will appear.

√ Next, click on the gear icon labeled “2.5” shown highlighted in Figure 1-36.
Its flyover help description is “PBASIC Language: 2.5”.

Figure 1-35
BS2 Icon

Clicking on this button will
automatically place '{$STAMP BS2}
at the beginning of your program.

 Figure 1-36
PBASIC 2.5 Icon

Clicking on this button will automatically
place '{$PBASIC 2.5} at the beginning
of your program.

ALWAYS use these toolbar buttons to add these two lines as the beginning of every

program! Compiler directives use braces { }. If you try to type in these parts of your

program, you may accidentally use parentheses () or square brackets []. If you do
this, your program will not work.

√ Type the rest of the program into the BASIC Stamp Editor exactly as shown in

Figure 1-37. Notice that the first two lines are above the compiler directives, and
the rest of the program is below the compiler directives.

Chapter 1: Your Boe-Bot’s Brain · Page 25

Figure 1-37 HelloBoeBot.bs2 Entered into the BASIC Stamp Editor

√ Save your work by clicking File and selecting Save, (shown in Figure 1-38).

Figure 1-38
Saving the
Program
HelloBoeBot.bs2

√ Enter the name HelloBoeBot.bs2 into the File name field near the bottom of the

Save As window as shown in Figure 1-39.
√ Click the Save button.

Page 26 · Robotics with the Boe-Bot

Figure 1-39
Entering the File
Name

The next time you save, the BASIC Stamp Editor will automatically save to the same
filename (HelloBoeBot.bs2) unless you tell it to save to a different filename by clicking File
and selecting Save As (instead of just Save).

√ Click Run, and select Run from the menu that appears (by clicking it) as shown in

Figure 1-40.

Figure 1-40
Running
Your First
Program
HelloBoeBot.
bs2

A Download Progress window will appear briefly as the program is transmitted from the
PC or laptop to your BASIC Stamp. Figure 1-41 shows the Debug Terminal that should
appear when the download is complete. You can prove to yourself that this is a message
from the BASIC Stamp by pressing and releasing the Reset button on your Board of
Education or HomeWork Board. Every time you press and release it, the program will
re-run, and you will see another copy of the message displayed in the Debug Terminal.

Chapter 1: Your Boe-Bot’s Brain · Page 27

√ Press and release the Reset button. Did you see a second “Hello…” message
appear in the Debug Terminal?

Figure 1-41
Debug Terminal

The Debug Terminal
displays messages
sent to the PC/laptop
by the BASIC Stamp.

The BASIC Stamp Editor has shortcuts for most common tasks. For example, to run a
program, you can press the ‘Ctrl’ and ‘R’ keys at the same time to run a program. You can
also click the Run button. It’s the blue triangle shown in Figure 1-42 that looks like a CD
player’s Play button. The flyover help (the Run hint) will appear if you point at the Run
button with your mouse. You can get similar hints to find out what the other buttons do by
pointing at them.

Figure 1-42

BASIC Stamp Editor

Shortcut Buttons

How HelloBoeBot.bs2 Works

The first two lines in the example program are called comments. A comment is a line of
text that gets ignored by the BASIC Stamp Editor, because it’s meant for a human
reading the program, not for the BASIC Stamp. In PBASIC, everything to the right of an
apostrophe is normally considered to be a comment by the BASIC Stamp Editor. The
first comment tells which book the example program is from and what the program’s
filename is. The second comment contains a handy, one-line description that explains
what the program does.

' Robotics with the Boe-Bot - HelloBoeBot.bs2
' BASIC Stamp sends a text message to your PC/laptop.

Page 28 · Robotics with the Boe-Bot

There are several special messages that you can send to the BASIC Stamp Editor by
placing them inside comments (to the right of an apostrophe on a given line). These are
called compiler directives, and every program in this text will use these two directives:

' {$STAMP BS2}
' {$PBASIC 2.5}

The first directive is called the Stamp directive, and it tells the BASIC Stamp Editor that
you will be downloading the program to a BASIC Stamp 2. The second directive is
called the PBASIC directive, and it tells the BASIC Stamp Editor that you are using
version 2.5 of the PBASIC programming language.

A command is a word you can use to tell the BASIC Stamp to do a certain job. The first
of the two commands in this program is called the DEBUG command:

DEBUG "Hello, this is a message from your Boe-Bot."

This is the command that tells the BASIC Stamp to send a message to the PC using the
serial cable.

The second command is called the END command:

END

This command is handy because it puts the BASIC Stamp into low power mode when it’s
done running the program. In low power mode, the BASIC Stamp waits for either the
Reset button to be pressed (and released), or for a new program to be loaded into it by the
BASIC Stamp Editor. If the Reset button on your board is pressed, the BASIC Stamp
will run the program you loaded into it again. If a new program is loaded into it, the old
one is erased, and the new program begins to run.

Your Turn – DEBUG Formatters and Control Characters

A DEBUG formatter is a code-word you can use to make the message the BASIC Stamp
sends look a certain way in the Debug Terminal. DEC is an example of a formatter that
makes the Debug Terminal display a decimal value. An example of a control character is
CR, which sends a carriage return to the Debug Terminal. The text or numbers that come
after a CR will appear on the line below characters that came before it. You can modify
your program so that it contains more DEBUG commands along with some formatters and
control characters. Here’s an example of how to do it:

√ First, save the program under a new name by clicking File and selecting Save As.

Chapter 1: Your Boe-Bot’s Brain · Page 29

√ A good new name for the file would be HelloBoeBotYourTurn.bs2.
√ Modify the comments at the beginning of the program so that they read:

' Robotics with the Boe-Bot - HelloBoeBotYourTurn.bs2
' BASIC Stamp does simple math, and sends the results
' to the Debug Terminal.

√ Add these three lines between the first DEBUG command and the END command:
DEBUG CR, "What's 7 X 11?"
DEBUG CR, "The answer is: "
DEBUG DEC 7 * 11

√ Save the changes you made by clicking File and selecting Save.

Your program should now look like the one shown in Figure 1-43.

Run your modified program. Hint: you will have to either click Run from the Run menu
again, like in Figure 1-40, or click the Run button, like in Figure 1-42.

Figure 1-43
Modified
HelloBoeBot.bs2

Check your work
against the
example program
shown here.

Page 30 · Robotics with the Boe-Bot

Your Debug Terminal should now resemble Figure 1-44.

Figure 1-44
Modified
HelloBoeBot.bs2 Debug
Terminal Output

Make sure that when
you re-run your
program, you get the
results you expect.

Where did my Debug Terminal go? Sometimes the Debug Terminal gets hidden behind
the BASIC Stamp Editor window. You can bring it back to the front by using the Run menu
as shown at the left of Figure 1-45, the Debug Terminal 1 shortcut button shown at the right
of the figure, or the F12 key on your keyboard.

Figure 1-45

Debug Terminal 1 to
Foreground

Using the menu (left)
and using the shortcut
button (right).

�

ACTIVITY #5: LOOKING UP ANSWERS
The example program you just finished introduced two PBASIC commands: DEBUG and
END. You can find out more about these commands and how they are used by looking
them up, either in the BASIC Stamp Editor’s Help or in the BASIC Stamp Manual. This
activity guides you through an example of looking up DEBUG using the BASIC Stamp
Editor’s Help and the BASIC Stamp Manual.

Chapter 1: Your Boe-Bot’s Brain · Page 31

Using the BASIC Stamp Editor’s Help

√ In the BASIC Stamp Editor, Click Help, then select Index as shown in Figure 1-

46.

Figure 1-46
Selecting Index
from the Help
Menu

√ Type DEBUG into the field labeled Type in the keyword to find: (shown in Figure 1-

47).
√ When the word DEBUG appears in the list below the field you are typing in,

double-click it, then click the Display button.

Figure 1-47
Looking up the
DEBUG Command
Using Help

Your Turn

√ Use the scrollbar to review the DEBUG command article. Notice that it has lots of
explanations and example programs you can try.

√ Click the Contents tab, and find DEBUG there.

Page 32 · Robotics with the Boe-Bot

√ Click the Search tab, and run a search for the word DEBUG.
√ Repeat this process for the END command.

Getting and Using the BASIC Stamp Manual

The BASIC Stamp Manual is available for free download from the Parallax web site, and
it’s also included on the Parallax CD. It can also be purchased as a bound and printed
manual.

Downloading the BASIC Stamp Manual from the Parallax Web Site

√ Using a web browser, go to www.parallax.com.
√ Point at the Downloads menu to display the options.
√ Point at the Documentation link and click to select it.
√ When you get to the BASIC Stamp Documentation page, find the BASIC Stamp

Manual.
√ Click the Download icon that looks like a file folder to the right of the description:

“BASIC Stamp Manual Version 2.0 (3.2 MB)”.

Viewing the BASIC Stamp Manual on the Parallax CD

√ Click the Documentation link.
√ Click the + next to the BASIC Stamps folder.
√ Click the BASIC Stamp Manual book icon.
√ Click the View button.

√ Figure 1-48 shows an excerpt from the BASIC Stamp Manual Contents section
(Page 2). It shows that information on the DEBUG command can be found on
page 97.

Figure 1-48
Finding the
DEBUG
Command in the
Table of
Contents

Figure 1-49 shows an excerpt from the BASIC Stamp Manual. The DEBUG command is
explained in detail here.

Chapter 1: Your Boe-Bot’s Brain · Page 33

√ Briefly look over the BASIC Stamp Manual explanation of the DEBUG command.
√ Count the number of example programs in the DEBUG section. How many are

there?

Figure 1-49
Reviewing the
DEBUG
Command in the
BASIC Stamp
Manual

Your Turn

√ Use the BASIC Stamp Manual index to look up the DEBUG command.
√ Look up the END command in the BASIC Stamp Manual.

ACTIVITY #6: INTRODUCING ASCII CODE
In Activity #4: Your First Program, you used the DEC formatter with the DEBUG command
to display a decimal number in the Debug Terminal. But what happens if you don’t use
the DEC formatter with a number? If you use the DEBUG command followed by a number
with no formatter, the BASIC Stamp will read that number as an ASCII code.

Programming with ASCII Code

ASCII is short for American Standard Code for Information Interchange. Most
microcontrollers and PC computers use this code to assign a number to each keyboard
function. Some numbers correspond to keyboard actions, such as cursor up, cursor down,
space, and delete. Other numbers correspond to printed characters and symbols. The
numbers 32 through 126 correspond to those characters and symbols that the BASIC
Stamp can display in the Debug Terminal. The following program will use ACSII code to
display the words “BASIC Stamp 2” in the Debug Terminal.

Page 34 · Robotics with the Boe-Bot

Example Program – AsciiName.bs2

√ Enter and run AsciiName.bs2.

Remember to use the toolbar icons to place Compiler Directives into your programs!

'{$STAMP BS2} - Use the diagonal green electronic chip icon.
'{$PBASIC 2.5} - Use the gear icon labeled 2.5.

You can see a picture of these icons again on page 24.

' Robotics with the Boe-Bot - AsciiName.bs2
' Use ASCII code in a DEBUG command to display the words BASIC Stamp 2.

' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG 66,65,83,73,67,32,83,116,97,109,112,32,50

END

How AsciiName.bs2 Works

Each letter in the DEBUG command corresponds to one ASCII code symbol that appeared
in the Debug Terminal.

DEBUG 66,65,83,73,67,32,83,116,97,109,112,32,50

66 is the ASCII code for capital “B”, 65 is the code for capital “A” and so on. 32 is the
code for a space between characters. Notice that each code number was separated with a
comma. The commas allow the one instance of DEBUG to execute each symbol as a
separate command. This is much easier to type than 12 separate DEBUG commands.

Your Turn – Exploring ASCII Code

√ Save AsciiName.bs2 as AsciiRandom.bs2
√ Pick 12 random numbers between 32 and 127.
√ Replace the ASCII code numbers in the program with the numbers you chose.
√ Run your modified program to see what you get!

The BASIC Stamp Manual Appendix A has a chart of ASCII code numbers and their
corresponding symbols. You can look up the corresponding code numbers to spell your
own name.

Chapter 1: Your Boe-Bot’s Brain · Page 35

√ Save AsciiRandom.bs2 as YourAsciiName.bs2
√ Look up the ASCII Chart in the BASIC Stamp Manual.
√ Modify the program to spell your own name.
√ Run the program to see if you spelled your name correctly.
√ If you did, good job, and save your program!

ACTIVITY #7: WHEN YOU’RE DONE
It’s important to disconnect the power from your BASIC Stamp and Board of Education
or HomeWork Board for several reasons. First, your batteries will last longer if the
system is not drawing power when you’re not using it. Second, in future experiments,
you will build circuits on the Board of Education’s or HomeWork Board’s prototyping
area.

Circuit prototypes should never be left unattended with a battery or power supply
connected. You never know what kind of accident might occur when you are not there.

Always disconnect the power from your Board of Education or HomeWork Board, even if
you only plan on leaving it alone for a minute or two.

If you are in a classroom, your instructor may have extra instructions, such as
disconnecting the serial cable, storing your Board of Education/HomeWork Board in a
safe place, etc. Aside from those details, the most important step that you should always
follow is disconnecting power when you’re done.

Disconnecting Power

With the Board of Education Rev C, disconnecting power is easy:

√ If you are using the Board of Education Rev C, move the 3-position switch to
position-0 by pushing it to the left as shown in Figure 1-50.

Page 36 · Robotics with the Boe-Bot

www.stampsinclass.com

Reset

Board of Education

Sout
Sin
ATN
Vss
P0
P1
P2
P3
P4
P5
P6
P7

P11

P9
P8

Vin

P10

P15
P14
P13
P12

Vdd
Rst
Vss

X1

P11
P13
P15
Vin

P10
P12
P14
Vdd

U1

0 1 2

© 2000-2003

P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

Figure 1-50
Switching Off the Power
for the Board of
Education Rev C

Do not remove the BASIC Stamp from its socket in the Board of Education!

Resist any temptation to store your Board of Education and BASIC Stamp separately.
Every time the BASIC Stamp is removed and re-inserted into the socket on the Board of
Education, mistakes may occur that can damage it. Although the BASIC Stamp is
sometimes moved from one socket to another during a larger project, it will not be
necessary during any of the activities in this text.

Disconnecting the BASIC Stamp HomeWork Board’s power is easy too:

√ If you are using the BASIC Stamp HomeWork Board, disconnect the battery as
shown in Figure 1-51.

Reset
© 2002

Power

BASIC Stamp HomeWork Board®

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

X3
Vdd VssVin

A
lkaline

Battery
Pow

ercell

Figure 1-51
Disconnecting the
Power for the
HomeWork Board

The Board of Education Rev A or B also has to have its power disconnected, either by
removing the battery or by unplugging the DC supply from the jack.

Your Turn

√ Disconnect power now.

Chapter 1: Your Boe-Bot’s Brain · Page 37

SUMMARY
This chapter guided you through the following:

• An introduction to the BASIC Stamp
• Where to get the free BASIC Stamp Editor software you will use in just about all

of the experiments in this text
• How to install the BASIC Stamp Editor software
• An introduction to the BASIC Stamp, Board of Education, and HomeWork

Board
• How to set up your BASIC Stamp hardware
• How to test your software and hardware
• How to write and run a PBASIC program
• Using the DEBUG and END commands
• Using the CR control character and DEC formatter
• Using ASCII codes to transmit characters
• How to use the BASIC Stamp Editor’s Help and the BASIC Stamp Manual
• How to disconnect the power to your Board of Education or HomeWork Board

when you’re done

Questions

1. What device will be the brain of your Boe-Bot?
2. When the BASIC Stamp sends a character to your PC/laptop, what type of

numbers are used to send the message through the serial cable?
3. What is the name of the window that displays messages sent from the BASIC

Stamp to your PC/laptop?
4. What PBASIC commands did you learn in this chapter?

Exercises

1. Explain what you can do with each PBASIC command you learned in this
chapter.

2. Explain what the asterisk does in this command:
DEBUG DEC 7 * 11

3. There is a problem with these two commands. When you run the code, the
numbers they display are stuck together so that it looks like one large number

Page 38 · Robotics with the Boe-Bot

instead of two small ones. Modify these two commands so that the answers
appear on different lines in the Debug Terminal.
DEBUG DEC 7 * 11
DEBUG DEC 7 + 11

Projects

1. Write a program that uses a DEBUG instruction to display the solution to the math
problem: 1 + 2 + 3 + 4.

2. Predict what you would expect to see if you removed the DEC formatter from this
command. Use a PBASIC program to test your prediction.
DEBUG DEC 7 * 11

3. Which lines can you delete in HelloBoeBotYourTurn.bs2 if you place the
command shown below on the line just before the END command in the program?
Test your hypothesis (your prediction of what will happen). Make sure to save
HelloBoeBotYourTurn.bs2 with a new name to help keep track, like
HelloBoeBotCh01Project03.bs2. Then make your modification, save and run
your program.
DEBUG "What's 7 X 11?", CR, "The answer is: ", DEC 7 * 11

Chapter 1: Your Boe-Bot’s Brain · Page 39

Solutions

Q1. The BASIC Stamp 2 microcontroller module.
Q2. Binary numbers.
Q3. The Debug Terminal.
Q4. DEBUG and END.

E1. DEBUG – This command is used to send a message from the BASIC Stamp to the

PC. The information is displayed on the Debug Terminal.
END – This command is used to terminate a PBASIC program and put the BASIC
Stamp module into low-power mode.

E2. The asterisk multiplies the two operands 7 and 11, resulting in a product of 77.
The asterisk is the multiply operator.

E3. To fix the problem, add a carriage return, the CR control character.

DEBUG DEC 7 * 11
DEBUG CR, DEC 7 + 11

P1. Here is a program to display a solution to the math problem:

' Robotics with the Boe-Bot - HelloBoeBotCh01Project01.bs2
' Adds together 4 numbers with DEBUG
'{$STAMP BS2}
'{$PBASIC 2.5}

DEBUG "What's 1+2+3+4?"
DEBUG CR, "The answer is: "
DEBUG DEC 1+2+3+4

END

P2. Prediction: It will print the character "M". This program tests this prediction:

' Robotics with the Boe-Bot - HelloBoeBotCh01Project02.bs2
' Prints ASCII 7 * 11

' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG 7 * 11

END

Page 40 · Robotics with the Boe-Bot

P3. The last three DEBUG lines can be deleted. An additional CR is needed after the
"Hello" message.

' Robotics with the Boe-Bot – HelloBoeBotCh01Project03.bs2
' Send message to Debug Terminal and do some math.

' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG "Hello, this is a message from your Boe-Bot.", CR

DEBUG "What's 7 X 11?", CR, "The answer is: ", DEC 7 * 11

END

The output from the Debug Terminal is:

Hello, this is a message from your Boe-Bot.
What's 7 X 11?
The answer is: 77

This output is the same as it was with the three lines. This is an example of
using commas to output a lot of information, using only one DEBUG statement.

 Chapter 2: Your Boe-Bot’s Servo Motors · Page 41

Chapter 2: Your Boe-Bot’s Servo Motors

This chapter will guide you through connecting, adjusting, and testing the Boe-Bot’s
motors. In order to do that, you will need to understand certain PBASIC commands and
programming techniques that will control the direction, speed, and duration of servo
motions. Therefore, Activities #1, #2, and #5 will introduce you to these programming
tools, and then Activities #3, #4, and #6 will show you how to apply them to the servos.
Since precise servo control is key to the Boe-Bot’s performance, completing these
activities before mounting the servos into the Boe-Bot chassis is both important and
necessary!

INTRODUCING THE CONTINUOUS ROTATION SERVO
The Parallax Continuous Rotation servos shown in Figure 2-1 are the motors that will
make the Boe-Bot’s wheels turn. This figure points out the servos’ external parts. Many
of these parts will be referred to as you go through the instructions in this and the next
chapter.

Figure 2-1
Parallax Continuous Rotation Servo

TIP: You may find it useful to bookmark this page so that you can refer back to it later.

Cable
for

power
and

control
signal

Access hole
for center
adjusting
feedback
potentiometer

Control
horn

Phillips
screw

Mounting
Flange

Mounting
Flange

Label should
read

“Continuous
Rotation”

Case contains
motor, circuits,

and gears

Plug for RC servo
connection ports on
Board of Education

Page 42 · Robotics with the Boe-Bot

Standard Servos vs. Continuous Rotation Servos: Standard servos are designed to
receive electronic signals that tell them what position to hold. These servos control the
positions of radio controlled airplane flaps, boat rudders, and car steering. Continuous
rotation servos receive the same electronic signals, but instead of holding certain positions,
they turn at certain speeds and directions. Continuous rotation servos are ideal for
controlling wheels and pulleys.

ACTIVITY #1: HOW TO TRACK TIME AND REPEAT ACTIONS
Controlling a servo motor’s speed and direction involves a program that makes the
BASIC Stamp send the same message, over and over again. The message has to repeat
itself around 50 times per second for the servo to maintain its speed and direction. This
activity has a few PBASIC example programs that demonstrate how to repeat the same
message over and over again and control the timing of the message.

Displaying Messages at Human Speeds

You can use the PAUSE command to tell the BASIC Stamp to wait for a while before
executing the next command.

PAUSE Duration

The number that you put to the right of the PAUSE command is called the Duration
argument, and it’s the value that tells the BASIC Stamp how long it should wait before
moving on to the next command. The units for the Duration argument are thousandths
of a second (ms). So, if you want to wait for one second, use a value of 1000. Here’s
how the command should look:

 PAUSE 1000

If you want to wait for twice as long, try:
 PAUSE 2000

A second is abbreviated “s”. In this text, when you see 1 s, it means one second.

A millisecond is one thousandth of a second, and it is abbreviated “ms”. The command
PAUSE 1000 delays the program for 1000 ms, which is 1000/1000 of a second, which is one
second, or 1 s. Got it?

 Chapter 2: Your Boe-Bot’s Servo Motors · Page 43

Example Program: TimedMessages.bs2

There are lots of different ways to use the PAUSE command. This example program uses
PAUSE to delay between printing messages that tell you how much time has elapsed. The
program should wait one second before it sends the “One second elapsed…” message and
another two seconds before it displays the “Three seconds elapsed . . . ” message.

√ If you have a Board of Education Rev C, move the 3-postion switch from
position-0 to position-1.

√ If you have a HomeWork Board, reconnect the 9 V battery to the battery clip.
√ Enter the program below into the BASIC Stamp Editor.
√ Save the program under the name “TimedMessages.bs2”.
√ Run the program, then watch for the delay between messages.

' Robotics with the Boe-Bot - TimedMessages.bs2
' Show how the PAUSE command can be used to display messages at human speeds.

' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG "Start timer..."

PAUSE 1000
DEBUG CR, "One second elapsed..."

PAUSE 2000
DEBUG CR, "Three seconds elapsed..."

DEBUG CR, "Done."

END

From here onward, the three instructions that came before this program will be
phrased like this:

Enter, save, and run TimedMessages.bs2.

Your Turn – Different Pause Durations

You can change the delay between messages by changing the PAUSE commands’
Duration arguments.

Page 44 · Robotics with the Boe-Bot

√ Try changing the PAUSE Duration arguments from 1000 and 2000 to 5000 and
10000, for example:

DEBUG "Start timer..."

PAUSE 5000
DEBUG CR, "Five seconds elapsed..."

PAUSE 10000
DEBUG CR, "Fifteen seconds elapsed..."

√ Run the modified program.
√ Also try it again with numbers like 40 and 100 for the Duration arguments;

they’ll go pretty fast.
√ The longest possible Duration argument is 65535. If you've got a minute to

spare, try PAUSE 60000.

Over and Over Again

One of the best things about both computers and microcontrollers is that they never
complain about doing the same boring things over and over again. You can place your
commands between the words DO and LOOP if you want them executed over and over
again. For example, let’s say you want to print a message repeating once every second.
Simply place your DEBUG and PAUSE commands between the words DO and LOOP like
this:

DO
 DEBUG "Hello!", CR
 PAUSE 1000
LOOP

Example Program: HelloOnceEverySecond.bs2

√ Enter, save, and run HelloOnceEverySecond.bs2.
√ Verify that the “Hello!” message is printed once every second.

 Chapter 2: Your Boe-Bot’s Servo Motors · Page 45

' Robotics with the Boe-Bot - HelloOnceEverySecond.bs2
' Display a message once every second.

' {$STAMP BS2}
' {$PBASIC 2.5}

DO
 DEBUG "Hello!", CR
 PAUSE 1000
LOOP

Your Turn – A Different Message

You can modify your program so that part of it executes once, and another part executes
over an over again.

√ Modify the program so that the commands look like this:
DEBUG "Hello!"
DO
 DEBUG "!"
 PAUSE 1000
LOOP

√ Run it and see what happens! Did you anticipate the result?

ACTIVITY #2: TRACKING TIME AND REPEATING ACTIONS WITH A
CIRCUIT
In this activity, you will build circuits that emit light that will allow you to “see” the kind
of signals that are used to control the Boe-Bot’s servo motors.

What’s a Microcontroller? Excerpts – This activity contains selected excerpts from the
What’s a Microcontroller? Student Guide v2.0.

√ Even if you are familiar with this material from What’s a Microcontroller?, don’t skip
this activity.

In the second half of this activity, you will examine the signals that control your servos and
timing diagrams in a different light than they were presented in What’s a Microcontroller?

Introducing the LED and Resistor

A resistor is a component that ‘resists’ the flow of electricity. This flow of electricity is
called current. Each resistor has a value that tells how strongly it resists current flow.

Page 46 · Robotics with the Boe-Bot

This resistance value is called the ohm, and the sign for the ohm is the Greek letter omega
- Ω. The resistor you will be working with in this activity is the 470 Ω resistor shown in
Figure 2-2. The resistor has two wires (called leads and pronounced “leeds”), one
coming out of each end. There is a ceramic case between the two leads, and it’s the part
that resists current flow. Most circuit diagrams that show resistors use the symbol on the
left with the squiggly lines to tell the person building the circuit that he or she must use a
470 Ω resistor. This is called a schematic symbol. The drawing on the right is a part
drawing used in some beginner level Stamps in Class texts to help you build circuits.

470 Ω
Yellow

Violet
Brown

Gold
Silver
or
Blank

Figure 2-2
470 Ω Resistor Part
Drawing

Schematic symbol (left)
and part drawing (right)

The colored stripes indicate resistance values. See Appendix C: Resistor Color Codes
for information on how to determine a resistor's value from the colored stripes on its ceramic
case.

A diode is a one-way current valve, and a light emitting diode (LED) emits light when
current passes through it. Unlike the color codes on a resistor, the color of the LED
usually just tells you what color it will glow when current passes through it. The
important markings on an LED are contained in its shape. Since an LED is a one-way
current valve, you have to make sure to connect it the right way, or it won’t work as
intended.

Figure 2-3 shows an LED’s schematic symbol and part drawing. An LED has two
terminals. One is called the anode, and the other is called the cathode. In this activity,
you will have to build the LED into a circuit, and you will have to pay attention and make
sure the anode and cathode leads are connected to the circuit properly. On the part
drawing, the anode lead is labeled with the plus-sign (+). On the schematic symbol, the
anode is the wide part of the triangle. In this part drawing, the cathode lead is the pin
labeled with a minus-sign (-), and on the schematic symbol, the cathode is the line across
the point of the triangle.

 Chapter 2: Your Boe-Bot’s Servo Motors · Page 47

+ _

LED

Figure 2-3
LED Part Drawing and
Schematic Symbol

Part drawing (above) and
schematic symbol
(below).

The LED part drawings in
later pictures will have a +
next to the anode leg.

When you start building your circuit, make sure to check it against the schematic symbol
and part drawing. If you look closely at the LED’s plastic case in the part drawing, it’s
mostly round, but there is a small flat spot right near one of the leads that that tells you
it’s the cathode. Also note that the LED’s leads are different lengths. In this text, the
anode will be shown with a + sign and the cathode will be shown with a – sign.

Always check the LED’s plastic case. Usually, the longer lead is connected to the LED’s
anode, and the shorter lead is connected to its cathode. But sometimes the leads have been
clipped to the same length, or a manufacturer does not follow this convention. Therefore, it
is best to always look for the flat spot on the case. If you plug an LED in backwards, it will
not hurt it, but it will not light up.

LED Test Circuit Parts

(2) LEDs – Red
(2) Resistors – 470 Ω (yellow-violet-brown)

Always disconnect power to your board before building or modifying circuits! For the
Board of Education Rev C, set the 3-position switch to position-0. For the BASIC Stamp
HomeWork Board, disconnect the 9 V battery from the battery clip. Always double-check
your circuit for errors before reconnecting power.

Page 48 · Robotics with the Boe-Bot

LED Test Circuits

If you completed the What’s a Microcontroller? text, you are no doubt very familiar
with the circuit shown in Figure 2-4. The left side of this figure shows the circuit
schematic, and the right side shows a wiring diagram example of the circuit built on your
board’s prototyping area.

√ Build the circuit shown in Figure 2-4.
√ Make sure that the shorter pins on each LED (the cathodes) are plugged into

black sockets labeled Vss.
√ Make sure the longer pins (the anodes, marked with a ⊕ in the wiring diagram)

are connected to the white breadboard sockets exactly as shown.

P12

P13

Vss Vss

LEDLED

470 Ω

470 Ω

P15
P14

P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

P13
P12

X2

X3
Vdd VssVin

+
+

Figure 2-4
Two LEDs
Connected
to BASIC
Stamp I/O
Pins P13
and P12

Schematic
(left) and
wiring
diagram
(right).

What's an I/O pin? I/O stands for input/output. The BASIC Stamp has 24 pins, 16 of which
are I/O pins. In this text, you will program the BASIC Stamp to use I/O pins as outputs to
make LED lights turn on/off, control the speed and direction the Parallax Continuous
Rotation servos turn, make tones with speakers, and prepare sensors to detect light and
objects. You will also program the BASIC Stamp to use I/O pins as inputs to monitor
sensors that indicate mechanical contact, light level, objects in the Boe-Bot's path, and even
their distance.

New to building circuits? See Appendix D: Breadboarding Rules.

 Chapter 2: Your Boe-Bot’s Servo Motors · Page 49

Figure 2-5 shows what you will program the BASIC Stamp to do to the LED circuit.
Imagine that you have a 5 volt (5 V) battery. Although a 5 V battery is not common, the
Board of Education has a device called a voltage regulator that supplies the BASIC
Stamp with the equivalent of a 5 V battery. When you connect a circuit to Vss, it’s like
connecting the circuit to the negative terminal of the 5 V battery. When you connect the
other end of the circuit to Vdd, it’s like connecting it to the positive terminal of a 5 V
battery.

-

-

- -

-

-

-

-

-

-

-
-

-

-

-

-
+

_
-
-

+

+

-

--
-
+
+

+

--
-
+
+

+

--
+

+

-

N

NNN
+

=

N
N

N

+

_ -

+

--
-
+
+

+

--
-
+
+

+

--
+

NNN
+

N
N

N

Vdd

Vss

5 V

Vdd

Vss

5 V

Figure 2-5
BASIC Stamp
Switching

The BASIC Stamp can
be programmed to
internally connect the
LED circuit’s input to
Vdd or Vss.

Volts is abbreviated V. That means 5 volts is abbreviated 5 V. When you apply voltage to
a circuit, it’s like applying electrical pressure.

Current refers to the rate at which electrons pass through a circuit. You will often see
measurements of current expressed in amps, which is abbreviated A. The amount of
current an electric motor draws is often measured in amps, for example 2 A, 5 A, etc.
However, the currents you will use in the Board of Education are measured in thousandths
of an amp, or milliamps. For example, 10.3 mA passes through the circuit in Figure 2-5.

When these connections are made, 5 V of electrical pressure is applied to the circuit
causing electrons to flow through and the LED to emit light. As soon as you disconnect
the resistor lead from the battery’s positive terminal, the current stops flowing, and the
LED stops emitting light. You can take it one step further by connecting the resistor lead
to Vss, which has the same result. This is the action you will program the BASIC Stamp
to do to make the LED turn on (emit light) and off (not emit light).

Page 50 · Robotics with the Boe-Bot

Programs that Control the LED Test Circuits

The HIGH and LOW commands can be used to make the BASIC Stamp connect an LED
alternately to Vdd and Vss. The Pin argument is a number between 0 and 15 that tells
the BASIC Stamp which I/O pin to connect to Vdd or Vss.

HIGH Pin

LOW Pin

For example, if you use the command
HIGH 13

it tells the BASIC Stamp to connect I/O pin P13 to Vdd, which turns the LED on.

Likewise, if you use the command

LOW 13

it tells the BASIC Stamp to connect I/O pin P13 to Vss, which turns the LED off. Let’s
try this out.

Example Program: HighLowLed.bs2

√ Reconnect power to your board.
√ Enter, save, and run HighLowLed.bs2.
√ Verify that the LED circuit connected to P13 is turning on and off, once every

second.

' Robotics with the Boe-Bot – HighLowLed.bs2
' Turn the LED connected to P13 on/off once every second.

' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG "The LED connected to Pin 13 is blinking!"

DO
 HIGH 13
 PAUSE 500
 LOW 13
 PAUSE 500
LOOP

 Chapter 2: Your Boe-Bot’s Servo Motors · Page 51

How HighLowLed.bs2 Works

Figure 2-6 shows how the BASIC Stamp can connect an LED circuit alternately to Vdd
and Vss. When it’s connected to Vdd, the LED emits light. When it’s connected to Vss,
the LED does not emit light. The command HIGH 13 instructs the BASIC Stamp to
connect P13 to Vdd. The command PAUSE 500 instructs the BASIC Stamp to leave the
circuit in that state for 500 ms. The command LOW 13 instructs the BASIC Stamp to
connect the LED to Vss. Again, the command PAUSE 500 instructs the BASIC Stamp to
leave it in that state for another 500 ms. Since these commands are placed between DO
and LOOP, they execute over and over again.

SOUT
SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7

VIN
VSS
RES
VDD (+5V)
P15
P14
P13
P12
P11
P10
P9
P8

24

23

22

21

20

19

18

17

16

15

14

13

1

2

3

4

5

6

7

8

9

10

11

12

BS2-IC

BS2

Vdd

Vss

SOUT
SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7

VIN
VSS
RES
VDD (+5V)
P15
P14
P13
P12
P11
P10
P9
P8

24

23

22

21

20

19

18

17

16

15

14

13

1

2

3

4

5

6

7

8

9

10

11

12

BS2-IC

BS2

Vdd

Vss

Figure 2-6
BASIC Stamp
Switching

The BASIC Stamp
can be programmed
to internally connect
the LED circuit’s
input to Vdd or Vss.

A Diagnostic Test for your Computer

A very few computers, such as some laptops, will halt the PBASIC program after the first
time through a DO...LOOP loop. These computers have a non-standard serial port design.
By placing a DEBUG command the program LedOnOff.bs2, the open Debug Terminal
prevents this from possibly happening. You will next re-run this program without the
DEBUG command to see if your computer has this non-standard serial port problem. It is
not likely, but it would be important for you to know.

√ Open HighLowLed.bs2.
√ Delete the entire DEBUG instruction.
√ Run the modified program while you observe your LED.

If the LED blinks on and off continuously, just as it did when you ran the original
program with the DEBUG command, your computer will not have this problem.

If the LED blinked on and off only once and then stopped, you have a computer with a
non-standard serial port design. If you disconnect the serial cable from your board and

Page 52 · Robotics with the Boe-Bot

press the Reset button, the BASIC Stamp will run the program properly without freezing.
In programs you write yourself, you should add a single command:

DEBUG "Program Running!"

right after the compiler directives. This will open the Debug Terminal and keep the
COM port open. This will prevent your programs from freezing after one pass through
the DO…LOOP, or any of the other looping commands you will be learning in later
chapters. You will see this command in some of the example programs that would not
otherwise need a DEBUG instruction. So, you should be able to run all of the remaining
programs in this book even if your computer failed the diagnostic test.

Introducing the Timing Diagram

A timing diagram is a graph that relates high (Vdd) and low (Vss) signals to time. In
Figure 2-7, time increases from left to right, and high and low signals align with either
Vdd (5 V) or Vss (0 V). This timing diagram shows you a 1000 ms slice of the high/low
signal you just experimented with. The line of dots (. . .) to the right of the signal is one
way of indicating that the signal repeats itself.

Vdd (5 V)

Vss (0 V)

500 ms

1000 ms

…

500 ms

Figure 2-7
Timing Diagram
for
HighLowLed.bs2

The LED on/off
states are shown
above the timing
diagram.

 Chapter 2: Your Boe-Bot’s Servo Motors · Page 53

Your Turn – Blink the Other LED

Blinking the other LED (connected to P12) is a simple matter of changing the Pin
argument in the HIGH and LOW commands and re-running the program.

√ Modify the program so that the commands look like this:
DO
 HIGH 12
 PAUSE 500
 LOW 12
 PAUSE 500
LOOP

√ Run the modified program and verify that it makes the other LED blink on/off.

You can also make both LEDs blink at the same time.

√ Modify the program so that the commands look like this:
DO
 HIGH 12
 HIGH 13
 PAUSE 500
 LOW 12
 LOW 13
 PAUSE 500
LOOP

√ Run the modified program and verify that it makes both LEDs blink on and off
at roughly the same time.

You can modify the program again to make one LEDs blink alternately on/off, and you
can also change the rates that the LEDs blink by adjusting the PAUSE command’s
Duration argument higher or lower.

√ Try it!

Viewing a Servo Control Signal with an LED

The high and low signals you will program the BASIC Stamp to send to the servo motors
must last for very precise amounts of time. That’s because the servo motors measure the
amount of time the signal stays high, and use it as an instruction for where to turn. For

Page 54 · Robotics with the Boe-Bot

accurate servo motor control, the time these signals stay high must be much more precise
than you can get with a HIGH and a PAUSE command. You can only change the PAUSE
command’s Duration argument by 1 ms (remember, that’s 1/1000 of a second) at a
time. There’s a different command called PULSOUT that can deliver high signals for
precise amounts of time. These amounts of time are values you use in the Duration
argument, and they are measured in units that are two millionths of a second!

PULSOUT Pin, Duration

A microsecond is a millionth of a second. It’s abbreviated µs. Be careful when you write
this value, it’s not the letter ‘u’ from our alphabet; it’s the Greek letter mu ‘µ’.

For example, 8 microseconds is abbreviated 8 µs.

You can send a HIGH signal that turns the P13 LED on for 2 µs (that’s two millionths of a
second) by using this command:

PULSOUT 13, 1

This command would turn the LED on for 4 µs
PULSOUT 13, 2

This command sends a high signal that you can actually view:
PULSOUT 13, 65000

How long does the LED circuit connected to P13 stay on when you send this pulse?
Let’s figure it out. The time it stays on is 65000 times 2 µs. That’s:

s13.0
s000002.065000

s265000Duration

=
×=
×= µ

which is still pretty fast, thirteen hundredths of a second.

The largest value you can use in a Duration argument is 65535.

 Chapter 2: Your Boe-Bot’s Servo Motors · Page 55

Example Program: PulseP13Led.bs2

This timing diagram in Figure 2-8 shows the pulse train you are about to send to the LED
with this new program. This time, the high signal lasts for 0.13 seconds, and the low
signal lasts for 2 seconds. This is 100 times slower than the signal that the servo will
need to control its motion.

Vdd (5 V)

Vss (0 V)

0.13 s 0.13 s

2.0 s

Figure 2-8
Timing Diagram
for
PulseP13Led.bs2

√ Enter, save, and run PulseP13Led.bs2.
√ Verify that the LED circuit connected to P13 pulses for about thirteen

hundredths of a second, once every two seconds.

' Robotics with the Boe-Bot – PulseP13Led.bs2
' Send a 0.13 second pulse to the LED circuit connected to P13 every 2 s.

' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG "Program Running!"

DO
 PULSOUT 13, 65000
 PAUSE 2000
LOOP

Example Program: PulseBothLeds.bs2

This example program sends a pulse to the LED connected to P13, and then it sends a
pulse to the LED connected to P12 as shown in Figure 2-9. After that, it pauses for two
seconds.

Page 56 · Robotics with the Boe-Bot

Figure 2-9
Timing Diagram for
PulseBothLeds.bs2

The LEDs emit
light for 0.13
seconds while the
signal is high.

The voltages (Vdd and Vss) in this timing diagram are not labeled. With the BASIC
Stamp, it is understood that the high signal is 5 V (Vdd) and the low signal is 0 V (Vss).

This is a common practice in documents that explain the timing of high and low signals.
Often there are one or more of these documents for each component inside the circuit an
engineer is designing. The engineers who created the BASIC Stamp had to comb through
many of these kinds of documents looking for information needed to help make decisions
while designing the product.

Sometimes the times are also left out, or just shown with a label, like thigh and tlow. Then, the
desired time values for thigh and tlow are listed in a table somewhere after the timing diagram.
This concept is discussed in more detail in Basic Analog and Digital, another Parallax
Stamps in Class Student Guide.

√ Enter, save, and run PulseBothLeds.bs2.
√ Verify that both LED circuits simultaneously pulse for about thirteen hundredths

of a second, once every two seconds.

' Robotics with the Boe-Bot – PulseBothLeds.bs2
' Send a 0.13 second pulse to P13 and P12 every 2 seconds.

' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG "Program Running!"

0.13 s 0.13 s

P12

0.13 s 0.13 s

2.26 s

P13

 Chapter 2: Your Boe-Bot’s Servo Motors · Page 57

DO
 PULSOUT 13, 65000
 PULSOUT 12, 65000
 PAUSE 2000
LOOP

Your Turn – Viewing the Full Speed Servo Signal

Remember the servo signal is 100 times as fast as the program you just ran. First, let’s
try running the program ten times as fast. That means divide all the Duration arguments
(PULSOUT and PAUSE) by 10.

√ Modify the program so that the commands look like this:
DO
 PULSOUT 13, 6500
 PULSOUT 12, 6500
 PAUSE 200
LOOP

√ Run the modified program and verify that it makes the LEDs blink ten times as
fast.

Now, let’s try 100 times as fast (one hundredth of the duration). Instead of appearing to
flicker, the LED will just appear to be not as bright as it would when you send it a simple
high signal. That’s because the LED is flashing on and off so quickly and for such brief
periods of time that the human eye cannot detect the actual on/off flicker, just a change in
brightness.

√ Modify the program so that the commands look like this:
DO
 PULSOUT 13, 650
 PULSOUT 12, 650
 PAUSE 20
LOOP

√ Run the modified program and verify that it makes both LEDs about the same
brightness.

√ Try substituting 850 in the Duration argument for the PULSOUT command that

goes to P13.
DO

Page 58 · Robotics with the Boe-Bot

 PULSOUT 13, 850
 PULSOUT 12, 650
 PAUSE 20
LOOP

√ Run the modified program and verify that the P13 LED now appears slightly
brighter than the P12 LED. You may have to cup your hands around the LEDs
and peek inside to see the difference. They are different because the amount of
time the LED connected to P13 stays on is longer than the amount of time the
LED connected to P12 stays on.

√ Try substituting 750 in the Duration argument for the PULSOUT command that

goes to both LEDs.
DO
 PULSOUT 13, 750
 PULSOUT 12, 750
 PAUSE 20
LOOP

√ Run the modified program and verify that the brightness of both LEDs is the
same again. It may not be obvious, but the brightness level is between those
given by Duration arguments of 650 and 850.

ACTIVITY #3: CONNECTING THE SERVO MOTORS
In this activity, you will build a circuit that connects the servo to a power supply and a
BASIC Stamp I/O pin. The LED circuits you developed in the previous activity will be
used later to monitor the signals the BASIC Stamp sends to the servos to control their
motion.

Parts for Connecting the Servos

(2) Parallax Continuous Rotation servos
(2) Built and tested LED circuits from the previous activity

Finding the Connection Instructions for Your Carrier Board

There are three different Revs of the Board of Education and one Rev of the BASIC
Stamp HomeWork Board. Boards of Education can either be Rev A, B, or C. The
HomeWork Board is Rev B. Figure 2-10 shows examples of the labeling you might see
on your board.

 Chapter 2: Your Boe-Bot’s Servo Motors · Page 59

√ Examine the labeling on your carrier board and figure out whether you have a

BASIC Stamp HomeWork Board Rev B or a Board of Education Rev C, B, or A.

(916) 624-8333
www.parallaxinc.com
www.stampsinclass.com

Rev B

X3
Vdd VssVin

Board of Education
 © 2000-2003

P3
P2
P1
P0

X2

Rev C

BASIC Stamp Board of Education Rev C
HomeWork Board Rev B

Rev B

Black
Red

X3
Vdd VssVin

X4 X5

15 14 13 12

STAMPS CLASS
in

Vdd VssVR1

5
X2

X3 nc

Rev A

Board of Education Rev B Board of Education Rev A

Figure 2-10
Examples of Rev
Labels on the
BASIC Stamp
HomeWork Board
and the Board of
Education

√ Knowing the revision of your carrier board, skip to instructions (listed below) for

connecting the servo to your board:

Page 60 → Board of Education Rev C
Page 63 → BASIC Stamp HomeWork Board

Board of Education Rev B

If you have a Board of Education Rev B, follow the instructions for the Board of Education
Rev C throughout the text, always keeping these two points in mind:

• The Board of Education Rev B does not have a 3-positioin switch. You will have
to disconnect battery pack’s plug from the Board of Education’s power jack when
directed to set the 3-position switch to position-0. When directed to set the 3-
position switch to position-1 or 2, you will have to plug the power in.

• The Board of Education Rev B does not have a jumper setting for power. Only
use the 6 V battery pack as a power source for Board of Education Rev B Boe-
Bot projects.

Board of Education Rev A

If you have a Board of Education Rev A, follow the instructions for the BASIC Stamp
HomeWork Board throughout the text.

Page 60 · Robotics with the Boe-Bot

√ When you are done, go to Activity #4: Centering the Servos on page 66.

Connecting the Servos to the Board of Education Rev C

√ Turn off the power by setting the 3-position switch on your Board of Education
to position-0 (see Figure 2-11).

Reset

0 1 2

Figure 2-11
Disconnect
Power

Figure 2-12 shows the servo header on the Board of Education Rev C. This board
features a jumper that you can use to connect the servo’s power supply to either Vin or
Vdd. To move it, you have to pull it upwards and off the pair of pins it rests on, then
push it onto the pair of pins you want it to rest on.

√ If you are using the 6 V battery pack, make sure the jumper between the servo
ports on the Board of Education is set to Vin as shown on the left of Figure 2-
12.

Use only alkaline AA (1.5 V) batteries. Avoid rechargeable batteries because they are 1.2
V instead of 1.5 V.

√ If you are using a 7.5 V, 1000 mA center positive DC supply, set the jumper to

Vdd as shown on the right side of Figure 2-12.

CAUTION – Misuse of AC powered DC supplies can damage your servos.

If you are inexperienced with DC supplies, consider sticking with the 6 V battery pack that
comes with the Boe-Bot.

Use only supplies with DC output voltage ratings between 6 and 7.5 V, and current output
ratings of 800 mA or more.

Only use a DC supply that is equipped with the same kind of plug as the Boe-Bot battery
pack (2.1 mm, center-positive).

 Chapter 2: Your Boe-Bot’s Servo Motors · Page 61

Black
Red

X4 X5

15 14 13 12Vdd

Vin

Select Vin if you are using the
battery pack that comes with the
Boe-Bot kits.

Select Vdd if you are using a DC
supply that plugs into an AC
outlet (AC adapter).

Black
Red

X4 X5

15 14 13 12Vdd

Vin

Figure 2-12
Selecting Your
Servo’s Power
Supply on the Board
of Education Rev C

All examples and instructions in this book will use the battery pack. Figure 2-13 shows
the schematic of the circuit you will build on the Board of Education Rev C. The jumper
is set to Vin.

√ Connect your servos to your Board of Education Rev C as shown in Figure 2-13.

Vin

Vss

P13 White
Red
Black

Vin

Vss

P12 White
Red
Black

Figure 2-13
Servo
Connection
Schematic
and Wiring
Diagram
for the Board
of Education
Rev C

How do I tell which servo is connected to P13 and which servo is connected to P12?
You just plugged your servos into headers with numbers above them. If the number above
the header where the servo is plugged in is 13, it means the servo is connected to P13. If
the number is 12, it means it’s connected to P12.

√ When you are done assembling the system, it should resemble Figure 2-14.

(LED circuits not shown).

White
Red
Black

Black
Red

X4 X5

15 14 13 12Vdd

White
Red

Black

Page 62 · Robotics with the Boe-Bot

Figure 2-14
Board of Education
with Servos and
Battery Pack
Connected

√ If you removed the LED circuits after Activity #2, make sure to rebuild them as

shown in Figure 2-15. They will be your servo signal monitoring circuits.

P12

P13

Vss Vss

LEDLED

470 Ω

470 Ω

P15
P14

P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

P13
P12

X2

X3
Vdd VssVin

+
+

Figure 2-15
LED Servo
Signal
Monitor
Circuit

Disconnecting Power – Special Instructions for the Board of Education Rev C

Never leave the power connected to your system when you are not working on it.

√ To disconnect power from your Board of Education Rev C, move the 3-position
switch to position-0.

√ Move on to page 66 (Activity #4: Centering the Servos).

 Chapter 2: Your Boe-Bot’s Servo Motors · Page 63

Connecting the Servos to the BASIC Stamp HomeWork Board

If you are connecting your servos to a BASIC Stamp HomeWork Board, you will need
the parts listed below and shown in Figure 2-16:

Parts List:

(1) Battery pack with tinned leads
(2) Parallax Continuous Rotation Servos
(2) 3-pin male-male headers
(4) Jumper wires
(4) AA batteries – 1.5 V alkaline
(2) Built and tested LED circuits from the previous activity

Figure 2-16
Servo Centering
Parts for the
HomeWork
Board

Figure 2-17 shows a schematic of the servo circuits on the HomeWork Board. Before
you start building this circuit, make sure that power is disconnected from the BASIC
Stamp HomeWork Board.

√ The 9 V battery should be disconnected from the battery clip, and the battery
pack with tinned leads should not have any batteries loaded.

Page 64 · Robotics with the Boe-Bot

Vbp

Vss

P12 White
Red
Black

Vbp

Vss

P13 White
Red
Black

Figure 2-17
Servo Connection
Schematic for the
BASIC Stamp
HomeWork Board.

√ Remove the two LED/resistor circuits, and save the parts.
√ Build the servo ports shown on the left side of Figure 2-18.
√ Double-check to make sure the black wire with the white stripe is connected to

Vbp, and the solid black wire should be connected to Vss.
√ Double-check to make sure that all the connections for P13, Vbp, Vss, Vbp, and

P12 all exactly match the wiring diagram.
√ Connect the servo plugs to the male headers as shown on the right of Figure 2-

18.
√ Double-check to make sure the servo wire colors match the legend in the figure.

Vbp stands for Voltage battery pack. It refers to the 6 VDC supplied by the four 1.5 V
batteries. This is brought directly to the breadboard to power the servos for Boe-Bots built
with the HomeWork Board or Board of Education Rev A. Your BASIC Stamp is still powered
by the 9 V battery.

 Chapter 2: Your Boe-Bot’s Servo Motors · Page 65

P15
P14

P11
P10
P9
P8

P13
P12

X3
Vdd VssVin

(916) 624-8333
www.parallaxinc.com
www.stampsinclass.com

Rev B

P15
P14

P11
P10
P9
P8

P13
P12

X3
Vdd VssVin

(916) 624-8333
www.parallaxinc.com
www.stampsinclass.com

Rev B

Figure 2-18
Servo
Connection
Wiring
Diagram for
the BASIC
Stamp
HomeWork
Board

Left (build
the servo
ports).

Right
(connect
the servos).

Port connections Servo connections by wire color

Your setup will then resemble Figure 2-19.

Figure 2-19
Dual Supplies
and Servos
Connected

√ Rebuild the LED circuit as shown in Figure 2-20.

 White
 Red
 Black
 Red
White

 P13
 Vbp
 Vss
 Vbp
 P12

Solid Black
Wire Black wire with

white stripe

Page 66 · Robotics with the Boe-Bot

P15
P14

P11
P10
P9
P8
P7
P6
P5
P4
P3

P1
P0

P13
P12

P2

X2

X3
Vdd VssVin

(916) 624-8333
www.parallaxinc.com
www.stampsinclass.com

HomeWork Board

Rev B

© 2002

+
Vss

+

P12

P13

Vss Vss

LEDLED

470 Ω

470 Ω

Figure 2-20
LED Servo
Signal
Monitor
Circuit

√ When all your connections are made and double-checked, load the battery pack

with batteries and reconnect the 9 V battery to the HomeWork Board’s battery
clip.

Disconnecting Power – Special Instructions for the HomeWork Board

Never leave the power connected to your system when you are not working with it. From
here onward, disconnecting power takes two steps:

√ Unplug the 9 V battery from the battery clip to disconnect power from the
HomeWork Board. This disconnects power from the embedded BASIC Stamp,
and the power sockets above the breadboard (Vdd, Vin, and Vss).

√ Remove one battery from the battery pack. This disconnects power from the
servos.

ACTIVITY #4: CENTERING THE SERVOS
In this activity, you will run a program that sends the servos a signal, instructing them to
stay still. Because the servos are not pre-adjusted at the factory, they will instead start

 Chapter 2: Your Boe-Bot’s Servo Motors · Page 67

turning. You will then use a screwdriver to adjust them so that they stay still. This is
called centering the servos. After the adjustment, you will test the servos to make sure
they are functioning properly. The test programs will send signals that make the servos
turn clockwise and counterclockwise at various speeds.

Servo Tools and Parts

The Parallax screwdriver shown in Figure 2-21 is the only extra tool you will need for
this activity. Alternately, any Phillips #1 point screwdriver with a 1/8″ (3.18 mm) shaft
should do the trick.

Figure 2-21
Parallax
Screwdriver

Sending the Center Signal

Figure 2-22 shows the signal that has to be sent to the servo connected to P12 to calibrate
it. This is called the center signal, and after the servo has been properly adjusted, this
signal instructs it to stay still. The instruction consists of a series of 1.5 ms pulses with 20
ms pauses between each pulse.

P12

1.5 ms 1.5 ms

20 ms

Figure 2-22
Timing Diagram for
CenterServoP12.bs2

The 1.5 ms pulses
instruct the servo to
remain still.

The program for this signal will be a PULSOUT command and a PAUSE command inside a
DO…LOOP. Figuring out the PAUSE command from the timing diagram is easy, it's going to
be PAUSE 20 for the 20 ms between pulses.

Figuring out the PULSOUT command's Pin argument isn't that hard either, it's going to be
12, for I/O pin P12. Next, let's figure out what the PULSOUT command's Duration
argument has to be for 1.5 ms pulses. 1.5 ms is 1.5 thousandths of a second, or 0.0015 s.
Remember whatever number is in the PULSOUT command's Duration argument, multiply
that number by 2 µs (2 millionths of a second = 0.000002 s), and you will know how long

Page 68 · Robotics with the Boe-Bot

the pulse will last. You can also figure out what the PULSOUT command's Duration
argument has to be if you know how long you want the pulse to last. Just divide 2 µs into
the time you want the pulse to last. With this calculation:

750
s000002.0

s0015.0
s2

durationPulseargumentDuration =
µ

=

we now know that the command for a 1.5 ms pulse to P12 will be PULSOUT 12, 750.

It’s best to only center one servo at a time, because that way you can hear when the motor
stops as you are adjusting it. This program will only send the center signal to the servo
connected to P12, and these next instructions will guide you through adjusting it. After
you complete the process with the servo connected to P12, you will repeat it with the
servo connected to P13.

√ If you have a Board of Education Rev C, make sure to set the 3-position power
switch to position-2 as shown in Figure 2-23.

0 1 2

Figure 2-23
Set the 3-Position Switch to
Position-2

√ If you are using the HomeWork Board, check the power connections to both

your BASIC Stamp and your servos. The 9 V battery should be attached to the
battery clip, and the 6 V battery pack should have all four batteries loaded.

If the servos start running (or twitching) as soon as you connect power

It's probably because the BASIC Stamp is running a program you ran in a previous activity.

√ Make sure to enter, save, and run CenterServoP12.bs2 before continuing to the
servo centering instructions that follow the example program.

√ Enter, save, and run CenterServoP12.bs2, then continue with the instructions that

follow the program.

Example Program: CenterServoP12.bs2
' Robotics with the Boe-Bot - CenterServoP12.bs2
' This program sends 1.5 ms pulses to the servo connected to

 Chapter 2: Your Boe-Bot’s Servo Motors · Page 69

' P12 for manual centering.

' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG "Program Running!"

DO
 PULSOUT 12, 750
 PAUSE 20
LOOP

If the servo has not yet been centered, its horn will start turning, and you will be able to
hear the motor inside making a whining noise.

√ If the servo is not yet centered, use a screwdriver to gently adjust the
potentiometer in the servo as shown in Figure 2-24. Adjust the potentiometer
until you find the setting that makes the servo stop turning.

Caution: do not push too hard with the screwdriver! The potentiometer inside the servo
is pretty delicate, so be careful not to apply any more pressure than necessary when
adjusting the servo.

Figure 2-24
Center Adjusting a
Servo

√ Verify that the LED signal monitor circuit connected to P12 is showing activity.

It should be emitting light, indicating that the pulses are being transmitted to the
servo connected to P12.

If the servo has already been centered, it will not turn. It is unlikely, but a damaged or
defective servo would also not turn. Activity #6 will rule out this possibility before the
servos are installed on your Boe-Bot chassis.

Insert tip of Phillips screwdriver
into potentiometer access hole.

Gently turn screwdriver to
adjust potentiometer

Page 70 · Robotics with the Boe-Bot

√ If the servo does not turn, skip to the Your Turn section on page 70 so that you

can test and center the other servo that’s connected to P13.

What's a Potentiometer? A potentiometer is kind of like an adjustable resistor. The
resistance of a potentiometer is adjusted with a moving part. On some potentiometers, this
moving part is a knob or a sliding bar, others have sockets that can be adjusted with
screwdrivers. The resistance of the potentiometer inside the Parallax Continuous Rotation
servo is adjusted with a #1 point Phillips screwdriver tip. You can learn more about
potentiometers in What's a Microcontroller? and Basic Analog and Digital student guides.

Your Turn – Centering the Servo Connected to P13

√ Repeat the process for the servo connected to P13 using this program:

Example Program: CenterServoP13.bs2
' Robotics with the Boe-Bot - CenterServoP13.bs2
' This program sends 1.5 ms pulses to the servo connected to
' P13 for manual centering.

' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG "Program Running!"

DO
 PULSOUT 13, 750
 PAUSE 20
LOOP

Remember to completely disconnect power when you are done.

If you have a Board of Education Rev C.

√ Move the 3-position switch to position-0.

If you have a BASIC Stamp HomeWork Board:

√ Unplug the 9 V battery from the battery clip to disconnect power to the HomeWork
Board.

√ Remove one battery from the battery pack.

 Chapter 2: Your Boe-Bot’s Servo Motors · Page 71

ACTIVITY #5: HOW TO STORE VALUES AND COUNT
This activity introduces variables, which are used in PBASIC programs to store values.
Boe-Bot programs later in this book will rely heavily on variables. The most important
thing about being able to store values is that the program can use them to count. As soon
as your program can count, it can both control and keep track of the number of times
something happens.

Your servos do not need to be connected to power for this activity.

√ If you have a Board of Education Rev C, set the 3-position switch to position-1.
This disconnects power from the servo ports only. The BASIC Stamp, Vdd, Vin,
and Vss will all still be connected to power.

√ If you have a BASIC Stamp HomeWork Board, remove one battery from the
battery pack, but leave the 9 V battery connected to the battery clip. This
disconnects power from the servo ports, but power remains connected to the
embedded BASIC Stamp, Vdd, Vin, and Vss.

Using Variables for Storing Values, Math Operations, and Counting

Variables can be used to store values. Before you can use a variable in PBASIC, you
have to give it a name and specify its size. This is called declaring a variable.

variableName VAR Size

You can declare four different sizes of variables in PBASIC:

Size – Stores
Bit – 0 to 1
Nib – 0 to 15
Byte – 0 to 255
Word – 0 to 65535
 or -32768 to + 32767

The next example program just involves a couple of word variables:

value VAR Word
anotherValue VAR Word

After you have declared a variable, you can also initialize it, which means giving it a
starting, or initial, value.

value = 500
anotherValue = 2000

Page 72 · Robotics with the Boe-Bot

Default Value - If you do not initialize a variable, the program will automatically start by
storing the number zero in that variable. That’s called the variable's default value.

The “=” sign in value = 500 is an example of an operator. You can use other operators
to do math with variables. Here are a couple of multiplication examples:

value = 10 * value
anotherValue = 2 * value

Example Program: VariablesAndSimpleMath.bs2

This program demonstrates how to declare, initialize, and perform operations on
variables.

√ Before running the program, predict what each DEBUG command will display.
√ Enter, save, and run VariablesAndSimpleMath.bs2.
√ Compare the results to your predictions and explain any differences.

' Robotics with the Boe-Bot - VariablesAndSimpleMath.bs2
' Declare variables and use them to solve a few arithmetic problems.

' {$STAMP BS2}
' {$PBASIC 2.5}

value VAR Word ' Declare variables
anotherValue VAR Word

value = 500 ' Initialize variables
anotherValue = 2000

DEBUG ? value ' Display values
DEBUG ? anotherValue

value = 10 * anotherValue ' Perform operations

DEBUG ? value ' Display values again
DEBUG ? anotherValue

END

How VariablesAndSimpleMath.bs2 Works

This code declares two word variables, value and anotherValue.
value VAR Word ' Declare variables

 Chapter 2: Your Boe-Bot’s Servo Motors · Page 73

anotherValue VAR Word

These commands are examples of initializing variables to values that you determine.
After these two commands are executed, value will store 500, and anotherValue will
store 2000.

value = 500 ' Initialize variables
anotherValue = 2000

These DEBUG commands help you see what each variable stores after you initialize them.
Since value was assigned 500 and anotherValue was assigned 2000, these DEBUG
commands send the messages “value = 500” and “anotherValue = 2000” to the Debug
Terminal.

DEBUG ? value ' Display values
DEBUG ? anotherValue

The DEBUG command’s “?” formatter can be used before a variable to make the Debug
Terminal display its name, the decimal value it’s storing, and a carriage return. It’s very
handy for looking at the contents of a variable.

The riddle in the next three lines is, what will be displayed? The answer is that value
will be set equal to ten times anotherValue. Since anotherValue is 2000, value will
be set equal to 20,000. The anotherValue variable is unchanged.

value = 10 * anotherValue ' Perform operations

DEBUG ? value ' Display values again
DEBUG ? anotherValue

Your Turn – Calculations with Negative Numbers

If you want to do calculations that involve negative numbers, you can use the DEBUG
command’s SDEC formatter to display them. Here’s an example that can be made by
modifying VariablesAndSimpleMath.bs2.

√ Delete this portion of VariablesAndSimpleMath.bs2:
value = 10 * anotherValue ' Perform operations

DEBUG ? value ' Display values again

√ Replace it with the following:

Page 74 · Robotics with the Boe-Bot

value = value - anotherValue ' Answer = -1500

DEBUG "value = ", SDEC value, CR ' Display values again

√ Run the modified program and verify that value changes from 500 to -1500.

Counting and Controlling Repetitions

The most convenient way to control the number of times a piece of code is executed is
with a FOR…NEXT loop. Here is the syntax:

FOR Counter = StartValue TO EndValue {STEP StepValue}…NEXT

The three-dots ... indicate that you can put one or more commands between the FOR
and NEXT statements. Make sure to declare a variable for use in the Counter argument.
The StartValue and EndValue arguments can be either numbers or variables. When
you see something between curly braces { } in a syntax description, it means it’s an
optional argument. In other words, the FOR…NEXT loop will work without it, but you can
use it for a special purpose.

You don’t have to name the variable “counter”. For example, you can call it
“myCounter”.

myCounter VAR Word

Here’s an example of a FOR…NEXT loop that uses the myCounter variable for counting. It
also displays the value of the myCounter variable each time through the loop.

FOR myCounter = 1 TO 10
 DEBUG ? myCounter
 PAUSE 500
NEXT

Example Program: CountToTen.bs2

√ Enter, save, and run CountToTen.bs2.

' Robotics with the Boe-Bot – CountToTen.bs2
' Use a variable in a FOR...NEXT loop.

' {$STAMP BS2}
' {$PBASIC 2.5}

myCounter VAR Word

 Chapter 2: Your Boe-Bot’s Servo Motors · Page 75

FOR myCounter = 1 TO 10
 DEBUG ? myCounter
 PAUSE 500
NEXT

DEBUG CR, "All done!"

END

Your Turn – Different Start and End Values and Counting in Steps

You can use different values for the StartValue and EndValue arguments.

√ Modify the FOR…NEXT loop so it looks like this:
FOR myCounter = 21 TO 9
 DEBUG ? myCounter
 PAUSE 500
NEXT

√ Run the modified program. Did you notice that the BASIC Stamp counted down
instead of up? It will do this whenever the StartValue argument is larger than
the EndValue argument.

Remember the optional {STEP StepValue} argument? You can use it to make
myCounter count in steps. Instead of 9, 10, 11…, you can make it count by twos (9, 11,
13…) or by fives (10, 15, 20…), or whatever StepValue you give it, forwards or
backwards. Here’s an example that uses it to count down in steps of 3:

√ Add STEP 3 to the FOR…NEXT loop so it looks like this:
FOR myCounter = 21 TO 9 STEP 3
 DEBUG ? myCounter
 PAUSE 500
NEXT

√ Run the modified program and verify that it counts backwards in steps of 3.

ACTIVITY #6: TESTING THE SERVOS
There’s one last thing to do before assembling your Boe-Bot, and that’s testing the
servos. In this activity, you will run programs that make the servos turn at different
speeds and directions. By doing this, you will verify that your servos are working
properly before you assemble your Boe-Bot.

Page 76 · Robotics with the Boe-Bot

This is an example of subsystem testing. Subsystem testing is a worthwhile habit to
develop, because it isn’t any fun to take a robot back apart just to fix a problem that you
could have otherwise caught before putting it together!

Subsystem testing is the practice of testing the individual components before they go into
the larger device. It’s a valuable strategy that can help you win robotics contests. It’s also
an essential skill used by engineers worldwide to develop everything from toys, cars, and
video games to space shuttles and Mars roving robots. Especially in more complex devices,
it can become nearly impossible to figure out a problem if the individual components haven’t
been tested beforehand. In aerospace projects, for example, disassembling a prototype to
fix a problem can cost hundreds of thousands, or even millions of dollars. In those kinds of
projects, subsystem testing is rigorous and thorough.

Pulse Width Controls Speed and Direction

Recall from centering the servos that a signal with a pulse width of 1.5 ms caused the
servos to stay still. This was done using a PULSOUT command with a Duration of 750.
What would happen if the signal’s pulse width is not 1.5 ms?

In the Your Turn section of Activity #2, you programmed the BASIC Stamp to send
series of 1.3 ms pulses to an LED. Let’s take a closer look at that series of pulses and
find out how it can be used to control a servo. Figure 2-25 shows how a Parallax
Continuous Rotation servo turns full speed clockwise when you send it 1.3 ms pulses.
Full speed ranges from 50 to 60 RPM.

Vdd (5 V)

Vss (0 V)

1.3 ms 1.3 ms

20 ms

www.parallax.com

standard servo

Figure 2-25
A 1.3 ms
Pulse Train
Turns the
Servo Full
Speed
Clockwise

What’s RPM? Revolutions Per Minute. It’s the number of full circles something turns in a
minute.

What’s a pulse train? Just as a railroad train is a series of cars, a pulse train is a series of
pulses.

 Chapter 2: Your Boe-Bot’s Servo Motors · Page 77

You can use ServoP13Clockwise.bs2 to send this pulse train to the servo connected to
P13.

Example Program: ServoP13Clockwise.bs2

Your entire system, including servos should be connected to power for this activity.

√ If you have a Board of Education Rev C, set the 3-position switch to position-2.
This connects power to the servo ports in addition to the position-1 power to the
BASIC Stamp, Vdd, Vin, and Vss.

√ If you have a BASIC Stamp HomeWork Board, replace the battery you removed
from the battery pack. This will restore power to the servo ports. Also, connect
the 9 V battery to the battery clip. This will supply power to the embedded BASIC
Stamp, Vdd, Vin, and Vss.

√ Enter, save, and run ServoP13Clockwise.bs2.
√ Verify that the servo’s horn is rotating between 50 and 60 RPM clockwise.

' Robotics with the Boe-Bot – ServoP13Clockwise.bs2
' Run the servo connected to P13 at full speed clockwise.

' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG "Program Running!"

DO
 PULSOUT 13, 650
 PAUSE 20
LOOP

Notice that a 1.3 ms pulse requires a PULSOUT command Duration argument of 650,
which is less than 750. All pulse widths less than 1.5 ms, and therefore PULSOUT
Duration arguments less than 750, will cause the servo to rotate clockwise.

Example Program: ServoP12Clockwise.bs2

By changing the PULSOUT command’s Pin argument from 13 to 12, you can make the
servo connected to P12 turn full speed clockwise.

√ Save ServoP13Clockwise.bs2 as ServoP12Clockwise.bs2.
√ Modify the program by updating the comments and the PULSOUT command’s

Pin argument to 12.

Page 78 · Robotics with the Boe-Bot

√ Run the program and verify that the servo connected to P12 is now rotating
between 50 and 60 RPM clockwise.

' Robotics with the Boe-Bot – ServoP12Clockwise.bs2
' Run the servo connected to P12 at full speed clockwise.

' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG "Program Running!"

DO
 PULSOUT 12, 650
 PAUSE 20
LOOP

Example Program: ServoP12Counterclockwise.bs2

You have probably anticipated that making the PULSOUT command’s Duration argument
greater than 750 will cause the servo to rotate counterclockwise. A Duration of 850 will
send 1.7 ms pulses as shown in Figure 2-26. This will make the servo turn full speed
counterclockwise.

Figure 2-26
A 1.7 ms Pulse
Train Makes the
Servo Turn Full
Speed
Counterclockwise

√ Save ServoP12Clockwise.bs2 as ServoP12Counterclockwise.bs2.
√ Modify the program by changing the PULSOUT command’s Duration argument

from 650 to 850.
√ Run the program and verify that the servo connected to P12 is now rotating

between 50 and 60 RPM counterclockwise.

' Robotics with the Boe-Bot – ServoP12Counterclockwise.bs2
' Run the servo connected to P12 at full speed counterclockwise.

' {$STAMP BS2}
' {$PBASIC 2.5}

Vdd (5 V)

Vss (0 V)

1.7 ms 1.7 ms

20 ms

www.parallax.com

standard servo

 Chapter 2: Your Boe-Bot’s Servo Motors · Page 79

DEBUG "Program Running!"

DO
 PULSOUT 12, 850
 PAUSE 20
LOOP

Your Turn – P13Clockwise.bs2

√ Modify the PULSOUT command’s Pin argument so that it makes the servo
connected to P13 turn counterclockwise.

Example Program: ServosP13CcwP12Cw.bs2

You can use two PULSOUT commands to make both servos turn at the same time. You
can also make them turn in opposite directions.

√ Enter, save, and run ServosP13CcwP12Cw.bs2.
√ Verify that the servo connected to P13 is turning full speed counterclockwise

while the one connected to P12 is turning full speed clockwise.

' Robotics with the Boe-Bot - ServosP13CcwP12Cw.bs2
' Run the servo connected to P13 at full speed counterclockwise
' and the servo connected to P12 at full speed clockwise.

' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG "Program Running!"

DO
 PULSOUT 13, 850
 PULSOUT 12, 650
 PAUSE 20
LOOP

This will be important soon. Think about it: when the servos are mounted on either side
of the chassis, one will have to rotate clockwise while the other rotates counterclockwise
to make the Boe-Bot roll in a straight line. Does that seem odd? If you can’t picture it,
try this:

√ Hold your servos together back-to-back and re-run the program.

Page 80 · Robotics with the Boe-Bot

Your Turn – Adjusting the Speed and Direction

There are four different combinations of PULSOUT Duration arguments that will be used
repeatedly when programming your Boe-Bot’s motion in the upcoming chapters.
ServosP13CcwP12Cw.bs2 sends one of these combinations, 850 to P13 and 650 to P12.
By testing several possible combinations and filling in the Description column of Table
2-1, you will become familiar with them and build a reference for yourself. You will fill
in the Behavior column after your Boe-Bot is fully assembled, when you can see how
each combination makes it move.

√ Try the following PULSOUT Duration combinations, and fill in the Description
column with your results.

 Chapter 2: Your Boe-Bot’s Servo Motors · Page 81

Table 2-1: PULSOUT Duration Combinations

Durations
P13 P12 Description Behavior

850 650
Full speed, P13 servo
counterclockwise, P12 servo
clockwise.

650 850

850 850

650 650

750 850

650 750

750 750

Both servos should stay still
because of the centering
adjustments you made in
Activity #4.

760 740

770 730

850 700

800 650

Page 82 · Robotics with the Boe-Bot

FOR…NEXT to Control Servo Run Time

Hopefully, by now you fully understand that pulse width controls the speed and direction
of a Parallax Continuous Rotation servo. It’s a pretty simple way to control motor speed
and direction. There is also a simple way to control the amount of time a motor runs, and
that’s with a FOR…NEXT loop.

Here is an example of a FOR…NEXT loop that will make the servo turn for a few seconds:

FOR counter = 1 TO 100
 PULSOUT 13, 850
 PAUSE 20
NEXT

Let’s figure out the exact length of time this code would cause the servo to turn. Each
time through the loop, the PULSOUT command lasts for 1.7 ms, the PAUSE command lasts
for 20 ms, and it takes around 1.3 ms for the loop to execute.

One time through the loop = 1.7 ms + 20 ms + 1.3 ms = 23.0 ms.

Since the loop executes 100 times, that’s 23.0 ms times 100.

s30.2
s0230.0100

ms0.23100time

=
×=
×=

Let’s say you want the servo to run for 4.6 seconds. Your FOR…NEXT loop will have to
execute twice as many times:

FOR counter = 1 TO 200
 PULSOUT 13, 850
 PAUSE 20
NEXT

Example Program: ControlServoRunTimes.bs2

√ Enter, save, and run ControlServoRunTimes.bs2.
√ Verify that the P13 servo turns counterclockwise for about 2.3 seconds, followed

by the P12 servo turning for twice as long

' Robotics with the Boe-Bot - ControlServoRunTimes.bs2
' Run the P13 servo at full speed counterclockwise for 2.3 s, then
' run the P12 servo for twice as long.

 Chapter 2: Your Boe-Bot’s Servo Motors · Page 83

' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG "Program Running!"

counter VAR Byte

FOR counter = 1 TO 100
 PULSOUT 13, 850
 PAUSE 20
NEXT

FOR counter = 1 TO 200
 PULSOUT 12, 850
 PAUSE 20
NEXT

END

Let’s say you want to run both servos, the P13 servo at a pulse width of 850 and the P12
servo at a pulse width of 650. Now, each time through the loop, it will take:

 1.7ms – Servo connected to P13
 1.3 ms – Servo connected to P12
 20 ms – Pause duration
 1.6 ms – Code overhead
 --------- ------------------------------
 24.6 ms – Total

If you want to run the servos for a certain amount of time, you can calculate it like this:

 Number of pulses = Time s / 0.0246s = Time / 0.0246

Lets’ say we want to run the servos for 3 seconds. That’s

Number of pulses = 3 / 0.0246 = 122

Now, you can use the value 122 in the EndValue of the FOR…NEXT loop, and it will look
like this:

FOR counter = 1 TO 122
 PULSOUT 13, 850
 PULSOUT 12, 650
 PAUSE 20
NEXT

Page 84 · Robotics with the Boe-Bot

Example Program: BothServosThreeSeconds.bs2

Here’s an example of making the servos turn in one direction for three seconds, then
reversing their direction.

√ Enter, save, and run BothServosThreeSeconds.bs2.

' Robotics with the Boe-Bot - BothServosThreeSeconds.bs2
' Run both servos in opposite directions for three seconds, then reverse
' the direction of both servos and run another three seconds.

' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG "Program Running!"

counter VAR Byte

FOR counter = 1 TO 122
 PULSOUT 13, 850
 PULSOUT 12, 650
 PAUSE 20
NEXT

FOR counter = 1 TO 122
 PULSOUT 13, 650
 PULSOUT 12, 850
 PAUSE 20
NEXT

END

Verify that each servo turned one direction for three seconds, and then reversed direction
and turned for three more seconds. Did you notice that while the servos reversed at the
same moment, they were always turning in opposite directions? Why would this be
useful?

Your Turn – Predict Servo Run Time

√ Pick a time (six seconds or less), that you want your servos to turn.
√ Divide the number of seconds by 0.024.
√ Your answer is the number of loops you will need.
√ Modify BothServosThreeSeconds.bs2 so that it makes both servos run for the

amount of time you selected.
√ Compare your predicted run time to the actual run time.

 Chapter 2: Your Boe-Bot’s Servo Motors · Page 85

√ Remember to disconnect power from your system (board and servos) when you
are done. That means setting the 3-posisiton switch to position-0 if you have a
Board of Education Rev C. If you have a HomeWork Board, disconnect the 9 V
battery from the battery clip and remove one battery from the battery pack.

TIP – To measure the run time, press and hold the Reset button on your Board of Education
(or BASIC Stamp HomeWork Board). When you are ready to start timing, let go of the
Reset button.

Page 86 · Robotics with the Boe-Bot

SUMMARY
This chapter guided you through connecting, adjusting, and testing the Parallax
Continuous Rotation servos. Along the way, a variety of PBASIC commands were
introduced. The PAUSE command makes the program stop for brief or long periods of
time, depending on the Duration argument you use. DO…LOOP makes repeating a single
or group of PBASIC commands over and over again efficient. HIGH and LOW were
introduced as a way of making the BASIC Stamp connect an I/O pin to Vdd or Vss.
High and low signals were viewed with the help of an LED circuit. These signals were
used to introduce timing diagrams.

The PULSOUT command was introduced as a more precise way to deliver a high or low
signal, and an LED circuit was also used to view signals sent by the PULSOUT command.
DO…LOOP, PULSOUT, and PAUSE were then used to send the Parallax Continuous Rotation
servos the signal to stay still, which is 1.5 ms pulses every 20 ms. The servo was
adjusted with a screwdriver while receiving the 1.5 ms pulses until it stayed still. This
process is called “centering” the servo.

After the servos were centered, variables were introduced as a way to store values.
Variables can be used in math operations and counting. FOR…NEXT loops were introduced
as a way to count. FOR…NEXT loops control the number of times the code between the
FOR and NEXT statements are executed. FOR…NEXT loops were then used to control the
number of pulses delivered to a servo, which in turn controls the amount of time the
servo runs.

Questions
1. How do the Parallax Continuous Rotation servos differ from standard servos?
2. How long does a millisecond last? How do you abbreviate it?
3. What PBASIC commands can you use to make other PBASIC commands

execute over and over again?
4. What command causes the BASIC Stamp to internally connect one of its I/O

pins to Vdd? What command makes the same kind of connection, but to Vss?
5. What are the names of the different size variables that can be declared in a

PBASIC program? What size values can each size of variable store?
6. What is the key to controlling a Parallax Continuous Rotation servo’s speed and

direction? How does this relate to timing diagrams? How does it relate to

 Chapter 2: Your Boe-Bot’s Servo Motors · Page 87

PBASIC commands? What are the command and argument that you can adjust
to control a continuous rotation servo’s speed and direction?

Exercises
1. Write a PAUSE command that makes the BASIC Stamp do nothing for 10

seconds.
2. Modify this FOR…NEXT loop so that it counts from 6 to 24 in steps of 3. Also,

write the variable declaration you will need to make this program work.
FOR counter = 9 TO 21
 DEBUG ? counter
 PAUSE 500
NEXT

Projects
1. Write a program that causes the LED connected to P14 to light dimly (on/off

with every pulse) while the P12 servo is turning.
2. Write a program that takes the servos through three seconds of each of the four

different combinations of rotation. Hint: you will need four different FOR…NEXT
loops. First, both servos should rotate counterclockwise, then they should both
rotate clockwise. Then, the P12 servo should rotate clockwise as the P13 servo
rotates counterclockwise, and finally, the P12 servo should rotate
counterclockwise while the P13 servo rotates clockwise.

Page 88 · Robotics with the Boe-Bot

Solutions
Q1. Instead of holding a certain position like a standard servo, the Parallax

Continuous Rotation servos turn a certain direction at a certain speed.
Q2. A millisecond lasts one thousandth of a second. Millisecond is abbreviated

"ms".
Q3. The DO…LOOP command is used to make other PBASIC commands execute over

and over.
Q4. HIGH connects I/O pin to Vdd, LOW connects I/O pin to Vss.
Q5. The variable sizes are bit, nib, byte, and word.

Bit – Stores 0 to 1
Nib – Stores 0 to 15
Byte – Stores 0 to 255
Word – Stores 0 to 65535 or -32768 to +32767

Q6. Pulse width controls servo speed and direction. As seen on a timing diagram, the
pulse width is the high time. In PBASIC, the pulse can be generated with the
PULSOUT command. The PULSOUT command's Duration argument adjusts the
speed and direction.

E1. PAUSE 10000
E2. The key to writing the variable declaration is to choose a variable size large

enough to hold the value 24. A Nib (nibble) will not work, since the maximum
value a Nib can store is 15. Therefore, choose a Byte variable.

counter VAR Byte
FOR counter = 6 TO 24 STEP 3
 DEBUG ? counter
 PAUSE 500
NEXT

P1. The key to solving this problem is to send a pulse train to the LED as well as the
servo.

' Robotics with the Boe-Bot - Ch02Prj01_DimlyLitLED.bs2
' Run servo and send same signal to the LED on P14,
' to make it light dimly.
'{$STAMP BS2}
'{$PBASIC 2.5}

DEBUG "Program Running!"

DO

 Chapter 2: Your Boe-Bot’s Servo Motors · Page 89

 PULSOUT 12, 650 ' P12 servo clockwise
 PULSOUT 14, 650 ' P14 LED lights dimly
 PAUSE 20
LOOP

P2. First, calculate the number of loops needed to get the servos to run for three

seconds, for each combination of rotation. As given on page 79, the code
overhead is 1.6 ms.

Four combinations (1,2,3,4).
Each combination: Determine PULSOUT Duration arguments:

1. Both counterclockwise: 12, 850 and 13, 850
2. Both clockwise: 12, 650 and 13, 650
3. 12 CW and 13 CCW: 12, 850 and 13, 650
4. 12 CCW and 13 CW: 12, 650 and 13, 850

Each combination: Calculate how long it will take for one loop:

1. one loop = 1.7 + 1.7 + 20 ms + 1.6 = 25.0 ms = 0.025 s
2. one loop = 1.3 + 1.3 + 20 ms + 1.6 = 24.2 ms = 0.0242 s
3. one loop = 1.7 + 1.3 + 20 ms + 1.6 = 24.6 ms = 0.0246 s
4. one loop = 1.3 + 1.7 + 20 ms + 1.6 = 24.6 ms = 0.0246 s

Each combination: Calculate number of pulses needed for 3 s of running:

1. number of pulses = 3 s / 0.025 s = 120
2. number of pulses = 3 s / 0.0242 s = 123.9 = 124
3. number of pulses = 3 s / 0.0246 s = 121.9 = 122
4. number of pulses = 3 s / 0.0246 s = 121.9 = 122

Now write four FOR…NEXT loops, using the number of pulses calculated for the
EndValue argument. Include the correct PULSOUT arguments for the
combination of rotation.

' Robotics with the Boe-Bot - Ch02Prj02_4RotationCombinations.bs2
' Move servos through 4 clockwise/counterclockwise rotation '
combinations.

'{$STAMP BS2}
'{$PBASIC 2.5}

Page 90 · Robotics with the Boe-Bot

DEBUG "Program Running!"

counter VAR Word

FOR counter = 1 TO 120 ' Loop for three seconds
 PULSOUT 13, 850 ' P13 servo counterclockwise
 PULSOUT 12, 850 ' P12 servo counterclockwise
 PAUSE 20
NEXT

FOR counter = 1 TO 124 ' Loop for three seconds
 PULSOUT 13, 650 ' P13 servo clockwise
 PULSOUT 12, 650 ' P12 servo clockwise
 PAUSE 20
NEXT

FOR counter = 1 TO 122 ' Loop for three seconds
 PULSOUT 13, 650 ' P13 servo clockwise
 PULSOUT 12, 850 ' P12 servo counterclockwise
 PAUSE 20
NEXT

FOR counter = 1 TO 122 ' Loop for three seconds
 PULSOUT 13, 850 ' P13 servo counterclockwise
 PULSOUT 12, 650 ' P12 servo clockwise
 PAUSE 20
NEXT

END

Chapter 3: Assemble and Test Your Boe-Bot · Page 91

Chapter 3: Assemble and Test Your Boe-Bot

This chapter contains instructions for building and testing your Boe-Bot. It’s especially
important to complete the testing portion before moving on to the next chapter. By doing
so, you can help avoid a number of common mistakes that lead to mystifying Boe-Bot
behavior in later chapters. Here is a summary of what you will do in each of the
activities in this chapter:

Activity Summary

 1 Build the Boe-Bot
 2 Re-test the servos to make sure they are properly connected
 3 Connect and test a speaker that can let you know when the Boe-Bot’s

batteries are low
 4 Use the Debug Terminal to control and test servo speed

ACTIVITY #1: ASSEMBLING THE BOE-BOT
This activity will guide you through assembling the Boe-Bot, step-by-step. In each step,
you will gather a few of the parts, and then assemble them so that they match the
pictures. Each picture has instructions that go with it; make sure to follow them
carefully.

Servo Tools and Parts

All of the tools shown in Figure 3-1 are common and can be found in most households
and school shops. They can also be purchased at local hardware stores.

Tools

(1) Parallax screwdriver (Phillips #1 point screwdriver 1/8″ (3.18 mm) shaft)
(1) 1/4″ Combination wrench (Optional)
(1) Needle-nose pliers (Optional)

Page 92 · Robotics with the Boe-Bot

Figure 3-1
Boe-Bot
Assembly
Tools

Mounting the Topside Hardware

√ Start by gathering this list of parts.
√ Then, follow the accompanying instructions.

Parts List:

See Figure 3-2.

(1) Boe-Bot chassis
(4) 1″ Standoffs
(4) Pan head screws, 1/4″ 4-40
(1) Rubber grommet, 13/32″

Instructions:

√ Insert the 13/32″ rubber grommet into the
hole in the center of the Boe-Bot chassis.

√ Make sure the groove in the outer edge of
the rubber grommet is seated on the edge of
the hole in the chassis.

√ Use the four 1/4″ 4-40 screws to attach the
four standoffs to the chassis as shown.

Chapter 3: Assemble and Test Your Boe-Bot · Page 93

Figure 3-2
Chassis and
Topside
Hardware

Parts (left);
assembled
(right).

Boe-Bot Parts - The parts for the Boe-Bot are either included in the Boe-Bot full kit or in a
combination of the Board of Education Full Kit and Robotics Parts Kit. See Appendix E:
Boe-Bot Parts Lists for more information.

Removing the Servo Horns

√ Disconnect the power from your BASIC Stamp and servos.
√ Remove all of the AA batteries from the battery pack.
√ Disconnect the servos from your board.

Parts List:

See Figure 3-3.

(2) Parallax Continuous
Rotation servos, previously
centered

Instructions:

√ Use a Phillips screwdriver to remove the
screws that hold the servo control horns on
the output shafts.

√ Pull each horn upwards and off the servo
output shaft.

√ Save the screws; they will be used in a later
step.

Page 94 · Robotics with the Boe-Bot

Figure 3-3
Servo Control
Horn Removal

Parts (left);
after following
instructions
(right).

Stop!

√ Before this next step, you must have completed these activities from Chapter 2: Your
Boe-Bot’s Servo Motors

• Activity #3: Connecting the Servo Motors
• Activity #4: Centering the Servos

Mounting the Servos on the Chassis

Parts List:

See Figure 3-4.

(1) Boe-Bot chassis (partially

assembled)
(2) Parallax Continuous Rotation

servos
(8) Pan Head Screws, 3/8″ 4-40
(8) Nuts, 4-40

Instructions:

√ Attach the servos to the chassis using the
Phillips screws and nuts. Note that for best
performance, you must place the face of
each servo through the rectangular window
from inside the chassis rather than dropping
them in from the outside.

√ Use pieces of masking tape to label the
servos left (L) and right (R).

Control
horn

Phillips
screw

Output
shaft

Chapter 3: Assemble and Test Your Boe-Bot · Page 95

Figure 3-4
Mounting the
Servos on the
Chassis

Parts (left);
assembled
(right).

Mounting the Battery Pack

Figure 3-5 shows two different sets of parts. Use the parts on the left if you have a Board
of Education, and the parts on the right if you have a HomeWork Board.

Parts List for Boe-Bot with a
Board of Education Rev C:

See Figure 3-5 (left side).

(1) Boe-Bot chassis (partially

assembled)
(2) Flat head Phillips screws,

3/8″ 4-40
(2) Nuts, 4-40
(1) Battery pack with center

positive plug

Parts List for Boe-Bot with a
HomeWork Board:

See Figure 3-5 (right side).

(1) Boe-Bot chassis (partially

assembled)
(2) Flat head Phillips screws, 3/8″

4-40
(2) Nuts, 4-40
(1) Battery pack with tinned leads

Page 96 · Robotics with the Boe-Bot

Figure 3-5
Battery Pack
Mounting
Hardware

For use with the Board of Education For use with the HomeWork Board

Instructions:

√ Use the flathead screws and nuts to attach the battery pack to underside of the
Boe-Bot chassis as shown on the left side of Figure 3-6.

√ Make sure to insert the screws through the battery pack, then tighten down the
nuts on the topside of the chassis.

√ As shown on the right side of Figure 3-6, pull the battery pack’s power cord
through the hole with the rubber grommet in the center of the chassis.

√ Pull the servo lines through the same hole.
√ Arrange the servo lines and supply cable as shown.

Chapter 3: Assemble and Test Your Boe-Bot · Page 97

Figure 3-6
Battery Pack
Installed

Bottom view
(left);
top view
(right).

Mounting the Wheels

Parts List:

(1) Partially assembled Boe-Bot
(not shown)

(1) 1/16″ Cotter pin
(1) Tail wheel ball
(2) Rubber band tires
(2) Plastic machined wheels
(2) Screws that were saved in the

Removing the Servo Horns
step

Figure 3-7
Wheel
Hardware

Instructions:

The left side of Figure 3-8 shows the Boe-Bot’s tail wheel mounted on the chassis. The
tail wheel is merely a plastic ball with a hole through the center. A cotter pin holds it to
the chassis and functions as an axle for the wheel.

√ Line the hole in the tail wheel up with the holes in the tail portion of the chassis.
√ Run the cotter pin through all three holes (chassis left, tail wheel, chassis right).
√ Bend the ends of the cotter pin apart so that it can’t slide back out of the hole.

The right side of Figure 3-8 shows the Boe-Bot’s drive wheels mounted on the servos.

√ Stretch each rubber band tire and seat it on the outer edge of each wheel.

Page 98 · Robotics with the Boe-Bot

√ Each plastic wheel has a recess that fits on a servo output shaft. Press each
plastic wheel onto a servo output shaft making sure the shaft lines up with and
sinks into the recess.

√ Use the machine screws that you saved when you removed the servo horns to
attach the wheels to the servo output shafts.

Figure 3-8
Mounting the
Wheels

Tail wheels
(left); drive
wheels (right).

Attaching Board to Chassis

Parts List for a Boe-Bot with
a Board of Education:

See left side of Figure 3-9.

(1) Boe-Bot chassis (partially

assembled)
(4) Pan head screws, 1/4″ 4-40
(1) Board of Education with

BASIC Stamp 2

Parts List for a Boe-Bot with a
HomeWork Board:

See right side of Figure 3-9.

 (1) Boe-Bot chassis (partially

assembled)
(4) Pan head screws, 1/4″ 4-40
(1) BASIC Stamp HomeWork

Board

Chapter 3: Assemble and Test Your Boe-Bot · Page 99

Figure 3-9
Boe-Bot Chassis
and Boards

With the Board of Education Rev C With the HomeWork Board

Figure 3-10 shows the servo ports reconnected for both the Board of Education Rev C
(left side) and the HomeWork Board (right side).

√ Reconnect the servos to the servo headers.
√ Make sure to connect the plug labeled ‘L’ to the P13 port and the plug labeled

‘R’ to the P12 port.

Page 100 · Robotics with the Boe-Bot

Black
Red

X4 X5

15 14 13 12Vdd

White
Red
Black

White
Red

Black

P15
P14

P11
P10
P9
P8

P13
P12

X3
Vdd VssVin

(916) 624-8333
www.parallaxinc.com
www.stampsinclass.com

Rev B

Figure 3-10
Servo Ports
Reconnected

Board of
Education Rev
C (left)
HomeWork
Board (right).

On Board of Education Rev C On HomeWork Board

Figure 3-11 shows the Boe-Bot chassis with their respective boards attached.

√ Set the board on the four standoffs so that they line up with the four holes on the
outer corner of the board.

√ Make sure the white breadboard is closer to the drive wheels, not the tail wheel.
√ Attach the board to the standoffs with the pan head screws.

Figure 3-11
Boards Attached
to Boe-Bot
Chassis

With Board of Education Rev C With HomeWork Board

Figure 3-12 shows assembled Boe-Bots, the left built with a Board of Education Rev C
and the right built with a HomeWork Board.

 P13 - White
 Vbp - Red
 Vss - Black
 Vbp - Red
P12 - White

Solid
Black

White
Stripe

Chapter 3: Assemble and Test Your Boe-Bot · Page 101

√ From the underside of the chassis, pull any excess servo and battery cable

through the hole with the rubber grommet.
√ Tuck the excess cable lengths between the servos and the chassis.

Figure 3-12
Assembled
Boe-Bots

With Board of Education Rev C With HomeWork Board

ACTIVITY #2: RE-TEST THE SERVOS
In this activity, you will test to make sure that the electrical connections between your
board and the servos are correct. Figure 3-13 shows your Boe-Bot’s front, back, left, and
right. We need to make sure that the servo on the right turns when it receives pulses from
P12 and that the servo on the left turns when it receives pulses from P13.

Page 102 · Robotics with the Boe-Bot

Left

Back

Right

Front

Figure 3-13
Your Boe-Bot
robot’s Front, Back,
Left, and Right

Testing the Right Wheel

The next example program will test the servo connected to the right wheel, shown in
Figure 3-14. The program will make this wheel turn clockwise for three seconds, then
stop for one second, then turn counterclockwise for three seconds.

Figure 3-14
Testing the Right
Wheel

Example Program: RightServoTest.bs2

√ Set the Boe-Bot on its nose so that the drive wheels are suspended above ground.
√ Reload the batteries into the battery pack.
√ If you have a Board of Education Rev C, set the 3-position switch to position-2.
√ If you have a BASIC Stamp HomeWork Board, connect the 9 V battery to the

battery clip.
√ Enter, save, and run RightServoTest.bs2.
√ Verify that the right wheel turns clockwise for three seconds, stops for one

second, then turns counterclockwise for three seconds.

Counterclockwise 3 seconds

Stop 1 second

Clockwise 3 seconds

Chapter 3: Assemble and Test Your Boe-Bot · Page 103

√ If the right wheel/servo does not behave as predicted, see the Servo Trouble
Shooting section. It comes right after RightServoTest.bs2.

√ If the right wheel/servo does behave properly, then move on to the Your Turn
section, where you will test the left wheel.

' Robotics with the Boe-Bot - RightServoTest.bs2
' Right servo turns clockwise three seconds, stops 1 second, then
' counterclockwise three seconds.

' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG "Program Running!"

counter VAR Word

FOR counter = 1 TO 122 ' Clockwise just under 3 seconds.
 PULSOUT 12, 650
 PAUSE 20
NEXT

FOR counter = 1 TO 40 ' Stop one second.
 PULSOUT 12, 750
 PAUSE 20
NEXT

FOR counter = 1 TO 122 ' Counterclockwise three seconds.
 PULSOUT 12, 850
 PAUSE 20
NEXT

END

Page 104 · Robotics with the Boe-Bot

Servo Trouble Shooting: Here is a list of some common symptoms and how to fix them.

The servo doesn’t turn at all.

√ If you are using a Board of Education Rev C, make sure the 3-position switch is
set to position-2. You can then re-run the program by pressing and releasing the
Reset button.

√ If you are using a BASIC Stamp HomeWork Board, make sure the battery pack
has batteries.

√ Double-check your servo connections using Figure 3-10 on page 100 as a guide.
If you are using a HomeWork Board, you may also want to take a second look at
Figure 2-18 on page 65.

√ Check and make sure you entered the program correctly.

The right servo doesn’t turn, but the left one does.

This means that the servos are swapped. The servo that’s connected to P12 should
be connected to P13, and the servo that’s connected to P13 should be connected to
P12.

√ Disconnect power.
√ Unplug both servos.
√ Connect the servo that was connected to P12 to P13.
√ Connect the other servo (that was connected to P13) to P12.
√ Reconnect power.
√ Re-run RightServoTest.bs2.

The wheel does not fully stop; it turns slowly.

This means that the servo may not be exactly centered. You can often adjust the
program to make the servo stay still. You can do this by modifying the PULSOUT
12, 750 command.

√ If the wheel turns slowly counterclockwise, use a value that’s a little smaller than
750.

√ If it’s turning clockwise, use a value that’s a little larger than 750.
√ If you can find a value between 740 and 760 that fully stops your servo, then make

sure to use it anywhere you see the command PULSOUT 12, 750.

The wheel doesn’t stop for one second between the clockwise and counterclockwise
rotations.

The wheel might turn rapidly for three seconds in one direction and four in the other. It
might also turn rapidly for three seconds, then just a little slower for one second, then
turn rapidly again for three seconds. Or, it might turn rapidly in the same direction for
seven seconds. Regardless, it means the potentiometer is out of adjustment.

√ Remove the wheels, un-mount the servos and repeat the exercise in Chapter 2
Activity #4: Centering the Servos.

Chapter 3: Assemble and Test Your Boe-Bot · Page 105

Your Turn – Testing the Left Wheel

Now, it’s time to run the same test on the left wheel as shown in Figure 3-15. This
involves modifying RightServoTest.bs2 so that the PULSOUT commands are sent to the
servo connected to P13 instead of the servo connected to P12.

All you have to do is change the three PULSOUT commands so that they read PULSOUT 13
instead of PULSOUT 12.

Figure 3-15
Testing the Left
Wheel

√ Save RightServoTest.bs2 as LeftServoTest.bs2.
√ Change the three PULSOUT commands so that they read PULSOUT 13 instead of

PULSOUT 12.
√ Save and then run the program.
√ Verify that it makes the left servo turn clockwise for 3 seconds, stops for 1

second, then makes the servo turn counterclockwise for 3 seconds.
√ If the left wheel/servo does not behave as predicted, see the Servo Trouble

Shooting section on page 104.
√ If the left wheel/servo does behave properly, then your Boe-Bot is functioning

properly, and you are ready to move on to the next activity.

ACTIVITY #3: START/RESET INDICATOR CIRCUIT AND PROGRAM
When the voltage supply drops below the level a device needs to function properly, it’s
called brownout. The BASIC Stamp protects itself from brownout by making its
processor and program memory chips go dormant until the power supply voltage returns
to normal levels. A drop below 5.2 V at Vin results in a drop below 4.3 V at the BASIC
Stamp’s internal voltage regulator output. A circuit called a brownout detector on the
BASIC Stamp is always on the lookout for this condition. When brownout occurs, the
brownout detector disables the BASIC Stamp’s processor and program memory.

Counterclockwise 3 seconds

Stop 1 second

Clockwise 3 seconds

Page 106 · Robotics with the Boe-Bot

When the supply voltage comes back above 5.2 V, the BASIC Stamp starts running
again, but not at the same place in the program. Instead, it starts from the beginning of
the program. This is actually the same thing that happens when you unplug power and
plug it back in, and it’s also the same thing that happens if you press and release the Reset
button on your board.

When the Boe-Bot’s batteries are running low, brownouts can cause the program to
restart when you’re not expecting it to. This can lead to some really mystifying Boe-Bot
behavior. In some cases, the Boe-Bot will be running whatever course it’s programmed
to navigate, and all of the sudden, it might seem to get lost and go in an unexpected
direction. If low batteries are the cause, it could be the fact that the Boe-Bot’s program
went back to the beginning and started over again. In other cases, the Boe-Bot can end
up doing a confused dance because every time the servos start turning, it overtaxes the
already low batteries. The program attempts to make the servos turn for a split second,
then restarts, over and over again.

These situations make a program start/reset indicator an extremely useful diagnostic
device as well as a useful robot tool. One way to indicate resets is to include an
unmistakable signal at the beginning of all the Boe-Bot’s programs. The signal occurs
every time the power gets plugged in, but it also occurs every time a reset due to
brownout conditions occurs. One effective signal for resets is a speaker that emits a tone
each time the BASIC Stamp program runs from the beginning or resets.

BASIC Stamp HomeWork Board Special Instructions

Although the reset indicator will tell you when the 9 V battery supplying the BASIC Stamp is
running low, it will not tell you when the servo supply (the battery pack) is running low.

You can always tell when your battery pack is running low because the servos will gradually
move slower and slower during normal operation. When you observe this symptom, replace
the dead batteries with new 1.5 V alkaline batteries.

This exercise will introduce a device called a piezoelectric speaker (piezospeaker) that
you can use to generate tones. This speaker can make different tones depending on the
frequency of high/low signals it receives from the BASIC Stamp. The schematic symbol
and part drawing for the piezoelectric speaker are shown in Figure 3-16. This speaker
will be used for emitting the tones when the BASIC Stamp is reset in this activity as well
as in the rest of the activities in this text.

Chapter 3: Assemble and Test Your Boe-Bot · Page 107

Figure 3-16
Piezospeaker

What’s frequency? It’s the measurement of how often something occurs in a given amount
of time.

What’s a piezoelectric element and how can it make sound? It’s a crystal that changes
shape slightly when voltage is applied to it. By applying high and low voltages to a
piezoelectric crystal at a rapid rate, it causes the piezoelectric crystal to rapidly change
shape. The result is vibration. Vibrating objects cause the air around them to vibrate also.
This is what our ear detects as sounds and tones. Every rate of vibration has a different
tone. For example, if you pluck a single guitar string, it will vibrate at one frequency, and
you will hear a particular tone. If you pluck a different guitar string, it will vibrate at a
different frequency and make a different tone.

Note: Piezoelectric elements have many uses. For example, when force is applied to a
piezoelectric element, it can create voltage. Some piezoelectric elements have a frequency
at which they naturally vibrate. These can be used to create voltages at frequencies that
function as the clock oscillator for many computers and microcontrollers.

Parts Required
(1) Assembled and tested Boe-Bot
(1) Piezospeaker
(misc.) Jumper wires

If your piezospeaker has a label that says “Remove seal after washing” just peel it off and
proceed. Your piezospeaker does not need to be washed!

Building the Start/Reset Indicator Circuit
Figure 3-17 shows piezospeaker alarm circuit schematics for both the Board of Education
and BASIC Stamp HomeWork Board. Figure 3-18 shows a wiring diagram for each
board.

Always disconnect power before building or modifying circuits!

√ If you have a Board of Education Rev C, set the 3-position switch to position-0.
√ If you have a BASIC Stamp HomeWork Board, disconnect the 9 V battery from the

battery clip and remove a battery from the Battery Pack.

Page 108 · Robotics with the Boe-Bot

√ Build the circuit shown in Figure 3-17 and Figure 3-18.

P4

Vss

Figure 3-17
Program Start/Reset
Indicator Circuit

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5

P3
P2
P1
P0

P4

X2

X3
Vdd VssVin

Board of Education
 © 2000-2003Rev C

Vdd

Black
Red

X4 X5

15 14 13 12

To Servos

+

P15
P14

P11

P13
P12

P4

P10
P9
P8
P7
P6
P5

P3
P2
P1
P0

X2

X3
Vdd VssVin

Rev B
(916) 624-8333
www.parallax.com
www.stampsinclass.com

To Servos

+

HomeWork Board

Figure 3-18
Wiring Diagrams for
the Program
Start/Reset Indicator
Circuit

Board of Education
(left) and HomeWork
Board (right).

The piezospeaker and servo circuits will remain connected to your board for the rest
of the activities in this text.

All circuit schematics from this point onward will show circuits that should be added
to the existing servo and piezospeaker circuits.

All wiring diagrams will show the circuit from the schematic that comes just before it
along with the servo and piezospeaker circuit connections.

Chapter 3: Assemble and Test Your Boe-Bot · Page 109

Programming the Start/Reset Indicator
The next example program tests the piezospeaker. It uses the FREQOUT command to send
precisely timed high/low signals to a speaker. Here is the FREQOUT command’s syntax:

FREQOUT Pin, Duration, Freq1 {,Freq2}

Here’s an example of a FREQOUT command that’s used in the next example program.

FREQOUT 4, 2000, 3000

The Pin argument is 4, meaning that the high/low signals will be sent to I/O pin P4. The
Duration argument, which is how long the high/low signals will last, is 2000, which is
2000 ms or 2 seconds. The Freq1 argument is the frequency of the high/low signals. In
this example, the high/low signals will make a 3000 hertz, or 3 kHz, tone.

Frequency can be measured in hertz (Hz). The hertz is a frequency measurement of how
many times per second something happens. One hertz is simply one time-per-second, and
it’s abbreviated 1 Hz. One kilohertz is one-thousand-times-per-second, and it’s abbreviated
1 kHz.

FREQOUT digitally synthesizes tones. The FREQOUT command applies high/low pulses
of varying durations that make a piezospeaker’s vibration more closely resemble natural
vibrations of music strings.

Example Program: StartResetIndicator.bs2

This example program makes a beep at the beginning of the program, then it goes on to
run a program that sends DEBUG messages every half second. These messages will
continue indefinitely because they are nested between DO and LOOP. If the power to the
BASIC Stamp is interrupted while it is in the middle of its DO…LOOP, the program will
start at the beginning again. When it starts over, it will beep again. You can simulate a
brownout condition by either pressing and releasing the Reset button on your board or
disconnecting and reconnecting your board’s battery supply.

√ Reconnect power to your board.
√ Enter, save, and run StartResetIndicator.bs2.
√ Verify that the piezospeaker made a clearly audible tone for two seconds before

the “Waiting for reset…” messages started to display in the Debug Terminal.

Page 110 · Robotics with the Boe-Bot

√ If you did not hear a tone, check your wiring and code for errors. Repeat until
you get an audible tone from your speaker.

√ If you did hear an audible tone, try simulating the brownout condition by
pressing and releasing the Reset button on your board. Verify that the
piezospeaker makes a clearly audible tone after each reset.

√ Also try disconnecting and reconnecting your battery supply, and verify that this
results in the reset warning tone as well.

' Robotics with the Boe-Bot - StartResetIndicator.bs2
' Test the piezospeaker circuit.

' {$STAMP BS2} ' Stamp directive.
' {$PBASIC 2.5} ' PBASIC directive.

DEBUG CLS, "Beep!!!" ' Display while speaker beeps.
FREQOUT 4, 2000, 3000 ' Signal program start/reset.

DO ' DO...LOOP
 DEBUG CR, "Waiting for reset…" ' Display message
 PAUSE 500 ' every 0.5 seconds
LOOP ' until hardware reset.

How StartResetIndicator.bs2 Works
StartResetIndicator.bs2 starts by displaying the message “Beep!!!” Then, immediately
after printing the message, the FREQOUT command plays a 3 kHz tone on the piezoelectric
speaker for 2 s. Because the instructions are executed so rapidly by the BASIC Stamp, it
should seem as though the message is displayed at the same instant the piezospeaker
starts to play the tone.

When the tone is done, the program enters a DO…LOOP, displaying the same “Waiting for
reset…” message over and over again. Each time the reset button on the Board of
Education is pressed or the power is disconnected and reconnected, the program starts
over again, with the "Beep!!!" message and the 3 kHz tone.

Your Turn - Adding StartResetIndicator.bs2 to a Different Program
The lines of code in the battery indicator program will be used at the beginning of every
example program from here onward. You could consider it part of the “initialization
routine” or “boot routine” for every Boe-Bot program.

Chapter 3: Assemble and Test Your Boe-Bot · Page 111

An initialization routine is comprised of all the commands necessary to get a device or
program up and running. It often includes setting certain variable values, beeping noises,
and for more complex devices, self testing and calibration.

√ Open HelloOnceEverySecond.bs2.
√ Copy the FREQOUT command from StartResetIndicator.bs2 into

HelloOnceEverySecond.bs2 above the DO…LOOP section.
√ Run the modified program and verify that it responds with a warning tone every

time the BASIC Stamp is reset (either by pressing and releasing the Reset button
on the board or disconnecting and reconnecting the battery supply).

ACTIVITY #4: TESTING SPEED CONTROL WITH THE DEBUG TERMINAL
In this activity, you will graph servo speed vs. pulse width. One thing that can make this
process go much more quickly is the Debug Terminal’s Transmit windowpane, which is
shown in Figure 3-19. You can use the Transmit windowpane to send the BASIC Stamp
messages. By sending messages that tell the BASIC Stamp what pulse width to deliver to
the servo, you can test the servo speed at various pulse widths.

Figure 3-19
Debug Terminal
Windowpanes

Pulse width is a common way to describe how long a pulse lasts. The reason it is called
pulse "width" is because the amount of time a pulse lasts is related to how wide it is on a
timing diagram. Pulses that last longer are wider on timing diagrams, and pulses that last
for short periods of time are narrow.

Transmit
Windowpane

Receive
Windowpane

Page 112 · Robotics with the Boe-Bot

Using the DEBUGIN Command

By now, you are probably familiar with the DEBUG command and how it can be used to
send messages from the BASIC Stamp to the Debug Terminal. The place the messages
are viewed is called the Receive windowpane because it's the place where messages
received from the BASIC Stamp are displayed. The Debug Terminal also has a Transmit
windowpane, which allows you to send information to your BASIC Stamp while a
program is running. You can use the DEBUGIN command to make the BASIC Stamp
receive what you type into the Transmit windowpane and store it in one or more
variables.

The DEBUGIN command places the value you type in the Transmit windowpane into a
variable. In the next example program, a word variable named pulseWidth will be used
to store the values the DEBUGIN command receives.

pulseWidth VAR Word

Now, the DEBUGIN command can be used to capture a decimal value that you enter into
the Debug Terminal’s Transmit windowpane and store it in pulseWidth:

DEBUGIN DEC pulseWidth

You can then program the BASIC Stamp to use this value. Here it is used in the
PULSOUT command’s Duration argument:

PULSOUT 12, pulseWidth

Example Program: TestServoSpeed.bs2

This program allows you to set the PULSOUT command’s Duration argument by entering
it into the Debug Terminal's Transmit windowpane.

√ Continue this activity with the Boe-Bot sitting on its nose so that the wheels do
not touch the ground.

√ Enter, save, and run TestServoSpeed.bs2.
√ Point at the Debug Terminal’s Transmit windowpane with your mouse, and click

it to activate the cursor in that window for typing.
√ Type 650 and then press the Enter key.
√ Verify that the servo turns full speed clockwise for six seconds.

Chapter 3: Assemble and Test Your Boe-Bot · Page 113

When the servo is done turning, you will be prompted to enter another value.

√ Type 850 and then press the Enter key.
√ Verify that the servo turns full speed counterclockwise.

Try measuring the wheel's rotational speed in RPM (revolutions per minute) for a range
of pulse widths between 650 and 850. Here's how:

√ Place a mark on the wheel so that you can see how far it turns in 6 seconds.
√ Use the Debug Terminal to test how far the wheel turns for each of these pulse

widths: 650, 660, 670, 680, 690, 700, 700, 710, 720, 730, 740, 750, 760, 770,
780, 790, 800, 810, 820, 830, 840, 850

√ For each pulse width, multiply the number of turns by 10 to get the RPM. For
example, if the wheel makes 3.65 full turns, it was rotating at 36.5 RPM.

√ Explain in your own words how you can use pulse width to control Continuous
Rotation servo speed.

' Robotics with the Boe-Bot - TestServoSpeed.bs2
' Enter pulse width, then count revolutions of the wheel.
' The wheel will run for 6 seconds
' Multiply by 10 to get revolutions per minute (RPM).

'{$STAMP BS2}
'{$PBASIC 2.5}

counter VAR Word
pulseWidth VAR Word
pulseWidthComp VAR Word

FREQOUT 4, 2000, 3000 ' Signal program start/reset.

DO

 DEBUG "Enter pulse width: "

 DEBUGIN DEC pulseWidth

 pulseWidthComp = 1500 - pulseWidth

Page 114 · Robotics with the Boe-Bot

 FOR counter = 1 TO 244
 PULSOUT 12, pulseWidth
 PULSOUT 13, pulseWidthComp
 PAUSE 20
 NEXT

LOOP

How TestServoSpeed.bs2 Works

Three variables are declared, counter for the FOR…NEXT loop, pulseWidth for the
DEBUGIN and PULSOUT commands, and pulseWidthComp which stores a value that is
used in a second PULSOUT command.

counter VAR Word
pulseWidth VAR Word
pulseWidthComp VAR Word

The FREQOUT command is used to signal that the program has started.

FREQOUT 4,2000,3000

The remainder of the program is nested within a DO…LOOP, so it will execute over and
over again. The Debug Terminal’s operator (that's you) is asked to enter a pulse width.
The DEBUGIN command stores this value in the pulseWidth variable.

 DEBUG "Enter pulse width: "

 DEBUGIN DEC pulseWidth

To make the measurement more accurate, two PULSOUT commands have to be sent. By
making one PULSOUT command the same amount below 750 as the other is above 750,
the sum of the two PULSOUT Duration arguments is always 1500. That ensures that the
two PULSOUT commands combined take the same amount of time. The result is that no
matter the Duration of your PULSOUT command, the FOR…NEXT loop will still take the
same amount of time to execute. This will make the RPM measurements you will take in
the Your Turn section more accurate.

This next command takes the pulse width you entered, and calculates a pulse width that
will make 1500 when the two are added together. If you enter a pulse width of 650,
pulseWidthComp will be 850. If you enter a pulse width of 850, pulseWidthComp will

Chapter 3: Assemble and Test Your Boe-Bot · Page 115

be 650. If you enter a pulse width of 700, pulseWidthComp will be 800. Try a few other
examples. They will all add up to 1500.

 pulseWidthComp = 1500 - pulseWidth

A FOR…NEXT loop that runs for 6 seconds sends pulses to the right (P12) servo. The
pulseWidthComp value is sent to the left (P13) servo, making it turn in the opposite
direction.

 FOR counter = 1 TO 244
 PULSOUT 12, pulseWidth
 PULSOUT 13, pulseWidthComp
 PAUSE 20
 NEXT

Your Turn – Advanced Topic: Graphing Pulse Width vs. Rotational Velocity

Figure 3-20 shows an example of a transfer curve for a continuous rotation servo. The
horizontal axis shows the pulse width in ms, and the vertical axis shows the rotational
velocity in RPM. In this graph, clockwise is negative and counterclockwise is positive.
This particular servo’s transfer curve ranges from about -48 RPM to 48 RPM over the
range of test pulse widths that range from 1.3 ms to 1.7 ms.

Rotational Velocity vs. Pulse Width for Servo

-60

-40

-20

0

20

40

60

1.300 1.350 1.400 1.450 1.500 1.550 1.600 1.650 1.700

Pulse Width, ms

R
ot

at
io

na
l V

el
oc

ity
, R

PM

Right Servo

Figure 3-20
Transfer Curve
Example for
Parallax Servo

Page 116 · Robotics with the Boe-Bot

You can use Table 3-1 to record the data for your own transfer curve. Keep in mind that
the example program is controlling the right wheel with the values you enter. The left
wheel turns in the opposite direction.

Table 3-1: Pulse Width and RPM for Parallax Servo

Pulse
Width
(ms)

Rotational
Velocity
(RPM)

Pulse
Width
(ms)

Rotational
Velocity
(RPM)

Pulse
Width
(ms)

Rotational
Velocity
(RPM)

Pulse
Width
(ms)

Rotational
Velocity
(RPM)

1.300 1.400 1.500 1.600
1.310 1.410 1.510 1.610
1.320 1.420 1.520 1.620
1.330 1.430 1.530 1.630
1.340 1.440 1.540 1.640
1.350 1.450 1.550 1.650
1.360 1.460 1.560 1.660
1.370 1.470 1.570 1.670
1.380 1.480 1.580 1.680
1.390 1.490 1.590 1.690

 1.700

Remember that the PULSOUT command’s Duration argument is in 2 µs units. PULSOUT
12, 650 sends pulses that last 1.3 ms to P12. PULSOUT 12, 655 sends pulses of 1.31
ms, PULSOUT 12, 660 sends pulses of 1.32 ms, and so on.

sm3.1
s0013.0

s000002.0650
s2650Duration

=
=

×=
×= µ

sm31.1
s00131.0

s000002.0655
s2655Duration

=
=

×=
×= µ

sm32.1
s00132.0

s000002.0660
s2660Duration

=
=

×=
×= µ

√ Mark your right wheel so that you have a reference point to count the

revolutions.
√ Run TestServoSpeed.bs2.
√ Click the Debug Terminal’s Transmit windowpane.
√ Enter the value 650.
√ Count how many turns the wheel made.

Chapter 3: Assemble and Test Your Boe-Bot · Page 117

Since the servo turns for 6 seconds, you can multiply this value by 10 to get revolutions
per minute (RPM).

√ Multiply this value by 10 and enter the result into Table 3-1 next to the 1.3 ms
entry.

√ Enter the value 655.
√ Count how many turns the wheel made.
√ Multiply this value by 10 and enter the result into Table 3-1 next to the 1.31 ms

entry.
√ Keep increasing your durations by 5 (0.01 ms) until you are up to 850 (1.7 ms).
√ Use a spreadsheet, calculator, or graph paper to graph the data.
√ Repeat this process for your other servo.

You can repeat these measurements for the left wheel. You will have to modify the
PULSOUT commands so that pulses with a duration of pulseWidth are sent to P13 and
pulses with a duration of pulseWidthComp are sent to P12.

Page 118 · Robotics with the Boe-Bot

SUMMARY
This chapter covered Boe-Bot assembly and testing. This involved mechanical assembly,
such as connecting the various moving parts to the Boe-Bot chassis. It also involved
circuit assembly, connecting the servos and piezospeaker. The testing involved retesting
the servos after they were disconnected to build the Boe-Bot.

The concept of brownout was introduced along with what this condition does to a
program running on the BASIC Stamp. Brownout causes the BASIC Stamp to shut
down, and then start running the program from the beginning. A piezospeaker was added
to signal the start of a program. If the piezospeaker sounds in the middle of a running
program when it’s not supposed to, this can indicate a brownout condition. Brownout
conditions can in turn indicate low batteries. To make the piezospeaker play a tone to
indicate a reset, the FREQOUT command was introduced. This command is part of an
initialization routine that will be used at the beginning of all Boe-Bot programs.

Until this chapter, the Debug Terminal has been used to display messages sent to the
computer by the BASIC Stamp. These messages were displayed in the Receive
windowpane. The Debug Terminal also has a Transmit windowpane that you can use to
send values to the BASIC Stamp. The BASIC Stamp can capture these values by
executing the DEBUGIN command, which receives a value sent by the Debug Terminal's
transmit windowpane and stores it in a variable. The value can then be used by the
PBASIC program. This technique was used to set the pulse widths to control and test
servo speed and direction. It was also used as a data collection aid for plotting the
transfer curve of a continuous rotation servo.

Questions
1. What are some of the symptoms of brownout on the Boe-Bot?
2. How can a piezospeaker be used to detect brownout?
3. What is a reset?
4. What is an initialization routine?
5. What are three (or more) possible mistakes that can occur when disconnecting

and reconnecting the servos?
6. What command do you have to change in RightServoTest.bs2 to test the left

wheel instead of the right wheel?

Chapter 3: Assemble and Test Your Boe-Bot · Page 119

Exercises
1. Write a FREQOUT command that makes a tone that sounds different from the reset

detect tone to signify the end of a program.
2. Write a FREQOUT command that makes a tone (different from beginning or

ending tones) that signifies an intermediate step in a program has been
completed. Try a value with a 100 ms duration at a 4 kHz frequency.

Projects
1. Modify RightServoTest.bs2 so that it makes a tone signifying the test is

complete.
2. Modify TestServoSpeed.bs2 so that you can use DEBUGIN to enter the pulse

width for the left and the right servo as well as the number of pulses to deliver in
the FOR…NEXT loop. Use this program to control your Boe-Bot’s motion via the
Debug Terminal’s Transmit windowpane.

Page 120 · Robotics with the Boe-Bot

Solutions
Q1. Symptoms include erratic behavior such as going in unexpected directions or

doing a confused dance.
Q2. A FREQOUT command at the beginning of all Boe-Bot programs causes the

piezospeaker to play a tone. This tone will therefore occur every time an
accidental reset happens due to brownout conditions.

Q3. A reset is when the power is interrupted and the BASIC Stamp program starts
running again from the beginning of the program.

Q4. An initialization routine consists of the lines of code that are used at the
beginning of the program. These lines of code run each time the program starts
from the beginning.

Q5. 1. The servo lines P12 and P13 are swapped.
2. One or both servos is plugged in backwards, so that the white-red-black color
coding is incorrect.
3. The power switch is not on position-2.
4. The 9V or AA batteries are not installed.
5. The servo centering potentiometer is out of adjustment.

Q6. The PULSOUT commands must be changed to read PULSOUT 13 instead of
PULSOUT 12.

E1. The key is to modify the FREQOUT command used for the StartResetIndicator.bs2

program, that is, FREQOUT, 4, 2000, 3000. For example: FREQOUT, 4, 500,
3500 would work.

E2. FREQOUT 4, 100, 4000

P1. The key to solving this program is to add the line from Exercise 1 above the END
command in the RightServoTest.bs2 program.

' Robotics with the Boe-Bot - Ch03Prj01_TestCompleteTone.bs2
' Right servo turns clockwise three seconds, stops 1 second, then
' counterclockwise three seconds. A tone signifies that the
' test is complete.

' {$STAMP BS2}
' {$PBASIC 2.5}
DEBUG "Program Running!"

counter VAR Word

Chapter 3: Assemble and Test Your Boe-Bot · Page 121

FREQOUT 4, 2000, 3000 ' Signal start of program.

FOR counter = 1 TO 122 ' Clockwise just under 3 seconds.
 PULSOUT 12, 650
 PAUSE 20
NEXT

FOR counter = 1 TO 40 ' Stop one second.
 PULSOUT 12, 750
 PAUSE 20
NEXT

FOR counter = 1 TO 122 ' Counterclockwise three seconds.
 PULSOUT 12, 850
 PAUSE 20
NEXT

FREQOUT 4, 500, 3500 ' Signal end of program

END

P2. To solve this problem, TestServoSpeed.bs2 must be expanded to receive three

pieces of data: left servo pulsewidth, right servo pulsewidth, and number of
pulses. Then, a FOR…NEXT loop with two servo PULSOUT commands must be
added to actually move the servo motors. Furthermore, all variables must be
declared in the beginning of the program. An example solution is shown below.

' Robotics with the Boe-Bot - Ch03Prj02_DebuginMotion.bs2
' Enter servo pulsewidth & duration for both wheels via Debug Terminal.

'{$STAMP BS2}
'{$PBASIC 2.5}

ltPulseWidth VAR Word ' Left servo pulse width
rtPulseWidth VAR Word ' Right servo pulse width
pulseCount VAR Byte ' Number of pulses to servo
counter VAR Word ' Loop counter

DO
 DEBUG "Enter left servo pulse width: " ' Enter values in Debug
 DEBUGIN DEC ltPulseWidth ' Terminal

 DEBUG "Enter right servo pulse width: "
 DEBUGIN DEC rtPulseWidth

 DEBUG "Enter number of pulses: "
 DEBUGIN DEC pulseCount

 FOR counter = 1 TO pulseCount ' Send specific number of pulses

Page 122 · Robotics with the Boe-Bot

 PULSOUT 13, ltPulseWidth ' Left servo motion
 PULSOUT 12, rtPulseWidth ' Right servo motion
 PAUSE 20
 NEXT

LOOP

Note: This project is best tested with the Boe-Bot's wheels propped up.

Chapter 4: Boe-Bot Navigation · Page 123

Chapter 4: Boe-Bot Navigation

The Boe-Bot can be programmed to perform a variety of maneuvers. The maneuvers and
programming techniques introduced in this chapter will be reused in later chapters. The
only difference is that in this chapter, the Boe-Bot will blindly perform the maneuvers.
In later chapters, the Boe-Bot will perform similar maneuvers in response to conditions it
detects with its sensors.

This chapter also introduces ways to tune and calibrate the Boe-Bot’s navigation.
Included are techniques to straighten a Boe-Bot’s straight line, more precise turns, and
calculating distances.

Activity Summary

 1 Program the Boe-Bot to perform the basic maneuvers: forward, backward,
rotate left, rotate right, and pivoting turns.

 2 Tune the maneuvers from Activity 1 so that they are more precise.
 3 Use math to calculate the number of pulses to deliver to make the Boe-Bot

travel a predetermined distance.
 4 Instead of programming the Boe-Bot to make abrupt starts and stops, write

programs that make the Boe-Bot gradually accelerate into and decelerate out
of maneuvers.

 5 Write subroutines to perform the basic maneuvers so that each subroutine
can be used over and over again in a program.

 6 Record complex maneuvers in the BASIC Stamp module's unused program
memory and write programs that play back these maneuvers.

ACTIVITY #1: BASIC BOE-BOT MANEUVERS
Figure 4-1 shows your Boe-Bot’s front, back, left, and right. When the Boe-Bot goes
forward, in the picture, it would have to roll to the right edge of the page. Backward
would be toward the left edge of the page. A left turn would be make the Boe-Bot ready
to drive off the top of the page, and a right turn would have it facing the bottom of the
page.

Page 124 · Robotics with the Boe-Bot

Figure 4-1
Your Boe-Bot and
Driving Directions

Moving Forward

Here’s a funny thing: to make the Boe-Bot go forward, the Boe-Bot’s left wheel has to
turn counterclockwise, but its right wheel has to turn clockwise. If you haven’t already
grasped this, take a look at Figure 4-2 and see if you can convince yourself that it’s true.
Viewed from the left, the wheel has to turn counterclockwise for the Boe-Bot to move
forward. Viewed from the right, the other wheel has to turn clockwise for the Boe-Bot to
move forward.

Figure 4-2
Wheel
Rotation for
Forward
Motion

Left Side Right Side

Remember from Chapter 2 that the PULSOUT command’s Duration argument controls
the speed and direction the servo turns. The StartValue and EndValue arguments of a
FOR…NEXT loop control the number of pulses that are delivered. Since each pulse takes

Forward

Counterclockwise

Forward

Clockwise

Forward Backward

Left Turn

Right Turn

Chapter 4: Boe-Bot Navigation · Page 125

the same amount of time, the EndValue argument also controls the time the servo runs.
Here’s an example program that will make the Boe-Bot roll forward for about three
seconds.

Example Program: BoeBotForwardThreeSeconds.bs2

√ Make sure power is connected to the BASIC Stamp and servos.
√ Enter, save, and run BoeBotForwardThreeSeconds.bs2.

' Robotics with the Boe-Bot - BoeBotForwardThreeSeconds.bs2
' Make the Boe-Bot roll forward for three seconds.

' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG "Program Running!"

counter VAR Word

FREQOUT 4, 2000, 3000 ' Signal program start/reset.

FOR counter = 1 TO 122 ' Run servos for 3 seconds.

 PULSOUT 13, 850
 PULSOUT 12, 650
 PAUSE 20

NEXT

END

How BoeBotForwardThreeSeconds.bs2 Works

From chapter 2, you already have lots of experience with the elements of this program: a
variable declaration, a FOR…NEXT loop, PULSOUT commands with Pin and Duration
arguments, and PAUSE commands. Here’s a review of what each does and how it relates
to the servos’ motions.

First a variable is declared that will be used in the FOR...NEXT loop.

counter VAR Word

You should recognize this command; it generates a tone to signal the start of the program.
It will be used in all programs that run the servos.

FREQOUT 4, 2000, 3000 ' Signal program start/reset.

Page 126 · Robotics with the Boe-Bot

This FOR…NEXT loop sends 122 sets of pulses to the servos, one each to P13 and P12,
pausing for 20 ms after each set and then returning to the top of the loop.

FOR counter = 1 TO 122
 PULSOUT 13, 850
 PULSOUT 12, 650
 PAUSE 20
NEXT

PULSOUT 13, 850 causes the left servo to rotate counterclockwise while PULSOUT 12,
650 causes the right servo to rotate clockwise. Therefore, both wheels will be turning
toward the front end of the Boe-Bot, causing it to drive forward. It takes about 3 seconds
for the FOR…NEXT loop to execute 122 times, so the Boe-Bot drives forward for about 3
seconds.

Your Turn – Adjusting Distance and Speed

√ By changing the FOR…NEXT loop’s EndValue argument from 122 to 61, you can
make the Boe-Bot move forward for half the time. This in turn will make the
Boe-Bot move forward half the distance.

√ Save BoeBotForwardThreeSeconds.bs2 under a new name.
√ Change the FOR...NEXT loop's EndValue from 122 to 61.
√ Run the program and verify that it ran at half the time and covered half the

distance.
√ Try these steps over again, but this time, change the FOR…NEXT loop’s EndValue

to 244.

The PULSOUT Duration arguments of 650 and 850 caused the servos to rotate near their
maximum speed. By bringing each of the PULSOUT Duration arguments closer to the
stay-still value of 750, you can slow down your Boe-Bot.

√ Modify your program with these PULSOUT commands:
 PULSOUT 13, 780
 PULSOUT 12, 720

√ Run the program, and verify that your Boe-Bot moves slower.

Chapter 4: Boe-Bot Navigation · Page 127

Moving Backward, Rotating, and Pivoting

All it takes to get other motions out of your Boe-Bot are different combinations of the
PULSOUT Duration arguments. For example, these two PULSOUT commands can be used
to make your Boe-Bot go backwards:

 PULSOUT 13, 650
 PULSOUT 12, 850

These two commands will make your Boe-Bot rotate in a left turn (counterclockwise as
you are looking at it from above):

 PULSOUT 13, 650
 PULSOUT 12, 650

These two commands will make your Boe-Bot rotate in a right turn (clockwise as you are
looking at it from above):

 PULSOUT 13, 850
 PULSOUT 12, 850

You can combine all these commands into a single program that makes the Boe-Bot
move forward, turn left, turn right, then move backward.

Example Program: ForwardLeftRightBackward.bs2

√ Enter, save, and run ForwardLeftRightBackward.bs2.

TIP – To enter this program quickly, use the BASIC Stamp Editor's Edit menu tools (Copy
and Paste) to make four copies of a FOR…NEXT loop. Then, adjust only the PULSOUT
Duration values and FOR…NEXT loop EndValues.

' Robotics with the Boe-Bot - ForwardLeftRightBackward.bs2
' Move forward, left, right, then backward for testing and tuning.

' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG "Program Running!"

counter VAR Word

FREQOUT 4, 2000, 3000 ' Signal program start/reset.

FOR counter = 1 TO 64 ' Forward

Page 128 · Robotics with the Boe-Bot

 PULSOUT 13, 850
 PULSOUT 12, 650
 PAUSE 20

NEXT

PAUSE 200

FOR counter = 1 TO 24 ' Rotate left - about 1/4 turn

 PULSOUT 13, 650
 PULSOUT 12, 650
 PAUSE 20

NEXT

PAUSE 200

FOR counter = 1 TO 24 ' Rotate right - about 1/4 turn

 PULSOUT 13, 850
 PULSOUT 12, 850
 PAUSE 20

NEXT

PAUSE 200

FOR counter = 1 TO 64 ' Backward

 PULSOUT 13, 650
 PULSOUT 12, 850
 PAUSE 20

NEXT

END

Your Turn - Pivoting

You can make the Boe-Bot turn by pivoting around one wheel. The trick is to keep one
wheel still while the other rotates. For example, if you keep the left wheel still and make
the right wheel turn clockwise (forward), the Boe-Bot will pivot to the left.

 PULSOUT 13, 750
 PULSOUT 12, 650

If you want to pivot forward and to the right, simply stop the right wheel, and make the
left wheel turn counterclockwise (forward).

Chapter 4: Boe-Bot Navigation · Page 129

 PULSOUT 13, 850
 PULSOUT 12, 750

These are the PULSOUT commands for pivoting backwards and to the right.
 PULSOUT 13, 650
 PULSOUT 12, 750

Finally, these are the PULSOUT commands for pivoting backwards and to the left.
 PULSOUT 13, 750
 PULSOUT 12, 850

√ Save ForwardLeftRightBackward.bs2 as PivotTests.bs2.
√ Substitute the PULSOUT commands just discussed in place of the forward, left,

right, and backward routines.
√ Adjust the run time of each maneuver by changing each FOR…NEXT loop’s

EndValue to 30.
√ Be sure to change the comment next to each FOR…NEXT loop to reflect each new

pivot action.
√ Run the modified program and verify that the different pivot actions work.

ACTIVITY #2: TUNING THE BASIC MANEUVERS
Imagine writing a program that instructs the Boe-Bot to travel full-speed forward for
fifteen seconds. What if the Boe-Bot curves slightly to the left or right during its travel,
when it’s supposed to be traveling straight ahead? There’s no need to take the Boe-Bot
back apart and re-adjust the servos with a screwdriver to fix this. You can simply adjust
the program slightly to get both Boe-Bot wheels traveling the same speed. While the
screwdriver approach would be called a “hardware adjustment”, the programming
approach is called a “software adjustment”.

Straightening the Boe-Bot’s Path

The first step is to examine your Boe-Bot’s travel for long enough to find out if it’s
curving either to the left or to the right when it’s supposed to be going straight ahead.
Ten seconds of forward travel should be enough. This can be accomplished with a
simple modification to BoeBotForwardThreeSeconds.bs2 from the previous activity.

Example Program: BoeBotForwardTenSeconds.bs2

√ Open BoeBotForwardThreeSeconds.bs2.
√ Rename and save it as BoeBotForwardTenSeconds.bs2.

Page 130 · Robotics with the Boe-Bot

√ Change the EndValue of the FOR counter from 122 to 407, so it reads like this:

' Robotics with the Boe-Bot - BoeBotForwardTenSeconds.bs2
' Make the Boe-Bot roll forward for ten seconds.

' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG "Program Running!"

counter VAR Word

FREQOUT 4, 2000, 3000 ' Signal program start/reset.

FOR counter = 1 TO 407 ' Number of pulses – run time.

 PULSOUT 13, 850 ' Left servo full speed ccw.
 PULSOUT 12, 650 ' Right servo full speed cw.
 PAUSE 20

NEXT

END

√ Run the program, and watch closely to see if your Boe-Bot veers to the right or

left as it travels forwards for ten seconds.

Your Turn – Adjusting Servo Speed to Straighten the Boe-Bot’s Path

If your Boe-Bot goes perfectly straight, try this example anyway. If you follow the
instructions, it should adjust your Boe-Bot so that it curves slightly to the right.

Let’s say that the Boe-Bot turns slightly to the left. There are two ways to think about
this problem: either the left wheel is turning too slowly, or the right wheel is turning too
quickly. Since the Boe-Bot is already at full speed, speeding up the left wheel isn’t going
to be practical, but slowing down the right wheel should help remedy the situation.

Remember that servo speed is determined by the PULSOUT command’s Duration
argument. The closer the Duration is to 750, the slower the servo turns. This means
you should change the 650 in the command PULSOUT 12,650 to something a little closer
to 750. If the Boe-Bot is only just a little off course, maybe PULSOUT 12,663 will do the
trick. If the servos are severely mismatched, maybe it needs to be PULSOUT 12,690.

Chapter 4: Boe-Bot Navigation · Page 131

It will probably take several tries to get the right value. Let’s say that your first guess is
that PULSOUT 12,663 will do the trick, but it turns out not to be enough because the Boe-
Bot is still turning slightly to the left. So try PULSOUT 12,670. Maybe that
overcorrects, and it turns out that PULSOUT 12,665 gets it exactly right. This is called an
iterative process, meaning a process that takes repeated tries and refinements to get to the
right value.

If your Boe-Bot curved to the right instead of the left, it means you need to slow down
the left wheel by reducing the Duration of 850 in the PULSOUT 13,850 command.
Again, the closer this value gets to 750, the slower the servo will turn.

√ Modify BoeBotForwardTenSeconds.bs2 so that it makes your Boe-Bot go

straight forward.
√ Use masking tape or a sticker to label each servo with the best PULSOUT values.
√ If your Boe-Bot already travels straight forward, try the modifications just

discussed to see the effect. It should cause the Boe-Bot to travel in a curve
instead of a straight line.

You might find that there’s an entirely different situation when you program your Boe-
Bot to roll backward.

√ Modify BoeBotForwardTenSeconds.bs2 so that it makes the Boe-Bot roll
backward for ten seconds.

√ Repeat the test for straight line.
√ Repeat the steps for correcting the PULSOUT command’s Duration argument to

straighten the Boe-Bot’s backward travel.

Tuning the Turns

Software adjustments can also be made to get the Boe-Bot to turn to a desired angle, such
as 90°. The amount of time the Boe-Bot spends rotating in place determines how far it
turns. Because the FOR…NEXT loop controls run time, you can adjust the FOR…NEXT loop’s
EndValue argument to get very close to the turning angle you want.

Here’s the left turn routine from ForwardLeftRightBackward.bs2.

FOR counter = 1 TO 24 ' Rotate left - about 1/4 turn

 PULSOUT 13, 650

Page 132 · Robotics with the Boe-Bot

 PULSOUT 12, 650
 PAUSE 20

NEXT

Let’s say that the Boe-Bot turns just a bit more than 90° (1/4 of a full circle). Try FOR
counter = 1 TO 23, or maybe even FOR counter = 1 TO 22. If it doesn’t turn far
enough, increase the run time of the rotation by increasing the FOR…NEXT loop’s
EndValue argument to whatever value it takes to complete the quarter turn.

If you find yourself with one value slightly overshooting 90° and the other slightly
undershooting, try choosing the value that makes it turn a little too far, then slow down
the servos slightly. In the case of the rotate left, both PULSOUT Duration arguments
should be changed from 650 to something a little closer to 750. As with the straight line
exercise, this will also be an iterative process.

Your Turn - 90° Turns

√ Modify ForwardLeftRightBackward.bs2 so that it makes precise 90° turns.
√ Update ForwardLeftRightBackward.bs2 with the PULSOUT values you

determined for straight forward and backward travel.
√ Update the label on each servo with a notation about the appropriate EndValue

for a 90° turn.

Carpeting can cause navigation errors. If you are running your Boe-Bot on carpeting,
don’t expect perfect results! A carpet is a bit like a golf green – the way the carpet pile is
inclined can affect the way your Boe-Bot travels, especially over long distances. For more
precise maneuvers, use a smooth surface.

ACTIVITY #3: CALCULATING DISTANCES
In many robotics contests, more precise robot navigation lends itself to better scores.
One popular entry level robotics contest is called dead reckoning. The entire goal of this
contest is to make your robot go to one or more locations and then return to exactly
where it started.

You might remember asking your parents this question, over and over again, while on
your way to a vacation destination or relatives’ house:

“Are we there yet?”

Chapter 4: Boe-Bot Navigation · Page 133

Perhaps when you got a little older, and learned division in school, you started watching
the road signs to see how far it was to the destination city. Next, you checked the
speedometer in your car. By dividing the speed into the distance, you got a pretty good
estimate of the time it would take to get there. You may not have been thinking in these
exact terms, but here is the equation you were using.

speed
distancetime =

Example – Time for English Distance

If you’re 140 miles away from your
destination, and you’re traveling 70 miles
per hour, it’s going to take 2 hours to get
there.

hours2
miles70
hour1miles140

miles/hour 70
miles 140time

=

×=

=

Example – Time for Metric Distance

If you’re 200 kilometers away from your
destination, and you’re traveling 100
kilometers per hour, it’s going to take 2
hours to get there.

hours2
km100

hour1
km200

/hourkilometers 100
kilometers 200time

=

×=

=

You can do the same exercise with the Boe-Bot, except you have control over how far
away the destination is. Here’s the equation you will use:

 speedBot-Boe
distance Bot-Boetimerunservo =

You will have to test the Boe-Bot speed. The easiest way to do this is to set the Boe-Bot
next to a ruler and make it travel forward for one second. By measuring how far your
Boe-Bot traveled, you will know your Boe-Bot’s speed. If your ruler has inches, your
answer will be in inches per second (in/s), if it has centimeters your answer will be in
centimeters per second (cm/s).

√ Enter, save, and run ForwardOneSecond.bs2.

Page 134 · Robotics with the Boe-Bot

√ Place your Boe-Bot next to a ruler as shown in Figure 4-3.
√ Make sure to line up the point where the wheel touches the ground with the 0

in/cm mark on the ruler.

Figure 4-3: Measuring Boe-Bot Distance

www.stampsinclass.com

Reset

STAMPS CLASS
in

Board of Education

Pwr

9 Vdc
Battery

6-9VDC

Sout
Sin
ATN
Vss
P0
P1
P2
P3
P4
P5
P6
P7

P11

P9
P8

Vin

P10

P15
P14
P13
P12

Vdd
Rst
Vss

Black
Red

X4 X5

15 14 13 12

1

X1

Vss
P1
P3
P5
P7
P9
P11
P13
P15
Vin

Vss
P0
P2
P4
P6
P8
P10
P12
P14
Vdd

U1

TM

0 1 2
© 2000-2003

Vdd

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

X3
Vdd VssVin

Rev C

1 2 3 4 5 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

inch

cm

7 8 9 10
16 17 18 19 20 21 22 23 24 25

Measured Distance

√ Press the Reset button on your board to re-run the program.
√ Measure how far your Boe-Bot traveled by recording the measurement where the

wheel is now touching the ground here:__________________ in / cm.

Example Program: ForwardOneSecond.bs2
' Robotics with the Boe-Bot - ForwardOneSecond.bs2
' Make the Boe-Bot roll forward for one second.

' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG "Program Running!"

counter VAR Word

FREQOUT 4, 2000, 3000 ' Signal program start/reset.

FOR counter = 1 TO 41

 PULSOUT 13, 850
 PULSOUT 12, 650
 PAUSE 20

Chapter 4: Boe-Bot Navigation · Page 135

NEXT

END

You can also think about the distance you just recorded as your Boe-Bot’s speed, in units
per second. Let’s say that your Boe-Bot traveled 9 in (23 cm). Since it took one second
for your Boe-Bot to travel that far, it means your Boe-Bot travels at around 9 in/s (23
cm/s). Now, you can figure out how many seconds your Boe-Bot has to travel to go a
particular distance.

Inches and centimeters per second – The abbreviation for inches is in, and the
abbreviation for centimeters is cm. Likewise, inches per second is abbreviated in/s, and
centimeters per second is abbreviated cm/s. Both are convenient speed measurements for
the Boe-Bot. There are 2.54 cm in 1 in. You can convert inches to centimeters by
multiplying the number of inches by 2.54. You can convert centimeters to inches by dividing
the number of centimeters by 2.54.

Example – Time for 20 in

At 9 in/s, your Boe-Bot has to travel for
2.22 s to travel 20 in.

s22.2
in 9
s1in 20

in/s 9
in 20time

=

×=

=

Example – Time for 51 cm

At 23 cm/s, your Boe-Bot has to travel for
2.22 s to travel 51 cm.

s22.2
cm 23
s1cm 15

cm/s 23
cm 51time

=

×=

=

In Chapter 2, Activity #6, we learned that it takes 24.6 ms (0.024 s) each time the two
servo PULSOUT and one PAUSE commands are executed in a FOR…NEXT loop. The
reciprocal of this value is the number of pulses per second that the loop transmits to each
servo. A reciprocal is when you swap a fraction's numerator and denominator. Another
way to take a reciprocal is to divide a number or fraction into the number one. In other
words, 1 ÷ 0.024 s/pulse = 40.65 pulses/s.

Since you know the amount of time you want your Boe-Bot to move forward (2.22 s) and
the number of pulses the BASIC Stamp sends to the servos each second (40.65 pulses/s),

Page 136 · Robotics with the Boe-Bot

you can use these values to calculate how many pulses to send to the servos. This is the
number you will have to use for your FOR…NEXT loop's EndValue argument.

pulses90
pulses...24.90

s
pulses65.40s22.2ulsesp

≈
=

×=

The calculations in this example took two steps. First, figure out how long the servos
have to run to make the Boe-Bot travel a certain distance, then figure out how many
pulses it takes to make the servos run for that long. Since you know you have to multiply
by 40.65 to get from run time to pulses, you can reduce this to one step.

s
pulses65.40

speedBotBoe
cetandisBotBoeulsesp ×

−
−=

Example – Time for 20 in

At 9 in/s, your Boe-Bot has to travel for
2.22 s to travel 20 in.

pulses90
pulses...333.90

pulses65.40920
s1
pulses65.40

in 9
 s1in 20

s
pulses65.40

in/s 9
in 20ulsesp

≈
=

×÷=

××=

×=

Example – Time for 51 cm

At 23 cm/s, your Boe-Bot has to travel for
2.22 s to travel 51 cm.

pulses90
pulses...136.90

pulses65.402351
s1
pulses65.40

cm23
 s1cm15

s
pulses65.40

cm/s 23
cm 51ulsesp

≈
=

×÷=

××=

×=

Your Turn – Your Boe-Bot’s Distance

Now, it’s time to try this out with distances that you choose.

√ If you have not already done so, use a ruler and the ForwardOneSecond.bs2
program to determine your Boe-Bot’s speed in in/s or cm/s.

√ Decide how far you want your Boe-Bot to travel.
√ Use the pulses equation to figure out how many pulses to deliver to the Boe-

Bot’s servos:

Chapter 4: Boe-Bot Navigation · Page 137

s
pulses65.40

speedBotBoe
cetandisBotBoeulsesp ×

−
−=

√ Modify BoeBotForwardOneSecond.bs2 so that it delivers the number of pulses
you determined for your distance.

√ Run the program and test to see how close you got.

This technique has sources of error. The activity you just completed does not take into
account the fact that it took a certain number of pulses for the Boe-Bot to get up to full
speed. Nor did it take into account any distance the Boe-Bot might coast before it comes to
a full stop. The servo speeds will also go slower as the batteries lose their charge.

You can increase the accuracy of your Boe-Bot distances with devices called encoders,
which count the holes in the Boe-Bot's wheels as they pass. Encoders hardware,
documentation and example programs are available in the Robotics Accessories page at
www.parallax.com.

ACTIVITY #4: MANEUVERS – RAMPING
Ramping is a way to gradually increase or decrease the speed of the servos instead of
abruptly starting or stopping. This technique can increase the life expectancy of both
your Boe-Bot’s batteries and your servos.

Programming for Ramping

The key to ramping is to use variables along with constants for the PULSOUT command’s
Duration argument. Figure 4-4 shows a FOR…NEXT loop that can ramp the Boe-Bot’s
speed from full stop to full speed ahead. Each time the FOR…NEXT loop repeats itself, the
pulseCount variable increases by 1. The first time through, pulseCount is 1, so it’s
like using the commands PULSOUT 13, 751 and PULSOUT 12, 749. The second time
through the loop, the value of pulseCount is 2, so it’s like using the commands PULSOUT
13, 752 and PULSOUT 12, 748. As the value of the pulseCount variable increases, so
does the speed of the servos. By the hundredth time through the loop, the pulseCount
variable is 100, so it’s like using the commands PULSOUT 13, 850 and PULSOUT 12,
650, which is full-speed ahead for the Boe-Bot.

Page 138 · Robotics with the Boe-Bot

pulseCount VAR Word

FOR pulseCount = 1 TO 100

 PULSOUT 13, 750 + pulseCount
 PULSOUT 12, 750 - pulseCount
 PAUSE 20

NEXT

Figure 4-4
Ramping
Example

Recall from Chapter 2, Activity #5 that FOR…NEXT loops can also count downward from a
higher number to a lower number. You can use this to ramp the speed back down again
by using FOR pulseCount = 100 TO 1. Here is an example program that uses
FOR…NEXT loops to ramp up to full speed, then ramp back down.

Example Program: StartAndStopWithRamping.bs2

√ Enter, save, and run StartAndStopWithRamping.bs2.
√ Verify that the Boe-Bot gradually accelerates to full speed, maintains full speed

for a while, and then gradually decelerates to a full stop.

' -----[Title]--
' Robotics with the Boe-Bot - StartAndStopWithRamping.bs2
' Ramp up, go forward, ramp down.

' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG "Program Running!"

pulseCount VAR Word ' FOR...NEXT loop counter.

' -----[Initialization]--

FREQOUT 4, 2000, 3000 ' Signal program start/reset.

' -----[Main Routine]---

' Ramp up forward.

FOR pulseCount = 1 TO 100 ' Loop ramps up for 100 pulses.
 PULSOUT 13, 750 + pulseCount ' Pulse = 1.5 ms + pulseCount.
 PULSOUT 12, 750 - pulseCount ' Pulse = 1.5 ms – pulseCount.
 PAUSE 20 ' Pause for 20 ms.

1, 2, 3,
…100

Chapter 4: Boe-Bot Navigation · Page 139

NEXT

' Continue forward for 75 pulses.

FOR pulseCount = 1 TO 75 ' Loop sends 75 forward pulses.
 PULSOUT 13, 850 ' 1.7 ms pulse to left servo.
 PULSOUT 12, 650 ' 1.3 ms pulse to right servo.
 PAUSE 20 ' Pause for 20 ms.
NEXT

' Ramp down from going forward to a full stop.

FOR pulseCount = 100 TO 1 ' Loop ramps down for 100 pulses.
 PULSOUT 13, 750 + pulseCount ' Pulse = 1.5 ms + pulseCount.
 PULSOUT 12, 750 - pulseCount ' Pulse = 1.5 ms - pulseCount.
 PAUSE 20 ' Pause for 20 ms.
NEXT

END ' Stop until reset.

Your Turn

You can also create routines to combine ramping up or down with the other maneuvers.
Here’s an example of how to ramp up to full speed going backward instead of forward.
The only difference between this routine and the forward ramping routine is that the
value of pulseCount is subtracted from 750 in the PULSOUT 13 command, where before
it was added. Likewise, pulseCount is added to the value of 750 in the PULSOUT 12
command, where before it was subtracted.

' Ramp up to full speed going backwards

FOR pulseCount = 1 TO 100

 PULSOUT 13, 750 - pulseCount
 PULSOUT 12, 750 + pulseCount
 PAUSE 20

NEXT

You can also make a routine for ramping into a turn by adding the value of pulseCount
to 750 in both PULSOUT commands. By subtracting pulseCount from 750 in both
PULSOUT commands, you can ramp into a turn the other direction. Here’s an example of
a quarter turn with ramping. The servos don’t get an opportunity to get up to full speed
before they have to slow back down again.

Page 140 · Robotics with the Boe-Bot

' Ramp up right rotate.

FOR pulseCount = 0 TO 30

 PULSOUT 13, 750 + pulseCount
 PULSOUT 12, 750 + pulseCount
 PAUSE 20

NEXT

' Ramp down right rotate

FOR pulseCount = 30 TO 0

 PULSOUT 13, 750 + pulseCount
 PULSOUT 12, 750 + pulseCount
 PAUSE 20

NEXT

√ Open ForwardLeftRightBackward.bs2 from Activity #1, and save it as
ForwardLeftRightBackwardRamping.bs2.

√ Modify the new program so your Boe-Bot will ramp into and out of each
maneuver. Hint: you might use the code snippets above, and similar snippets
from StartAndStopWithRamping.bs2.

ACTIVITY #5: SIMPLIFY NAVIGATION WITH SUBROUTINES
In the next chapter, your Boe-Bot will have to perform maneuvers to avoid obstacles.
One of the key ingredients to avoiding obstacles is executing pre-programmed
maneuvers. One way of executing pre-programmed maneuvers is with subroutines. This
activity introduces subroutines, and also two different approaches to creating reusable
maneuvers with subroutines.

Inside the Subroutine

There are two parts of a PBASIC subroutine. One part is the subroutine call. It’s the
command in the program that tells it to jump to the reusable part of code, then come back
when it’s done. The other part is the actual subroutine. It starts with a label that serves
as its name and ends with a RETURN command. The commands between the label and
the RETURN command make up the code block that does the job you want the subroutine
to do.

Chapter 4: Boe-Bot Navigation · Page 141

Figure 4-5 shows part of a PBASIC program that contains a subroutine call and a
subroutine. The subroutine call is the GOSUB My_Subroutine command. The actual
subroutine is everything from the My_Subroutine: label through the RETURN command.
Here’s how it works. When the program gets to the GOSUB My_Subroutine command,
it looks for the My_Subroutine: label. As shown by arrow (1), the program jumps to
the My_Subroutine: label and starts executing commands. The program keeps going
down line by line from the label, so you’ll see the message “Command in subroutine” in
your Debug Terminal. PAUSE 1000 causes a one second pause. Then, when the
program gets to the RETURN command, arrow (2) shows how it jumps back to the
command immediately after the GOSUB command. In this case, it’s a DEBUG command
that displays the message “After subroutine”.

DO
 DEBUG "Before subroutine",CR
 PAUSE 1000
 GOSUB My_Subroutine
 DEBUG "After subroutine", CR
 PAUSE 1000
LOOP

My_Subroutine:
 DEBUG "Command in subroutine", CR
 PAUSE 1000
 RETURN

Figure 4-5
Subroutine
Basics

Example Program – OneSubroutine.bs2

√ Enter, save, and run OneSubroutine.bs2

' Robotics with the Boe-Bot - OneSubroutine.bs2
' This program demonstrates a simple subroutine call.

' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG "Before subroutine",CR
PAUSE 1000
GOSUB My_Subroutine
DEBUG "After subroutine", CR
END

My_Subroutine:

1

2

Page 142 · Robotics with the Boe-Bot

 DEBUG "Command in subroutine", CR
 PAUSE 1000
 RETURN

√ Watch your Debug Terminal, and press the Reset button a few times. You

should get the same set of three messages in the right order each time.

Here’s an example program that has two subroutines. One subroutine makes a high
pitched tone while the other makes a low pitched tone. The commands between DO and
LOOP call each of the subroutines in turn. Try this program and note the effect.

Example Program – TwoSubroutines.bs2

√ Enter, save, and run TwoSubroutines.bs2

' Robotics with the Boe-Bot - TwoSubroutines.bs2
' This program demonstrates that a subroutine is a reusable block of commands.

' {$STAMP BS2}
' {$PBASIC 2.5}

DO
 GOSUB High_Pitch
 DEBUG "Back in main", CR
 PAUSE 1000
 GOSUB Low_Pitch
 DEBUG "Back in main again", CR
 PAUSE 1000
 DEBUG "Repeat...",CR,CR
LOOP

High_Pitch:
 DEBUG "High pitch", CR
 FREQOUT 4, 2000, 3500
 RETURN

Low_Pitch:
 DEBUG "Low pitch", CR
 FREQOUT 4, 2000, 2000
 RETURN

Let’s try putting the forward, left, right, and backward navigation routines inside
subroutines. Here’s an example:

Chapter 4: Boe-Bot Navigation · Page 143

Example Program – MovementsWithSubroutines.bs2

√ Enter, save, and run MovementsWithSubroutines.bs2. Hint: you can use the Edit
menu in the BASIC Stamp Editor to copy and paste code blocks from one
program to another.

' Robotics with the Boe-Bot - MovementsWithSubroutines.bs2
' Make forward, left, right, and backward movements in reusable subroutines.

' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG "Program Running!"

counter VAR Word

FREQOUT 4, 2000, 3000 ' Signal program start/reset.

GOSUB Forward
GOSUB Left
GOSUB Right
GOSUB Backward

END

Forward:
 FOR counter = 1 TO 64
 PULSOUT 13, 850
 PULSOUT 12, 650
 PAUSE 20
 NEXT
 PAUSE 200
 RETURN

Left:
 FOR counter = 1 TO 24
 PULSOUT 13, 650
 PULSOUT 12, 650
 PAUSE 20
 NEXT
 PAUSE 200
 RETURN

Right:
 FOR counter = 1 TO 24
 PULSOUT 13, 850
 PULSOUT 12, 850
 PAUSE 20
 NEXT

Page 144 · Robotics with the Boe-Bot

 PAUSE 200
 RETURN

Backward:
 FOR counter = 1 TO 64
 PULSOUT 13, 650
 PULSOUT 12, 850
 PAUSE 20
 NEXT
 RETURN

You should recognize the pattern of movement your Boe-Bot makes; it is the same one
made by ForwardLeftRightBackward.bs2. Clearly there are many different ways to
structure a program that will result in the same movements. A third approach is given in
the example below.

Example Program – MovementsWithVariablesAndOneSubroutine.bs2

Here’s another example program that causes your Boe-Bot to perform the same
maneuvers, but it only uses one subroutine and some variables to do it.

You have surely noticed that up to this point each Boe-Bot maneuver has been
accomplished with similar code blocks. Compare these two snippets:

' Forward full speed

FOR counter = 1 TO 64

 PULSOUT 13, 850
 PULSOUT 12, 650
 PAUSE 20

NEXT

' Ramp down from full speed backwards

FOR pulseCount = 100 TO 1

 PULSOUT 13, 750 - pulseCount
 PULSOUT 12, 750 + pulseCount
 PAUSE 20

NEXT

What causes these two code blocks to perform different maneuvers are changes to the
FOR StartValue and EndValue arguments, and the PULSOUT Duration arguments.
These arguments can be variables, and these variables can be changed repeatedly during
program run time to generate different maneuvers. Instead of using separate subroutines
with specific PULSOUT Duration arguments for each maneuver, the program below uses
the same subroutine over and over. The key to making different maneuvers is to set the
variables to the correct values for the maneuver you want before calling the subroutine.

Chapter 4: Boe-Bot Navigation · Page 145

√ Enter, save, and run MovementWithVariablesAndOneSubroutine.bs2.

' Robotics with the Boe-Bot - MovementWithVariablesAndOneSubroutine.bs2
' Make a navigation routine that accepts parameters.

' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG "Program Running!"

counter VAR Word
pulseLeft VAR Word
pulseRight VAR Word
pulseCount VAR Byte

FREQOUT 4, 2000, 3000 ' Signal program start/reset.

' Forward

pulseLeft = 850: pulseRight = 650: pulseCount = 64: GOSUB Navigate

' Left turn

pulseLeft = 650: pulseRight = 650: pulseCount = 24: GOSUB Navigate

' Right turn

pulseLeft = 850: pulseRight = 850: pulseCount = 24: GOSUB Navigate

' Backward

pulseLeft = 650: pulseRight = 850: pulseCount = 64: GOSUB Navigate

END

Navigate:
 FOR counter = 1 TO pulseCount
 PULSOUT 13, pulseLeft
 PULSOUT 12, pulseRight
 PAUSE 20
 NEXT
 PAUSE 200
 RETURN

Did your Boe-Bot perform the familiar forward-left-right-backward sequence? This
program may be difficult to read at first, because the instructions are arranged in a new
way. Instead of having each variable statement and each GOSUB command on a different
line, they are grouped together on the same line and separated by colons. Here, the

Page 146 · Robotics with the Boe-Bot

colons function the same as a carriage return to separate each PBASIC instruction. Using
colons this way allows all of the new variable values for a given maneuver to be stored
together, and on the same line as the subroutine call.

Your Turn

Here is your "dead reckoning" contest mentioned earlier.

√ Modify MovementWithVariablesAndOneSubroutine.bs2 to make your Boe-Bot
drive in a square, facing forwards on the first two sides and backwards on the
second two sides. Hint: you will need to use your own PULSOUT EndValue
argument that you determined in Activity #2, page 132.

ACTIVITY #6: ADVANCED TOPIC - BUILDING COMPLEX MANEUVERS
IN EEPROM
When you download PBASIC program to your BASIC Stamp, the BASIC Stamp Editor
converts your program to numeric values called tokens. These tokens are what the
BASIC Stamp uses as instructions for executing the program. They are stored in one of
the two smaller black chips on top of your BASIC Stamp, the one labeled "24LC16B.”
This chip is a special type of computer memory called EEPROM, which stands for
electrically erasable programmable read only memory (EEPROM). The BASIC Stamp’s
EEPROM can hold 2048 bytes (2 kB) of information. What’s not used for program
storage (which builds from address 2047 toward address 0) can be used for data storage
(which builds from address 0 toward address 2047).

If the data you store in EEPROM collides with your program, the PBASIC program won't
execute properly.

EEPROM memory is different from RAM (random access memory) variable storage in
several respects:

• EEPROM takes more time to store a value, sometimes up to several
milliseconds.

• EEPROM can accept a finite number of write cycles, around 10 million writes.
RAM has unlimited read/write capabilities.

• The primary function of the EEPROM is to store programs; data can be stored in
leftover space.

Chapter 4: Boe-Bot Navigation · Page 147

You can view the contents of the BASIC Stamp’s EEPROM in the BASIC Stamp Editor
by clicking Run and selecting Memory Map. Figure 4-6 shows the Memory Map for
MovementsWithSubroutines.bs2. Note the condensed EEPROM Map on the left side of
the figure. This shaded area in the small box at the bottom shows the amount of
EEPROM that MovementsWithSubroutines.bs2 occupies.

The memory map images shown in this activity were taken from the BASIC Stamp Editor
v2.1. If you are using an earlier version of the BASIC Stamp Editor, your memory map will
contain the same information, but it will be formatted differently.

Figure 4-6
BASIC Stamp
Memory Map

While we are here, note also that the counter variable we declared as a word is visible in
Register 0 of the RAM Map.

This program might have seemed large while you were typing it in, but it only takes up
136 of the available 2048 bytes of program memory. There currently is enough room for
quite a long list of instructions. Since a character occupies a byte in memory, there is
room for 1912 one-character direction instructions.

EEPROM Navigation

Up to this point we have tried three different programming approaches to make your Boe-
Bot drive forward, turn left, turn right, and drive back again. Each technique has its
merits, but all would be cumbersome if you wanted your Boe-Bot to execute a longer,
more complex set of maneuvers. The upcoming program examples will use the now-

Page 148 · Robotics with the Boe-Bot

familiar code blocks in subroutines for each basic maneuver. Each maneuver is given a
one-letter code as a reference. Long lists of these code letters can be stored in EEPROM
and then read and decoded during program execution. This avoids the tedium of
repeating long lists of subroutines, or having to change the variables before each GOSUB
command.

This programming approach requires some new PBASIC instructions: the DATA directive,
and READ and SELECT...CASE...ENDSELECT commands. Let’s take a look at each before
trying out an example program.

Each of the basic maneuvers is given a single letter code that will correspond to its
subroutine: F for Forward, B for Backward, L for Left_Turn, and R for Right_Turn.
Complex Boe-Bot movements can be quickly choreographed by making a string of these
code letters. The last letter in the string is a Q, which will mean “quit” when the
movements are over. The list is saved in EEPROM during program download with the
DATA directive, which looks like this:

DATA "FLFFRBLBBQ"

Each letter is stored in a byte of EEPROM, beginning at address 0 (unless we tell it to
start somewhere else). The READ command can then be used to get this list back out of
EEPROM while the program is running. These values can be read from within a
DO…LOOP like this:

DO UNTIL (instruction = "Q")
 READ address, instruction
 address = address + 1
 ' PBASIC code block omitted here.
LOOP

The address variable is the location of each byte in EEPROM that is holding a code
letter. The instruction variable will hold the actual value of that byte, our code letter.
Notice that each time through the loop, the value of the address variable is increased by
one. This will allow each letter to be read from consecutive bytes in the EEPROM,
starting at address 0.

The DO…LOOP command has optional conditions that are handy for different
circumstances. The DO UNTIL (condition)...LOOP allows the loop to repeat until a
certain condition occurs. DO WHILE (condition)...LOOP allows the loop to repeat only

Chapter 4: Boe-Bot Navigation · Page 149

while a certain condition exists. Our example program will use DO…LOOP UNTIL

(condition). In this case, it causes the DO…LOOP to keep repeating until the character
“Q” is read from EEPROM.

A SELECT...CASE...ENDSELECT statement can be used to select a variable and evaluate it
on a case-by-case basis and execute code blocks accordingly. Here is the code block that
will look at each letter value held in the instruction variable and then call the
appropriate subroutine for each instance, or case, of a given letter.

 SELECT instruction
 CASE "F": GOSUB Forward
 CASE "B": GOSUB Backward
 CASE "R": GOSUB Right_Turn
 CASE "L": GOSUB Left_Turn
 ENDSELECT

Here are these concepts, all together in a single program.

Example Program: EepromNavigation.bs2

√ Carefully read the code instructions and comments in EepromNavigation.bs2 to
understand what each part of the program does.

√ Enter, save, and run EepromNavigation.bs2.

' Robotics with the Boe-Bot - EepromNavigation.bs2
' Navigate using characters stored in EEPROM.

' {$STAMP BS2} ' Stamp directive.
' {$PBASIC 2.5} ' PBASIC directive.

DEBUG "Program Running!"

' -----[Variables]--

pulseCount VAR Word ' Stores number of pulses.
address VAR Byte ' Stores EEPROM address.
instruction VAR Byte ' Stores EEPROM instruction.

' -----[EEPROM Data]--

' Address: 0123456789 ' These two commented lines show
' |||||||||| ' EEPROM address of each datum.
DATA "FLFFRBLBBQ" ' Navigation instructions.

' -----[Initialization]---

Page 150 · Robotics with the Boe-Bot

FREQOUT 4, 2000, 3000 ' Signal program start/reset.

' -----[Main Routine]---

DO UNTIL (instruction = "Q")

 READ address, instruction ' Data at address in instruction.
 address = address + 1 ' Add 1 to address for next read.

 SELECT instruction ' Call a different subroutine
 CASE "F": GOSUB Forward ' for each possible character
 CASE "B": GOSUB Backward ' that can be fetched from
 CASE "L": GOSUB Left_Turn ' EEPROM.
 CASE "R": GOSUB Right_Turn
 ENDSELECT

LOOP

END ' Stop executing until reset.

' -----[Subroutine - Forward]---

Forward: ' Forward subroutine.
 FOR pulseCount = 1 TO 64 ' Send 64 forward pulses.
 PULSOUT 13, 850 ' 1.7 ms pulse to left servo.
 PULSOUT 12, 650 ' 1.3 ms pulse to right servo.
 PAUSE 20 ' Pause for 20 ms.
 NEXT
 RETURN ' Return to Main Routine loop.

' -----[Subroutine - Backward]--

Backward: ' Backward subroutine.
 FOR pulseCount = 1 TO 64 ' Send 64 backward pulses.
 PULSOUT 13, 650 ' 1.3 ms pulse to left servo.
 PULSOUT 12, 850 ' 1.7 ms pulse to right servo.
 PAUSE 20 ' Pause for 20 ms.
 NEXT
 RETURN ' Return to Main Routine loop.

' -----[Subroutine - Left_Turn]---

Left_Turn: ' Left turn subroutine.
 FOR pulseCount = 1 TO 24 ' Send 24 left rotate pulses.
 PULSOUT 13, 650 ' 1.3 ms pulse to left servo.
 PULSOUT 12, 650 ' 1.3 ms pulse to right servo.
 PAUSE 20 ' Pause for 20 ms.
 NEXT
 RETURN ' Return to Main Routine loop.

Chapter 4: Boe-Bot Navigation · Page 151

' -----[Subroutine – Right_Turn]--

Right_Turn: ' right turn subroutine.
 FOR pulseCount = 1 TO 24 ' Send 24 right rotate pulses.
 PULSOUT 13, 850 ' 1.7 ms pulse to left servo.
 PULSOUT 12, 850 ' 1.7 ms pulse to right servo.
 PAUSE 20 ' Pause for 20 ms.
 NEXT
 RETURN ' Return to Main Routine section.

Did your Boe-Bot drive in a rectangle, going forward on the first two sides and
backwards on the second two? If it looked more like a trapezoid, you may want to adjust
the FOR...NEXT loop's EndValue arguments in the turning subroutines to make precise 90-
degree turns.

Your Turn

√ With EepromNavigation.bs2 active in the BASIC Stamp Editor, click Run and
select Memory Map.

Your stored instructions will appear highlighted in blue at the beginning of the Detailed
EEPROM Map as shown in Figure 4-7. The numbers shown are the hexadecimal ASCII
(American Standard Code for Information Interchange) codes that correspond to the
characters you entered in your DATA statement.

Figure 4-7
Memory Map
with Stored
Instructions
Visible in
EEPROM Map

√ Click the Display ASCII checkbox near the lower left corner of the Memory Map

window.

Page 152 · Robotics with the Boe-Bot

Now the direction instructions will appear in a more familiar format shown in Figure 4-8.
Instead of ASCII codes, they appear as the actual characters you recorded using the DATA
directive.

Figure 4-8
Close-up of the
Detailed
EEPROM Map
after Display
ASCII Box is
Checked

This program stored a total of 10 characters in EEPROM. These ten characters were
accessed by the READ command’s address variable. The address variable was declared
as a byte, so it can access up to 256 locations, well over the 10 we needed. If the
address variable is re-declared to be a word variable, you could theoretically access up
to 65535, far more locations than are available. Keep in mind that if your program gets
larger, the number of available EEPROM addresses for holding data gets smaller.

You can modify the existing data string to a new set of directions. You can also add
additional DATA statements. The data is stored sequentially, so the first character in the
second data string will get stored immediately after the last character in the first data
string.

√ Try changing, adding, and deleting characters in the DATA directive, and re-
running the program. Remember that the last character in the DATA directive
should always be a “Q.”

√ Modify the DATA directive to make your Boe-Bot perform the familiar forward-
left-right-backward sequence of movements.

√ Try adding a second DATA directive. Remember to remove the “Q” from the end
of the first DATA directive and add it to the end of the second. Otherwise, the
program will execute only the commands in the first DATA directive.

Chapter 4: Boe-Bot Navigation · Page 153

Example Program – EepromNavigationWithWordValues.bs2

This next example program looks complicated at first, but it is a very efficient way to
design programs for custom Boe-Bot choreography. This example program uses
EEPROM data storage, but does not use subroutines. Instead, a single code block is
used, with variables in place of the FOR...NEXT loop's EndValue and PULSOUT Duration
arguments.

By default, the DATA directive stores bytes of information in EEPROM. To store word-
sized data items, you can add the Word modifier to the DATA directive, before each data
item in your string. Each word-sized data item will use two bytes of EEPROM storage,
so the data will be accessed via every other address location. When using more than one
DATA directive, it is most convenient to assign a label to each one. This way, your READ
commands can refer to the label to retrieve data items without you having to figure out at
which EEPROM address each string of data items begins. Take a look at this code
snippet:

' addressOffset 0 2 4 6 8
Pulses_Count DATA Word 64, Word 24, Word 24, Word 64, Word 0
Pulses_Left DATA Word 850, Word 650, Word 850, Word 650
Pulses_Right DATA Word 650, Word 650, Word 850, Word 850

Each of the three DATA statements begins with its own label. The Word modifier goes
before each data item, and the items are separated by commas. These three strings of
data will be stored in EEPROM one after another. We don’t have to do the math to
figure out the address number of a given data item, because the labels and the
addressOffset variable will do that automatically. The READ command uses each label
to determine the EEPROM address where that string begins, and then adds the value of
the addressOffset variable to know how many address numbers to shift over to find the
correct DataItem. The DataItem found at the resulting Address will be stored in the
READ command's Variable argument. Notice that the Word modifier also comes before
the variable that stores the value fetched from EEPROM.

DO
 READ Pulses_Count + addressOffset, Word pulseCount
 READ Pulses_Left + addressOffset, Word pulseLeft
 READ Pulses_Right + addressOffset, Word pulseRight

 addressOffset = addressOffset + 2

 ' PBASIC code block omitted here.

Page 154 · Robotics with the Boe-Bot

LOOP UNTIL (pulseCount = 0)

The first time through the loop, addressOffset = 0. The first READ command will
retrieve a value of 64 from the first address at the Pulses_Count label, and place it in the
pulseCount variable. The second READ command retrieves a value of 850 from the first
address specified by the Pulses_Left label, and places it in the pulseLeft variable.
The third READ command retrieves a value of 650 from the first address specified by the
Pulses_Right label and places it in the pulseRight variable. Notice that these are the
three values in the “0” column of the code snippet on page 153. When the value of those
variables are placed in the code block that follows, this:

FOR counter = 1 TO pulseCount
 PULSOUT 13, pulseLeft
 PULSOUT 12, pulseRight
 PAUSE 20
NEXT

becomes

FOR counter = 1 TO 64
 PULSOUT 13, 850
 PULSOUT 12, 650
 PAUSE 20
NEXT

Do you recognize the basic maneuver generated by this code block?

√ Look at the other columns of the code snippet on page 153 and anticipate what
the FOR…NEXT code block will look like on the second, third, and fourth times
through the loop.

√ Look at the LOOP UNTIL (pulseCount = 0) statement in the program below.
The <> operator stands for "not equal to". What will happen on the fifth time
through the loop?

√ Enter, save, and run EepromNavigationWithWordValues.bs2.

' Robotics with the Boe-Bot - EepromNavigationWithWordValues.bs2
' Store lists of word values that dictate.

' {$STAMP BS2} ' Stamp directive.
' {$PBASIC 2.5} ' PBASIC directive.

DEBUG "Program Running!"

' -----[Variables]--

counter VAR Word
pulseCount VAR Word ' Stores number of pulses.
addressOffset VAR Byte ' Stores offset from label.
instruction VAR Byte ' Stores EEPROM instruction.
pulseRight VAR Word ' Stores servo pulse widths.

Chapter 4: Boe-Bot Navigation · Page 155

pulseLeft VAR Word

' -----[EEPROM Data]--

' addressOffset 0 2 4 6 8
Pulses_Count DATA Word 64, Word 24, Word 24, Word 64, Word 0
Pulses_Left DATA Word 850, Word 650, Word 850, Word 650
Pulses_Right DATA Word 650, Word 650, Word 850, Word 850

' -----[Initialization]---

FREQOUT 4, 2000, 3000 ' Signal program start/reset.

' -----[Main Routine]---

DO

 READ Pulses_Count + addressOffset, Word pulseCount
 READ Pulses_Left + addressOffset, Word pulseLeft
 READ Pulses_Right + addressOffset, Word pulseRight

 addressOffset = addressOffset + 2

 FOR counter = 1 TO pulseCount
 PULSOUT 13, pulseLeft
 PULSOUT 12, pulseRight
 PAUSE 20
 NEXT

LOOP UNTIL (pulseCount = 0)

END ' Stop executing until reset.

Did your Boe-Bot perform the familiar forward-left-right-backwards movements? Are
you thoroughly bored with it by now? Do you want to see your Boe-Bot do something
else, or to choreograph your own routine?

Your Turn – Making Your Own Custom Navigation Routines

√ Save EepromNavigationWithWordValues.bs2. under a new name.
√ Replace the DATA directives with the ones below.
√ Run the modified program and see what your Boe-Bot does.

Pulses_Count DATA Word 60, Word 80, Word 100, Word 110,
 Word 110, Word 100, Word 80, Word 60, Word 0
Pulses_Left DATA Word 850, Word 800, Word 785, Word 760, Word 750,

Page 156 · Robotics with the Boe-Bot

 Word 740, Word 715, Word 700, Word 650, Word 750
Pulses_Right DATA Word 650, Word 700, Word 715, Word 740, Word 750,
 Word 760, Word 785, Word 800, Word 850, Word 750

√ Make a table with three rows, one for each DATA directive, and a column for each
Boe-Bot maneuver you want to make, plus one for the Word 0 item in the
Pulses_Count row.

√ Use the table to plan out your Boe-Bot choreography, filling in the FOR...NEXT
loop's EndValue and PULSOUT Duration arguments you will need for each
maneuver’s code block.

√ Modify your program with your newly charted DATA directives.
√ Enter, save, and run your custom program. Did your Boe-Bot do what you

wanted it to do? Keep working on it until it does.

Chapter 4: Boe-Bot Navigation · Page 157

SUMMARY
This chapter introduced the basic Boe-Bot maneuvers: forward, backward, rotating in
place to turn to the right or left, and pivoting. The type of maneuver is determined by the
PULSOUT commands’ Duration arguments. How far the maneuver goes is determined
by the FOR…NEXT loop’s StartValue and EndValue arguments.

Chapter 2 included a hardware adjustment, physically centering the Boe-Bot’s servos
with a screwdriver. This chapter focused on fine tuning adjustments made by
manipulating the software. Specifically, a difference in rotation speed between the two
servos was compensated for by changing the PULSOUT command’s Duration argument
for the faster of the two servos. This changes the Boe-Bot’s path from a curve to a
straight line if the servos are not perfectly matched. To refine turning so that the Boe-Bot
turns to the desired angle, the StartValue and EndValue arguments of a FOR…NEXT loop
can be adjusted.

Programming the Boe-Bot to travel a pre-defined distance can be accomplished by
measuring the distance it travels in one second, with the help of a ruler. Using this
distance, and the number of pulses in one second of run time, you can calculate the
number of pulses required to cover a desired distance.

Ramping was introduced as a way to gradually accelerate and decelerate. It’s kinder to
the servos, and we recommended that you use your own ramping routines in place of the
abrupt start and stop routines shown in the example programs. Ramping is accomplished
by taking the same variable that’s used as the Counter argument in a FOR…NEXT loop and
adding it to or subtracting it from 750 in the PULSOUT command’s Duration argument.

Subroutines were introduced as a way to make pre-programmed maneuvers reusable by a
PBASIC program. Instead of writing an entire FOR…NEXT loop for each new maneuver, a
single subroutine that contains a FOR…NEXT loop can be executed as needed with the
GOSUB command. A subroutine begins with a label, and ends with the RETURN command.
A subroutine is called from the main program with a GOSUB command. When the
subroutine is finished and it encounters the RETURN command, the next command to be
executed is the one immediately following the GOSUB command.

Page 158 · Robotics with the Boe-Bot

The BASIC Stamp’s EEPROM stores the program it runs, but you can take advantage of
any unused portion of the program to store values. This is a great way to store custom
navigation routines. The DATA directive can store values in EEPROM. Bytes are stored
by default, but adding the Word modifier to each data item allows you to store values up
to 65535 in two bytes’ worth of EEPROM memory space. You can read values back out
of EEPROM using the READ command. If you are retrieving a word-sized variable, make
sure to place a Word modifier before the variable that will receive the value that READ
fetches. SELECT…CASE was introduced as a way of evaluating a variable on a case by
case basis, and executing a different code block depending on the case. Optional
DO…LOOP conditions are helpful in certain circumstances; DO UNTIL

(Condition)...LOOP and DO...LOOP UNTIL (Condition) were demonstrated as ways to
keep executing a DO…LOOP until a particular condition is detected.

Questions
1. What direction does the left wheel have to turn to make the Boe-Bot go forward?

What direction does the right wheel have to turn?
2. When the Boe-Bot pivots to the left, what are the right and left wheels doing?

What PBASIC commands do you need to make the Boe-Bot pivot left?
3. If your Boe-Bot veers slightly to the left when you are running a program to

make it go straight ahead, how do you correct this? What command needs to be
adjusted and what kind of adjustment should you make?

4. If your Boe-Bot travels 11 in/s, how many pulses will it take to make it travel 36
inches?

5. What’s the relationship between a FOR…NEXT loop’s Counter argument and the
PULSOUT command’s Duration argument that makes ramping possible?

6. What directive can you use to pre-store values in the BASIC Stamp’s EEPROM
before running a program?

7. What command can you use to retrieve a value stored in EEPROM and copy it to
a variable?

8. What code block can you use to select a particular variable and evaluate it on a
case by case basis and execute a different code block for each case?

9. What are the different conditions that can be used with DO…LOOP?

Exercises
1. Write a routine that makes the Boe-Bot back up for 350 pulses.

Chapter 4: Boe-Bot Navigation · Page 159

2. Let’s say that you tested your servos and discovered that it takes 48 pulses to
make a 180° turn with right-rotate. With this information, write routines to make
the Boe-Bot perform 30, 45, and 60 degree turns.

3. Write a routine that makes the Boe-Bot go straight forward, then ramp in and out
of a pivoting turn, and then continue straight forward.

Projects
1. It is time to fill in column 3 of Table 2-1: PULSOUT Duration Combinations on

page 81. To do this, modify the PULSOUT Duration arguments in the program
BoeBotForwardThreeSeconds.bs2 using each pair of values from column 1.
Record your Boe-Bot’s resultant behavior for each pair in column 3. Once
completed, this table will serve as a reference guide when you design your own
custom Boe-Bot maneuvers.

2. Figure 4-9 shows two simple obstacle courses. Write a program that will make
your Boe-Bot navigate along each figure. Assume straight line distances
(including the diameter of the circle) to be either 1 yd or 1 m.

Figure 4-9
Simple Obstacle
Courses

Page 160 · Robotics with the Boe-Bot

Solutions
Q1. Left wheel counterclockwise, right wheel clockwise.
Q2. The right wheel is turning clockwise (forward), and the left wheel is not

moving.
 PULSOUT 13, 750
 PULSOUT 12, 650

Q3. You can slow down the right wheel to correct a veer to the left. The PULSOUT
command for the right wheel needs to be adjusted.
 PULSOUT 12, 650

Adjust the 650 to something closer to 750 to slow the wheel down.
 PULSOUT 12, 663

Q4. Given:
Boe-Bot speed = 11 in/s
Boe-Bot distance = 36 in/s
pulses = (Boe-Bot distance / Boe-Bot speed) * (40.65 pulses / s)
 = (36 / 11) * (40.65)
 = 133.04
 = 133
It should take 133 pulses to travel 36 inches.

Q5. The FOR…NEXT loop's pulseCount variable can be used as an offset (plus or
minus) to 750 (the center position) in the Duration argument.

FOR pulseCount = 1 to 100
 PULSOUT 13, 750 + pulseCount
 PULSOUT 12, 750 – pulseCount
 PAUSE 20
NEXT

Q6. The DATA directive.
Q7. The READ command.
Q8. SELECT...CASE...ENDSELECT.
Q9. UNTIL and WHILE.

E1. FOR counter = 1 to 350 ' Backward

 PULSOUT 13, 650
 PULSOUT 12, 850
 PAUSE 20
NEXT

E2. FOR counter = 1 to 8 ' Rotate right 30 degrees
 PULSOUT 13, 850

Chapter 4: Boe-Bot Navigation · Page 161

 PULSOUT 12, 850
 PAUSE 20
NEXT

FOR counter = 1 to 12 ' Rotate right 45 degrees
 PULSOUT 13, 850
 PULSOUT 12, 850
 PAUSE 20
NEXT

FOR counter = 1 to 16 ' Rotate right 60 degrees
 PULSOUT 13, 850
 PULSOUT 12, 850
 PAUSE 20
NEXT

E3. FOR counter = 1 to 100 ' Forward
 PULSOUT 13, 850
 PULSOUT 12, 650
 PAUSE 20
NEXT

FOR counter = 0 TO 30 ' Ramping pivot turn
 PULSOUT 13, 750 + counter
 PULSOUT 12, 750
 PAUSE 20
NEXT

FOR counter = 30 TO 0
 PULSOUT 13, 750 + counter
 PULSOUT 12, 750
 PAUSE 20
NEXT

FOR counter = 1 to 100 ' Forward
 PULSOUT 13, 850
 PULSOUT 12, 650
 PAUSE 20
NEXT

Page 162 · Robotics with the Boe-Bot

P1.
P13 P12 Description Behavior
850 650 Full Speed

P13 CCW, P12 CW
Forward

650 850 Full Speed
P13 CW, P12 CCW

Backward

850 850 Full Speed
P13 CCW, P12 CCW

Right rotate

650 650 Full Speed
P13 CW, P12 CW

Left rotate

750 850 P13 Stopped
P12 CCW Full speed

Pivot back left

650 750 P13 CW Full Speed
P12 Stopped

Pivot back right

750 750 P13 Stopped
P12 Stopped

Stopped

760 740 P13 CCW Slow
P12 CW Slow

Forward slow

770 730 P13 CCW Med
P12 CW Med

Forward medium

850 700 P13 CCW Full Speed
P12 CW Medium

Veer right

800 650 P13 CCW Medium
P12 CW Full Speed

Veer left

P2. The circle can be implemented by veering right continuously. Trial and error, a
yard or meter stick, will help you arrive at the right PULSOUT value. Circle with a
one-yard diameter:

' Robotics with the Boe-Bot - Chapter 4 - Circle.bs2
' Boe-Bot navigates a circle of 1 yard diameter.

'{$STAMP BS2}
'{$PBASIC 2.5}
DEBUG "Program running!"

pulseCount VAR Word ' Pulse count to servos

FREQOUT 4, 2000, 3000 ' Signal program start/reset.

' -----[Main Routine]--
Main:
DO
 PULSOUT 13, 850 ' Veer right
 PULSOUT 12, 716
 PAUSE 20
LOOP

To make the triangle, first calculate the number of pulses required for a one
meter or yard straight line, as in Question 4. Then fine-tune your distances to

Chapter 4: Boe-Bot Navigation · Page 163

match your Boe-Bot and particular surface. For a triangle pattern, the Boe-Bot
must travel 1 meter/yard forward, then make a 120 degree turn. This should be
repeated three times for the three sides of the triangle. You may have to adjust
the pulseCount EndValue in the Right_Rotate120 subroutine to get a precise
120 degree turn.

' Robotics with the Boe-Bot - Chapter 4 - Triangle.bs2
' Boe-Bot navigates triangle shape with 1 yard sides.
' Go forward, then turn 120 degrees. Repeat three times.

'{$STAMP BS2}
'{$PBASIC 2.5}
DEBUG "Program running!"

counter VAR Nib ' Triangle has 3 sides
pulseCount VAR Word ' Pulse count to servos

FREQOUT 4, 2000, 3000 ' Signal program start/reset.

Main:
 FOR counter = 1 TO 3 ' Repeat 3 times for triangle
 GOSUB Forward
 GOSUB Right_Rotate120
 NEXT
 END

Forward:
 FOR pulseCount = 1 TO 163 ' Forward 1 yard
 PULSOUT 13, 850
 PULSOUT 12, 650
 PAUSE 20
 NEXT
 RETURN

Right_Rotate120:
 FOR pulseCount = 1 TO 21 ' Rotate right 120 degrees
 PULSOUT 13, 850
 PULSOUT 12, 850
 PAUSE 20
 NEXT
 RETURN

Chapter 5: Tactile Navigation with Whiskers · Page 165

Chapter 5: Tactile Navigation with Whiskers

Many types of robotic machinery rely on a variety of tactile switches. For example, a
tactile switch may detect when a robotic arm has encountered an object. The robot can
be programmed to pick up the object and place it elsewhere. Factories use tactile
switches to count objects on a production line, and also for aligning objects during
industrial processes. In all these instances, the switches provide inputs that dictate some
other form of programmed output. The inputs are electronically monitored by the
product, be it a robot, or a calculator, or a production line. Based on the state of the
switches, the robot arm grabs an object, or the calculator display updates, or the factory
production line reacts with motors or servos to guide products.

In this chapter, you will build tactile switches, called whiskers, onto your Boe-Bot and
test them. You will then program the Boe-Bot to monitor the state of these switches, and
to decide what to do when it encounters an obstacle. The end result will be autonomous
navigation by touch.

TACTILE NAVIGATION
The whiskers are so named because that is what these bumper switches look like, though
some argue they look more like antennae. At any rate, these whiskers are shown
mounted on a Boe-Bot in Figure 5-1. Whiskers give the Boe-Bot the ability to sense the
world around it through touch, much like the antennae on an ant or the whiskers on a cat.
The activities in this chapter use the whiskers by themselves, but they can also be
combined with other sensors you will learn about in later chapters to increase your Boe-
Bot’s functionality.

Page 166 · Robotics with the Boe-Bot

Figure 5-1
Boe-Bot with
Whiskers

ACTIVITY #1: BUILDING AND TESTING THE WHISKERS
Before moving on to programs that make the Boe-Bot navigate based on what it can
touch, it’s essential to build and test the whiskers first. This activity will guide you
through building and testing the whiskers.

Whisker Circuit and Assembly

√ Gather the whiskers hardware shown in Figure 5-2.
√ Disconnect power from your board and servos.

Chapter 5: Tactile Navigation with Whiskers · Page 167

Parts List:

(2) Whisker wires
(2) 7/8″ pan head 4-40

Phillips screws
(2) ½″ round spacer
(2) Nylon washers – size #4
(2) 3-pin m/m headers
(2) Resistors, 220 Ω
 (red-red-brown)
(2) Resistors, 10 kΩ
 (brown-black-orange)

Figure 5-2
Whiskers
Hardware

Building the Whiskers

√ Remove the two front screws that hold your board to the front standoffs.
√ Refer to Figure 5-3 while following the remaining instructions.
√ Thread a nylon washer and then a ½″ round spacer on each of the 7/8″ screws.
√ Attach the screws through the holes in your board and into the standoffs below,

but do not tighten them all the way yet.
√ Slip the hooked ends of the whisker wires around the screws, one above the

washer and the other below the washer, positioning them so they cross over each
other without touching.

√ Tighten the screws into the standoffs.

Board of Education / HomeWork Board

Figure 5-3
Mounting the
Whiskers

Page 168 · Robotics with the Boe-Bot

The next step is add the whiskers circuit shown in Figure 5-4 to the piezospeaker and
servo circuits you built and tested in Chapter 2 and Chapter 3.

√ If you have a Board of Education, build the whiskers circuit shown in Figure 5-4
using the wiring diagram in Figure 5-5 on page 169 as a reference.

√ If you have a HomeWork Board, build the whiskers circuit shown in Figure 5-4
using the wiring diagram in Figure 5-6 on page 170 as a reference.

√ Make sure to adjust each whisker so that it is close to, but not touching, the 3-pin
header on the breadboard. A distance of about 1/8″ (3 mm) is a recommended
starting point.

P7

P5

Vss Vss

Vdd Vdd

Right
Whisker

Left
Whisker

10 kΩ10 kΩ

220 Ω

220 Ω

Figure 5-4
Whiskers
Schematic

Chapter 5: Tactile Navigation with Whiskers · Page 169

Figure 5-5: Whisker Wiring Diagram for the Board of Education

P15
P14
P13
P12
P11
P10
P9
P8

P6

P3
P2
P1
P0

P7

P5
P4

X2

X3
Vdd VssVin

Board of Education
 © 2000-2003Rev C

Vdd

Black
Red

X4 X5

15 14 13 12

To Servos

Left
Whisker

Right
Whisker

+

Use the 220 Ω resistors (red-red-brown color codes) to connect P5 and P7 to their
corresponding 3-pin headers. Use the 10 kΩ resistors (brown-black-orange color
codes) to connect Vdd to each 3-pin header.

Page 170 · Robotics with the Boe-Bot

Figure 5-6: Whisker Wiring Diagram for the HomeWork Board

P15
P14

P11

P13
P12

P7

P5
P4

P10
P9
P8

P6

P3
P2
P1
P0

X2

X3
Vdd VssVin

Rev B
(916) 624-8333
www.parallax.com
www.stampsinclass.com

To Servos

Left
Whisker

Right
Whisker

+

HomeWork Board

Use the 220 Ω resistors (red-red-brown-color codes) to connect P5 and P7 to their
corresponding 3-pin headers. Use the 10 kΩ resistors (brown-black-orange color
codes) to connect Vdd to each 3-pin header.

Chapter 5: Tactile Navigation with Whiskers · Page 171

Testing the Whiskers

Take a second look at the whiskers schematic (Figure 5-7). Each whisker is both the
mechanical extension and the ground electrical connection of a normally open, single-
pole, single-throw switch. The reason the whiskers are connected to ground (Vss) is
because the plated holes at the outer edge of the board are all connected to Vss. This is
true for both the Board of Education and the BASIC Stamp HomeWork Board. The
metal standoffs and screw provide the electrical connection to each whisker.

P7

P5

Vss Vss

Vdd Vdd

Right
Whisker

Left
Whisker

10 kΩ10 kΩ

220 Ω

220 Ω

Figure 5-7
Whiskers
Schematic –
A Second
Look

The BASIC Stamp can be programmed to detect when a whisker is pressed. I/O pins
connected to each switch circuit monitor the voltage at the 10 kΩ pull-up resistor.
Figure 5-8 illustrates how this works. When a given whisker is not pressed, the voltage at
the I/O pin connected to that whisker is 5 V. When a whisker is pressed, the I/O line is
shorted to ground (Vss), so the I/O line sees 0 V.

All I/O pins default to input every time a PBASIC program starts. This means that the
I/O pins connected to the whiskers will function as inputs automatically. As an input, an
I/O pin connected to a whisker circuit will cause its input register to store a 1 if the
voltage is 5 V (whisker not pressed) or a 0 if the voltage is 0 V (whisker pressed). The
Debug Terminal can be used to display these values.

Page 172 · Robotics with the Boe-Bot

How do you get the BASIC Stamp to tell you whether it’s reading a 1 or 0? Because
the circuit is connected to P7, this 1 or 0 value will appear in a variable named IN7. IN7 is
called an input register. Input register variables are built-in and do not have to be declared in
the beginning of your program. You can see the value this variable is storing by using the
command DEBUG BIN1 IN7. The BIN1 is a formatter that tells the Debug Terminal to
display one binary digit (either 1 or 0).

Figure 5-8
Detecting Electrical
Contacts

Example Program: TestWhiskers.bs2

This next example program is designed to test the whiskers to make sure they are
functioning properly. By displaying the binary digits stored in the P7 and P5 input
registers (IN7 and IN5), the program will show you whether the BASIC Stamp detects
contact with a whisker. When the value stored in a given input register is 1, the whisker
is not pressed. When it is 0, the whisker is pressed.

√ Reconnect power to your board and servos.
√ Enter, save, and run TestWhiskers.bs2.
√ This program makes use of the Debug Terminal, so leave the serial cable

connected to the BASIC Stamp while the program is running.

' Robotics with the Boe-Bot - TestWhiskers.bs2
' Display what the I/O pins connected to the whiskers sense.

' {$STAMP BS2} ' Stamp directive.

Chapter 5: Tactile Navigation with Whiskers · Page 173

' {$PBASIC 2.5} ' PBASIC directive.

DEBUG "WHISKER STATES", CR,
 "Left Right", CR,
 "------ ------"

DO
 DEBUG CRSRXY, 0, 3,
 "P5 = ", BIN1 IN5,
 " P7 = ", BIN1 IN7
 PAUSE 50
LOOP

√ Note the values displayed in the Debug Terminal; it should display that both P7

and P5 are equal to 1.
√ Check Figure 5-5 on page 169 (or Figure 5-6 on page 170) so you know which

whisker is the “left whisker” and which whisker is the “right whisker”.
√ Press the right whisker into its three-pin header, and note the values displayed in

the Debug Terminal. It should now read:
P5 = 1 P7 = 0

√ Press the left whisker into its three-pin header, and note the value displayed in
the Debug Terminal again. This time it should read:
P5 = 0 P7 = 1

√ Press both whiskers against both three-pin headers. Now it should read
P5 = 0 P7 = 0

√ If the whiskers passed all these tests, you’re ready to move on; otherwise, check
your program and circuits for errors.

What is CRSRXY?

It is a formatter that allows you to conveniently arrange information your program sends to
the Debug Terminal. The formatter CRSRXY 0, 3, in the command

DEBUG CRSRXY, 0, 3,
 "P5 = ", BIN1 IN5,
 " P7 = ", BIN1 IN7

places the cursor at column 0, row 3 in the Debug Terminal. This makes it display nicely
below the “Whisker States” table heading. Each time through the loop, the new values
overwrite the old values because the cursor keeps going back to the same place.

Page 174 · Robotics with the Boe-Bot

ACTIVITY #2: FIELD TESTING THE WHISKERS
Assume that you may have to test the whiskers at some later time away from a computer.
Since the Debug Terminal won’t be available, what can you do? One solution would be
to program the BASIC Stamp so that it sends an output signal that corresponds to the
input signal it’s receiving. This can be done with a pair of LED circuits and a program
that turns the LEDs on and off based on the whisker inputs.

Parts List:

(2) Resistors - 220 Ω (red-red-brown)
(2) LEDs – Red

Building the LED Whisker Testing Circuits

√ Disconnect power from your board and servos.
√ If you have a Board of Education, add the circuit shown in Figure 5-9 with the

help of the wiring diagram in Figure 5-10 (page 175).
√ If you have a HomeWork Board, add the circuit shown in Figure 5-9 with the

help of the wiring diagram in Figure 5-11 (page 176).

P1

P10

Vss Vss

LEDLED

220 Ω

220 Ω

Figure 5-9
LED Whisker
Testing
Schematic

Add this LED
circuit.

Remember that an LED is a one way current valve. If it is plugged in backwards, it will
not let current pass through, and so will not emit light. For the LED to emit light when the
BASIC Stamp sends a high signal, the LED's anode must be connected to the 220 Ω
resistor, and its cathode must be connected to Vss. See Figure 5-10 or Figure 5-11.

Chapter 5: Tactile Navigation with Whiskers · Page 175

Figure 5-10: Whisker Plus LED Wiring Diagram for the Board of Education

P15
P14
P13
P12
P11
P10

P7

P5
P4

P1

P9
P8

P6

P3
P2

P0
X2

X3
Vdd VssVin

Board of Education
 © 2000-2003Rev C

Vdd

Black
Red

X4 X5

15 14 13 12

To Servos

Left
Whisker

Right
Whisker

+

Flat spot on
plastic case
indicates
cathode.

This lead is
the anode.

This lead is
the anode.

Page 176 · Robotics with the Boe-Bot

Figure 5-11: Whisker Plus LED Wiring Diagram for the HomeWork Board

P15
P14

P11

P13
P12

P10

P7

P5
P4

P1

P9
P8

P6

P3
P2

P0
X2

X3
Vdd VssVin

Rev B
(916) 624-8333
www.parallax.com
www.stampsinclass.com

To Servos

Left
Whisker

Right
Whisker

+

HomeWork Board

Flat spot on
plastic case
indicates
cathode

The anode
connects to
the 220 Ω
resistor.

The anode
connects to
the 220 Ω
resistor.

Chapter 5: Tactile Navigation with Whiskers · Page 177

Programming the LED Whisker Testing Circuits

√ Reconnect power to your board.
√ Save TestWhiskers.bs2 as TestWhiskersWithLeds.bs2.
√ Insert these two IF...THEN statements between the PAUSE 50 and LOOP

commands.

IF (IN7 = 0) THEN
 HIGH 1
ELSE
 LOW 1
ENDIF

IF (IN5 = 0) THEN
 HIGH 10
ELSE
 LOW 10
ENDIF

These are called IF…THEN statements, and they will be more fully introduced in the next
activity. These statements are used to make decisions in PBASIC. The first of the two
IF…THEN statements sets P1 high, which turns the LED on when the whisker connected to
P7 is pressed (IN7 = 0). The ELSE portion of the statement makes P1 go low, which
turns the LED off when the whisker is not pressed. The second IF…THEN statement does
the same thing for the whisker connected to P5 and the LED connected to P10.

√ RunTestWhiskersWithLeds.bs2.
√ Test the program by gently pressing the whiskers. The red LEDs should light up

when each whisker has made contact with its 3-pin header.

ACTIVITY #3: NAVIGATION WITH WHISKERS
In Activity #1, the BASIC Stamp was programmed to detect whether a given whisker
was pressed. In this activity, the BASIC Stamp will be programmed to take advantage of
this information to guide the Boe-Bot. When the Boe-Bot is rolling along and a whisker
is pressed, it means the Boe-Bot bumped into something. A navigation program needs to
take this input, decide what it means, and call a set of maneuvers that will make the Boe-
Bot back up from the obstacle, turn, and go in a different direction.

Page 178 · Robotics with the Boe-Bot

Programming the Boe-Bot to Navigate Based on Whisker Inputs

This next program makes the Boe-Bot go forward until it encounters an obstacle. In this
case, the Boe-Bot knows when it encounters an obstacle by bumping into it with one or
both of its whiskers. As soon as the obstacle is detected by the whiskers, the navigation
routines and subroutines developed in Chapter 4 will make the Boe-Bot back up and turn.
Then, the Boe-Bot resumes forward motion until it bumps into another obstacle.

In order to do that, the Boe-Bot needs to be programmed to make decisions. PBASIC has
a command called an IF…THEN statement that makes decisions. The syntax for IF…THEN
statements is:

 IF (condition) THEN…{ELSEIF (condition)}…{ELSE}…ENDIF

The “…” means you can place a code block (one or more commands) between the
keywords. The next example program makes decisions based on the whisker inputs, and
then calls subroutines to make the Boe-Bot take action. The subroutines are similar to the
ones you developed in Chapter 4. Here is how IF…THEN is used.

IF (IN5 = 0) AND (IN7 = 0) THEN
 GOSUB Back_Up ' Both whiskers detect obstacle,
 GOSUB Turn_Left ' back up & U-turn (left twice)
 GOSUB Turn_Left
ELSEIF (IN5 = 0) THEN ' Left whisker contacts
 GOSUB Back_Up ' Back up & turn right
 GOSUB Turn_Right
ELSEIF (IN7 = 0) THEN ' Right whisker contacts
 GOSUB Back_Up ' Back up & turn left
 GOSUB Turn_Left
ELSE ' Both whiskers 1, no contacts
 GOSUB Forward_Pulse ' Apply a forward pulse &
ENDIF ' check again

Example Program: RoamingWithWhiskers.bs2

This program demonstrates one way of evaluating the whisker inputs and deciding which
navigation subroutine to call using IF…THEN.

√ Reconnect power to your board and servos.
√ Enter, save, and run RoamingWithWhiskers.bs2.

Chapter 5: Tactile Navigation with Whiskers · Page 179

√ Try letting the Boe-Bot roam. When it contacts obstacles in its path, it should
back up, turn, and then roam in a new direction.

' -----[Title]--
' Robotics with the Boe-Bot - RoamingWithWhiskers.bs2
' Boe-Bot uses whiskers to detect objects, and navigates around them.

' {$STAMP BS2} ' Stamp directive.
' {$PBASIC 2.5} ' PBASIC directive.

DEBUG "Program Running!"

' -----[Variables]--

pulseCount VAR Byte ' FOR...NEXT loop counter.

' -----[Initialization]---

FREQOUT 4, 2000, 3000 ' Signal program start/reset.

' -----[Main Routine]---

DO
 IF (IN5 = 0) AND (IN7 = 0) THEN ' Both whiskers detect obstacle
 GOSUB Back_Up ' Back up & U-turn (left twice)
 GOSUB Turn_Left
 GOSUB Turn_Left
 ELSEIF (IN5 = 0) THEN ' Left whisker contacts
 GOSUB Back_Up ' Back up & turn right
 GOSUB Turn_Right
 ELSEIF (IN7 = 0) THEN ' Right whisker contacts
 GOSUB Back_Up ' Back up & turn left
 GOSUB Turn_Left
 ELSE ' Both whiskers 1, no contacts
 GOSUB Forward_Pulse ' Apply a forward pulse
 ENDIF ' and check again
LOOP

' -----[Subroutines]--

Forward_Pulse: ' Send a single forward pulse.
 PULSOUT 13,850
 PULSOUT 12,650
 PAUSE 20
 RETURN

Turn_Left: ' Left turn, about 90-degrees.
 FOR pulseCount = 0 TO 20
 PULSOUT 13, 650
 PULSOUT 12, 650

Page 180 · Robotics with the Boe-Bot

 PAUSE 20
 NEXT
 RETURN

Turn_Right:
 FOR pulseCount = 0 TO 20 ' Right turn, about 90-degrees.
 PULSOUT 13, 850
 PULSOUT 12, 850

 PAUSE 20
 NEXT
 RETURN

Back_Up: ' Back up.
 FOR pulseCount = 0 TO 40
 PULSOUT 13, 650
 PULSOUT 12, 850
 PAUSE 20
 NEXT
 RETURN

How Roaming with Whiskers Works

The IF...THEN statements in the Main Routine section first check the whiskers for any
states that require attention. If both whiskers are pressed (IN5 = 0 and IN7 = 0), a U-
turn is executed by calling the Back_Up subroutine followed by calling the Turn_Left
subroutine twice in a row. If just the left whisker is pressed (IN5 = 0), then the program
calls the Back_Up subroutine followed by the Turn_Right subroutine. If the right
whisker is pressed (IN7 = 0), the Back_Up subroutine is called, followed by the
Turn_Left subroutine. The only possible combination that has not been covered is if
neither whisker is pressed (IN5 = 1 and IN7 = 1). The ELSE command calls the
Forward_Pulse subroutine in this case.

IF (IN5 = 0) AND (IN7 = 0) THEN
 GOSUB Back_Up
 GOSUB Turn_Left
 GOSUB Turn_Left
ELSEIF (IN5 = 0) THEN
 GOSUB Back_Up
 GOSUB Turn_Right
ELSEIF (IN7 = 0) THEN
 GOSUB Back_Up
 GOSUB Turn_Left
ELSE
 GOSUB Forward_Pulse
ENDIF

Chapter 5: Tactile Navigation with Whiskers · Page 181

The Turn_Left, Turn_Right, and Back_Up subroutines should look fairly familiar, but
the Forward_Pulse subroutine has a twist. It just sends one pulse, then returns. This is
really important, because it means the Boe-Bot can check its whiskers between each
forward pulse. That means the Boe-Bot checks for obstacles roughly 40 times per second
as it travels forward.

Forward_Pulse:
 PULSOUT 12,650
 PULSOUT 13,850
 PAUSE 20
 RETURN

Since each full speed forward pulse makes the Boe-Bot roll around half a centimeter, it’s
a really good idea to only send one pulse, then go back and check the whiskers again.
Since the IF…THEN statement is inside a DO…LOOP, each time the program returns from a
Forward_Pulse, it gets to LOOP, which sends the program back up to DO. What happens
then? The IF…THEN statement checks the whiskers all over again.

Your Turn

The FOR...NEXT loop EndValue arguments in the Back_Right and Back_Left routines
can be adjusted for more or less turn, and the Back_Up routine can have its EndValue
adjusted to back up less for navigation in tighter spaces.

√ Experiment with the FOR...NEXT loop EndValue arguments in the navigation
routines in RoamingWithWhiskers.bs2.

You can also modify your IF…THEN statements to make the LED indicators from the
previous activity broadcast what maneuver the Boe-Bot is in by adding HIGH and LOW
commands to control the LED circuits. Here is an example.

IF (IN5 = 0) AND (IN7 = 0) THEN
 HIGH 10
 HIGH 1
 GOSUB Back_Up
 GOSUB Turn_Left
 GOSUB Turn_Left
ELSEIF (IN5 = 0) THEN
 HIGH 10
 GOSUB Back_Up

Page 182 · Robotics with the Boe-Bot

 GOSUB Turn_Right
ELSEIF (IN7 = 0) THEN
 HIGH 1
 GOSUB Back_Up
 GOSUB Turn_Left
ELSE
 LOW 10
 LOW 1
 GOSUB Forward_Pulse
ENDIF

√ Modify the IF…THEN statement in RoamingWithWhiskers.bs2 to make the Boe-

Bot broadcast its maneuver using the LED indicators.

ACTIVITY #4: ARTIFICIAL INTELLIGENCE AND DECIDING WHEN
YOU’RE STUCK
You may have noticed that the Boe-Bot gets stuck in corners. As the Boe-Bot enters the
corner, its whisker touches the wall on the left, so it turns right. When the Boe-Bot
moves forward again, its right whisker bumps the wall on the right, so it turns left. Then
it turns and bumps the left wall again, and the right wall again, and so on, until somebody
rescues it from its predicament.

Programming to Escape Corners

RoamingWithWhiskers.bs2 can be modified to detect this problem and act upon it. The
trick is to count the number of times that alternate whiskers are contacted. One important
thing about this trick is that the program has to remember what state each whisker was in
during the previous contact. It has to compare that to the whisker states of the current
contact. If they are opposite, then add one to the counter. If the counter goes over a
threshold that you (the programmer) have determined, then, it’s time to do a U-turn and
reset that alternate whisker counter.

This next program also relies on the fact that you can “nest” IF…THEN statements. In
other words, the program checks for one condition, and if that condition is true, it checks
for another condition within the first condition. Here is a pseudo code example of how
it can be used.

IF condition1 THEN
 Commands for condition1
 IF condition2 THEN

Chapter 5: Tactile Navigation with Whiskers · Page 183

 Commands for both condition2 and condition1
 ELSE
 Commands for condition1 but not condition2
 ENDIF
 ELSE
 Commands for not condition1
ENDIF

There is an example of nested IF…THEN statements in the routine that detects consecutive
alternate whisker contacts in the next program.

Example Program: EscapingCorners.bs2

This program will cause your Boe-Bot to execute a U-turn at either the fourth or fifth
alternate corner, depending on which whisker was pressed first.

√ Enter, save, and run EscapingCorners.bs2.
√ Test this program by pressing alternate whiskers as the Boe-Bot roams.

Depending on which Whisker you started with, the Boe-Bot should execute its
U-Turn maneuver after either the fourth or fifth consecutive whisker press.

' -----[Title]--
' Robotics with the Boe-Bot - EscapingCorners.bs2
' Boe-Bot navigates out of corners by detecting alternating whisker presses.

' {$STAMP BS2} ' Stamp directive.
' {$PBASIC 2.5} ' PBASIC directive.

DEBUG "Program Running!"

' -----[Variables]--

pulseCount VAR Byte ' FOR...NEXT loop counter.
counter VAR Nib ' Counts alternate contacts.
old7 VAR Bit ' Stores previous IN7.
old5 VAR Bit ' Stores previous IN5.

' -----[Initialization]---

FREQOUT 4, 2000, 3000 ' Signal program start/reset.
counter = 1 ' Start alternate corner count.
old7 = 0 ' Make up old values.
old5 = 1

' -----[Main Routine]---

Page 184 · Robotics with the Boe-Bot

DO

' --- Detect Consecutive Alternate Corners ------------------------
' See the "How EscapingCorners.bs2 Works" section that follows this program.

 IF (IN7 <> IN5) THEN ' One or other is pressed.
 IF (old7 <> IN7) AND (old5 <> IN5) THEN ' Different from previous.
 counter = counter + 1 ' Alternate whisker count + 1.
 old7 = IN7 ' Record this whisker press
 old5 = IN5 ' for next comparison.
 IF (counter > 4) THEN ' If alternate whisker count = 4,
 counter = 1 ' reset whisker counter
 GOSUB Back_Up ' and execute a U-turn.
 GOSUB Turn_Left
 GOSUB Turn_Left
 ENDIF ' ENDIF counter > 4.
 ELSE ' ELSE (old7=IN7) or (old5=IN5),
 counter = 1 ' not alternate, reset counter.
 ENDIF ' ENDIF (old7<>IN7) and
 ' (old5<>IN5).
 ENDIF ' ENDIF (IN7<>IN5).

' --- Same navigation routine from RoamingWithWhiskers.bs2 ------------------

 IF (IN5 = 0) AND (IN7 = 0) THEN ' Both whiskers detect obstacle
 GOSUB Back_Up ' Back up & U-turn (left twice)
 GOSUB Turn_Left
 GOSUB Turn_Left
 ELSEIF (IN5 = 0) THEN ' Left whisker contacts
 GOSUB Back_Up ' Back up & turn right
 GOSUB Turn_Right
 ELSEIF (IN7 = 0) THEN ' Right whisker contacts
 GOSUB Back_Up ' Back up & turn left
 GOSUB Turn_Left
 ELSE ' Both whiskers 1, no contacts
 GOSUB Forward_Pulse ' Apply a forward pulse
 ENDIF ' and check again

LOOP

' -----[Subroutines]--

Forward_Pulse: ' Send a single forward pulse.
 PULSOUT 13,850
 PULSOUT 12,650
 PAUSE 20
 RETURN

Turn_Left: ' Left turn, about 90-degrees.
 FOR pulseCount = 0 TO 20
 PULSOUT 13, 650

Chapter 5: Tactile Navigation with Whiskers · Page 185

 PULSOUT 12, 650
 PAUSE 20
 NEXT
 RETURN

Turn_Right:
 FOR pulseCount = 0 TO 20 ' Right turn, about 90-degrees.
 PULSOUT 13, 850
 PULSOUT 12, 850
 PAUSE 20
 NEXT
 RETURN

Back_Up: ' Back up.
 FOR pulseCount = 0 TO 40
 PULSOUT 13, 650
 PULSOUT 12, 850
 PAUSE 20
 NEXT
 RETURN

How EscapingCorners.bs2 Works

Since this program is a modified version of RoamingWithWhiskers.bs2, only new
features related to detecting and escaping corners are discussed here.

Three extra variables are created for detecting a corner. The nibble variable counter can
store a value between 0 and 15. Since our target value for detecting a corner is 4, the size
of the variable is reasonable. Remember that a bit variable can store a single bit, either a
1 or a 0. The next two variables (old7 and old5) are both bit variables. These are also
the right size for the job since they are used to store old values of IN7 and IN5, which are
also bit variables.

counter VAR Nib
old7 VAR Bit
old5 VAR Bit

These variables have to be initialized (given initial values). For the sake of making the
program easier to read, counter is set to 1, and when it gets to 4 due to the fact that the
Boe-Bot is stuck in a corner, it is reset to 1. The old7 and old5 variables have to be set
so that it looks like one of the two whiskers was pressed some time before the program
started. This has to be done because the routine for detecting alternate corners always
compares an alternating pattern, either (IN5 = 1 and IN7 = 0) or (IN5 = 0 and IN7 =
1). Likewise, old5 and old7 have to be different from each other.

Page 186 · Robotics with the Boe-Bot

counter = 1
old7 = 0
old5 = 1

Now we get to the Detect Consecutive Alternate Corners section. The first thing we want
to check for is if one or the other whisker is pressed. A simple way to do this is to ask “is
IN7 different from IN5?” In PBASIC, we can use the not-equal operator <> in an IF
statement:

 IF (IN7 <> IN5) THEN

If it is indeed one whisker that is pressed, the next thing to check for is whether or not it’s
the exact opposite pattern as the previous time. In other words, is (old7 <> IN7) and
is (old5 <> IN5)? If that’s true, then, it’s time to add one to the counter that tracks
alternate whisker contacts. It’s also time to remember the current whisker pattern by
setting old7 equal to the current IN7 and old5 equal to the current IN5.

 IF (old7 <> IN7) AND (old5 <> IN5) THEN
 counter = counter + 1
 old7 = IN7
 old5 = IN5

If it turns out that this is the fourth consecutive whisker contact, then it’s time to reset the
counter to 1 and execute a U-turn.

 IF (counter > 4) THEN
 counter = 1
 GOSUB Back_Up
 GOSUB Turn_Left
 GOSUB Turn_Left

This ENDIF ends the code block that is executed if counter > 4.

 ENDIF

This ELSE statement is connected to the IF (old7 <> IN7) AND (old5 <> IN5) THEN
statement. The ELSE statement covers what happens if the IF statement is not true. In
other words, it must not be an alternate whisker that was pressed, so reset the counter
because the Boe-Bot is not stuck in a corner.

Chapter 5: Tactile Navigation with Whiskers · Page 187

 ELSE
 counter = 1

This ENDIF statement ends the decision making process for the IF (old7 <> IN7) AND
(old5 <> IN5) THEN statement.

 ENDIF
 ENDIF

The remainder of the program is the same as before.

Your Turn

One of the IF...THEN statements in EscapingCorners.bs2 checks to see if counter has
reached 4.

√ Try increasing the value to 5 and 6 and note the effect.
√ Try also reducing the value and see if it has any effect on normal roaming.

Page 188 · Robotics with the Boe-Bot

SUMMARY
In this chapter, instead of navigating from a pre-programmed list, the Boe-Bot was
programmed to navigate based on sensory inputs. The sensory inputs used in this chapter
were whiskers, which served as normally open contact switches. When properly wired,
these switches can show one voltage (5 V) at the switch’s contact point when it’s open,
and a different voltage (0 V) when it’s closed. The BASIC Stamp I/O pin’s input
registers store “1” if they detect Vdd (5 V) and “0,” if they detect Vss (0 V).

The BASIC Stamp was programmed to test the whisker sensors and display the test
results using two different media, the Debug Terminal and LEDs. PBASIC programs
were developed to make the BASIC Stamp check the whiskers between each servo pulse.
Based on the state of the whiskers, IF…THEN statements in the program’s Main Routine
section called navigation subroutines similar to the ones developed in the previous
chapter to guide the Boe-Bot away from obstacles. As an example of artificial
intelligence, an additional routine was developed that enabled the Boe-Bot to detect when
it got stuck in a corner. This routine involved storing old whisker states, comparing them
against the current whisker states, and counting the number of alternate object detections.

This chapter introduced sensor-based Boe-Bot navigation. The next three chapters will
focus on using different types of sensors to give the Boe-Bot vision. Both vision and
touch open up lots of opportunities for the Boe-Bot to navigate in increasingly complex
environments.

Questions
1. What kind of electrical connection is a whisker?
2. When a whisker is pressed, what voltage occurs at the I/O pin monitoring it?

What binary value will occur in the input register? If I/O pin P8 is used to
monitor the input pin, what value does IN8 have when a whisker is pressed, and
what value does it have when a whisker is not pressed?

3. If IN7 = 1, what does that mean? What does it mean if IN7 = 0? How about
IN5 = 1 and IN5 = 0?

4. What command is used to jump to different subroutines depending on the value
of a variable? What command is used to decide which subroutine to jump to?
What are these decisions based on?

5. What is the purpose of having nested IF…THEN statements?

Chapter 5: Tactile Navigation with Whiskers · Page 189

Exercises
1. Write a DEBUG command for TestWhiskers.bs2 that updates each whisker state

on a new line. Adjust the PAUSE command so that it is 250 instead of 50.
2. Using RoamingWithWhiskers.bs2 as a reference, write a Turn_Away subroutine

that calls the Back_Up subroutine once and the Turn_Left subroutine twice.
Write down the modifications you will have to make to the Main Routine section
of RoamingWithWhiskers.bs2.

Projects
1. Modify RoamingWithWhiskers.bs2 so that the Boe-Bot makes a 4 kHz beep that

lasts 100 ms before executing the evasive maneuver. Make it beep twice if both
whisker contacts are detected during the same sample.

2. Modify RoamingWithWhiskers.bs2 so that the Boe-Bot roams in a 1 yard (or
meter) diameter circle. When you touch one whisker, it will cause the Boe-Bot
to travel in a tighter circle (smaller diameter). When you touch the other
whisker, it will cause the Boe-Bot to navigate in a wider diameter circle.

Page 190 · Robotics with the Boe-Bot

Solutions
Q1. A tactile switch.
Q2. Zero (0) volts, resulting in Binary zero (0) at the input register.

IN8 = 0 when whisker is pressed. IN8 = 1 when whisker is not pressed.
Q3. IN7 = 1 means the right whisker is not pressed.

IN7 = 0 means the right whisker is pressed.
IN5 = 1 means the left whisker is not pressed.
IN5 = 0 means the left whisker is pressed.

Q4. The GOSUB command performs the actual jump. The IF...THEN command is used
to decide which subroutine to jump to. That decision is based on conditions,
which are logical statements that evaluate to true or false.

Q5. The program can check for one condition, and if that condition is true, it can
check for another condition within the first condition.

E1. The key to solving this problem is to use a second CRSRXY command that will

place the right whisker state in the proper place on the screen. To line up with
the headings, the text should start on column 9 of row 3.

' Robotics with the Boe-Bot - TestWhiskers_UpdateEaOnNewLine.bs2
' Update each whisker state on a new line.

' {$STAMP BS2} ' Stamp directive.
' {$PBASIC 2.5} ' PBASIC directive.

DEBUG "WHISKER STATES", CR,
 "Left Right", CR,
 "------ ------"

DO
 DEBUG CRSRXY, 0, 3, "P5 = ", BIN1 IN5 ' Print in Column 0,Row 3
 DEBUG CRSRXY, 9, 3, "P7 = ", BIN1 IN7 ' Print in Column 9,Row 3
 PAUSE 250 ' Change from 50 to 250
LOOP

E2. Turn_Away:

 GOSUB Back_Up
 GOSUB Turn_Left
 GOSUB Turn_Left
 RETURN

Chapter 5: Tactile Navigation with Whiskers · Page 191

To modify the Main Routine, replace the three GOSUB commands under the first
IF condition with this single line:
 GOSUB Turn_Away

P1. The key to solving this problem is to write a statement that makes a beep with
the required parameters:

 FREQOUT 4, 100, 4000 ' 4kHz beep for 100ms

This statement must be added to the Main Routine in the appropriate places, as
shown below. The rest of the program is unchanged.

' -----[Main Routine]--

DO
 IF (IN5 = 0) AND (IN7 = 0) THEN ' Both whiskers detect
 FREQOUT 4, 100, 4000 ' 4 kHz beep for 100 ms
 FREQOUT 4, 100, 4000 ' Repeat twice
 GOSUB Back_Up ' Back up & U-turn
GOSUB Turn_Left
 GOSUB Turn_Left
 ELSEIF (IN5 = 0) THEN ' Left whisker contacts
 FREQOUT 4, 100, 4000 ' 4 kHz beep for 100 ms
 GOSUB Back_Up ' Back up & turn right
 GOSUB Turn_Right
 ELSEIF (IN7 = 0) THEN ' Right whisker contacts
 FREQOUT 4, 100, 4000 ' 4 kHz beep for 100 ms
 GOSUB Back_Up ' Back up & turn left
 GOSUB Turn_Left
 ELSE ' Both whiskers 1, no
 GOSUB Forward_Pulse ' contacts
 ENDIF ' Apply a forward pulse
LOOP ' and check again

P2. We found from Chapter 4 Projects that a 1 yard circle can be achieved with
PULSOUT 13, 850 and PULSOUT 12, 716. Using these values as the 1y circle,
the radius can be adjusted by slightly increasing or decreasing the pulse width
from the starting value of 716. Each time a whisker is pressed the program will
add or subtract a bit from the right wheel's pulse width.

In the solution below, an audible beeping indicator was added. This acts as
feedback to verify that the whisker was pressed. This is entirely optional.

Page 192 · Robotics with the Boe-Bot

' Robotics with the Boe-Bot - CirclingWithWhiskerInput.bs2
' Move in 1 yard circle, increase/decrease radius in response
' to whisker presses, one whisker increases, one decreases.

' {$STAMP BS2} ' Stamp directive.
' {$PBASIC 2.5} ' PBASIC directive.
DEBUG "Program Running!"

' -----[Variables/Initialization]------------------------------------

pulseWidth VAR Word ' Signal sent to servo
toneFreq VAR Word ' Frequency of beeping tone
pulseWidth = 716 ' Found in Ch4 to make 1y circle
toneFreq = 4000 ' Beginning tone is 4 kHz

' -----[Main Routine]--

DO

 PULSOUT 13, 850 ' Pulse servos in circular path
 PULSOUT 12, pulseWidth ' 12 slower than 13 so it arcs
 PAUSE 20

 IF (IN5 = 0) THEN ' Left whisker makes circle
 IF (pulseWidth <= 845) THEN ' smaller, down to servo max
 pulseWidth = pulseWidth + 5 ' pulseWidth of 850.
 toneFreq = toneFreq + 100
 FREQOUT 4, 100, toneFreq ' Play tone as indicator.
 ENDIF
 ELSEIF (IN7 = 0) THEN ' Right whisker makes circle
 IF (pulseWidth >= 655) THEN ' larger, down to servo min
 pulseWidth = pulseWidth - 5 ' pulseWidth of 650.
 toneFreq = toneFreq - 100
 FREQOUT 4, 100, toneFreq ' Play tone as indicator.
 ENDIF
 ENDIF

LOOP

Chapter 6: Light Sensitive Navigation with Photoresistors · Page 193

Chapter 6: Light Sensitive Navigation with
Photoresistors

Light has many applications in robotics and industrial control. Some examples include
sensing the edge of a roll of fabric in the textile industry, determining when to activate
streetlights at different times of the year, when to take a picture, or when to deliver water
to a crop of plants.

There are many different light sensors that serve unique functions. The light sensor in
your Boe-Bot kit is designed to detect visible light, and it can be used to make your Boe-
Bot detect variations in light level. With this ability, your Boe-Bot can be programmed
to recognize areas with light or dark perimeters, report the overall brightness and
darkness level it sees, and seek out light sources such as flashlight beams and doorways
letting light into dark rooms.

INTRODUCING THE PHOTORESISTOR
The resistors you worked with in previous chapters had fixed values, such as 220 Ω and
10 kΩ. The photoresistor, on the other hand, is a light dependent resistor (LDR). This
means that its resistance value depends on the brightness, or illuminance, of the light that
shines on its light detecting surface. Figure 6-1 shows the schematic symbol and part
drawing for the photoresistor you will use to make the Boe-Bot able to detect variations
in light levels.

Figure 6-1
Photoresistor Schematic and
Part Drawing

Light detecting
surface

Page 194 · Robotics with the Boe-Bot

A photoresistor is a light-dependent resistor (LDR) that covers the spectral sensitivity
similar to that of the human eye. In other words, the kind of light that your eye detects is the
same kind of light that affects the photoresistor’s resistance. The active elements of these
photoresistors are made of Cadmium Sulfide (CdS). Light enters into the semiconductor
layer applied to a ceramic substrate and produces free charge carriers. A defined electrical
resistance is produced that is inversely proportional to the illumination intensity. In other
words, darkness causes more resistance, and brightness causes less resistance.

Illuminance is a scientific name for the measurement of incident light. One way to
understand incident light is to think about shining a flashlight at a wall. The focused beam
that you see shining on the wall is incident light. The unit of measurement of illuminance is
commonly the "foot-candle" in the English system or the "lux" in the metric system. While
using the photoresistors we won't be concerned about lux levels, just whether illuminance is
higher or lower in certain directions. The Boe-Bot can be programmed to use the relative
light intensity information to make navigation decisions.

ACTIVITY #1: BUILDING AND TESTING PHOTORESISTOR CIRCUITS
In this activity, you will build and test light level sensor circuits with photoresistors.
Your light level sensor circuits will be able to detect the difference between shade and no
shade. The PBASIC commands for determining whether a shadow is cast over the
photoresistor will be very similar to those used to determine whether or not a whisker has
contacted an object.

Parts List:

(2) Photoresistors - CdS
(2) Resistors – 2 kΩ (red-black-red)
(2) Resistors – 220 Ω (red-red-brown)
(4) Jumper wires
(2) Resistors – 470 Ω (yellow-violet-brown)
(2) Resistors – 1 kΩ (brown-black-red)
(2) Resistors – 4.7 kΩ (yellow-violet-red)
(2) Resistors – 10 kΩ (brown-black-orange)

Building the Photosensitive Eyes
Figure 6-2 shows the schematic and Figure 6-3 shows the wiring diagram for the
photoresistor circuits you will use in this and the next two activities.

√ Disconnect power from your board and servos.
√ Build the circuit shown in Figure 6-2, using Figure 6-3 as a reference.

Chapter 6: Light Sensitive Navigation with Photoresistors · Page 195

Vdd

Vss

220 Ω
P6

2 kΩ

Vdd

Vss

220 Ω
P3

2 kΩ

Figure 6-2
Schematic –
First Light
Detection
Circuit

P15
P14
P13
P12
P11
P10
P9
P8
P7

P5

P2
P1
P0

P6

P4
P3

X2

X3
Vdd VssVin

Board of Education
 © 2000-2003Rev C

Vdd

Black
Red

X4 X5

15 14 13 12

To Servos

+

P15
P14

P11

P13
P12

P6

P4
P3

P10
P9
P8
P7

P5

P2
P1
P0

X2

X3
Vdd VssVin

Rev B
(916) 624-8333
www.parallax.com
www.stampsinclass.com

To Servos

+

HomeWork Board

Figure 6-3
Wiring
Diagrams
for the First
Light
Detection
Circuit

Board of
Education
(left) and
HomeWork
Board
(right).

Page 196 · Robotics with the Boe-Bot

How the Photoresistor Circuit Works
A BASIC Stamp I/O pin can function as an output or an input. As an output, the I/O pin
can send a high (5 V) or low (0 V) signal. Up to this point, high and low signals have
been used to turn LED circuits on and off, control servos, and send tones to a speaker.

A BASIC Stamp I/O pin can also function as an input. As an input, the I/O pin does not
apply any voltage to the circuit it is connected to. Instead, it just quietly listens without
any actual effect on the circuit. In the previous chapter, these input registers stored
values that indicated whether or not the whiskers were pressed. For example, the IN7
input register stored a 1 when it sensed 5 V (whisker not pressed), or a 0 when it sensed 0
V (whisker pressed).

An I/O pin set to input doesn't actually need to have 5 V applied to it to make its input
register store a 1. Anything above 1.4 V will make the input register for an I/O pin store
a 1. Likewise, an I/O pin doesn't need 0 V to make its input register store a 0. Any
voltage below 1.4 V will make an input register for an I/O pin store a 0.

BASIC Stamp I/O pins are input by default. When a BASIC Stamp program starts, all I/O
pins start as inputs. When you use commands like HIGH, LOW, PULSOUT or FREQOUT,
the I/O pin is changed from input to output so that the BASIC Stamp can send the high or
low signals.

When a BASIC Stamp I/O pin is an input, the circuit behaves as though neither the I/O
pin nor 220 Ω resistor is present. Figure 6-4 shows the equivalent circuit. The resistance
of the photoresistor is shown as the letter R. It could be a few Ω if the light is very
bright, or it could be in the neighborhood of 50 kΩ in complete darkness. In a well lit
room with fluorescent ceiling fixtures, the resistance could be as small as a 1 kΩ (full
light exposure) or as large as 25 kΩ (shade cast around most of the object).

As the photoresistor’s resistance changes with light exposure, so does the voltage at Vo;
as R gets larger, Vo gets smaller, and as R gets smaller, Vo gets larger. Vo is what the
BASIC Stamp I/O pin is detecting when it is functioning as an input. If this circuit is
connected to IN6, when the voltage at Vo is above 1.4 V, IN6 will store a 1. If Vo falls
below 1.4 V, IN6 will store a 0.

Chapter 6: Light Sensitive Navigation with Photoresistors · Page 197

Vdd

Vss

2 kΩ

Vo

R

Figure 6-4
Schematic –
Voltage Divider
Circuit

When resistors are connected end-to-end as shown in Figure 6-4 they are connected in
series, and they can be referred to as series resistors.

When two resistors are connected in series to set a voltage at Vo, the circuit is called a
voltage divider. In this circuit, the value of Vo can be anywhere between Vdd and Vss.
The exact value of Vo is determined by the ratio of R to 2 kΩ. When R is larger than 2 kΩ,
Vo will be closer to Vss. When R is smaller than 2 kΩ, Vo will be closer to Vdd. When R is
equal to 2 kΩ, Vo will be 2.5 V. If you measure one of the two values (R or Vo), you can
calculate the other value using one of these two equations.

 R0002
0002V5Vo

+Ω
Ω×=

Ω−⎟

⎠
⎞

⎜
⎝
⎛ Ω×= 2000

Vo
2000V5R

1.4 V is called the BASIC Stamp I/O pin’s threshold voltage, also known as the I/O pin’s
logic threshold. When voltage sensed by an I/O pin is above that threshold, the I/O pin’s
input register will store a 1. If it is below that value, the I/O pin’s input register will store a 0.

Detecting Shadows
Casting a shadow makes the photoresistor’s resistance value (R) larger, which in turn
makes Vo smaller. The 2 kΩ resistors were chosen to make the value of Vo reside
slightly above the BASIC Stamp I/O pin’s 1.4 V threshold in a well lit room. When you
cast a shadow over it with your hand, it should send Vo below the 1.4 V threshold.

In a well lit room, both IN6 and IN3 will store the value 1. If you cast a shadow over the
photoresistor divider connected to P6, it will then store a 0. Likewise, if you cast a
shadow over the photoresistor divider connected to P3, it will cause IN3 to store a 0.

Page 198 · Robotics with the Boe-Bot

Example Program: TestPhotoresistorsDividers.bs2

This example program is TestWhiskers.bs2 adapted to the photoresistor dividers. Instead
of monitoring P5 and P7 as we did with the whiskers, we are now monitoring P3 and P6,
which are connected to the photoresistor divider circuits. This program should display a
value of 1 on both sides in a well-lit room. When you cast a shadow over one or both of
the photoresistors, their corresponding values should change to 0.

√ Reconnect power to your board.
√ Enter, save, and run TestPhotoresistorDividers.bs2.
√ Verify that with no shade, both IN6 and IN3 store the value 1.
√ Verify that you can use your hand to cast a shadow over each of the

photoresistors and cause its input register to change from 1 to 0.
√ If you are having difficulty, either with getting a shadow to change the input

register to 0 or if the input registers store 0 regardless of whether or not you cast
a shadow over them, see the Photoresistor Divider Troubleshooting box after the
program listing. Work on it until your hand casting a shadow over the
photoresistor reliably changes the state from 1 to 0.

' Robotics with the Boe-Bot - TestPhotoresistorDividers.bs2
' Display what the I/O pins connected to the photoresistor
' voltage dividers sense.

' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG "PHOTORESISTOR STATES", CR,
 "Left Right", CR,
 "------- --------"

DO
 DEBUG CRSRXY, 0, 3,
 "P6 = ", BIN1 IN6,
 " P3 = ", BIN1 IN3
 PAUSE 100
LOOP

Chapter 6: Light Sensitive Navigation with Photoresistors · Page 199

Photoresistor Divider Troubleshooting

General things to verify:

√ Check your wiring and program for errors.
√ Make sure that each component is firmly plugged into its socket.
√ Check the color codes on your resistors. The resistors that connect between Vss

and the photoresistors should be 2 kΩ (red-black-red). The resistors connecting
P6 and P3 to the photoresistors should be 220 Ω (red-red-brown).

If either the IN3 or IN6 registers showed 0 regardless of whether or not you cast a shadow
over them:

√ If the room is dimly lit, consider bringing in some extra lamps. Alternately, you can
replace the 2 kΩ resistors with 4.7 kΩ resistors (Yellow Violet Red). This will give
your resistor divider better performance under lower lighting conditions. For really
low lighting conditions, you can even use the 10 kΩ resistors (brown-black-
orange).

If either the IN3 or IN6 registers showed 1 regardless of whether or not you cast a shadow
over them:

√ If the room is very brightly lit, and you find yourself having to cup your hand over
the photoresistor’s light collecting surface to make the 1 go to 0, you may need to
substitute a lower value resistor in place of the 2 kΩ. Try 1 kΩ resistor (brown-
black-red), or even a 470 Ω resistor (yellow-violet-brown) if you are outdoors.

Your Turn – Experimenting with Different Voltage Dividers
Depending on the lighting conditions in your robotics area, larger or smaller series
resistors in place of the 2 kΩ resistors may improve the performance of your shadow
detectors.

√ Remember to disconnect power to your board during each circuit modification.
√ Try replacing the 2 kΩ (red-black-red) resistors with each of the other resistor

values you have gathered: 470 Ω, 1 kΩ, 4.7 kΩ, and 10 kΩ.
√ Test each voltage divider combination with TestPhotoresistorDividers.bs2 and

determine which resistors work best under your lighting conditions. The best
combination is one that’s not overly sensitive, but doesn’t require you to cup
your hand over the photoresistor either.

√ Use the resistor combination that you think works best in the next two activities.

Page 200 · Robotics with the Boe-Bot

ACTIVITY #2: ROAM AND AVOID SHADOWS LIKE OBJECTS
Since the photoresistor dividers behave similarly to whiskers, it’s worth examining
what’s involved in adapting RoamingWithWhiskers.bs2 so that it functions with the
photoresistor dividers.

Adapting RoamingWithWhiskers.bs2 for the Photoresistor Dividers

All you really have to do is adjust the IF…THEN statements so that they monitor IN6 and
IN3, instead of IN7 and IN5. Figure 6-5 demonstrates how to make these changes.

Figure 6-5: Modify RoamingWithWhiskers.bs2 for Use with Photoresistor Dividers

' From RoamingWithWhiskers.bs2

IF (IN5 = 0) AND (IN7 = 0) THEN
 GOSUB Back_Up
 GOSUB Turn_Left
 GOSUB Turn_Left
ELSEIF (IN5 = 0) THEN
 GOSUB Back_Up
 GOSUB Turn_Right
ELSEIF (IN7 = 0) THEN
 GOSUB Back_Up
 GOSUB Turn_Left
ELSE
 GOSUB Forward_Pulse
ENDIF

' Modified for
' RoamingWithPhotoresistor
' Dividers.bs2

IF (IN6 = 0) AND (IN3 = 0) THEN
 GOSUB Back_Up
 GOSUB Turn_Left
 GOSUB Turn_Left
ELSEIF (IN6 = 0) THEN
 GOSUB Back_Up
 GOSUB Turn_Right
ELSEIF (IN3 = 0) THEN
 GOSUB Back_Up
 GOSUB Turn_Left
ELSE
 GOSUB Forward_Pulse
ENDIF

Example Program – RoamingWithPhotoresistorDividers.bs2

√ Open the program RoamingWithWhiskers.bs2 from page 179, and save it as
RoamingWithPhotoresistorDividers.bs2.

√ Make the modifications shown in Figure 6-5.
√ Reconnect power to your board and servos.
√ Run and test the program.

Chapter 6: Light Sensitive Navigation with Photoresistors · Page 201

Casting shadows over both photoresistors at the same time can be difficult. When the
Boe-Bot is going forward, it is checking the photoresistors around 40 times/second. You will
have to move quickly to cast a shadow over both photoresistors between pulses. It helps to
move your hand rapidly from no shade to full shade to trigger both photoresistors at once.
Alternately, just leave your hand casting shade over both photoresistors while it executes a
maneuver. When it returns from the maneuver and checks the photoresistors again, it
should recognize that both photoresistors are in shade.�

√ Verify that the Boe-Bot avoids shadows by using your hand to cast a shadow

over the photoresistors. Try no shadow, a shadow over the right photoresistor
divider (circuit connected to P3), a shadow over the left photoresistor divider
(circuit connected to P7), and a shadow over both photoresistor dividers.

√ Update the comments such as the title and descriptions of reactions to whisker
presses to reflect the photoresistor circuit behavior. It should resemble the
program below when you are done.

' -----[Title]--
' Robotics with the Boe-Bot - RoamingWithPhotoresistorDividers.bs2
' Boe-Bot detects shadows photoresistors voltage divider circuit and turns
' away from them.

' {$STAMP BS2} ' Stamp directive.
' {$PBASIC 2.5} ' PBASIC directive.

DEBUG "Program Running!"

' -----[Variables]--

pulseCount VAR Byte ' FOR...NEXT loop counter.

' -----[Initialization]---

FREQOUT 4, 2000, 3000 ' Start/restart signal.

' -----[Main Routine]---

DO
IF (IN6 = 0) AND (IN3 = 0) THEN ' Both photoresistors detects
 GOSUB Back_Up ' shadow, back up & U-turn
 GOSUB Turn_Left ' (left twice).
 GOSUB Turn_Left
ELSEIF (IN6 = 0) THEN ' Left photoresistor detects
 GOSUB Back_Up ' shadow, back up & turn right.
 GOSUB Turn_Right
ELSEIF (IN3 = 0) THEN ' Right photoresistor detects
 GOSUB Back_Up ' shadow, back up & turn left.
 GOSUB Turn_Left

Page 202 · Robotics with the Boe-Bot

ELSE ' Neither photoresistor detects
 GOSUB Forward_Pulse ' shadow, apply a forward pulse.
ENDIF

LOOP

' -----[Subroutines]--

Forward_Pulse: ' Send a single forward pulse.
 PULSOUT 12,650
 PULSOUT 13,850
 PAUSE 20
 RETURN

Turn_Left: ' Left turn, about 90-degrees.
 FOR pulseCount = 0 TO 20
 PULSOUT 12, 650
 PULSOUT 13, 650
 PAUSE 20
 NEXT
 RETURN

Turn_Right:
 FOR pulseCount = 0 TO 20 ' Right turn, about 90-degrees.
 PULSOUT 12, 850
 PULSOUT 13, 850
 PAUSE 20
 NEXT
 RETURN

Back_Up: ' Back up.
 FOR pulseCount = 0 TO 40
 PULSOUT 12, 850
 PULSOUT 13, 650
 PAUSE 20
 NEXT
 RETURN

Your Turn – Improving performance

You can improve your Boe-Bot’s performance by commenting some of the subroutine
calls that were designed to help the Boe-Bot back away from obstacles and then turn to
avoid them. Figure 6-6 shows an example where the two Turn_Left subroutine calls are
commented from the IF…THEN statement when the condition is that both photoresistors
detect a shadow. Then, when only individual photoresistors detect shadows, the Back_Up
subroutine calls are commented so that the Boe-Bot only turns in response to a shadow.

Chapter 6: Light Sensitive Navigation with Photoresistors · Page 203

Figure 6-6: Modify RoamingWithPhotoresistorDividers.bs2

' Excerpt from
' RoamingWithPhotoresistor
' Dividers.bs2

IF (IN6 = 0) AND (IN3 = 0) THEN
 GOSUB Back_Up
 GOSUB Turn_Left
 GOSUB Turn_Left
ELSEIF (IN6 = 0) THEN
 GOSUB Back_Up
 GOSUB Turn_Right
ELSEIF (IN3 = 0) THEN
 GOSUB Back_Up
 GOSUB Turn_Left
ELSE
 GOSUB Forward_Pulse
ENDIF

' Modified excerpt from
' RoamingWithPhotoresistor
' Dividers.bs2

IF (IN6 = 0) AND (IN3 = 0) THEN
 GOSUB Back_Up
' GOSUB Turn_Left
' GOSUB Turn_Left
ELSEIF (IN6 = 0) THEN
' GOSUB Back_Up
 GOSUB Turn_Right
ELSEIF (IN3 = 0) THEN
' GOSUB Back_Up
 GOSUB Turn_Left
ELSE
 GOSUB Forward_Pulse
ENDIF

√ Modify RoamingWithPhotoresistorDividers.bs2 as shown in the right side of

Figure 6-6.
√ Run the program, and compare the performance.

ACTIVITY #3: A MORE RESPONSIVE SHADOW CONTROLLED BOE-BOT
By eliminating the FOR…NEXT loops in the navigation subroutines, you can make the Boe-
Bot significantly more responsive. This wasn’t really possible with the whiskers, because
the Boe-Bot had to back up before turning since it had already made physical contact
with the obstacle. When you are using shadows to guide the Boe-Bot, it can check
between each pulse to see if the shadow is still detected regardless of whether it’s moving
forward or executing a maneuver.

A Simple Shadow Controlled Boe-Bot

One interesting form of remote control is to have the Boe-Bot sit still in normal light,
then follow a shadow you cast over the photoresistors. It’s kind of a user-friendly way of
guiding the Boe-Bot’s motion.

Example Program – ShadowGuidedBoeBot.bs2

When you run this next program, the Boe-Bot should stay still when no shadow is cast
over its photoresistor dividers. When you cast a shadow over both photoresistors, the

Page 204 · Robotics with the Boe-Bot

Boe-Bot should move forward. If you cast a shadow over one of the photoresistors, the
Boe-Bot should turn in the direction of the photoresistor that senses the shadow.

√ Enter, save, and run ShadowGuidedBoeBot.bs2.
√ Use your hand to cast shadows over the photoresistor dividers.
√ Study this program carefully and make sure you understand how it works. It is

very short, yet very powerful.

' Robotics with the Boe-Bot - ShadowGuidedBoeBot.bs2
' Boe-Bot detects shadows cast by your hand and tries to follow them.

' {$STAMP BS2} ' Stamp directive.
' {$PBASIC 2.5} ' PBASIC directive.

DEBUG "Program Running!"
FREQOUT 4, 2000, 3000 ' Start/restart signal.

DO

 IF (IN6 = 0) AND (IN3 = 0) THEN ' Both detect shadows, forward.
 PULSOUT 13, 850
 PULSOUT 12, 650
 ELSEIF (IN6 = 0) THEN ' Left detects shadow,
 PULSOUT 13, 750 ' pivot left.
 PULSOUT 12, 650
 ELSEIF (IN3 = 0) THEN ' Right detects shadow,
 PULSOUT 13, 850 ' pivot right.
 PULSOUT 12, 750
 ELSE
 PULSOUT 13, 750 ' No shadow, sit still
 PULSOUT 12, 750
 ENDIF

 PAUSE 20 ' Pause between pulses.

LOOP

How ShadowGuidedBoeBot.bs2 Works

The IF…THEN statement in the DO…LOOP looks for one of the four possible shadow
conditions: both, left, right, neither. Depending on which condition is detected, PULSOUT
commands deliver pulses for one of the following maneuvers: forward, pivot right, pivot
left, or sit still. Regardless of the condition, one of the four sets of pulses will be
delivered each time through the DO…LOOP. After the IF…THEN statement, it’s important to
remember to include the PAUSE 20 to ensure the low time between each pair of servo
pulses.

Chapter 6: Light Sensitive Navigation with Photoresistors · Page 205

Your Turn – Condensing the Program

This program does not need the ELSE condition or the two PULSOUT commands that
follow. If you deliver no pulses, the Boe-Bot will sit still, just as it should when you
deliver pulses using 750 for the PULSOUT Duration argument.

√ Try deleting (or commenting) this code block.
 ELSE
 PULSOUT 13, 750
 PULSOUT 12, 750

√ Run the modified program.
√ Can you detect any difference in the Boe-Bot’s behavior?

ACTIVITY #4: GETTING MORE INFORMATION FROM YOUR
PHOTORESISTORS
The only information the BASIC Stamp was able to gather from the photoresistor divider
circuits was whether the light level was above or below a threshold. This activity
introduces a different circuit that the BASIC Stamp can monitor, and actually gather
enough information from it to determine relative light levels. The value the BASIC
Stamp gets from the circuit will range from small numbers, indicating bright light, to
large numbers, indicating low light. This means no more manually replacing series
resistors based on light levels. Instead, you will be able to adjust your program to look
for different ranges of values.

Introducing the Capacitor

A capacitor is a device that stores charge, and it is a fundamental building block of many
circuits. How much charge the capacitor tends to store is measured in farads (F). A farad
is a very large value that’s not practical for use with the Boe-Bot. The capacitors you
will use in this activity store fractions of millionths of farads. A millionth of a farad is
called a microfarad, and it’s abbreviated µF. The capacitor you will use in this exercise
stores one one-hundredth of a millionth of a farad. That’s 0.01 µF.

Page 206 · Robotics with the Boe-Bot

Common capacitance measurements are:

• Microfarads: (millionths of a Farad), abbreviated µF 1 µF = 1×10-6 F
• Nanofarads: (billionths of a Farad), abbreviated nF 1 nF = 1×10-9 F
• Picofarads: (trillionths of a Farad), abbreviated pF 1 pF = 1×10-12 F

The 103 on the 0.01 µF capacitor’s case is a measurement picofarads or (pF). 103 is 10,
with three zeros added, which is 10,000. Here is how to relate 103 to 0.01 µF.

10,000 is 10 × 103.

(10 × 103) × (1 × 10-12) F = 10 × 10-9 F

which is also 0.01 × 10-6 F

which is 0.01 µF.�

Figure 6-7 shows the schematic symbol for a 0.01 µF capacitor along with a drawing of
the part in your Boe-Bot parts kit. The 103 marking on the capacitor indicates its value.

Parts List:

(2) Photoresistors - CDS
(2) Capacitors – 0.01 µF (103)
(2) Resistors - 220 Ω
 (red-red-brown)
(2) Jumper wires

0.01 µF
103

Figure 6-7
Capacitor
Schematic
Symbol and
Part Drawing

There may also be 0.1 µF capacitors marked 104 in your kit. Do not use them in these
activities.

√ Make sure you have selected the 0.01 µF capacitors (marked 103) for this activity.

The 0.1 µF capacitors can be used in brightly lit areas, but they interfere with the Boe-Bot’s
performance in indoor and low lighting activities.

Rebuilding the Photosensitive Eyes
The circuit the BASIC Stamp can use to determine light levels is called a
resistor/capacitor (RC) circuit. Figure 6-8 shows schematics of the Boe-Bot’s RC light
detection circuits and Figure 6-9 shows examples wiring diagrams for the Board of
Education and the HomeWork Board.

√ Disconnect power from your board and servos.
√ Build the RC circuits shown in Figure 6-8 using Figure 6-9 as a reference.

Chapter 6: Light Sensitive Navigation with Photoresistors · Page 207

Vss

220 Ω
P6

0.01 µF

Vss

220 Ω
P3

0.01 µF

Figure 6-8
Schematic - Two
Photoresistor RC
Circuits

For measurement
of resistance that
varies with light.

P15
P14
P13
P12
P11
P10
P9
P8
P7

P5

P2
P1
P0

P6

P4
P3

X2

X3
Vdd VssVin

Board of Education
 © 2000-2003Rev C

Vdd

Black
Red

X4 X5

15 14 13 12

To Servos

+

P15
P14

P11

P13
P12

P6

P4
P3

P10
P9
P8
P7

P5

P2
P1
P0

X2

X3
Vdd VssVin

Rev B
(916) 624-8333
www.parallax.com
www.stampsinclass.com

To Servos

+

HomeWork Board

Figure 6-9
Wiring
Diagrams for
Photoresistor
Circuits

Board of
Education
(left) and
HomeWork
Board (right).

Page 208 · Robotics with the Boe-Bot

About RC Decay Time and the Photoresistor Circuit
Think of a capacitor in the circuit shown in Figure 6-10 as a tiny rechargeable battery.
When P6 sends the high signal, it essentially charges this capacitor-battery by applying 5
V to it. After a few ms, the capacitor charges up to almost 5 V. If the BASIC Stamp
program then changes the I/O pin so that it just quietly listens, the capacitor loses its
charge through the photoresistor. As the capacitor looses its charge through the
photoresistor, its voltage decays, getting lower and lower as it looses charge. The amount
of time it takes for the voltage that IN6 senses to drop below 1.4 V depends on how
strongly the photoresistor “resists” the flow of electric current supplied by the capacitor.
If the photoresistor has a large resistance value due to very dim lighting conditions, the
capacitor takes longer to discharge. If the photoresistor has a small resistance value
because the light incident on its surface is very bright, it will not resist current very
strongly, and the capacitor will lose its charge very rapidly.

Vss

220 Ω
P6

0.01 µF

Figure 6-10
RC Circuit
Connected to I/O
Pin

Connected in parallel

The photoresistor and capacitor shown in Figure 6-10 are connected in parallel. For two
components to be connected in parallel, each of their leads must be connected to common
terminals (also called nodes). The photoresistor and the capacitor each have one lead
connected to Vss. They also each have one lead connected to the same 220 Ω resistor
lead.�

Measuring RC Decay Time with the BASIC Stamp
The BASIC Stamp can be programmed to charge the capacitor and then measure the time
it takes the capacitor's voltage to decay to 1.4 V. This decay time measurement can be
used to indicate the photoresistor's resistance. This resistance in turn indicates how
bright the light detected by the photoresistor really is. This measurement requires a
combination of the HIGH and PAUSE commands along with a new command called

Chapter 6: Light Sensitive Navigation with Photoresistors · Page 209

RCTIME. The RCTIME command is designed to measure RC decay time on a circuit like
the one in Figure 6-10. Here is the syntax for the RCTIME command:

RCTIME Pin, State, Duration

The Pin argument is the number of the I/O pin that you want to measure. For example, if
you want to measure P6, the Pin argument should be 6. The State argument can either
be 1 or 0. It should be 1 if the voltage across the capacitor starts above 1.4 V and decays
downward. It should be 0 if the voltage across the capacitor starts below 1.4 V and
grows upward. For the circuit in Figure 6-10, the voltage across the capacitor will start
close to 5 V and decay to 1.4 V, so the State argument should be 1. The Duration
argument has to be a variable that stores the time measurement, which is in 2 µs units. In
this next example program, we’ll measure the RC decay time on the photoresistor circuit
connected to P6, which is the photoresistor on the Boe-Bot’s left.

To measure RC decay, the first thing you have to do is make sure you have declared a
variable that will store the time measurement:

timeLeft VAR Word

These next three lines of code charge the capacitor, measure the RC decay time and then
store it in the timeLeft variable.

 HIGH 6
 PAUSE 3
 RCTIME 6,1,timeLeft

To get the measurement, the code implements these three steps:

1. Start charging the capacitor by connecting the circuit to 5 V (using the HIGH
command).

2. Use PAUSE to give the HIGH command enough time to charge the capacitor in the
RC circuit.

3. Execute the RCTIME command, which sets the I/O pin to input, measures the
decay time (from almost 5 V to 1.4 V), and stores it in the timeLeft variable.

Example Program: TestP6Photoresistor.bs2

√ Reconnect power to your board.
√ Enter, save, and run TestP6Photoresistor.bs2.

Page 210 · Robotics with the Boe-Bot

√ Cast a shadow over the photoresistor connected to P6 and verify that the time
measurement gets larger as the environment gets darker.

√ Point the photoresistor’s light collecting surface directly at an overhead light, or
shine flashlight directly at it. The time measurement should get very small. It
should then get larger as you gradually direct the photoresistor further away from
the light source. It should get even larger if you cast a shadow over it or turn out
the lights.

' Robotics with the Boe-Bot - TestP6Photoresistor.bs2
' Test Boe-Bot photoresistor circuit connected to P6 and display
' the decay time.

' {$STAMP BS2} ' Stamp directive.
' {$PBASIC 2.5} ' PBASIC directive.

timeLeft VAR Word

DO

 HIGH 6
 PAUSE 2
 RCTIME 6,1,timeLeft

 DEBUG HOME, "timeLeft = ", DEC5 timeLeft
 PAUSE 100

LOOP

Your Turn
√ Save TestP6Photoresistor.bs2 as TestP3Photoresistor.bs2.
√ Modify the program so that it performs the RC decay time measurement on the

right photoresistor, the one connected to P3.
√ Repeat the shadow and bright light tests with the P3 RC circuit and verify that it

works correctly. You will need to modify the Pin arguments for both the HIGH
and RCTIME commands, changing them from 6 to 3.

ACTIVITY #5: FLASHLIGHT BEAM FOLLOWING BOE-BOT
In this activity, you will test and calibrate your Boe-Bot’s light sensors so that they
recognize the difference between ambient light and a directed flashlight beam. You will
then program the Boe-Bot to follow the flashlight beam that is pointed at the surface in
front of the Boe-Bot.

Chapter 6: Light Sensitive Navigation with Photoresistors · Page 211

Extra Equipment

(1) Flashlight

Adjust Sensors to Search for Flashlight Beam
This activity works best if the photoresistors’ light-collecting surfaces are pointing ahead
at separate points on the ground about 2 in (5.1 cm) in front of the Boe-Bot.

√ Point the light collecting surfaces of your photoresistors at the surface in front of
the Boe-Bot as shown in Figure 6-11.

Figure 6-11: Photoresistor Orientation

P15
P14
P13
P12
P11
P10
P9
P8
P7

P5

P2
P1
P0

P6

P4
P3

X2

X3
Vdd VssVin

Board of Education
 © 2000-2003Rev C

Vdd

Black
Red

X4 X5

15 14 13 12

To Servos

+

Page 212 · Robotics with the Boe-Bot

Testing Sensor Response to Flashlight Beam
Before you can program the Boe-Bot to turn towards a flashlight beam, you have to know
the difference between light readings with and without the flashlight beam shining in the
Boe-Bot’s path.

Example Program: TestBothPhotoresistors.bs2

√ Enter, save, and run TestBothPhotoresistors.bs2.
√ Place the Boe-Bot on the surface where it is to follow the flashlight beam. Make

sure it is still connected to the serial cable and that the measurements are
displaying in the Debug Terminal.

√ Record the values of both time measurements in the first row of Table 6-1.
√ Turn on your flashlight, and focus your beam in front of the Boe-Bot.
√ Your time measurements should now be significantly lower than the first set.

Record these new values of both time measurements in the second row of Table
6-1.

Table 6-1: RC-Time Measurements With and Without Flashlight Beam

Duration Values
timeLeft timeRight Description

 Time measurements with no flashlight beam (ambient
light).

 Time measurements with flashlight beam focused in front
of the Boe-Bot.

' Robotics with the Boe-Bot - TestBothPhotoresistors.bs2
' Test Boe-Bot RC photoresistor circuits.

' {$STAMP BS2} ' Stamp directive.
' {$PBASIC 2.5} ' PBASIC directive.

timeLeft VAR Word ' Variable declarations.
timeRight VAR Word

DEBUG "PHOTORESISTOR VALUES", CR, ' Initialization.
 "timeLeft timeRight", CR,
 "-------- ---------"

DO ' Main routine.

 HIGH 6 ' Left RC time measurement.

Chapter 6: Light Sensitive Navigation with Photoresistors · Page 213

 PAUSE 3
 RCTIME 6,1,timeLeft

 HIGH 3 ' Right RC time measurement.
 PAUSE 3
 RCTIME 3,1,timeRight

 DEBUG CRSRXY, 0, 3, ' Display measurements.
 DEC5 timeLeft,
 " ",
 DEC5 timeRight

 PAUSE 100

LOOP

Your Turn

√ Try facing the Boe-Bot in different directions, and repeat your measurements.
√ For better results, you can average your measurements for "flashlight on" and

"flashlight off" and replace the values in Table 6-1 with your average values.

Following the Flashlight Beam
You have been using variable declarations up to this point. For example, counter VAR
Nib gives the name counter to a particular memory location in the BASIC Stamp’s
RAM. After you have declared the variable, every time you use counter in a PBASIC
program, it uses the value stored at that particular location in the BASIC Stamp’s RAM.

You can also declare constants. In other words, if you have a number you plan on using
in your program, give it a useful name. Instead of the VAR directive, use the CON
directive. Here are some CON directives from the next example program:

LeftAmbient CON 108
RightAmbient CON 114
LeftBright CON 20
RightBright CON 22

Now, everywhere in the program the name LeftAmbient is used, the BASIC Stamp will
use the number 108. Everywhere RightAmbient is used, the BASIC Stamp will use the
value 114. Likewise, everywhere LeftBright appears, it’s really the value 20, and
RightBright is 22. You will substitute your values from Table 6-1 before running the
program.

Page 214 · Robotics with the Boe-Bot

Constants can even be used to calculate other constants. Here is an example of two
constants, named LeftThreshold and RightThreshold that are calculated using the
four constants just discussed. The LeftThreshold and RightThreshold constants are
used in the program to figure out whether or not the flashlight beam has been detected.

' Average Scale factor

LeftThreshold CON LeftBright + LeftAmbient / 2 * 5 / 8
RightThreshold CON RightBright + RightAmbient / 2 * 5 / 8

The math performed on these constants is an average, and then a scale. The average
calculation for LeftThreshold is LeftBright + LeftAmbient / 2. That result is
multiplied by 5 and divided by 8. This means that LeftThreshold is a constant whose
value is the 5/8 of the average of LeftBright and LeftAmbient.

Math expressions in PBASIC are executed from left to right. First, LeftBright is
added to LeftAmbient. This value is divided by 2. The result is then multiplied by 5 and
divided by 8.

Let’s try this: LeftBright + LeftAmbient = 20 + 108 = 128.

 128 / 2 = 64.

 64 * 5 = 320

 320 / 8 = 40

You can use parentheses to force a calculation that is further to the right in a line of
PBASIC code to be completed first. For example, you can rewrite this line of PBASIC
code:

 pulseRight = 2 - distanceRight * 35 + 750

like this:

 pulseRight = 35 * (2 – distanceRight) + 750

In this expression, 35 is multiplied by the result of (2 – distanceRight), then the
product is added to 750.

Example Program: FlashlightControlledBoeBot.bs2

√ Enter FlashlightControlledBoeBot.bs2 into the BASIC Stamp Editor.
√ Substitute your timeLeft measurement with no flashlight beam (from Table 6-

1) in place of the value 108 in the LeftAmbient CON directive.

Chapter 6: Light Sensitive Navigation with Photoresistors · Page 215

√ Substitute your timeRight measurement with no flashlight beam in place of the
value 114 in the RightAmbient CON directive.

√ Substitute your timeLeft measurement with focused flashlight beam in place of
the value 20 in the LeftBright CON directive.

√ Substitute your timeRight measurement with focused flashlight beam in place
of the value 22 in the RightBright CON directive.

√ Reconnect power to your board and servos.
√ Save and then run FlashlightControlledBoeBot.bs2.
√ Experiment and figure out exactly where to focus the light to get the forward,

left turn, and right turn maneuvers to execute.
√ Use the flashlight to guide your Boe-Bot through various obstacle courses and

maneuvers.

' -----[Title]--
' Robotics with the Boe-Bot - FlashlightControlledBoeBot.bs2
' Boe-Bot follows flashlight beam focused in front of it.

' {$STAMP BS2} ' Stamp directive.
' {$PBASIC 2.5} ' PBASIC directive.

DEBUG "Program Running!"

' -----[Constants]--

' REPLACE THESE VALUES WITH THE VALUES YOU DETERMINED AND ENTERED INTO
' TABLE 6.1.

LeftAmbient CON 108
RightAmbient CON 114
LeftBright CON 20
RightBright CON 22

' Average Scale factor

LeftThreshold CON LeftBright + LeftAmbient / 2 * 5 / 8
RightThreshold CON RightBright + RightAmbient / 2 * 5 / 8

' -----[Variables]--

' Declare variables for storing measured RC times of the
' left & right photoresistors.

timeLeft VAR Word
timeRight VAR Word

' -----[Initialization]---

Page 216 · Robotics with the Boe-Bot

FREQOUT 4, 2000, 3000

' -----[Main Routine]---

DO

 GOSUB Test_Photoresistors
 GOSUB Navigate

LOOP

' -----[Subroutine - Test_Photoresistors]-----------------------------------

Test_Photoresistors:

 HIGH 6 ' Left RC time measurement.
 PAUSE 3
 RCTIME 6,1,timeLeft

 HIGH 3 ' Right RC time measurement.
 PAUSE 3
 RCTIME 3,1,timeRight

 RETURN

' -----[Subroutine - Navigate]--

Navigate:

 IF (timeLeft < LeftThreshold) AND (timeRight < RightThreshold) THEN
 PULSOUT 13, 850 ' Both detect flashlight beam,
 PULSOUT 12, 650 ' full speed forward.
 ELSEIF (timeLeft < LeftThreshold) THEN ' Left detects flashlight beam,
 PULSOUT 13, 700 ' pivot left.
 PULSOUT 12, 700
 ELSEIF (timeRight < RightThreshold) THEN ' Right detects flashlight beam,
 PULSOUT 13, 800 ' pivot right.
 PULSOUT 12, 800
 ELSE
 PULSOUT 13, 750 ' No flashlight beam, sit still.
 PULSOUT 12, 750
 ENDIF

 PAUSE 20 ' Pause between pulses.

 RETURN

Chapter 6: Light Sensitive Navigation with Photoresistors · Page 217

How FlashlightControlledBoeBot.bs2 Works

These are the four constant declarations that you used with your own values from Table
6-1.

LeftAmbient CON 108
RightAmbient CON 114
LeftBright CON 20
RightBright CON 22

Now that the four constants have been declared, the next two lines average and scale the
values to come up with threshold values for the program. These threshold values can be
compared with the current timeLeft and timeRight measurements to determine
whether the photoresistors are sensing ambient light or a focused beam.

' Average Scale

LeftThreshold CON LeftBright + LeftAmbient / 2 * 5 / 8
RightThreshold CON RightBright + RightAmbient / 2 * 5 / 8

These variables are used to store the RCTIME measurements.

timeLeft VAR Word
timeRight VAR Word

This is the reset indicator that has been used in most of the programs in this text.

FREQOUT 4, 2000, 3000

The Main Routine section contains just two subroutine calls. All the actual work in the
program occurs in the two subroutines. Test_Photoresistors takes the RCTIME
measurements for both RC photoresistor circuits, and the Navigate subroutine makes the
decisions and delivers the servo pulses.

DO

 GOSUB Test_Photoresistors
 GOSUB Navigate

LOOP

Page 218 · Robotics with the Boe-Bot

This is the subroutine that performs the RCTIME measurements on both photoresistor RC
circuits. The measurement for the left circuit is stored in the timeLeft variable, and the
measurement for the right circuit is stored in the timeRight variable.

Test_Photoresistors:

 HIGH 6
 PAUSE 3
 RCTIME 6,1,timeLeft

 HIGH 3
 PAUSE 3
 RCTIME 3,1,timeRight

 RETURN

The Navigate subroutine uses an IF…THEN statement to compare the timeLeft variable
against the LeftThreshold constant and the timeRight variable against the
RightThreshold constant. Remember, when the RCTIME measurement is small, it
means bright light is detected, and when it’s large, it means the light is not as bright. So,
when one of the variables that stores an RCTIME measurement is smaller than the
threshold constant, it means the flashlight beam has been detected; otherwise, the
flashlight beam has not been detected. Depending on which condition this subroutine
detects (both, left, right or neither), the correct navigation pulses is applied, followed by a
PAUSE before the RETURN command exits the subroutine.

Navigate:

 IF(timeLeft<LeftThreshold)AND(timeRight<RightThreshold) THEN
 PULSOUT 13, 850
 PULSOUT 12, 650
 ELSEIF (timeLeft < LeftThreshold) THEN
 PULSOUT 13, 700
 PULSOUT 12, 700
 ELSEIF (timeRight < RightThreshold) THEN
 PULSOUT 13, 800
 PULSOUT 12, 800
 ELSE
 PULSOUT 13, 750
 PULSOUT 12, 750
 ENDIF

Chapter 6: Light Sensitive Navigation with Photoresistors · Page 219

 PAUSE 20

 RETURN

Your Turn – Adjusting the Performance and Changing the Behavior

You can adjust the program’s performance by adjusting the scale factor term in this
constant declaration:

' Average Scale factor

LeftThreshold CON LeftBright + LeftAmbient / 2 * 5 / 8
RightThreshold CON RightBright + RightAmbient / 2 * 5 / 8

If you change the scale factor from 5/8 to 1/2, it will make the Boe-Bot less sensitive to the
flashlight, which may (or may not) lead to improved flashlight control.

√ Try different scale factors, such as 1/4, 1/2, 1/3, 2/3, and 3/4 and make notes about
any differences in the way the Boe-Bot responded to the flashlight beam.

By modifying the IF…THEN statement in the example program, you can change the Boe-
Bot’s behavior so that it tries to get the light out of its eyes.

√ Modify the IF…THEN statement so that the Boe-Bot backs up when it detects the
flashlight beam with both photoresistor circuits and turns away if it detects the
flashlight beam with only one of its photoresistor circuits.

ACTIVITY #6: ROAMING TOWARD THE LIGHT
The example program in this activity can be used to guide the Boe-Bot through exiting a
fairly dark room toward a doorway that’s letting in brighter light. It also allows for much
better control over the Boe-Bot’s roaming by casting shadows over the photoresistors
with your hand.

Readjusting the Photoresistors

This activity works best if the photoresistors’ light collecting surfaces are pointing
upwards and outwards.

Page 220 · Robotics with the Boe-Bot

√ Point the light collecting surfaces of your photoresistors upward and outward
shown in Figure 6-12.

Figure 6-12: Photoresistor Orientation

P15
P14
P13
P12
P11
P10
P9
P8
P7

P5

P2
P1
P0

P6

P4
P3

X2

X3
Vdd VssVin

+

Programming the Roaming Toward the Light Behavior

The key to roaming toward brighter light sources is going straight ahead when the
differences between the photoresistor measurements are small, and turning toward the
smaller photoresistor measurement when there is a large difference between the two
measurements. In effect, this means the Boe-Bot will turn toward bright light.

Initially this seems like a simple enough programming task; IF…THEN reasoning like this
example below should work. The problem is, it doesn’t because the Boe-Bot gets stuck
turning left and then right again because the change in timeLeft and timeRight is too
large. Each time the Boe-Bot turns a little, the timeRight and timeLeft variables
change so much that the Boe-Bot tries to correct and turn back. It never manages to get
any forward pulses in.

IF (timeLeft > timeRight) THEN ' Turn right.
 PULSOUT 13, 850
 PULSOUT 12, 850
ELSEIF (timeRight > timeLeft) THEN ' Turn left.

Chapter 6: Light Sensitive Navigation with Photoresistors · Page 221

 PULSOUT 13, 650
 PULSOUT 12, 650
ELSE ' Go forward.
 PULSOUT 13, 850
 PULSOUT 12, 650
ENDIF

Here is another code block that works a little better. This code block fixes the turning
back and forth problem under certain conditions. The timeLeft variable now has to be
larger than timeRight by a margin of 15 before the Boe-Bot will apply a left pulse.
Likewise, timeRight has to be larger than timeLeft by 15 before the Boe-Bot adjusts to
the left. This gives the Boe-Bot the opportunity to apply enough forward pulses before it
has to correct with a turn, but only at certain light levels.

IF (timeLeft > timeRight + 15) THEN ' Turn right.
 PULSOUT 13, 850
 PULSOUT 12, 850
ELSEIF (timeRight > timeLeft + 15) THEN ' Turn left.
 PULSOUT 13, 650
 PULSOUT 12, 650
ELSE ' Go forward.
 PULSOUT 13, 850
 PULSOUT 12, 650
ENDIF

The problem with the code block above is that it works under medium dark conditions
only. If you take it into a much darker area, the Boe-Bot starts turning back and forth
again, and it never applies any forward pulses. If you take it into a brighter area, the Boe-
Bot just goes forward, and never makes any adjustments to the left or right.

Why does that happen?

Here is the answer: When the Boe-Bot is in a dark part of a room, the measurement for
each photoresistor will be large. For the Boe-Bot to decide to turn toward a light source,
the difference between these two measurements has to be large. When the Boe-Bot is in
a more brightly lit area, the measurement for each photoresistor will be smaller. For the
Boe-Bot to decide to make a turn, the difference between photoresistor measurements
also has to be much smaller than it was in the darker part of the room. The way to make
this difference respond to the lighting conditions is to make it a variable that is a fraction
of the average of timeRight and timeLeft. That way, it will always be the right value,
regardless whether the lighting is bright or dim.

Page 222 · Robotics with the Boe-Bot

 average = timeRight + timeLeft / 2
 difference = average / 6

Now, the difference variable can be used in this IF…THEN statement, and it will be a
large value when the lighting is low, and a small value when the lighting is bright.

IF (timeLeft > timeRight + difference) THEN ' Turn right.
 PULSOUT 13, 850
 PULSOUT 12, 850
ELSEIF (timeRight > timeLeft + difference) THEN ' Turn left.
 PULSOUT 13, 650
 PULSOUT 12, 650
ELSE ' Go forward.
 PULSOUT 13, 850
 PULSOUT 12, 650
ENDIF

Example Program – RoamingTowardTheLight.bs2

Unlike RoamingWithPhotoresistorDividers.bs2 on page 201, this program will be very
responsive to your hand casting a shadow over the photoresistor, regardless of whether
the light is bright or dim. This program does not need to change resistors depending on
the lighting conditions. Instead, it takes into account the lighting conditions and the
sensitivity adjustment is made in software using the average and difference variables.

For this program to work well, your photoresistors should respond similarly to similar
light levels. If the RC circuits are severely mismatched, your measurements from Table 6-1
will be very different under the same lighting conditions. You can correct these mismatched
measurements using techniques discussed in Appendix F: Balancing Photoresistors.

This program measures the overall average of timeLeft and timeRight and uses it to
set the difference between the timeLeft and timeRight measurements that’s needed
to justify delivering a turning pulse.

√ Enter, save, and run RoamingTowardTheLight.bs2
√ Take it to various areas, and let it roam, and verify that you can change its course

by casting a shadow over one of the photoresistor RC circuits, regardless of the
lighting conditions.

Chapter 6: Light Sensitive Navigation with Photoresistors · Page 223

√ Also try placing your Boe-Bot in a room that is poorly lit, but that has light
streaming in through a doorway from an adjacent brightly lit room or hallway.
See if the Boe-Bot can successfully find its way out the door.

' -----[Title]--
' Robotics with the Boe-Bot - RoamingTowardTheLight.bs2
' Boe-Bot roams, and turns away from dark areas in favor of brighter areas.

' {$STAMP BS2} ' Stamp directive.
' {$PBASIC 2.5} ' PBASIC directive.

DEBUG "Program Running!"

' -----[Variables]--

' Declare variables for storing measured RC times of the
' left & right photoresistors.

timeLeft VAR Word
timeRight VAR Word
average VAR Word
difference VAR Word

' -----[Initialization]---

FREQOUT 4, 2000, 3000

' -----[Main Routine]---

DO
 GOSUB Test_Photoresistors
' For mismatched photoresistors, use Appendix F, uncomment and use next line.
' timeLeft = (timeLeft */ 351) + 7 ' Replace 351 and 7 with your own values.
 GOSUB Average_And_Difference
 GOSUB Navigate
LOOP

' -----[Subroutine - Test_Photoresistors]-----------------------------------

Test_Photoresistors:

 HIGH 6 ' Left RC time measurement.
 PAUSE 3
 RCTIME 6,1,timeLeft

 HIGH 3 ' Right RC time measurement.
 PAUSE 3
 RCTIME 3,1,timeRight

 RETURN

Page 224 · Robotics with the Boe-Bot

' -----[Subroutine - Average_And_Difference]--------------------------------

Average_And_Difference:

 average = timeRight + timeLeft / 2
 difference = average / 6

 RETURN

' -----[Subroutine - Navigate]--

Navigate:

 ' Shadow significantly stronger on left detector, turn right.
 IF (timeLeft > timeRight + difference) THEN
 PULSOUT 13, 850
 PULSOUT 12, 850
 ' Shadow significantly stronger on right detector, turn left.
 ELSEIF (timeRight > timeLeft + difference) THEN
 PULSOUT 13, 650
 PULSOUT 12, 650
 ' Shadows in same neighborhood of intensity on both detectors.
 ELSE
 PULSOUT 13, 850
 PULSOUT 12, 650
 ENDIF

 PAUSE 10

 RETURN

Why PAUSE 10 instead of PAUSE 20? Because the Test_Photoresistors
subroutine has two PAUSE commands adding up to 6 ms plus some extra time to execute
the RCTIME commands. Both these factors add to the amount of time between servo
pulses, so the PAUSE in the Navigate subroutine has to be reduced. After some trial
and error experiments, PAUSE 10 appeared to give the servos the most reliable
performance over the widest range of light levels.

Your Turn – Adjusting the Sensitivity to Differences in Light

Right now, the difference variable is the average divided by 6. You can divide
average by a smaller value if you want to make the Boe-Bot less sensitive to differences
in light or divide it by a larger value if you want to make the Boe-Bot more sensitive to
differences in light level.

Chapter 6: Light Sensitive Navigation with Photoresistors · Page 225

√ Instead of the value 6, try dividing the average variable by the values 3, 4, 5, 7,
and 9.

√ Run the program and test the Boe-Bot’s ability to exit a dark room with each
denominator value.

√ Decide what the optimum denominator value is.

Average_And_Difference:

 average = timeRight + timeLeft / 2
 difference = average / 6

 RETURN

You can also change the denominator into a constant like this:

Denominator CON 6

Then, in your Average_And_Difference subroutine, you can replace 6 (or the optimum
value that you determined) with the Denominator constant, like this:

Average_And_Difference:

 average = timeRight + timeLeft / 2
 difference = average / Denominator

 RETURN

√ Make the changes just discussed, and verify that the program still works

correctly.

You can also use one less variable in this program. Notice that the only time the
average variable is used is to temporarily hold the average value, then it gets divided by
Denominator and stored in the difference variable. The difference variable is
needed later, but the average variable is not. One way to fix this problem would be to
simply use the difference variable in place of the average variable. It will work fine,
and you would no longer need the average variable. Here is how the subroutine would
look:

Average_And_Difference:

 difference = timeRight + timeLeft / 2

Page 226 · Robotics with the Boe-Bot

 difference = difference / Denominator

 RETURN

There is a better way though.

√ Leave the Average_And_Difference routine like this:

Average_And_Difference:

 average = timeRight + timeLeft / 2
 difference = average / Denominator

 RETURN

√ Next, make this change in the variable declarations:

Figure 6-13: Modify RoamingTowardTheLight.bs2 to Save a Word of RAM

' Unchanged code

average VAR Word
difference VAR Word

' Changed to save Word of RAM

average VAR Word
difference VAR average

We don’t really need the average variable, but the program will make more sense to
someone trying to understand it if we use the word average in the first line and the word
difference in the second line. Here is how to create an alias name difference for the
average variable.

difference VAR average

Now, both average and difference refer to the same word of RAM.

√ Test your modified program and make sure it still works properly.

Chapter 6: Light Sensitive Navigation with Photoresistors · Page 227

SUMMARY
This chapter focused on measuring differences in light intensity and programming the
Boe-Bot to act on these differences. A pair of cadmium sulfide (CdS) photoresistors
were used to measure differences in visible light. The CdS photoresistors were first
connected to resistors to form voltage dividers, and the BASIC Stamp monitored the
voltage at the connection between the photoresistor and the fixed resistor. When this
voltage dropped below or rose above 1.4 V the input register for the I/O pin connected to
the circuit stored either a 0 or 1. The Boe-Bot was programmed to make decisions using
these binary values in a manner similar to the whiskers.

The photoresistor divider technique works so long as the right resistors are chosen and
the lighting doesn’t change. However, a much more versatile way of detecting light
levels with the BASIC Stamp is to use the CdS photoresistor in an RC circuit, charge the
capacitor, and then measure the decay time. RC stands for resistor capacitor, and the
capacitor was introduced in this chapter along with a circuit that makes it possible for the
BASIC Stamp to measure RC decay time. This is easily done with the BASIC Stamp
using the RCTIME command, which is specifically designed for measuring RC decay
and growth times.

Constants were introduced as a way to substitute meaningful names for numbers that are
used in a PBASIC program. Scaling and averaging were also introduced. Scaling was
used to set a threshold value to indicate whether or not a flashlight beam was detected. It
was also used to determine the average value of the light levels in an area based on the
two photoresistor RC time measurements. This was used to create a threshold that
automatically self-adjusted to the overall lighting conditions, eliminating the need to
change resistors when the light levels change.

Watch the Boe-Bot in Action at www.parallax.com!

You can see the Boe-Bot solving Chapter 6 Projects 1 and 2 along with other Robotics video
clips in the Robo Video Gallery under the Robotics Menu at www.parallax.com.

Questions
1. How does the resistance of a photoresistor respond to bright and dim light?

What happens if the light levels are between bright and dim?

Page 228 · Robotics with the Boe-Bot

2. Does an I/O pin have any effect on the circuit when it’s set to input? What
causes the input register for an I/O pin to hold a 1 or 0 when it’s set to input?

3. What does threshold voltage mean? What’s the threshold voltage of a BASIC
Stamp I/O pin?

4. Referring to Figure 6-4 on page 197, what causes Vo to rise above or fall below
a BASIC Stamp I/O pin’s threshold voltage? What is it about the circuit that
causes Vo to change value?

5. How does the program ShadowGuidedBoeBot.bs2 differ from the program
RoamingWithPhotoresistorDividers.bs2? What does this change in the Boe-
Bot’s performance?

6. What is a constant declaration? What does it do? How can you use one in a
program?

7. How are math expressions evaluated in PBASIC?
8. What are the two examples in this chapter where PBASIC was used to calculate

an average? How are they different? How are they the same?

Exercises
1. Calculate Vo for Figure 6-4 on page 197 if R is 10 kΩ. Repeat for R = 30 kΩ.
2. If Vo in Figure 6-4 on page 197 is 1.4 V, what’s the value of R? Repeat for Vo

= 1 V and Vo = 3 V.
3. Assume you have three variable values: firstValue, secondValue, and

thirdValue. Write a command that takes the average of these three values in a
variable named myAverage. Write a command that stores 7/8 of the average
value in a variable named myScaledAverage. Write the variable declarations
needed to make your command able to run in a program, first with myAverage
and myScaledAverage as separate variables, then with one of these variable
names aliased as the other.

Projects
1. With your Boe-Bot’s photoresistors looking down in front of it, develop a

program that makes your Boe-Bot recognize the difference between black and
white. Find a large white surface and place dark-black sheets of paper on it.
Develop a program that makes the Boe-Bot avoid the black sheets of paper.
Hints: Make sure to test and understand what the Boe-Bot sees when it is
focused on a black sheet of paper and what it sees when it is focused on a white
background. Use example programs from the last three activities in this chapter.
The RC decay time circuit and programs will be much more helpful for making

Chapter 6: Light Sensitive Navigation with Photoresistors · Page 229

the program work than the photoresistor divider techniques. Also, make sure
this obstacle course is in a uniformly lit area. Bright sunlight from windows, and
shadows cast by onlookers can make the demonstration fail.

2. If you succeeded with project 1, experiment with confining the Boe-Bot so that it
can only roam in a space that is enclosed by black sheets of paper.

Page 230 · Robotics with the Boe-Bot

Solutions
Q1. The resistance is small, a few ohms, if the light is bright. The resistance is large,

around 50 kΩ, in dim light. For light levels between bright and dim, its
resistance will be somewhere between the bright and dim values.

Q2. No. The I/O pin just quietly listens without any actual effect on the circuit. The
value of the applied voltage causes the input register to change what it stores. If
the applied voltage is less than 1.4 volts it stores a 0. Otherwise it stores a 1.

Q3. The threshold voltage is a value above which is a logic 1, below which is a logic
0. The threshold voltage of BASIC Stamp modules is 1.4 volts.

Q4. The value of Vo is determined by the ratio of the resistors. Vo changes value
because the resistor, R, changes value. R is a photoresistor which changes value
depending on the amount of light falling upon it.

Q5. It checks the sensors between each pulse, instead of having fixed maneuvers of
many pulses. This makes the Boe-Bot much more responsive.

Q6. A constant declaration tells the compiler the value of your constant. For
example, MaxTemp CON 212 is a constant declaration. A constant gives a
useful name to a number or value used in a program. To use a constant, type the
constant name anywhere in the program where the value is needed.

Q7. Expressions are evaluated from left to right. This is different than standard
algebraic evaluation, where multiplication and division are evaluated before
addition and subtraction.

Q8. In FlashLightControlledBoeBot.bs2, averages were used to calculate lighting
thresholds. In RoamingTowardTheLight.bs2, an average of the left and right
readings is calculated. They different in that the first is calculated statically in a
constant declaration, and the second is calculated dynamically as the program
runs. They are similar in that they both add two values together and divide by 2.

E1.

a) R = 10 kOhm
Vo = 5V * (2000 / (2000 + R))
 = 5 * (2000 / (2000 + 10000)
 = 5 * (2000 / (12000)
 = 5 * (2 / 12)
 = 5 * (1 / 6)
 = 5 * 0.17
 = 0.83 Volts
If R = 10 kOhm, Vo = 0.83 V

b) R = 30 kOhm
Vo = 5V * (2000 / (2000 + R))
 = 5 * (2000 / (2000 + 30000)
 = 5 * (2000 / (32000)
 = 5 * (2 / 32)
 = 5 8 (1 / 16)
 = 5 * 0.06
 = 0.31 Volts

 If R = 30 kOhm, Vo = 0.31 V

Chapter 6: Light Sensitive Navigation with Photoresistors · Page 231

E2.
a) Vo = 1.4 V

 R = (5 * (2000/Vo)) – 2000
 = (5 * (2000/1.4)) – 2000
 = (5 * 1428.57) – 2000
 = 7142.86 – 2000
 = 5142.86
 = 5143 Ohm
 When Vo = 1.4V, R = 5143 Ω

b) Vo = 1.0 V
 R = (5 * (2000/1)) – 2000
 = (5 * 2000) – 2000
 = (10000) – 2000
 = 8000
 = 8 kOhm
 When Vo = 1.4V, R = 8 kΩ

c) Vo = 3.0 V
 R = (5 * (2000/3.0)) – 2000
 = (5 * 666.67) – 2000
 = 3333.33 – 2000
 = 1333.33
 = 1333 Ohm
 When Vo = 1.4V, R = 1333 Ω

E3. The average of these three values in a variable named myAverage, storing 7/8 in
myScaledAvereage:

myAverage = firstValue + secondValue + thirdValue / 3
myScaledAverage = myAverage * 7 / 8

Declarations as separate variables:

myAverage VAR Word
myScaledAverage VAR Word

Declarations using aliasing:

myAverage VAR Word
myScaledAverage VAR myAverage

P1. The first step is to use "TestBothPhotoresistors.bs2" and determine the values for
the white surface and the black paper. Similar to
"FlashlightControlledBoeBot.bs2", these values can be coded as constants.
Then, IF…THEN statements can be used to determine whether the values are
above or below the average readings. (For the author's Boe-Bot, scaling was not
necessary). Here's a program solution that makes the Boe-Bot recognize the
difference between black and white surfaces.

Page 232 · Robotics with the Boe-Bot

' -----[Title]--
' Robotics with the Boe-Bot - TestBlackWhiteLogic.bs2
' Calculate whether Boe-Bot is over black or white surface, and print.

' {$STAMP BS2} ' Stamp directive
' {$PBASIC 2.5} ' PBASIC directive.

' -----[Constants]--

LeftWhite CON 16
RightWhite CON 33
LeftBlack CON 26
RightBlack CON 45
LeftAvg CON LeftWhite + LeftBlack / 2
RightAvg CON RightWhite + RightBlack / 2

' -----[Variables]--

timeLeft VAR Word ' Left photoresistor reading
timeRight VAR Word ' Right photoresistor reading

' -----[Main Routine]---

DO
 GOSUB Test_Photoresistors
 IF (timeLeft > LeftAvg) THEN
 DEBUG CRSRXY, 0, 0, "Left Black "
 ELSE
 DEBUG CRSRXY, 0, 0, "Left White "
 ENDIF
 IF (timeRight > RightAvg) THEN
 DEBUG CRSRXY, 13, 0, "Right Black", CR
 ELSE
 DEBUG CRSRXY, 13, 0, "Right White", CR
 ENDIF
LOOP

' -----[Subroutine - Test_Photoresistors]-------------------------------

Test_Photoresistors:
 HIGH 6 ' Left RC time Measurement.
 PAUSE 3
 RCTIME 6,1,timeLeft
 HIGH 3 ' Right RC time measurement.
 PAUSE 3
 RCTIME 3,1,timeRight
RETURN

To develop a program that makes the Boe-Bot avoid the black sheets of paper,
the decision and navigation steps required are very similar to

Chapter 6: Light Sensitive Navigation with Photoresistors · Page 233

"FlashlightControlledBoeBot.bs2" and "RoamingTowardTheLight.bs2". A
sample solution is shown below.

' -----[Title]---
' Robotics with the Boe-Bot - AvoidBlackSpots.bs2
' Boe-Bot avoids black pieces of paper.

' {$STAMP BS2} ' Stamp directive
' {$PBASIC 2.5} ' PBASIC directive.

' -----[Constants]---

LeftWhite CON 16
RightWhite CON 33
LeftBlack CON 26
RightBlack CON 45
LeftAvg CON LeftWhite + LeftBlack / 2
RightAvg CON RightWhite + RightBlack / 2

' -----[Variables]---

timeLeft VAR Word ' Left photoresistor
reading
timeRight VAR Word ' Right photoresistor
reading

' -----[Initialization]--

FREQOUT 4, 2000, 3000

' -----[Main Routine]--
DO
 GOSUB Test_Photoresistors
 GOSUB Navigate
LOOP

' -----[Subroutines --

Test_Photoresistors:
 HIGH 6 ' Left RC time
Measurement.
 PAUSE 3
 RCTIME 6,1,timeLeft
 HIGH 3 ' Right RC time
measurement.
 PAUSE 3
 RCTIME 3,1,timeRight
RETURN

Navigate:

Page 234 · Robotics with the Boe-Bot

' Both detect black paper, back up and make a noise
 IF (timeLeft > LeftAvg) AND (timeRight > RightAvg) THEN
 PULSOUT 13, 650
 PULSOUT 12, 850
 FREQOUT 4, 20, 4400 ' Beep instead of pause
' Left detects black paper, turn away to right, make a noise
 ELSEIF (timeLeft > LeftAvg) THEN
 PULSOUT 13, 850
 PULSOUT 12, 850
 FREQOUT 4, 20, 2200
' Right detects black paper, turn away to left, make a noise
 ELSEIF (timeRight > RightAvg) THEN
 PULSOUT 13, 650
 PULSOUT 12, 650
 FREQOUT 4, 20, 3300
' Neither detects black paper, go forward one pulse.
 ELSE
 PULSOUT 13,850
 PULSOUT 12,650
 PAUSE 20
 ENDIF
RETURN

Hints: Make sure to test and understand what the Boe-Bot sees when it is
focused on a black sheet of paper and what it sees when it is focused on a white
background. Use example programs from the last three activities in this chapter.
The RC decay time circuit and programs will be much more helpful for making
the program work than the photoresistor divider techniques. Also, make sure this
obstacle course is in a uniformly lit area. Bright sunlight from windows, and
shadows cast by onlookers can make the demonstration fail.

P2. The "AvoidBlackSpots.bs2" program solution, above, works quite well to keep
the Boe-Bot confined in a black-bordered space. A video clip of a Boe-Bot
doing just this can be viewed at www.parallax.com. Under the Robotics menu,
look for Robo Video Gallery.

Chapter 7: Navigating with Infrared Headlights · Page 235

Chapter 7: Navigating with Infrared Headlights

Today's hottest products seem to have one thing in common: wireless communication.
Personal organizers beam data into desktop computers, and wireless remotes let us
channel surf. Many remote controls and PDA’s use signals in the infrared frequency
range to communicate, below the visible light spectrum. With a few inexpensive and
widely available parts, the BASIC Stamp can also receive and transmit infrared light
signals.

USING INFRARED HEADLIGHTS TO SEE THE ROAD
Detecting objects without whiskers doesn’t require anything as sophisticated as machine
vision. Some robots use RADAR or SONAR (sometimes called SODAR when used in
air instead of water). An even simpler system is to use infrared light to illuminate the
robot’s path and determine when the light reflects off an object. Thanks to the
proliferation of infrared (IR) remote controls, IR illuminators and detectors are readily
available and inexpensive.

Infrared: Infra means below, so Infra-red is light (or electromagnetic radiation) that has
lower frequency, or longer wavelength than red light. Table 7-1 shows the wavelengths for
common colors along with the infrared spectrum. Our IR LED and detector work at 980 nm
(nanometers) which is considered near infrared. Night-vision goggles and IR temperature
sensing use far infrared wavelengths of 2000-10,000 nm, depending on the application.
Table 7-1 shows the wavelengths for common colors along with the infrared spectrum.

Table 7-1: Colors and Approximate Wavelengths

Color Wavelength Color Wavelength
 Violet 400 Red 780
 Blue 470 Near infrared 800-1000
 Green 565 Infrared 1000-2000
 Yellow 590 Far infrared 2000-10,000
 Orange 630

Page 236 · Robotics with the Boe-Bot

Infrared Headlights

The infrared object detection system we’ll build on the Boe-Bot is like a car’s headlights
in several respects. When the light from a car’s headlights reflects off obstacles, your
eyes detect the obstacles and your brain processes them and makes your body guide the
car accordingly. The Boe-Bot uses infrared LEDs for headlights as shown in Figure 7-1.
They emit infrared, and in some cases, the infrared reflects off objects and bounces back
in the direction of the Boe-Bot. The eyes of the Boe-Bot are the infrared detectors. The
infrared detectors send signals indicating whether or not they detect infrared reflected off
an object. The brain of the Boe-Bot, the BASIC Stamp, makes decisions and operates the
servo motors based on this sensor input.

Figure 7-1
Object Detection
with IR Headlights

The IR detectors have built-in optical filters that allow very little light except the 980 nm
infrared that we want to detect with its internal photodiode sensor. The infrared detector
also has an electronic filter that only allows signals around 38.5 kHz to pass through. In
other words, the detector is only looking for infrared that’s flashing on and off 38,500
times per second. This prevents IR interference from common sources such as sunlight
and indoor lighting. Sunlight is DC interference (0 Hz), and indoor lighting tends to flash
on and off at either 100 or 120 Hz, depending on the main power source in the region.
Since 120 Hz is outside the electronic filter’s 38.5 kHz band pass frequency, it is
completely ignored by the IR detectors.

Chapter 7: Navigating with Infrared Headlights · Page 237

Some fluorescent lights do generate signals that can be detected by the IR detectors.
These lights can cause problems for your Boe-Bot’s infrared headlights. One of the things
you will do in this chapter is develop an infrared interference “sniffer” that you can use to test
the fluorescent lights near your Boe-Bot courses.

ACTIVITY #1: BUILDING AND TESTING THE IR PAIRS
In this activity, you will build and test the infrared transmitter/detector pairs.

Parts List:

(2) Infrared detectors
(2) IR LEDs (clear case)
(2) IR LED shield assemblies
(2) Resistors - 220 Ω
 (red-red-brown)
(2) Resistors – 1 kΩ
 (brown-black-red)

1
2
3

1
2
3

+

-
Flattened
edge

Longer lead

+
-

Figure 7-2
New Parts
Used in this
Chapter

IR detector
(top)

IR LED
(middle)

IR LED
shield
assembly
(bottom)

Building the IR Headlights

√ Insert the infrared LED into the shield assembly as shown in Figure 7-3.
√ Make sure the LED snaps into the larger part of the housing.
√ Snap the smaller part of the housing over the LED case and onto the larger part.

+
-

IR LED will snap in.

Figure 7-3
Snapping the IR
LED into the
Shield Assembly

Page 238 · Robotics with the Boe-Bot

One IR pair (IR LED and detector) is mounted on each corner of the breadboard. Figure
7-4 shows the IR headlights circuit as a schematic and Figure 7-5 shows the circuit as a
wiring diagram.

√ Disconnect power from your board and servos.
√ Build the circuit shown by the schematic in Figure 7-4, using the wiring diagram

for your board in Figure 7-5 as a reference for parts placement.

Figure 7-4
Left and Right IR
Pairs

Left IR Pair Right IR Pair

Watch your IR LED anodes and cathodes!

Remember that the anode lead is the longer lead on an IR LED by convention, but that you
need to check the LED’s plastic case to make sure. The cathode lead is the one near the
flat spot on the case. In Figure 7-5, the anode lead of each IR LED connects to a 1 kΩ
resistor. The cathode lead plugs into the same breadboard row as an IR detector’s center
pin, and that row connects to Vss with a jumper wire.

Vdd

Vss

P9

P8

IR
LED

Vss

1 k Ω

220 Ω

Vdd

Vss

P0

P2

IR
LED

Vss

1 kΩ

220 Ω

Chapter 7: Navigating with Infrared Headlights · Page 239

P15
P14
P13
P12
P11
P10

P7
P6
P5

P3

P1

P9
P8

P4

P2

P0
X2

X3
Vdd VssVin

Board of Education
 © 2000-2003Rev C

Vdd

Black
Red

X4 X5

15 14 13 12

To Servos

+

P15
P14

P11

P13
P12

P9
P8

P4

P2

P0

P10

P7
P6
P5

P3

P1

X2

X3
Vdd VssVin

Rev B
(916) 624-8333
www.parallax.com
www.stampsinclass.com

To Servos

+

HomeWork Board

Figure 7-5
Wiring
Diagrams for
Infrared
Emitter and
Receiver
Circuits

Board of
Education
(left) and
HomeWork
Board (right).

Testing the IR Pairs Using the FREQOUT Trick

The FREQOUT command was designed mainly to synthesize audio tones. The actual range
of the FREQOUT command is 1 to 32768 Hz. One interesting phenomenon of digitally
synthesized tones is that they contain signals called harmonics. A harmonic is a higher
frequency tone that’s mixed in with the tone you want to hear. These tones are outside
human abilities to detect sound, which tend to range from 20 Hz to 20 kHz. The
harmonics generated by the FREQOUT command start at 32769 Hz and go upward. You
can directly control these harmonics using Freq1 arguments above 32768. In this
activity, you will use the command FREQOUT 8, 1, 38500 to send a 38.5 kHz harmonic
that lasts 1 ms to P8. The infrared LED circuit connected to P8 will broadcast this
harmonic. If the infrared light is reflected back to the Boe-Bot by an object in its path,
the infrared detector will send the BASIC Stamp a signal to let it know that the reflected
infrared light was detected.

anode
leads

anode
leads

Page 240 · Robotics with the Boe-Bot

FREQOUT Command - Fundamentals and Harmonics

The fundamental frequency is the value of the Freq1 argument when it’s at or below
32768. For example, when you use the command FREQOUT 4, 2000, 3000, the
fundamental frequency is 3000 Hz. That's the intended sound, but there is also a harmonic
sound that accompanies it. This harmonic is a much higher frequency that the human ear
can detect, in the neighborhood of 62.5 kHz. Here's how to calculate the harmonic
frequency given the fundamental and visa versa.

Whenever you use the FREQOUT command to send a tone in this range, it contains that
hidden (harmonic) tone as well. The equation for the harmonic is:

 harmonic frequency = 65536 – Freq1, Freq1 <= 32678

Whenever you use the FREQOUT command with a Freq1 argument above 32768 to send
a harmonic, it contains a fundamental tone. The equation for the fundamental is:

 fundamental frequency = 65536 – Freq1, Freq1 > 32768

The key to making each IR LED/detector pair work is to send 1 ms of 38.5 kHz FREQOUT
harmonic, and then, immediately store the IR detector’s output in a variable. Here is an
example that sends the 38.5 kHz signal to the IR LED connected to P8, then stores the IR
detector’s output, which is connected to P9, in a bit variable named irDetectLeft.

 FREQOUT 8, 1, 38500
 irDetectLeft = IN9

The IR detector’s output state when it sees no IR signal is high. When the IR detector
sees the 38500 Hz harmonic reflected by an object, its output is low. The IR detector’s
output only stays low for a fraction of a millisecond after the FREQOUT command is done
sending the harmonic, so it’s essential to store the IR detector’s output in a variable
immediately after sending the FREQOUT command. The value stored by the variable can
then be displayed in the Debug Terminal or used for navigation decisions by the Boe-Bot.

Example Program: TestLeftIrPair.bs2

√ Reconnect power to your board.
√ Enter, save, and run TestLeftIrPair.bs2.

' Robotics with the Boe-Bot - TestLeftIrPair.bs2
' Test IR object detection circuits, IR LED connected to P8 and detector
' connected to P9.

' {$STAMP BS2}

Chapter 7: Navigating with Infrared Headlights · Page 241

' {$PBASIC 2.5}

irDetectLeft VAR Bit

DO

 FREQOUT 8, 1, 38500
 irDetectLeft = IN9

 DEBUG HOME, "irDetectLeft = ", BIN1 irDetectLeft
 PAUSE 100

LOOP

√ Leave the Boe-Bot connected to the serial cable, because you will be using the

Debug Terminal to test your IR pair.
√ Place an object, such as your hand or a sheet of paper, about an inch from the left

IR pair, in the manner shown in Figure 7-1 on page 236.
√ Verify that when you place an object in front of the IR pair the Debug Terminal

displays a 0, and when you remove the object from in front of the IR pair, it
displays a 1.

√ If the Debug Terminal displays the expected values for object not detected (1)
and object detected (0), move on to the Your Turn section following the example
program.

√ If the Debug Terminal does not display the expected values, try the steps in the
Trouble-Shooting box.

Trouble-Shooting

If the Debug Terminal does not display the expected values, check for circuit and program
entry errors.

If you are always getting 0, even when an object is not placed in front of the Boe-Bot, there
may be a nearby object that is reflecting the infrared. The surface of the table in front of the
Boe-Bot is a common culprit. Move the Boe-Bot so that the IR LED and detector cannot
possibly be reflecting off any nearby object.

If the reading is 1 most of the time when there is no object in front of the Boe-Bot, but
flickers to 0 occasionally, it may mean you have interference from a nearby fluorescent light.
Turn off any nearby fluorescent lights and repeat your tests.

Your Turn

√ Save TestLeftIrPair.bs2 as TestRightIrPair.bs2.

Page 242 · Robotics with the Boe-Bot

√ Change the DEBUG statement, title and comments to refer to the right IR pair.
√ Change the variable name from irDetectLeft to irDetectRight. You will

need to do this in four places in the program.
√ Change the FREQOUT command’s Pin argument from 8 to 2.
√ Change the input register monitored by the irDetectRight variable from IN9

to IN0.
√ Repeat the testing steps in this activity for the right IR pair; with the IR LED

circuit connected to P2 and the detector connected to P0.

ACTIVITY #2: FIELD TESTING FOR OBJECT DETECTION AND
INFRARED INTERFERENCE
In this activity, you will build and test indicator LEDs that will tell you if an object is
detected without the help of the Debug Terminal. This is handy if you are not near a PC
or laptop, and you need to trouble-shoot your IR detector circuits. You will also write a
program to “sniff” for infrared interference from fluorescent lights. Some fluorescent
lights send signals that resemble the signal sent by your infrared LEDs. The device
inside a fluorescent light fixture that controls voltage for the lamp is called the ballast.
Some ballasts operate in the same frequency range of your IR detector, 38.5 kHz, which
in turn causes the lamp to emit a signal at this frequency. When you integrate IR object
detection with navigation, this interference can cause some bizarre Boe-Bot behavior!

Rebuilding the LED Indicator Circuits

These are the same LED indicator circuits that you used with the whiskers.

Parts List:

(2) Red LEDs
(2) Resistors – 220 Ω (red-red-brown)

√ Disconnect power from your board and servos.
√ Build the circuit shown in Figure 7-6 using Figure 7-7 as a reference.

Chapter 7: Navigating with Infrared Headlights · Page 243

P10

Vss

220 Ω

Red
LED

P1

Vss

220 Ω

Red
LED

Figure 7-6
Left and Right
Indicator LEDs

Left IR Pair Right IR Pair

Figure 7-7
Wiring
Diagrams for
Red LED
Indicators
with IR Object
Detection
Circuits

Board of
Education
(left) and
HomeWork
Board (right).

Testing the System

There are quite a few components involved in this system, and this increases the
likelihood of a wiring error. That’s why it’s important to have a test program that shows
you what the infrared detectors are sensing. You can use this program to verify that all
the circuits are working before unplugging the Boe-Bot from its serial cable and testing
other objects.

Example Program – TestIrPairsAndIndicators.bs2

√ Reconnect power to your board.
√ Enter, save, and run TestIrPairsAndIndicators.bs2.

P15
P14
P13
P12
P11
P10
P9
P8

P4
P2
P1
P0

P7
P6
P5
P3

X2

X3
Vdd Vss Vin

Board of Education
 © 2000-2003 Rev C

Vdd

Black Red
X4 X5

15 14 13 12

To Servos

+

P15
P14

P11

P13
P12

P10
P9
P8

P4

P2
P1
P0

P7
P6
P5

P3

X2

X3
Vdd VssVin

Rev B
(916) 624-8333
www.parallax.com
www.stampsinclass.com

To Servos

+

HomeWork Board

Anode
leads

Anode
leads

Page 244 · Robotics with the Boe-Bot

√ Verify that the speaker makes a clear, audible tone while the Debug Terminal
displays “Testing piezospeaker…”.

√ Use the Debug Terminal to verify that the BASIC Stamp still receives a zero
from each IR detector when an object is placed in front of it.

√ Verify that the LED next to each detector emits light when the detector detects
an object. If one or both of the LEDs appear not to work, check your wiring and
your program.

' Robotics with the Boe-Bot - TestIrPairsAndIndicators.bs2
' Test IR object detection circuits.

' {$STAMP BS2} ' Stamp directive.
' {$PBASIC 2.5} ' PBASIC directive.

' -----[Variables]--

irDetectLeft VAR Bit
irDetectRight VAR Bit

' -----[Initialization]---

DEBUG "Testing piezospeaker..."
FREQOUT 4, 2000, 3000

DEBUG CLS,
 "IR DETECTORS", CR,
 "Left Right", CR,
 "----- -----"

' -----[Main Routine]---

DO

 FREQOUT 8, 1, 38500
 irDetectLeft = IN9

 FREQOUT 2, 1, 38500
 irDetectRight = IN0

 IF (irDetectLeft = 0) THEN
 HIGH 10
 ELSE
 LOW 10
 ENDIF

 IF (irDetectRight = 0) THEN
 HIGH 1
 ELSE

Chapter 7: Navigating with Infrared Headlights · Page 245

 LOW 1
 ENDIF

 DEBUG CRSRXY, 2, 3, BIN1 irDetectLeft,
 CRSRXY, 9, 3, BIN1 irDetectRight

 PAUSE 100

LOOP

Your Turn – Remote Testing and Range Testing

You can now use your LED detectors to take your Boe-Bot and test your IR detectors on
objects that might not otherwise be in reach of your computer’s serial cable.

√ Unplug your Boe-Bot from the serial cable, and take your Boe-Bot to a variety
of objects and test the range of the IR detectors.

√ Try the detection range of different colored objects. What color is detected at the
furthest range? What color is detected at the closest range?

Sniffing for IR Interference

If you happened to notice that your Boe-Bot let you know it detected something even
though nothing was in range, it may mean that a nearby light is generating some IR light
at a frequency close to 38.5 kHz. If you try to have a Boe-Bot contest or demonstration
under one of these lights, your infrared systems might end up performing very poorly.
The last thing anybody wants is to have their robot not perform as advertised during a
public demonstration, so make sure to check any prospective demo area with this IR
interference “sniffer” program before-hand.

The concept behind this program is simple, don’t transmit any IR through the IR LEDs,
just monitor to see if any IR is detected. If IR is detected, sound the alarm using the
piezospeaker.

You can use a handheld remote for just about any piece of equipment to generate IR
interference. TVs, VCRs, CD/DVD players, and projectors all use the same IR detectors
you have on your Boe-Bot right now. Likewise, the remotes you use to control these
devices all use the same kind of IR LED that's on your Boe-Bot to transmit messages to the
IR detector in your TV, VCR, CD/DVD player, etc.

Page 246 · Robotics with the Boe-Bot

Example Program – IrInterferenceSniffer.bs2

√ Enter, save, and run IrInterferenceSniffer.bs2.
√ Test to make sure the Boe-Bot sounds the alarm when it detects IR interference.

You can do this with a separate Boe-Bot that’s running
TestIrPairsAndIndicators.bs2. If you don’t have a second Boe-Bot, just use a
handheld remote for a TV, VCR, CD/DVD player, or projector. Simply point
the remote at the Boe-Bot and press a button. If the Boe-Bot responds by
sounding the alarm, you know your IR interference sniffer is working.

' Robotics with the Boe-Bot – IrInterferenceSniffer.bs2
' Test fluorescent lights, infrared remotes, and other sources
' of 38.5 kHz IR interference.

' {$STAMP BS2} ' Stamp directive.
' {$PBASIC 2.5} ' PBASIC directive.

counter VAR Nib

DEBUG "IR interference not detected, yet...", CR

DO
 IF (IN0 = 0) OR (IN9 = 0) THEN
 DEBUG "IR Interference detected!!!", CR
 FOR counter = 1 TO 5
 HIGH 1
 HIGH 10
 FREQOUT 4, 50, 4000
 LOW 1
 LOW 10
 PAUSE 20
 NEXT
 ENDIF
LOOP

Your Turn – Testing for Fluorescent Lights that Interfere

√ Disconnect your Boe-Bot from its serial cable, and point it at any fluorescent
light near where you plan to operate it. Especially if you get frequent alarms,
turn off that fluorescent light before trying to use IR object detection under it.

Always use this IrInterferenceSniffer.bs2 to make sure that any area where you are
using the Boe-Bot is free of infrared interference.

Chapter 7: Navigating with Infrared Headlights · Page 247

ACTIVITY #3: INFRARED DETECTION RANGE ADJUSTMENTS
You may have noticed that brighter car headlights (or a brighter flashlight) can be used to
see objects that are further away when it’s dark. By making the Boe-Bot’s infrared LED
headlights brighter, you can also increase its detection range. By resisting electric current
less, a smaller resistor allows more current to flow through an LED. More current
through an LED is what causes it to glow more brightly. In this activity, you will
examine the effect of different resistance values with both the red and infrared LEDs.

Parts List:

You will need some extra parts for this activity.

(2) Resistors – 470 Ω (yellow-violet-brown)
(2) Resistors – 220 Ω (red-red-brown)
(2) Resistors – 2 kΩ (red-black-red)
(2) Resistors – 4.7 kΩ (yellow-violet-red)

Series Resistance and LED Brightness

First, let’s use one of the red LEDs to “see” the difference that a resistor makes in how
brightly an LED glows. All we need to test the LED is a program that sends a high signal
to the LED.

Example Program – P1LedHigh.bs2

√ Enter, save and run P1LedHigh.bs2.
√ Run the program and verify that the LED in the circuit connected to P1 emits

light.

' Robotics with the Boe-Bot - P1LedHigh.bs2
' Set P1 high to test for LED brightness testing with each of
' these resistor values in turn: 220 ohm , 470 ohm, 1 k ohm.

' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG "Program Running!"

HIGH 1

STOP

Page 248 · Robotics with the Boe-Bot

The command STOP is used here rather than END, since END would put the BASIC Stamp
into low power mode.

Your Turn – Testing LED Brightness

Remember to disconnect power before you make changes to a circuit. Remember
also that the same program will run again when you reconnect power, so you can pick up
right where you left off with each test.

√ Note how brightly the LED in the circuit connected to P1 is glowing with the

220 Ω resistor.
√ Replace the 220 Ω resistor connected to P1 and the right LED’s cathode with a

470 Ω resistor.
√ Note now how brightly the LED glows.
√ Repeat for a 2 kΩ resistor.
√ Repeat once more with a 4.7 kΩ resistor.
√ Replace the 4.7 kΩ resistor with the 220 Ω resistor before moving on to the next

portion of this activity.
√ Explain in your own words the relationship between LED brightness and series

resistance.

Series Resistance and IR Detection Range

We now know that less series resistance will make an LED glow more brightly. A
reasonable hypothesis would be that brighter IR LEDs can make it possible to detect
objects that are further away.

√ Open and run TestIrPairsAndIndicators.bs2 (from page 244).
√ Verify that both detectors are working properly.

Your Turn – Testing IR LED Range

√ With a ruler, measure the furthest distance from the IR LED that a sheet of paper
facing the IR LED can be detected, with the 1 kΩ resistors in place, and record
your data in Table 7-2.

√ Replace the 1 kΩ resistors that connect P2 and P8 to the IR LED anodes with 4.7
kΩ resistors.

√ Determine the furthest distance at which the same sheet of paper is detected, and
record your data.

Chapter 7: Navigating with Infrared Headlights · Page 249

√ Repeat with 2 kΩ resistors.
√ Repeat with 470 Ω resistors.
√ Repeat with 220 Ω resistors.

Table 7-2: Detection Distance vs. Resistance

IR LED Series
Resistance, (Ω)

Maximum Detection Distance,
Circle one: (in / cm)

4700
2000
1000
470
220

√ Before moving on to the next activity, restore your IR pairs to their original

configuration (with 1 kΩ resistors in series with each IR LED).
√ Also, before moving on, make sure to test this last change with

TestIrPairsAndIndicators.bs2 to verify that both IR LED/detector pairs are
working properly.

ACTIVITY #4: OBJECT DETECTION AND AVOIDANCE
An interesting thing about the IR detectors is that their outputs are just like the whiskers.
When no object is detected, the output is high; when an object is detected, the output is
low. In this activity, RoamingWithWhiskers.bs2 from page 178 is modified so that it
works with the IR detectors.

Converting the Whiskers Program for IR Object Detection/Avoidance

This next example program started as RoamingWithWhiskers.bs2. Aside from adjusting
the name and description, two bit variables were added to store the states of the IR
detectors.

 irDetectLeft VAR Bit
 irDetectRight VAR Bit

A routine was also added to read the IR pairs.

 FREQOUT 8, 1, 38500

Page 250 · Robotics with the Boe-Bot

 irDetectLeft = IN9

The IF…THEN statements were modified so that they look at the variables that store the IR
pair detections instead of the whisker inputs.

 IF (irDetectLeft = 0) AND (irDetectRight = 0) THEN
 GOSUB Back_Up
 GOSUB Turn_Left
 GOSUB Turn_Left
 ELSEIF (irDetectLeft = 0) THEN
 GOSUB Back_Up
 GOSUB Turn_Right
 ELSEIF (irDetectRight = 0) THEN
 GOSUB Back_Up
 GOSUB Turn_Left
 ELSE
 GOSUB Forward_Pulse
 ENDIF

Example Program – RoamingWithIr.bs2

√ Open RoamingWithWhiskers.bs2
√ Modify it so that it matches the program below.
√ Reconnect power to your board and servos.
√ Save and run it.
√ Verify that, aside from the fact that there’s no contact required, it behaves like

RoamingWithWhiskers.bs2.

' -----[Title]--
' Robotics with the Boe-Bot - RoamingWithIr.bs2
' Adapt RoamingWithWhiskers.bs2 for use with IR pairs.

' {$STAMP BS2} ' Stamp directive.
' {$PBASIC 2.5} ' PBASIC directive.

DEBUG "Program Running!"

' -----[Variables]--

 irDetectLeft VAR Bit
 irDetectRight VAR Bit
 pulseCount VAR Byte

' -----[Initialization]---

Chapter 7: Navigating with Infrared Headlights · Page 251

FREQOUT 4, 2000, 3000 ' Signal program start/reset.

' -----[Main Routine]---

DO

 FREQOUT 8, 1, 38500 ' Store IR detection values in
 irDetectLeft = IN9 ' bit variables.

 FREQOUT 2, 1, 38500
 irDetectRight = IN0

 IF (irDetectLeft = 0) AND (irDetectRight = 0) THEN
 GOSUB Back_Up ' Both IR pairs detect obstacle
 GOSUB Turn_Left ' Back up & U-turn (left twice)
 GOSUB Turn_Left
 ELSEIF (irDetectLeft = 0) THEN ' Left IR pair detects
 GOSUB Back_Up ' Back up & turn right
 GOSUB Turn_Right
 ELSEIF (irDetectRight = 0) THEN ' Right IR pair detects
 GOSUB Back_Up ' Back up & turn left
 GOSUB Turn_Left
 ELSE ' Both IR pairs 1, no detects
 GOSUB Forward_Pulse ' Apply a forward pulse
 ENDIF ' and check again

LOOP
' -----[Subroutines]--

Forward_Pulse: ' Send a single forward pulse.
 PULSOUT 13,850
 PULSOUT 12,650
 PAUSE 20
 RETURN

Turn_Left: ' Left turn, about 90-degrees.
 FOR pulseCount = 0 TO 20
 PULSOUT 13, 650
 PULSOUT 12, 650
 PAUSE 20
 NEXT
 RETURN

Turn_Right:
 FOR pulseCount = 0 TO 20 ' Right turn, about 90-degrees.
 PULSOUT 13, 850
 PULSOUT 12, 850
 PAUSE 20
 NEXT
 RETURN

Page 252 · Robotics with the Boe-Bot

Back_Up: ' Back up.
 FOR pulseCount = 0 TO 40
 PULSOUT 13, 650
 PULSOUT 12, 850
 PAUSE 20
 NEXT
 RETURN

Your Turn

√ Modify RoamingWithIr.bs2 so that the IR pairs are checked in a subroutine.

ACTIVITY #5: HIGH PERFORMANCE IR NAVIGATION
The style of pre-programmed maneuvers that were used in the previous activity were fine
for whiskers, but are unnecessarily slow when using the IR LEDs and detectors. You can
greatly improve the Boe-Bot’s roaming performance by checking for obstacles before
delivering each set of pulses to the servos. The program can use the sensor inputs to
select the best maneuver for each moment of navigation. That way, the Boe-Bot never
turns further than it has to, and it can neatly find its way around obstacles and
successfully navigate more complex courses.

Sampling Between Every Pulse to Avoid Collisions
The great thing about detecting an obstacle before bumping into it is that it gives the Boe-
Bot some room to navigate around it. The Boe-Bot can apply a pulse to turn away from
an object, check again and if the object is still there, apply another pulse to avoid it. The
Boe-Bot can keep applying pulses and checking, until it steers clear of the obstacle.
Then, it can resume forward pulses. After experimenting with this next example
program, you’ll likely agree that it’s a much better way for the Boe-Bot to roam.

Example Program – FastIrRoaming.bs2

√ Enter, save, and run FastIrRoaming.bs2.

' Robotics with the Boe-Bot - FastIrRoaming.bs2
' Higher performance IR object detection assisted navigation

' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG "Program Running!"

irDetectLeft VAR Bit ' Variable Declarations

Chapter 7: Navigating with Infrared Headlights · Page 253

irDetectRight VAR Bit
pulseLeft VAR Word
pulseRight VAR Word

FREQOUT 4, 2000, 3000 ' Signal program start/reset.

DO ' Main Routine

 FREQOUT 8, 1, 38500 ' Check IR Detectors
 irDetectLeft = IN9
 FREQOUT 2, 1, 38500
 irDetectRight = IN0
 ' Decide how to navigate.
 IF (irDetectLeft = 0) AND (irDetectRight = 0) THEN
 pulseLeft = 650
 pulseRight = 850
 ELSEIF (irDetectLeft = 0) THEN
 pulseLeft = 850
 pulseRight = 850
 ELSEIF (irDetectRight = 0) THEN
 pulseLeft = 650
 pulseRight = 650
 ELSE
 pulseLeft = 850
 pulseRight = 650
 ENDIF

 PULSOUT 13,pulseLeft ' Apply the pulse.
 PULSOUT 12,pulseRight
 PAUSE 15

LOOP ' Repeat main routine

How FastIrRoaming.bs2 Works

This program takes a slightly different approach to applying pulses. Aside from the two
bits used to store the IR detector outputs, it uses two word variables to set the pulse
durations delivered by the PULSOUT command.

irDetectLeft VAR Bit
irDetectRight VAR Bit
pulseLeft VAR Word
pulseRight VAR Word

Inside the DO…LOOP, the FREQOUT commands are used to send a 38.5 kHz IR signal to
each IR LED. Immediately after the 1 ms burst of IR is sent, a bit variable stores the
output state of the IR detector. This is necessary, because if you wait any longer than a

Page 254 · Robotics with the Boe-Bot

command’s worth of time, the IR detector will return to the not detected (1 state),
regardless of whether or not it detected an object.

 FREQOUT 8, 1, 38500
 irDetectLeft = IN9
 FREQOUT 2, 1, 38500
 irDetectRight = IN0

In the IF…THEN statements, instead of delivering pulses or calling navigation routines,
this program sets variable values that will be used in PULSOUT commands’ Duration
arguments.

 IF (irDetectLeft = 0) AND (irDetectRight = 0) THEN
 pulseLeft = 650
 pulseRight = 850
 ELSEIF (irDetectLeft = 0) THEN
 pulseLeft = 850
 pulseRight = 850
 ELSEIF (irDetectRight = 0) THEN
 pulseLeft = 650
 pulseRight = 650
 ELSE
 pulseLeft = 850
 pulseRight = 650
 ENDIF

Before the DO…LOOP repeats, the last thing to do is to deliver pulses to the servos. Notice
that the PAUSE command is no longer 20. Instead, it’s 15 since roughly 5 ms is taken
checking the IR LEDs.

 PULSOUT 13,pulseLeft ' Apply the pulse.
 PULSOUT 12,pulseRight
 PAUSE 15

Your Turn

√ Save FastIrRoaming.bs2 as FastIrRoamingYourTurn.bs2.
√ Use the LEDs to broadcast that the Boe-Bot has detected an object.
√ Try modifying the values that pulseLeft and pulseRight are set to so that the

Boe-Bot does everything at half speed.

Chapter 7: Navigating with Infrared Headlights · Page 255

ACTIVITY #6: THE DROP-OFF DETECTOR
Up until now, the Boe-Bot has mainly been programmed to take evasive maneuvers when
an object is detected. There are also applications where the Boe-Bot must take evasive
action when an object is not detected. For example, if the Boe-Bot is roaming on a table,
its IR detectors might be looking down at the table surface as shown in Figure 7-8. The
program should make it continue forward so long as both IR detectors can “see” the
surface of the table. In other words, the Boe-Bot can continue forward so long as the
table top it’s navigating on is detected.

√ Disconnect power from your board and servos.
√ Point your IR pairs downward and outward as shown in Figure 7-8.

Figure 7-8
IR Pairs
Directed
Downwards to
Scan for a
Drop-Off

Top View Side View

Recommended Materials:

(1) Roll of black vinyl electrical tape – ¾″ (19 mm) wide.
(1) Sheet of white poster board – 22 x 28 in (56 x 71 cm).

Simulating a Drop-Off with Electrical Tape

A sheet of white poster board with a border made of electrical tape makes for a handy
way to simulate the drop-off presented by a table edge, with much less risk to your Boe-
Bot.

P15
P14
P13
P12
P11
P10
P9
P8

P4
P2
P1
P0

P7
P6
P5
P3

X2

X3 Vdd Vss Vin

Board of Education
 © 2000-2003 Rev C

Vdd

Black Red
X4 X5

15 14 13 12
To Servos

+

Page 256 · Robotics with the Boe-Bot

√ Build a course similar to the electrical tape delimited course shown in Figure 7-
9. Use at least three strips of electrical tape, edge to edge with no paper visible
between the strips.

√ Replace your 1 kΩ resistors with 2 kΩ resistors (red-black-red) to connect P2 to
its IR LED and P8 to its IR LED. We want the Boe-Bot to be nearsighted for
this activity.

√ Reconnect power to your board.
√ Run the program IrInterferenceSniffer.bs2 (page 246) to make sure that nearby

fluorescent lighting will not interfere with your Boe-Bot’s IR detectors.
√ Use the TestIrPairsAndIndicators.bs2 (page 244) to make sure that the Boe-Bot

detects the poster board but does not detect the electrical tape.

If the Boe-Bot still "sees" the electrical tape too clearly, here are a few remedies:

√ Try adjusting the IR detectors and LEDs downward at various angles.
√ Try a different brand of vinyl electrical tape.
√ Try replacing the 2 kΩ resistors with 4.7 kΩ (yellow-violet-red) resistors to make the

Boe-Bot more nearsighted.
√ Adjust the FREQOUT command with different Freq1 arguments. Here are some

arguments that will make the Boe-Bot more nearsighted: 38250, 39500, 40500

If you are using older IR LEDs, the Boe-Bot might actually be having problems with being
too nearsighted. Here are some remedies that will increase the Boe-Bot's sensitivity to
objects and make it more far sighted:

√ Try 1 kΩ (brown-black-red) or 470 Ω (yellow-violet-brown) or even 220 Ω (red-red-
brown) resistors in series with the IR LEDs instead of 2 kΩ.

Chapter 7: Navigating with Infrared Headlights · Page 257

22” (56 cm)

22
” (

56
 c

m
)

Figure 7-9
Electrical Tape
Outline
Simulates
Tabletop Edge

If you try a tabletop after success with the electrical tape course:

√ Remember to follow the same steps you followed before running the Boe-Bot in the
electrical tape delimited course!

Make sure to be the spotter for your Boe-Bot. Be ready as your Boe-Bot roams the tabletop:

√ Always be ready to pick your Boe-Bot up from above as it approaches the edge of the
table it’s navigating. If the Boe-Bot tries to drive off the edge, pick it up before it takes
the plunge. Otherwise, your Boe-Bot might become a Not-Bot!

√ Your Boe-Bot may detect you if you are standing in its line of sight. Its current program
has no way to differentiate you from the table below it, so it might try to continue
forward and off the edge of the table. So, stay out of its detector’s line of sight as you
spot.

Programming for Drop-Off Detection

For the most part, programming your Boe-Bot to navigate around a table top without
going over the edge is a matter of adjusting the IF...THEN statements from
FastIrNavigation.bs2. The main adjustment is that the servos should be directed to make
the Boe-Bot roll forward when irDetectLeft and irDetectRight are both 0,
indicating that an object (the table’s surface) has been detected. The Boe-Bot also has to
turn away from a detector that indicates it has not detected an object. For example, if
irDetectLeft is 1, the Boe-Bot had better turn right.

Page 258 · Robotics with the Boe-Bot

A second feature of a program for turning away from drop-offs is adjustable distance.
You may want your Boe-Bot to only take one pulse forward between checking the
detectors, but as soon as a drop-off is detected, you may want your Boe-Bot to take
several pulses worth of turn before checking the detectors again.

Just because you are taking multiple pulses in an evasive maneuver, it doesn’t mean you
have to return to whiskers-style navigation. Instead, you can add a pulseCount variable
that you can use to set to the number of pulses to deliver for a maneuver. The PULSOUT
command can be placed inside a FOR…NEXT loop that executes FOR 1 TO pulseCount
pulses. For one pulse forward, pulseCount can be 1, for ten pulses left, pulseCount
can be set to 10, and so on.

Example Program – AvoidTableEdge.bs2

√ Open FastIrNavigation.bs2 and save it as AvoidTableEdge.bs2.
√ Modify the program so that it matches the example program. This will involve

adding variables, modifying the IF…THEN statements, and nesting the PULSOUT
commands inside a FOR…NEXT loop. Be careful to make sure that all the
pulseLeft and pulseRight variable values inside the IF…THEN statement are
properly adjusted. Their values are different from the ones in
FastIrNavigation.bs2 because the rules of the course are different.

√ Reconnect your board and servos.
√ Test the program on your electrical tape delimited course.
√ If you decide to try a tabletop, remember to follow the testing and spotting tips

discussed earlier.

' Robotics with the Boe-Bot - AvoidTableEdge.bs2
' IR detects object edge and navigates to avoid drop-off.

' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG "Program Running!"

irDetectLeft VAR Bit ' Variable declarations.
irDetectRight VAR Bit
pulseLeft VAR Word
pulseRight VAR Word
loopCount VAR Byte
pulseCount VAR Byte

Chapter 7: Navigating with Infrared Headlights · Page 259

FREQOUT 4, 2000, 3000 ' Signal program start/reset.

DO ' Main Routine.

 FREQOUT 8, 1, 38500 ' Check IR detectors.
 irDetectLeft = IN9
 FREQOUT 2, 1, 38500
 irDetectRight = IN0
 ' Decide navigation.

 IF (irDetectLeft = 0) AND (irDetectRight = 0) THEN
 pulseCount = 1 ' Both detected,
 pulseLeft = 850 ' one pulse forward.
 pulseRight = 650
 ELSEIF (irDetectRight = 1) THEN ' Right not detected,
 pulseCount = 10 ' 10 pulses left.
 pulseLeft = 650
 pulseRight = 650
 ELSEIF (irDetectLeft = 1) THEN ' Left not detected,
 pulseCount = 10 ' 10 pulses right.
 pulseLeft = 850
 pulseRight = 850
 ELSE ' Neither detected,
 pulseCount = 15 ' back up and try again.
 pulseLeft = 650
 pulseRight = 850
 ENDIF

 FOR loopCount = 1 TO pulseCount ' Send pulseCount pulses
 PULSOUT 13,pulseLeft
 PULSOUT 12,pulseRight
 PAUSE 20
 NEXT

LOOP

How AvoidTableEdge.bs2 Works

Since this program is a modified version of FastIrRoaming.bs2, only changes to the program
are discussed here.

A FOR…NEXT loop is added to the program to control how many pulses are delivered each
time through the main (DO…LOOP) routine. Two variables are added, loopCount
functions as an index for a FOR…NEXT loop and pulseCount is used as the EndValue
argument.

loopCount VAR Byte

Page 260 · Robotics with the Boe-Bot

pulseCount VAR Byte

The IF…THEN statements now set the value of pulseCount as well as the values of
pulseRight and pulseLeft. If both detectors can see the table, take one cautious pulse
forward.

IF (irDetectLeft = 0) AND (irDetectRight = 0) THEN
 pulseCount = 1
 pulseLeft = 850
 pulseRight = 650

Else, if the right IR detector does not see the tabletop, rotate left 10 pulses.

 ELSEIF (irDetectRight = 1) THEN
 pulseCount = 10
 pulseLeft = 650
 pulseRight = 650

Else, if the left IR detector does not see the tabletop, rotate right 10 pulses.

 ELSEIF (irDetectLeft = 1) THEN
 pulseCount = 10
 pulseLeft = 850
 pulseRight = 850

Else, if neither detector can see the table top, back up 15 pulses and try again, hoping that
one of the detectors will see the drop-off before the other.

 ELSE
 pulseCount = 15
 pulseLeft = 650
 pulseRight = 850
 ENDIF

Now that the value of pulseCount, pulseLeft, and pulseRight are set, this FOR…NEXT
loop delivers the specified number of pulses for the maneuver determined by the
pulseLeft and pulseRight variable.

 FOR loopCount = 1 TO pulseCount
 PULSOUT 13,pulseLeft
 PULSOUT 12,pulseRight
 PAUSE 20

Chapter 7: Navigating with Infrared Headlights · Page 261

 NEXT

Your Turn

You can experiment with setting different pulseLeft, pulseRight, and pulseCount
values inside the IF…THEN statement. For example, if the Boe-Bot doesn’t turn as far, it
may actually track the edge of the electrical tape delimited course. Pivoting backward
instead of rotating in place may also lead to some interesting behaviors.

√ Modify AvoidTableEdge.bs2 so that it follows the edge of the electrical tape
delimited course by adjusting the pulseCount values so that the Boe-Bot
doesn’t turn too far away from the edge.

√ Experiment with pivoting as a way to make the Boe-Bot roam inside the
perimeter instead of following the edge.

Page 262 · Robotics with the Boe-Bot

SUMMARY
This chapter covered a unique technique for infrared object detection that uses the
infrared LED found in common handheld remotes, and the infrared detector found in
TVs, CD/DVD players, and other appliances that are controlled by these remotes. By
shining infrared into the Boe-Bot’s path and looking for its reflection, object detection
can be accomplished without physically contacting the object. Infrared LED circuits are
used to send a 38.5 kHz signal with the help of a property of the FREQOUT command
called a harmonic, which is inherent to digitally synthesized signals.

An infrared detection indicator program was introduced for remote (not connected to the
PC) testing of the IR LED/detector pairs. An infrared interference sniffer program was
also introduced to help detect interference that can be generated by some fluorescent light
fixtures. Since the signals sent by the IR detectors are so similar to the signals sent by the
whiskers, RoamingWithWhiskers.bs2 was adapted to the infrared detectors. A program
that checks the IR detectors between each servo pulse was introduced to demonstrate a
higher performance way of roaming without colliding into objects. This program was
then modified to avoid the edge of an electrical tape delimited area. Since electrical tape
absorbs infrared, framing a large sheet of construction paper emulates the drop-off that is
seen at a table edge without the danger to the actual Boe-Bot.

Questions
1. What is the frequency of the harmonic sent by FREQOUT 2, 1, 38500? What is

the value of the fundamental frequency sent by that command? How long are
these signals sent for? What I/O pin does the IR LED circuit have to be
connected to in order to broadcast this signal?

2. What command has to immediately follow the FREQOUT command in order to
accurately determine whether or not an object has been detected?

3. What does it mean if the IR detector sends a low signal? What does it mean
when the detector sends a high signal?

4. What happens if you change the value of a resistor in series with a red LED?
What happens if you change the value of a resistor in series with an infrared
LED?

Chapter 7: Navigating with Infrared Headlights · Page 263

Exercises
1. Modify a line of code in IrInterferenceSniffer.bs2 so that it only monitors one of

the IR LED/detector pairs.
2. Explain the function of pulseCount in AvoidTableEdge.bs2. How does this

relate to your answer to Exercise 3?

Projects
1. Design a Boe-Bot application that sits still until you wave your and in front of it,

then it starts roaming.
2. Design a Boe-Bot application that slowly rotates in place until it detects an

object. As soon as it detects an object, it locks onto and chases the object. This
is a classic SumoBot behavior.

3. Design a Boe-Bot application that roams, but if it detects infrared interference, it
sounds the alarm briefly, then continues roaming. This alarm should be different
from the low battery alarm.

Page 264 · Robotics with the Boe-Bot

Solutions
Q1. 38.5 kHz is the frequency of the harmonic. Its fundamental frequency = 65536 –

38500 = 27036 Hz. The signals are sent for 1 millisecond, and the IR LED must
be connected to I/O Pin 2.

Q2. The command which stores the detector's output in a variable. For example,
irDetectLeft = IN9.

Q3. A low signal means IR at 38.5 kHz was detected, thus, an object was detected.
A high signal means no IR at 38.5kHz was detected, so, no object.

Q4. Electrically speaking, for both red and infrared LEDs, a smaller resistor will
cause the LED to glow more brightly. A bigger resistor results in dimmer LEDs.
In terms of results, brighter IR LEDs make it possible to detect objects that are
farther away.

E1. Change the IF…THEN to read:

 IF (IN0 = 0) THEN

This will only monitor the right detector.
E2. The pulseCount variable allows the Boe-Bot to have adjustable distance of

motion depending on the situation.

P1. The FastIrRoaming.bs2 program can be combined with a DO…UNTIL loop that
does nothing until it detects an object. A sample solution is shown below.

' -----[Title]---
' Robotics with the Boe-Bot - MotionActivatedBoeBot.bs2
' Boe-Bot starts roaming when hand is waved in front of IR detectors.

' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Variables]---

irDetectLeft VAR Bit ' Variable Declarations
irDetectRight VAR Bit
pulseLeft VAR Word
pulseRight VAR Word

' -----[Initialization]--

DEBUG "Program Running!"
FREQOUT 4, 2000, 3000 ' Signal program
start/reset.

Chapter 7: Navigating with Infrared Headlights · Page 265

' -----[Main Routine]--

Main:
' Loop until something is detected
 DO
 GOSUB Check_IRs
 LOOP UNTIL (irDetectLeft = 0) OR (irDetectRight = 0)
' Now start roaming -- this code from FastIrRoaming.bs2
 DO
 IF (irDetectLeft = 0) AND (irDetectRight = 0) THEN
 pulseLeft = 650 ' Both detect
 pulseRight = 850 ' Back up
 ELSEIF (irDetectLeft = 0) THEN ' Left detect
 pulseLeft = 850 ' Turn right
 pulseRight = 850
 ELSEIF (irDetectRight = 0) THEN ' Right detect
 pulseLeft = 650 ' Turn left
 pulseRight = 650
 ELSE ' Nothing detected
 pulseLeft = 850 ' Go forward
 pulseRight = 650
 ENDIF

 PULSOUT 13, pulseLeft ' Apply the pulse.
 PULSOUT 12, pulseRight
 PAUSE 15

 GOSUB Check_IRs ' Check IRs again
 LOOP

' -----[Subroutines] --

Check_IRs:
 FREQOUT 8, 1, 38500 ' Check IR Detectors
 irDetectLeft = IN9
 FREQOUT 2, 1, 38500
 IrDetectRight = IN0
 RETURN

P2. This behavior is in many ways the opposite of the roaming behavior covered in

this chapter. Instead of avoiding objects, the Boe-Bot tries to go toward the
objects. For this reason, the main code can be derived from
"FastIrRoaming.bs2", with a bit added that spins the Boe-Bot slowly until an
object is detected.

In the solution below, once the Boe-Bot has spied an object, it will continue
forward even if the detectors both read "no object" (1) for a few loops. This is
because, as the Boe-Bot is maneuvering toward the object, sometimes the

Page 266 · Robotics with the Boe-Bot

detectors read "no object" for brief moments, but this is not reason enough to
give up the chase.

' Robotics with the Boe-Bot - SumoBoeBot.bs2
' Search for object, lock onto it and push it.

' {$STAMP BS2}
' {$PBASIC 2.5}

irDetectLeft VAR Bit ' Left IR reading
irDetectRight VAR Bit ' Right IR reading
pulseLeft VAR Word ' pulse values for servos
pulseRight VAR Word

' -----[Initialization]--

DEBUG "Program Running!"
FREQOUT 4, 2000, 3000 ' Signal start/reset.

' -----[Main Routine]--

Main:

' Spin around slowly until an object is spotted
 DO
 PULSOUT 13, 790 ' Rotate slowly
 PULSOUT 12, 790
 PAUSE 15 ' 5 ms for detectors
 GOSUB Check_IRs ' While looking for object
 LOOP UNTIL (irDetectLeft = 0) OR (irDetectRight = 0)

' Now figure out exactly where the object is and go toward it
 DO
 ' Object in both detectors -- go forward
 IF (irDetectLeft = 0) AND (irDetectRight = 0) THEN
 pulseLeft = 850 ' Forward
 pulseRight = 650
 ' Object on left - go left
 ELSEIF (irDetectLeft = 0) THEN
 pulseLeft = 650 ' Left toward object
 pulseRight = 650
 ' Object on right - go right
 ELSEIF (irDetectRight = 0) THEN
 pulseLeft = 850 ' Right toward object
 pulseRight = 850
 ' No object -- go forward anyway, because the detectors will
 ELSE ' momentarily show
 pulseLeft = 850 ' "no object" as the
 pulseRight = 650 ' Boe-Bot is adjusting

Chapter 7: Navigating with Infrared Headlights · Page 267

 ENDIF ' its position.

 PULSOUT 13,pulseLeft ' Apply the pulse.
 PULSOUT 12,pulseRight
 PAUSE 15 ' 5 ms for detectors

 ' Check IRs again in case object is moving
 GOSUB Check_IRs
 LOOP

' -----[Subroutines] --

Check_IRs:
 FREQOUT 8, 1, 38500 ' Check IR Detectors
 irDetectLeft = IN9
 FREQOUT 2, 1, 38500
 IrDetectRight = IN0
 RETURN

P3. The key to solving this problem is to combine "FastIrRoaming.bs2" and

"IrInterferenceSniffer.bs2" in a single program.

' -----[Title]---
' Robotics with the Boe-Bot - RoamAndSniffBoeBot.bs2
' Boe-Bot roams around and sounds alarm when IR detected.

' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Variables]---

irDetectLeft VAR Bit ' Left IR sensor reading
irDetectRight VAR Bit ' Right IR sensor reading
pulseLeft VAR Word ' Pulses sent to servos
pulseRight VAR Word
counter VAR Nib ' Loop counter

' -----[Initialization]--

DEBUG "Program Running!"
FREQOUT 4, 2000, 3000 ' Signal program
start/reset.

' -----[Main Routine]--

Main:
DO
 GOSUB Roam
 GOSUB Sniff
LOOP

Page 268 · Robotics with the Boe-Bot

' -----[Subroutines] --

Sniff: ' From IrInterferenceSniffer.bs2
 IF (IN0 = 0) OR (IN9 = 0) THEN
 FOR counter = 1 TO 5 ' Beep 5 times
 HIGH 1 ' and flash LEDs
 HIGH 10
 FREQOUT 4, 50, 4000
 LOW 1
 LOW 10
 PAUSE 20
 NEXT
 ENDIF
 RETURN

Roam: ' From FastIrRoaming.bs2
 FREQOUT 8, 1, 38500 ' Check IR Detectors
 irDetectLeft = IN9
 FREQOUT 2, 1, 38500
 irDetectRight = IN0
 ' Decide how to navigate.
 IF (irDetectLeft = 0) AND (irDetectRight = 0) THEN
 pulseLeft = 650
 pulseRight = 850
 ELSEIF (irDetectLeft = 0) THEN
 pulseLeft = 850
 pulseRight = 850
 ELSEIF (irDetectRight = 0) THEN
 pulseLeft = 650
 pulseRight = 650
 ELSE
 pulseLeft = 850
 pulseRight = 650
 ENDIF

 PULSOUT 13,pulseLeft ' Apply the pulse.
 PULSOUT 12,pulseRight
 PAUSE 15
 RETURN

Chapter 8: Robot Control with Distance Detection · Page 269

Chapter 8: Robot Control with Distance Detection

In Chapter 7, we used the infrared sensors to detect whether an object is in the Boe-Bot’s
way without actually touching it. Wouldn’t it be nice to also know how far away the
object is? This is usually a task for sonar, which sends a pulse of sound out and records
how long it takes for the echo to come back. The time it takes for the echo to come back
can then be used to calculate how far away the object is. There is, however, a way to
accomplish distance detection with the very same circuit you used in the previous
chapter. With your Boe-Bot able to determine the distance of an object, it can be
programmed to follow a moving object without colliding into it. The Boe-Bot can also
be programmed to follow black tracks on a white background.

DETERMINING DISTANCE WITH THE SAME IR LED/DETECTOR CIRCUIT
You will use the same circuit from the previous chapter to detect distance.

√ If the circuit is still built on your Boe-Bot, make sure your IR LED’s have 1 kΩ
resistors in series.

√ If you already disassembled the circuit from the previous chapter, repeat the
steps in Chapter 7, Activity #1 on page 237.

Recommended Equipment and Materials:

(1) Ruler
(1) Sheet of paper

ACTIVITY #1: TESTING THE FREQUENCY SWEEP
Figure 8-1 shows an excerpt from one specific brand of IR detector’s datasheet
(Panasonic PNA4602M). This excerpt is a graph that shows how much less sensitive this
IR detector becomes if the IR signal it receives flashes on/off at a frequency other than
38.5 kHz. For example, if you send it IR flashed on/off at 40 kHz, it’s only 50% as
sensitive as it would be at 38.5 kHz. If the IR is flashed on/off at 42 kHz, the detector is
only 20% as sensitive. Especially for frequencies that make the detector less sensitive,
the object has to be closer to make the reflected IR brighter for the detector to detect it.

Page 270 · Robotics with the Boe-Bot

Figure 8-1
Filter Sensitivity
Depends on
Carrier Frequency

Another way to think about it is that the most sensitive frequency will detect the objects
that are the farthest away, while less sensitive frequencies can only be used to detect
closer objects. This makes distance detection simple. Pick 5 frequencies, then test them
from most sensitive to least sensitive. Try at the most sensitive frequency first. If an
object is detected, check and see if the next most sensitive frequency detects it.
Depending on which frequency makes the reflected infrared no longer visible to the IR
detector, you can infer the distance.

Frequency Sweep is the technique of testing a circuit’s output using a variety of input
frequencies.

Programming Frequency Sweep for Distance Detection

Figure 8-2 shows an example of how the Boe-Bot can test for distance using frequency.
In this example, the object is in Zone 3. That means that the object can be detected when
37500 and 38250 Hz is transmitted, but it cannot be detected with 39500, 40500, and
41500 Hz. If you were to move the object into Zone 2, then the object can be detected
when 37500, 38250, and 39500 Hz are transmitted, but not when 40500 and 41500 Hz
are transmitted.

Chapter 8: Robot Control with Distance Detection · Page 271

Figure 8-2: Frequencies and Zones for the Boe-Bot

P15
P14
P13
P12
P11
P10
P9

P5

P3

P8
P7

P2
P1
P0

P6

P4

X2

X3
Vdd Vs sVin

Board of Education
 © 2000-2003

Vdd

Black
Red

X4 X5

15 14 13 12

+

ObjectObject

Zone 5
No Detection
at any
Frequency

Zone 4
37500 Hz

Zone 3
38250 Hz

Zone 2
39500 Hz

Zone 1
40500 Hz

Zone 0
41500 Hz

You might be wondering why the value of zone 4 is 37.5 kHz and not 38.5 kHz. The
reason they are not the values that you would expect based on the % sensitivity graph is
because the FREQOUT command transmits a slightly more powerful (harmonic) signal at
37.5 kHz than it does at 38.5 kHz. The frequencies listed in Figure 8-2 are frequencies you
will program the BASIC Stamp to use to determine the distance of an object. These
frequencies were determined using tests similar to the ones outlined in Appendix G: Tuning
IR Distance Detection.

In order to test the IR detector at each frequency, you will need to use FREQOUT to send
five different frequencies and test at each frequency to find out whether the IR detector
could see the object. The steps between each frequency are not quite even enough to use
the FOR…NEXT loop’s STEP operator. You could use DATA and READ, but that would be
cumbersome. You could use five different FREQOUT commands, but that would be a
waste of code space. Instead, the best approach for storing a short list of values that you
want to use in sequence is a command called LOOKUP. The syntax for the LOOKUP
command is:

LOOKUP Index, [Value0, Value1, …ValueN], Variable

If the Index argument is 0, Value0 from the list inside the square braces will be placed
in Variable. If Index is 1, Value1 from the list will be placed in Variable. There
could be up to 256 values in the list, but for the next example program, we will only need
5. Here is how it will be used:

FOR freqSelect = 0 TO 4

 LOOKUP freqSelect,[37500,38250,39500,40500,41500],irFrequency

Page 272 · Robotics with the Boe-Bot

 FREQOUT 8,1, irFrequency
 irDetect = IN9
 ' Commands not shown...

NEXT

The first time through the FOR…NEXT loop, freqSelect is 0, so the LOOKUP command
places the value 37500 in the irFrequency variable. Since irFrequency contains
37500 after the LOOKUP command, the FREQOUT command sends that frequency to the IR
LED connected to P8. As in the previous chapter, the value of IN9 is then saved in the
irDetect variable. The second time through the FOR…NEXT loop, the value of
freqSelect is now 1, which means the LOOKUP command places 38250 into the
irFrequency variable, and the process is repeated for this higher frequency. The third
time through, it’s repeated again with 39500, and so on. The result is remarkable,
especially considering you are using parts that were designed for a completely different
purpose, to make IR communication between a handheld remote and a television
possible.

Example Program – TestLeftFrequencySweep.bs2

TestLeftFrequencySweep.bs2 does two things. First, it tests the left IR LED/detector pair
(connected to P8 and P9) to make sure they are functioning properly for distance
detection. However, it also demonstrates how the frequency sweep illustrated in Figure
8-2 is accomplished.

When you run the program, the Debug Terminal will display your zone measurement.
There are many possible yes-no patterns that can be generated; two are shown in Figure
8-3. The test patterns will vary depending on the characteristics of the filter inside the IR
detector.

The program determines which zone the detected object is in by counting the number of
“No” occurrences. Notice that even though the two Debug Terminal test patterns in
Figure 8-3 are different, they both have three “Yes” and two “No” occurrences.
Therefore, “Zone 2” is the location of the object detected in both examples.

Chapter 8: Robot Control with Distance Detection · Page 273

Figure 8-3
Testing
Distance
Detection
Output
Examples

Keep in mind that these distance measurements are relative and not necessarily
precise or evenly spaced. However, they will give the Boe-Bot a good enough sense of
object distance for following, tracking, and other activities.

√ Enter, save, and run TestLeftFrequencySweep.bs2.
√ Use a sheet of paper or card facing the IR LED/detector to test the distance

detection.
√ Start with the sheet very close to the IR LED, perhaps ¼ in (or 1 cm) away from

the IR LED. Your Zone in the Debug Terminal should either be 0 or 1.
√ Gradually move the sheet of paper away from the IR LED and make a note of

each distance that causes the zone value to get larger.

Zones 1-4 typically fall in the range of 6 to 12 in (15 to 30 cm) for the shielded LEDs with a 1
kΩ resistor. Older shrink wrap LED distances will be less. As long as objects can be
detected up to 4 in (10 cm) away, the experiments in this chapter will work. If the distance
detector range is less than that, which is likely if you have shrink wrapped IR LEDS, try
reducing your series resistance from 1 kΩ to 470 Ω or 220 Ω.

' -----[Title]--
' Robotics with the Boe-Bot - TestLeftFrequencySweep.bs2
' Test IR detector distance responses to frequency sweep.

' {$STAMP BS2} ' Stamp directive.
' {$PBASIC 2.5} ' PBASIC directive.

Page 274 · Robotics with the Boe-Bot

' -----[Variables]--

freqSelect VAR Nib
irFrequency VAR Word
irDetect VAR Bit
distance VAR Nib

' -----[Initialization]---

DEBUG CLS,
 " OBJECT", CR,
 "FREQUENCY DETECTED", CR,
 "--------- --------"

' -----[Main Routine]---

DO

 distance = 0

 FOR freqSelect = 0 TO 4

 LOOKUP freqSelect,[37500,38250,39500,40500,41500], irFrequency
 FREQOUT 8,1, irFrequency
 irDetect = IN9
 distance = distance + irDetect

 DEBUG CRSRXY, 4, (freqSelect + 3), DEC5 irFrequency
 DEBUG CRSRXY, 11, freqSelect + 3

 IF (irDetect = 0) THEN DEBUG "Yes" ELSE DEBUG "No "

 PAUSE 100

 NEXT

 DEBUG CR,
 "--------- --------", CR,
 "Zone ", DEC1 distance
LOOP

Your Turn – Testing the Right IR LED/Detector Pair

Although there’s some labeling involved, you can modify this program to test the right IR
LED and detector by changing these two lines:

 FREQOUT 8,1, irFrequency
 irDetect = IN9

Chapter 8: Robot Control with Distance Detection · Page 275

so that they read

 FREQOUT 2,1, irFrequency
 irDetect = IN0

√ Modify TestLeftFrequencySweep.bs2 for testing the distance measurement of
the right IR LED/detector pair.

√ Run the program and verify that this pair can measure a similar distance.

Displaying Both Distances

It’s useful at times to have a quick program you can run to test both the Boe-Bot’s
distance detectors at the same time. This program is organized into subroutines, which
can be handy for copying and pasting into other programs that require distance detection.

Example Program – DisplayBothDistances.bs2

√ Enter, save, and run DisplayBothDistances.bs2.
√ Repeat the distance measurement exercise with a sheet of paper on each LED,

then on both LEDs at the same time.

' -----[Title]--
' Robotics with the Boe-Bot - DisplayBothDistances.bs2
' Test IR detector distance responses of both IR LED/detector pairs to
' frequency sweep.

' {$STAMP BS2} ' Stamp directive.
' {$PBASIC 2.5} ' PBASIC directive.

' -----[Variables]--

freqSelect VAR Nib
irFrequency VAR Word
irDetectLeft VAR Bit
irDetectRight VAR Bit
distanceLeft VAR Nib
distanceRight VAR Nib

' -----[Initialization]---

DEBUG CLS,
 "IR OBJECT ZONE", CR,
 "Left Right", CR,
 "----- -----"

' -----[Main Routine]---

Page 276 · Robotics with the Boe-Bot

DO

 GOSUB Get_Distances
 GOSUB Display_Distances

LOOP

' -----[Subroutine – Get_Distances]---

Get_Distances:

 distanceLeft = 0
 distanceRight = 0

 FOR freqSelect = 0 TO 4

 LOOKUP freqSelect,[37500,38250,39500,40500,41500], irFrequency

 FREQOUT 8,1,irFrequency
 irDetectLeft = IN9
 distanceLeft = distanceLeft + irDetectLeft

 FREQOUT 2,1,irFrequency
 irDetectRight = IN0
 distanceRight = distanceRight + irDetectRight

 PAUSE 100

 NEXT

 RETURN

' -----[Subroutine – Display_Distances]-------------------------------------

Display_Distances:

 DEBUG CRSRXY,2,3, DEC1 distanceLeft,
 CRSRXY,9,3, DEC1 distanceRight
 RETURN

Your Turn – More Distance Tests

√ Try measuring the distance of different objects and find out if the color and/or
texture make any difference to the distance measurement.

Chapter 8: Robot Control with Distance Detection · Page 277

ACTIVITY #2: BOE-BOT SHADOW VEHICLE
For one Boe-Bot to follow another, the Boe-Bot that follows, a.k.a. the shadow vehicle,
has to know how far ahead the lead vehicle is. If the shadow vehicle is lagging behind, it
has to detect this and speed up. If the shadow vehicle is too close to the lead vehicle, it
has to detect this as well and slow down. If it’s the right distance, it can wait until the
measurements indicate it’s too far or too close again.

Distance is just one kind of value that robots and other automated machinery are
responsible for. When a machine is designed to automatically maintain a value, such as
distance, pressure, or fluid level, it generally involves a control system. These systems
sometimes consist of sensors and valves, or sensors and motors, or, in the case of the
Boe-Bot, sensors and continuous rotation servos. There is also some kind of processor
that takes the sensor measurements and converts them to mechanical action. The
processor has to be programmed to make decisions based on the sensor inputs, and then
control the mechanical outputs accordingly. In the case of the Boe-Bot, the processor is
the BASIC Stamp 2.

Closed loop control is a common method of maintaining levels, and it works very well
for helping the Boe-Bot maintain its distance from an object. There are lots of different
kinds of closed loop control. Some of the most common are hysteresis, proportional,
integral, and derivative control. All of these types of control are introduced in detail in
the Stamps in Class text Process Control, listed in the Preface.

Most control techniques can be implemented with just a few lines of code in PBASIC. In
fact, the majority of the proportional control loop shown in Figure 8-4 reduces to just one
line of PBASIC code. This diagram is called a block diagram, and it describes the steps
of the proportional control process that the Boe-Bot will use to measure distance with its
right IR LED and detector and adjust position to maintain distance with its right servo.

Page 278 · Robotics with the Boe-Bot

System

 Error = -2
Kp X error

35 X -2

Center pulse width
750

Output
adjust

-70

Right servo
output

680

Measured right
distance = 4

-
++

+

Figure 8-4
Proportional
Control Block
Diagram for
Right Servo
and IR LED
and Detector
Pair

Let’s take a closer look at the numbers in Figure 8-4 to learn how proportional control
works. This particular example is for the right IR LED/detector and right servo. The set
point is 2, which means we want the Boe-Bot to maintain a distance of 2 between itself
and any object it detects. The measured distance is 4, which is too far away. The error is
the set point minus the measured distance which is 2 – 4 = –2. This is indicated by the
symbols inside the circle on the left. This circle is called a summing junction. Next, the
error feeds into an operator block. This block shows that error will be multiplied by a
value called a proportional constant (Kp). The value of Kp is 35. The block’s output
shows the result of –2 × 35 = –70, which is called the output adjust. This output adjust
goes into another summing junction, and this time it is added to the servo’s center pulse
width of 750. The result is a 680 pulse width that will make the servo turn about ¾ speed
clockwise. That makes the Boe-Bot’s right wheel roll forward, toward the object. This
correction goes into the overall system, which consists of the Boe-Bot, and the object,
that was at a measured distance of 4.

The next time through the loop, the measured distance might change, but that’s OK
because regardless of the measured distance, this control loop will calculate a value that
will cause the servo to move to correct any error. The correction is always proportional
to the error, which is the difference between the set point and measured distances.

A control loop always has a set of equations that govern the system. The block diagram
in Figure 8-4 is a way of visually describing this set of equations. Here are the equations
that can be taken from this block diagram, along with solutions.

 Error = Right distance set point – Measured right distance

Chapter 8: Robot Control with Distance Detection · Page 279

 = 2 – 4
 Output adjust = error × Kp
 = –2 × 35
 = – 70
 Right servo output = Output adjust + Center pulse width
 = – 70 + 750
 = 680

By making some substitutions, the three equations above can be reduced to this one,
which will give you the same result.

 Right servo output = (Right distance set point – Measured right distance) × Kp
 + Center pulse width

By substituting the values from the example, we can see that the equation still works:

 = ((2 – 4) × 35) + 750
 = 680

The left servo and IR pair have a similar algorithm shown in Figure 8-5. The difference
is that Kp is –35 instead of +35. Assuming the same measured value at the right IR pair,
the output adjust results is a pulse width of 820. Here is the equation and calculations for
this block diagram:

 Left servo output = (Left distance set point – Measured left distance) × Kp
 + Center pulse width
 = ((2 – 4) × –35) + 750
 = 820

The result of this control loop is a pulse width that makes the left servo turn about ¾ of
full speed counterclockwise. This is also a forward pulse for the left wheel. The idea of
feedback is that the system’s output is re-sampled, by the shadow Boe-Bot taking another
distance measurement. Then the control loop repeats itself again and again and
again…roughly 40 times per second.

Page 280 · Robotics with the Boe-Bot

System

 Error = -2
Kp X error

-35 X -2

Center pulse width
750

Output
adjust

+70

Left servo
output

820

Measured left
distance = 4

-
++

+

Figure 8-5
Proportional
Control Block
Diagram for
Left Servo and
IR LED and
Detector Pair

Programming the Boe-Bot Shadow Vehicle
Remember that the equation for the right servo’s output was:

 Right servo output = (Right distance set point – Measured right distance) × Kp
 + Center pulse width

Here is an example of solving this same equation in PBASIC. The right distance set
point is 2, the measured distance is a variable named distanceRight that will store the
IR distance measurement, Kp is 35, and the center pulse width is 750:

 pulseRight = 2 - distanceRight * 35 + 750

Remember that in PBASIC math expressions are executed from left to right. First,
distanceRight is subtracted from 2. The result of this subtraction is then multiplied by
Kpr, and after that, the product is added to the center pulse width.

You can use parentheses to force a calculation that is further to the right in a line of
PBASIC code to be completed first. Recall this example: you can rewrite this line of
PBASIC code:

 pulseRight = 2 - distanceRight * 35 + 750

like this:

 pulseRight = 35 * (2 – distanceRight) + 750

In this expression, 35 is multiplied by the result of (2 – distanceRight), then the product is
added to 750.

Chapter 8: Robot Control with Distance Detection · Page 281

The left servo is different because Kp for that system is -35

pulseLeft = 2 - distanceLeft * (-35) + 750

Since the values -35, 35, 2, and 750 all have names, it’s definitely a good place for some
constant declarations.

Kpl CON -35
Kpr CON 35
SetPoint CON 2
CenterPulse CON 750

With these constant declarations in the program, you can use the name Kpl in place of -
35, Kpr in place of 35, SetPoint in place of 2, and CenterPulse in place of 750. After
these constant declarations, the proportional control calculations now look like this:

pulseLeft = SetPoint - distanceLeft * Kpl + CenterPulse
pulseRight = SetPoint - distanceRight * Kpr + CenterPulse

The convenient thing about declaring constants for these values is that you can change
them in one place, at the beginning of the program. The changes you make at the
beginning of the program will be reflected everywhere these constants are used. For
example, by changing the Kpl CON directive from -35 to -40, every instance of Kpl in the
entire program changes from -35 to -40. This is exceedingly useful for experimenting
with and tuning the right and left proportional control loops.

Example Program – FollowingBoeBot.bs2

FollowingBoeBot.bs2 repeats the proportional control loop just discussed with every
servo pulse. In other words, before each pulse, the distance is measured and the error
signal is determined. Then the error is multiplied by Kp, and the resulting value is
added/subtracted to/from the pulse widths that are sent to the left/right servos.

√ Enter, save, and run FollowingBoeBot.bs2.
√ Point the Boe-Bot at an 8 ½ × 11” sheet of paper held in front of it as though it’s

a wall-obstacle. The Boe-Bot should maintain a fixed distance between itself
and the sheet of paper.

√ Try rotating the sheet of paper slightly. The Boe-Bot should rotate with it.
√ Try using the sheet of paper to lead the Boe-Bot around. The Boe-Bot should

follow it.

Page 282 · Robotics with the Boe-Bot

√ Move the sheet of paper too close to the Boe-Bot, and it should back up, away
from the paper.

' -----[Title]--
' Robotics with the Boe-Bot - FollowingBoeBot.bs2
' Boe-Bot adjusts its position to keep objects it detects in zone 2.

' {$STAMP BS2} ' Stamp directive.
' {$PBASIC 2.5} ' PBASIC directive.

DEBUG "Program Running!"

' -----[Constants]--

Kpl CON -35
Kpr CON 35
SetPoint CON 2
CenterPulse CON 750

' -----[Variables]--

freqSelect VAR Nib
irFrequency VAR Word
irDetectLeft VAR Bit
irDetectRight VAR Bit
distanceLeft VAR Nib
distanceRight VAR Nib
pulseLeft VAR Word
pulseRight VAR Word

' -----[Initialization]---

FREQOUT 4, 2000, 3000

' -----[Main Routine]---

DO

 GOSUB Get_Ir_Distances

 ' Calculate proportional output.

 pulseLeft = SetPoint - distanceLeft * Kpl + CenterPulse
 pulseRight = SetPoint - distanceRight * Kpr + CenterPulse

 GOSUB Send_Pulse

LOOP

' -----[Subroutine - Get IR Distances]--------------------------------------

Chapter 8: Robot Control with Distance Detection · Page 283

Get_Ir_Distances:
 distanceLeft = 0
 distanceRight = 0
 FOR freqSelect = 0 TO 4
 LOOKUP freqSelect,[37500,38250,39500,40500,41500], irFrequency

 FREQOUT 8,1,irFrequency
 irDetectLeft = IN9
 distanceLeft = distanceLeft + irDetectLeft

 FREQOUT 2,1,irFrequency
 irDetectRight = IN0
 distanceRight = distanceRight + irDetectRight
 NEXT
 RETURN

' -----[Subroutine – Get Pulse]---

Send_Pulse:
 PULSOUT 13,pulseLeft
 PULSOUT 12,pulseRight
 PAUSE 5
 RETURN

How the FollowingBoeBot.bs2 Works
FollowingBoeBot.bs2 declares four constants, Kpr, Kpl, SetPoint, and CenterPulse
using the CON directive. Everywhere you see SetPoint, it’s actually the number 2 (a
constant). Likewise, everywhere you see either Kpl, it’s actually the number -35. Kpr is
actually 35, and CenterPulse is 750.

Kpl CON -35
Kpr CON 35
SetPoint CON 2
CenterPulse CON 750

The first thing the main routine does is call the Get_Ir_Distances subroutine. After the
Get_Ir_Distances subroutine is finished, distanceLeft and distanceRight each
contain a number corresponding to the zone in which an object was detected for both the
left and right IR pairs.

DO

 GOSUB Get_Ir_Distances

Page 284 · Robotics with the Boe-Bot

The next two lines of code implement the proportional control calculations for each
servo.

 ' Calculate proportional output.

 pulseLeft = SetPoint - distanceLeft * Kpl + CenterPulse
 pulseRight = SetPoint - distanceRight * Kpr + CenterPulse

Now that the pulseLeft and pulseRight calculations are done, the Send_Pulse
subroutine can be called.

 GOSUB Send_Pulse

The LOOP portion of the DO…LOOP sends the program back to the command immediately
following the DO at the beginning of the main loop.

LOOP

Your Turn
Figure 8-6 shows a lead Boe-Bot followed by a shadow Boe-Bot. The lead Boe-Bot is
running a modified version of FastIrRoaming.bs2, and the shadow Boe-Bot is running
FollowingBoeBot.bs2. Proportional control makes the shadow Boe-Bot a very faithful
follower. One lead Boe-Bot can string along a chain of 6 or 7 shadow Boe-Bots. Just
add the lead Boe-Bot’s side panels and tailgate to the rest of the shadow Boe-Bots in the
chain.

Chapter 8: Robot Control with Distance Detection · Page 285

Figure 8-6
Lead Boe-Bot (left)
and Shadow Boe-
Bot (right)

√ If you are part of a class, mount paper panels on the tail and both sides of the

lead Boe-Bot as shown in Figure 8-6.
√ If you are not part of a class (and only have one Boe-Bot) the shadow vehicle

will follow a piece of paper or your hand just as well as it follows a lead Boe-
Bot.

√ Replace the 1 kΩ resistors that connect the lead Boe-Bot’s P2 and P8 to the IR
LEDs with 470 Ω or 220 Ω resistors.

√ Program the lead Boe-Bot for object avoidance using a modified version of
FastIrRoaming.bs2. Open FastIrRoaming.bs2, and rename it
SlowerIrRoamingForLeadBoeBot.bs2.

√ Make these modifications to SlowerIrRoamingForLeadBoeBot.bs2:
√ Increase all PULSOUT Duration arguments that are now 650 to 710.
√ Reduce all PULSOUT Duration arguments that are now 850 to 790.

√ The shadow Boe-Bot should be running FollowingBoeBot.bs2 without any
modifications.

√ With both Boe-Bots running their respective programs, place the shadow Boe-
Bot behind the lead Boe-Bot. The shadow Boe-Bot should follow at a fixed
distance, so long as it is not distracted by another object such as a hand or a
nearby wall.

Page 286 · Robotics with the Boe-Bot

You can adjust the set points and proportionality constants to change the shadow Boe-
Bot’s behavior. Use your hand or a piece of paper to lead the shadow Boe-Bot while
doing these exercises:

√ Try running FollowingBoeBot.bs2 using values of Kpr and Kpl constants,
ranging from 15 to 50. Note the difference in how responsive the Boe-Bot is
when following an object.

√ Try making adjustments to the value of the SetPoint constant. Try values from
0 to 4.

ACTIVITY #3: FOLLOWING A STRIPE
Figure 8-7 shows an example of a course you can build and program your Boe-Bot to
follow. Each stripe in this course is three long pieces of ¾ in (19 mm) vinyl electrical
tape placed edge to edge on white poster board. No paper should be visible between the
strips of electrical tape.

28” (71 cm)

22
” (

56
 c

m
)

w w w . st a mp si nc la ss .c om

R eset

S TAMPS C LAS S
in

B o a rd o f E d uc a t i o n

Pw r

9 V dc
B a t t ery

6-9VD C

S out
S in
AT N
V ss
P 0
P 1
P 2
P 3
P 4
P 5
P 6
P 7

P 11

P 9
P 8

V in

P 10

P 15
P 14
P 13
P 12

V dd
R st
V ss

Bl ack
R ed

X 4 X 5

15 1 4 13 1 2

1

X 1

V ss
P 1
P 3
P 5
P 7
P 9
P 11
P 13
P 15
V in

V ss
P 0
P 2
P 4
P 6
P 8
P 10
P 12
P 14
V dd

U 1

TM

0 1 2

© 2 000 -2 003

V dd

P 15
P 14
P 13
P 12
P 11
P 10
P 9
P 8
P 7
P 6
P 5
P 4
P 3
P 2
P 1
P 0

X 2

X 3
V dd V ssV in

P 15
P 14
P 13
P 12
P 11
P 10
P 9
P 8

P 4

P 2
P 1
P 0

P 7
P 6
P 5

P 3

X 2

X 3
V dd V ssV in

R ev C

+

www.stampsinclass.com

Reset

STAMPS CLASS
in

Board of Education

Pwr

9 Vdc
Battery

6-9VDC

Sout
Sin
ATN

Vss
P0
P1
P2
P3
P4
P5
P6
P7

P11

P9
P8

Vin

P10

P15
P14
P13
P12

Vdd
Rst
Vss

Black
Red

X4 X5

15 14 13 12

1

X1

Vss
P1
P3
P5
P7
P9
P11
P13
P15
Vin

Vss
P0
P2
P4
P6
P8
P10
P12
P14
Vdd

U1

TM

0 1 2

© 2000-2003

Vdd

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

X3
VddVss Vin

P15
P14
P13
P12
P11
P10
P9
P8

P4

P2
P1
P0

P7
P6
P5

P3

X2

X3
VddVss Vin

Rev C

+

Start

Finish

Figure 8-7
Stripe
Following
Course

Building and Testing the Course

For successful navigation of this course, some testing and Boe-Bot adjustment will be
required.

Chapter 8: Robot Control with Distance Detection · Page 287

Materials Required

(1) Sheet of poster board – Approximate dimensions: 22 X 28 in (56 X 71 cm)
(1) Roll of Black Vinyl Electrical Tape – ¾” (19 mm) wide.

√ Use your poster board and electrical tape to build the course shown in Figure 8-
7.

Testing the Stripe

√ Point your IR pairs downward and outward as shown in Figure 8-8 (Figure 7-8
from page 255 repeated here for convenience).

Vdd VssVin

Board of Education
 © 2000-2003Rev C

X4 X5

+

Figure 8-8
IR Pairs Directed
Downwards to
Scan for the
Stripe

Top View Side View

√ Make sure your electrical tape course is free of fluorescent light interference.
See Sniffing for IR Interference (page 245).

√ Replace the 1 kΩ resistors in series with the IR LEDs with 2 kΩ resistors to
make the Boe-Bot more nearsighted.

√ Run DisplayBothDistances.bs2 from page 275. Keep your Boe-Bot connected to
its serial cable so that you can see the displayed distances.

√ Start by placing your Boe-Bot so that it is looking directly at the white
background of your poster board as shown in Figure 8-9.

√ Verify that your zone readings indicate that an object is detected in a very close
zone. Both sensors should give you a 1 or 0 reading.

Page 288 · Robotics with the Boe-Bot

w w w . st a mps i nc la ss .c om

R eset

STA MPS C LASS
i n

B o a rd o f E d uc a t i o n

Pw r

9 V dc
B a t t ery

6-9VD C

S out
S in
AT N

V ss
P 0
P 1
P 2
P 3
P 4
P 5
P 6
P 7

P 11

P 9
P 8

V in

P 10

P 15
P 14
P 13
P 12

V dd
R st
V ss

Bl ack
R ed

X 4 X 5

15 1 4 13 1 2

1

X 1

V ss
P 1
P 3
P 5
P 7
P 9
P 11
P 13
P 15
V in

V ss
P 0
P 2
P 4
P 6
P 8
P 10
P 12
P 14
V dd

U 1

TM

0 1 2

© 2 000 -2 003

V dd

P 15
P 14
P 13
P 12
P 11
P 10
P 9
P 8
P 7
P 6
P 5
P 4
P 3
P 2
P 1
P 0

X 2

X 3
V dd V ssV in

P 15
P 14
P 13
P 12
P 11
P 10
P 9
P 8

P 4

P 2
P 1
P 0

P 7
P 6
P 5

P 3

X 2

X 3
V dd V ssV in

R ev C

+

Figure 8-9
Test for Low Zone
Number – Top View

√ Place your Boe-Bot so that both IR LED/detector pairs are focused directly at the

center of your electrical tape stripe (see Figure 8-10 and Figure 8-11).
√ Then, adjust your Boe-Bot’s position (toward and away from the tape) until both

zone values reach the 4 or 5 level indicating that either a far away object is
detected, or no object is detected.

√ If you are having difficulties getting the higher readings with your electrical tape
course, see Trouble Shooting the Electrical Tape Course on page 289.

w w w . st a mps i nc la ss .c om

R eset

STA MPS C LASS
i n

B o a rd o f E d uc a t i o n

Pw r

9 V dc
B a t t ery

6-9VD C

S out
S in
AT N

V ss
P 0
P 1
P 2
P 3
P 4
P 5
P 6
P 7

P 11

P 9
P 8

V in

P 10

P 15
P 14
P 13
P 12

V dd
R st
V ss

Bl ack
R ed

X 4 X 5

15 1 4 13 1 2

1

X 1

V ss
P 1
P 3
P 5
P 7
P 9
P 11
P 13
P 15
V in

V ss
P 0
P 2
P 4
P 6
P 8
P 10
P 12
P 14
V dd

U 1

TM

0 1 2

© 2 000 -2 003

V dd

P 15
P 14
P 13
P 12
P 11
P 10
P 9
P 8
P 7
P 6
P 5
P 4
P 3
P 2
P 1
P 0

X 2

X 3
V dd V ssV in

P 15
P 14
P 13
P 12
P 11
P 10
P 9
P 8

P 4

P 2
P 1
P 0

P 7
P 6
P 5

P 3

X 2

X 3
V dd V ssV in

R ev C

+

Figure 8-10
Test for High Zone
Number – Top View

Chapter 8: Robot Control with Distance Detection · Page 289

Electrical Tape

Figure 8-11
Test for High
Zone Number
– Side View

Trouble Shooting the Electrical Tape Course

If you are unable to get a high zone value when the IR detectors are focused on the
electrical tape, take a separate piece of paper, and make a stripe that’s four strips wide
instead of three. If the zone numbers are still low, make sure that you are using 2 kΩ
resistors (red-black-red) in series with your IR LEDs. You can also try a 4.7 kΩ resistor to
make the Boe-Bot more nearsighted. If none of this works, try a different brand of black vinyl
electrical tape. Adjusting the IR LED/detector so that it is focused closer to or further from
the front of the Boe-Bot (see Figure 8-11) may also help.

If you are having trouble with low zone measurements when reading the white surface, try
pointing the IR LEDs and detectors further downward and toward the front of the Boe-Bot,
but be careful not to cause reflection off the chassis. You can also try a lower-value resistor
like 1 kΩ (brown-black-red).

If you are using the older shrink wrapped IR LEDs instead of the ones with the 2-piece
plastic shields, you may be having trouble with getting a low zone number when the IR
LED/detectors are focused on the white background. These LEDs may need 470 Ω (yellow-
violet-brown) or 220 Ω (red-red-brown) resistors in series. Also, make sure that the leads of
the IR LEDs are not touching each other.

√ Now, place the Boe-Bot on the course so that its wheels straddle the black line.

The IR detectors should be facing slightly outward. See close-up in Figure 8-12.
Verify that the distance reading for both IR pairs is 0 or 1 again. If the readings
are higher, it means they need to be pointed slightly further outward, away from
the edge of the stripe.

When you move the Boe-Bot in either direction indicated by the double-arrow, one or the
other IR pair will become focused on the electrical tape. When you do this, the readings

Page 290 · Robotics with the Boe-Bot

for the pair that is now over the electrical tape should increase to 4 or 5. Keep in mind
that if you move the Boe-Bot toward its left, the right detectors should increase in value,
and if you move the Boe-Bot toward its right, the left detectors should show the higher
value.

√ Adjust your IR LED/detector pairs until the Boe-Bot passes this last test. Then
you will be ready to try following the stripe.

Vdd VssVin

Board of Education
 © 2000-2003Rev C

X4 X5

+

w w w . st a mps i nc la ss .c om

R eset

S TAMPS C LAS S
in

B o a rd o f E d uc a t i o n

Pw r

9 V dc
B a t t ery

6-9VD C

S out
S in
AT N
V ss
P 0
P 1
P 2
P 3
P 4
P 5
P 6
P 7

P 11

P 9
P 8

V in

P 10

P 15
P 14
P 13
P 12

V dd
R st
V ss

Bl ack
R ed

X 4 X 5

15 1 4 13 1 2

1

X 1

V ss
P 1
P 3
P 5
P 7
P 9
P 11
P 13
P 15
V in

V ss
P 0
P 2
P 4
P 6
P 8
P 10
P 12
P 14
V dd

U 1

TM

0 1 2

© 2 000 -2 003

V dd

P 15
P 14
P 13
P 12
P 11
P 10
P 9
P 8
P 7
P 6
P 5
P 4
P 3
P 2
P 1
P 0

X 2

X 3
V dd V ssV in

P 15
P 14
P 13
P 12
P 11
P 10
P 9
P 8

P 4

P 2
P 1
P 0

P 7
P 6
P 5

P 3

X 2

X 3
V dd V ssV in

R ev C

+

Figure 8-12
Stripe Scan
Test

IR pairs close-up Top view of Boe-Bot straddling the stripe

Programming for Stripe Following

You will only need to make a few small adjustments to FollowingBoeBot.bs2. from page
282 to make it work for following a stripe. First, the Boe-Bot should move toward
objects closer than the SetPoint and away from objects further from the SetPoint.
This is the opposite of how FollowingBoeBot.bs2 behaved. To reverse the direction the
Boe-Bot moves when it senses that the object is not at the SetPoint distance, simply
change the signs of Kpl and Kpr. In other words, change Kpl from -35 to 35, and change
Kpr from 35 to -35. You will need to experiment with your SetPoint. Values from 2 to
4 tend to work best. This next example program will use a SetPoint of 3.

Example Program: StripeFollowingBoeBot.bs2

√ Open FollowingBoeBot.bs2 and save it as StripeFollowingBoeBot.bs2.
√ Change the SetPoint declaration from SetPoint CON 2 to SetPoint CON 3.
√ Change Kpl from -35 to 35.

Chapter 8: Robot Control with Distance Detection · Page 291

√ Change Kpr from 35 to -35.
√ Run the program (shown below).
√ Place your Boe-Bot at the “Start” location shown in Figure 8-13. The Boe-Bot

should wait there until you place your hand in front of its IR pairs. It will then
roll forward. When it clears the starting stripe, take your hand away, and it
should start tracking the stripe. When it sees the “Finish” stripe, it should stop
and wait there.

√ Assuming that you can get distance readings of 5 from the electrical tape and 0
from the poster board, SetPoint constant values of 2, 3, and 4 should work.
Try different SetPoint values and make notes of your Boe-Bot’s performance
on the track.

28” (71 cm)

22
” (

56
 c

m
)

w w w . st a mp si nc la ss .c om

R eset

S TAMPS C LAS S
in

B o a rd o f E d uc a t i o n

Pw r

9 V dc
B a t t ery

6-9VD C

S out
S in
AT N
V ss
P 0
P 1
P 2
P 3
P 4
P 5
P 6
P 7

P 11

P 9
P 8

V in

P 10

P 15
P 14
P 13
P 12

V dd
R st
V ss

Bl ack
R ed

X 4 X 5

15 1 4 13 1 2

1

X 1

V ss
P 1
P 3
P 5
P 7
P 9
P 11
P 13
P 15
V in

V ss
P 0
P 2
P 4
P 6
P 8
P 10
P 12
P 14
V dd

U 1

TM

0 1 2

© 2 000 -2 003

V dd

P 15
P 14
P 13
P 12
P 11
P 10
P 9
P 8
P 7
P 6
P 5
P 4
P 3
P 2
P 1
P 0

X 2

X 3
V dd V ssV in

P 15
P 14
P 13
P 12
P 11
P 10
P 9
P 8

P 4

P 2
P 1
P 0

P 7
P 6
P 5

P 3

X 2

X 3
V dd V ssV in

R ev C

+

www.stampsinclass.com

Reset

STAMPS CLASS
in

Board of Education

Pwr

9 Vdc
Battery

6-9VDC

Sout
Sin
ATN

Vss
P0
P1
P2
P3
P4
P5
P6
P7

P11

P9
P8

Vin

P10

P15
P14
P13
P12

Vdd
Rst
Vss

Black
Red

X4 X5

15 14 13 12

1

X1

Vss
P1
P3
P5
P7
P9
P11
P13
P15
Vin

Vss
P0
P2
P4
P6
P8
P10
P12
P14
Vdd

U1

TM

0 1 2

© 2000-2003

Vdd

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

X3
VddVss Vin

P15
P14
P13
P12
P11
P10
P9
P8

P4

P2
P1
P0

P7
P6
P5

P3

X2

X3
VddVss Vin

Rev C

+

Start

Finish

Figure 8-13
Stripe
Following
Course

' -----[Title]--
' Robotics with the Boe-Bot - StripeFollowingBoeBot.bs2
' Boe-Bot adjusts its position to move toward objects that are closer than
' zone 3 and away from objects further than zone 3. Useful for following a
' 2.25 inch wide vinyl electrical tape stripe.

' {$STAMP BS2} ' Stamp directive.
' {$PBASIC 2.5} ' PBASIC directive.

DEBUG "Program Running!"

' -----[Constants]--

Kpl CON 35 ' Change from -35 to 35

Page 292 · Robotics with the Boe-Bot

Kpr CON -35 ' Change from 35 to -35
SetPoint CON 3 ' Change from 2 to 3.
CenterPulse CON 750

' -----[Variables]--

freqSelect VAR Nib
irFrequency VAR Word
irDetectLeft VAR Bit
irDetectRight VAR Bit
distanceLeft VAR Nib
distanceRight VAR Nib
pulseLeft VAR Word
pulseRight VAR Word

' -----[Initialization]---

FREQOUT 4, 2000, 3000

' -----[Main Routine]---

DO

 GOSUB Get_Ir_Distances

 ' Calculate proportional output.

 pulseLeft = SetPoint - distanceLeft * Kpl + CenterPulse
 pulseRight = SetPoint - distanceRight * Kpr + CenterPulse

 GOSUB Send_Pulse

LOOP

' -----[Subroutine - Get IR Distances]--------------------------------------

Get_Ir_Distances:
 distanceLeft = 0
 distanceRight = 0
 FOR freqSelect = 0 TO 4
 LOOKUP freqSelect,[37500,38250,39500,40500,41500], irFrequency

 FREQOUT 8,1,irFrequency
 irDetectLeft = IN9
 distanceLeft = distanceLeft + irDetectLeft

 FREQOUT 2,1,irFrequency
 irDetectRight = IN0
 distanceRight = distanceRight + irDetectRight
 NEXT
 RETURN

Chapter 8: Robot Control with Distance Detection · Page 293

' -----[Subroutine - Get Pulse]---

Send_Pulse:
 PULSOUT 13,pulseLeft
 PULSOUT 12,pulseRight
 PAUSE 5
 RETURN

Your Turn – Stripe Following Contest

You can turn this into a contest with the lowest course time winning, provided the Boe-
Bot faithfully waits at the “Start” and “Finish” stripes. You can make up other courses
too. For best performance, experiment with different SetPoint, Kpl, and Kpr values.

Page 294 · Robotics with the Boe-Bot

SUMMARY
Frequency sweep was introduced as a way of determining distance using the Boe-Bot’s
IR LED and detector. FREQOUT was used to send IR signals at frequencies ranging from
37.5 kHz (most sensitive) to 41.5 kHz (least sensitive). The distance was determined by
tracking which frequencies caused the IR detector to report that an object was detected
and which did not. Since not all of the frequencies were separated by the same value, the
LOOKUP command was introduced as simple way to use the counting sequence supplied
by a FOR…NEXT loop to index sequential lists of numbers.

Control systems were introduced along with closed loop control. Proportional control in
a closed-loop system is an algorithm where the error is multiplied by a proportionality
constant to determine the system’s output. The error is the measured system output
subtracted from the set point. For the Boe-Bot, both system output and set point were in
terms of distance. The BASIC stamp was programmed in PBASIC to operate control
loops for the both the left and right servos and distance detectors. By re-sampling
distance and adjusting the servo output before sending pulses to the servos, the control
loop made the Boe-Bot responsive to object motion. The Boe-Bot was able to use
proportional control to lock onto and follow objects, and it also used it to track and
follow a stripe of black electrical tape.

Watch the Boe-Bot in Action at www.parallax.com!

You can see the Boe-Bot solving Chapter 8 Project 2 and other Robotics video clips in the
Robo Video Gallery under the Robotics Menu at www.parallax.com.

Questions
1. What would the relative sensitivity of the IR detector be if you use FREQOUT to

send a 35 kHz harmonic? What is the relative sensitivity with a 36 kHz
harmonic?

2. Consider the code snippet below. If the index variable is 4, which number will
be placed in the prime variable in this LOOKUP command? What values will
prime store when index is 0, 1, 2, and 7?

LOOKUP index, [2, 3, 5, 7, 11, 13, 17, 19], prime

3. In what order are PBASIC math expressions evaluated? How can you override
that order?

Chapter 8: Robot Control with Distance Detection · Page 295

4. What PBASIC directive do you use to declare a constant? How would you give
the number 100 the name “BoilingPoint”?

Exercises
1. List the sensitivity of the IR detector for each kHz frequency shown in Figure 8-

1.
2. Write a segment of code that does the frequency sweep for just four frequencies

instead of five.
3. Make a condensed checklist for the tests that should be performed to ensure

faithful stripe following.

Projects
P1. Create different types of electrical tape intersections and program the Boe-Bot to

navigate through them. The intersections could be 90° left, 90° right, three-way,
and four-way. This will involve the Boe-Bot recognizing it is at an intersection.
When the Boe-Bot executes StripeFollowingBoeBot.bs2, the Boe-Bot will stay
still at intersections. The goal is to have the Boe-Bot realize it’s not doing
anything and break from its proportional control loop.

Hints: You can do this by creating two counters, one that increments by 1 each
time through the DO…LOOP, and the other that only increments when the Boe-Bot
delivers a forward pulse. When the counter that increments each time through the
DO…LOOP gets to 60, use IF…THEN to check how many forward pulses were
applied. If less than 30 forward pulses were applied, the Boe-Bot is probably
stuck. Remember to reset both counters to zero each time the loop counter gets
to 60. After the Boe-Bot recognizes that it is at an intersection, it needs to move
to the top edge of the intersection, then back up and figure out whether it sees
electrical tape or white background on the left and right, then make the correct
90° turn. Use a preprogrammed motion for turning 90°, without proportional
control. For three-way and four-way intersections, the Boe-Bot may turn either
right or left.

P2. Advanced Project - Design a maze-solving contest of your own, and program the
Boe-Bot to solve it!

Page 296 · Robotics with the Boe-Bot

Questions
Q1. The relative sensitivity at 35 kHz is 30%. For 36 kHz, it's 50%
Q2. When index = 4, prime = 11

 index = 0, prime = 2
 index = 1, prime = 3
 index = 2, prime = 5
 index = 7, prime = 19

Q3. Expressions are evaluated left to right. To override, use parentheses to change
the order.

Q4. Use the CON directive.
BoilingPoint CON 100

E1. Frequency (kHz): 34 35 36 37 38 39 40 41 42
Sensitivity : 14% 30% 50% 76% 100% 80% 55% 35% 16%

E2. To solve this problem, put only four frequencies in the LOOKUP list, and decrease
the FOR…NEXT index by one.

FOR freqSelect = 0 TO 3
 LOOKUP freqSelect, [37500, 38750, 39500, 40500],
irFrequency
 FREQOUT 8, 1, irFrequency
 irDetect = IN9
 … commands not shown
NEXT

E3. • Sniff for IR interference with "IrInterferenceSniffer.bs2".
• Run Display BothDistances.bs2.
• White readings should be 0-1 in both sensors.
• Black readings should be 4-5 in both sensors.
• Straddle the line, both sensors should read 0-1.
• Move Boe-Bot back and forth over line, sensor over black line should read 4-5.

P1. In the solution below, the Check_For_Intersection subroutine implements
the algorithm outlined. The left servo was arbitrarily chosen for counting the
forward pulses. A bit-sized variable named isStuck is used as a flag to let the
Main program know whether an intersection has been reached. In the
Navigate_Intersection subroutine, the Boe-Bot goes forward past the
intersection and then backs up, checking the sensors, using DO…LOOP…UNTIL.
Then it makes a preprogrammed 90 degree turn in the correct direction. If the

Chapter 8: Robot Control with Distance Detection · Page 297

intersection is a 3-way or 4-way intersection, the Boe-Bot will arbitrarily turn in
the direction that black is first detected. A constant, Turn90Degree, is provided
to tune the 90 degree turn. Some audible and visual indicators are included,
which aid in troubleshooting and understanding what the Boe-Bot is seeing and
deciding, as well as adding a bit of personality and fun.

' -----[Title]---
' Robotics with the Boe-Bot - IntersectionsBoeBot.bs2
' Navigate 90 degree left/right, 3-way, and 4-way intersections.
' Based on StripeFollowingBoeBot.bs2

' {$STAMP BS2} ' Stamp directive.
' {$PBASIC 2.5} ' PBASIC directive.
DEBUG "Program Running!"

' -----[Constants]---

Kpl CON 35 ' Left proportional constant
Kpr CON -35 ' Right proportional constant
SetPoint CON 3 ' 0-1 is White, 4-5 is Black
CenterPulse CON 750
Turn90Degree CON 30 ' Pulses needed for 90 turn

RightLED PIN 1 ' LED Indicators
LeftLED PIN 10

' -----[Variables]---

freqSelect VAR Nib ' Sweep through 5 frequencies
irFrequency VAR Word ' Freq sent to IR emitter
irDetectLeft VAR Bit ' Store results from detectors
irDetectRight VAR Bit
distanceLeft VAR Nib ' Calculate distance zones
distanceRight VAR Nib
pulseLeft VAR Word ' Servo pulseWidths
pulseRight VAR Word
numPulses VAR Byte ' Count total pulses
fwdPulses VAR Byte ' Count forward pulses
counter VAR Byte
isStuck VAR Bit ' Boolean variable,is bot stuck?

' -----[Initialization]--

FREQOUT 4, 2000, 3000

' -----[Main Routine]--

DO
 GOSUB Get_Ir_Distances ' Read IR sensors

Page 298 · Robotics with the Boe-Bot

 GOSUB Update_LEDs ' Indicate white/black line

' Calculate proportional output and move accordingly.
 pulseLeft = SetPoint - distanceLeft * Kpl + CenterPulse
 pulseRight = SetPoint - distanceRight * Kpr + CenterPulse
 GOSUB Send_Pulse

 GOSUB Check_For_Intersection ' Are we stuck at intersection?
 IF (isStuck = 1) THEN
 GOSUB Make_Noise ' Audible indication
 GOSUB Navigate_Intersection ' Navigate through it
 ENDIF

LOOP

' -----[Subroutines]---

Navigate_Intersection:
' Go forward until both sensors read white, through the intersection.
 DO
 pulseLeft = 850: pulseRight = 650 ' Forward
 GOSUB Send_Pulse
 GOSUB Get_Ir_Distances
 GOSUB Update_LEDs
 LOOP UNTIL (distanceLeft <=2) AND (distanceRight <=2)

 GOSUB Stop_Quickly ' Don't coast forward

' Now back up until one detector sees the black.L & R turn will see
' black on one detector.3- or 4-way will see both black, turn toward
' whichever the bot sees first (random).
 DO
 pulseLeft = 650: pulseRight = 850 ' Backward
 GOSUB Send_Pulse
 GOSUB Get_Ir_Distances
 GOSUB Update_LEDs
 LOOP UNTIL (distanceLeft >=4) OR (distanceRight >=4)

 GOSUB Stop_Quickly ' Don't coast backward

' Make 90 degree turn in direction of the detector which sees black
 IF (distanceLeft >=4) THEN ' Left detector reads black
 FOR counter = 1 TO Turn90Degree ' Turn 90 degrees left
 PULSOUT 13, 750 ' without proportional control
 PULSOUT 12, 650
 PAUSE 20 ' so use PAUSE 20
 NEXT
 ELSEIF (distanceRight >=4) THEN ' Right detector reads black
 FOR counter = 1 TO Turn90Degree ' Turn 90 degrees right
 PULSOUT 13, 850
 PULSOUT 12, 750

Chapter 8: Robot Control with Distance Detection · Page 299

 PAUSE 20
 NEXT
 ENDIF

' That's it. At this point the Boe-Bot should have turned 90 degrees
' to follow the intersection. Continue following the black line.

 RETURN

Check_For_Intersection:
' Keep track of no. of pulses vs the forward pulses. If there are less
' than 30 forward pulses per total of 60 pulses, robot is likely stuck
' at an intersection.

 isStuck = 0 ' Initialze Boolean variable
 numPulses = numPulses + 1 ' Count total pulses sent

 SELECT numPulses
 CASE < 60
 IF (pulseLeft > CenterPulse) THEN
 fwdPulses = fwdPulses + 1 ' Count foward pulses
 ENDIF ' (forward is any pulse > 750)

 CASE = 60 ' If we have sent 60 pulses
 IF (fwdPulses < 30) THEN ' how many were forward?
 isStuck = 1 ' If < 30, robot is stuck
 ENDIF

 CASE > 60
 numPulses = 0 ' Reset counters back to zero
 fwdPulses = 0 ' (Could reset in =60 case but
 ENDSELECT ' it spoils cool Make_Noise)
 RETURN

Make_Noise:
' Makes an increasing tone, proportional to number of forward pulses
 FOR counter = 1 TO fwdPulses STEP 3
 FREQOUT 4, 100, 3800 + (counter * 10)
 NEXT
 RETURN

Update_LEDs:
' Use LEDs to indicate whether detectors are seeing black or white.
' White = Off, Black = On. Black is a distance reading > or = 4 .
 IF (distanceLeft >= 4) THEN HIGH LeftLED ELSE LOW LeftLED
 IF (distanceRight >= 4) THEN HIGH RightLED ELSE LOW RightLED
 RETURN

Stop_Quickly:
' This stops the wheels so the Boe-Bot does not "coast" forward.
 PULSOUT 13, 750

Page 300 · Robotics with the Boe-Bot

 PULSOUT 12, 750
 PAUSE 20
 RETURN

Get_Ir_Distances:
' Read both IR pairs and calculate the distance. Black line gives 4-5
' reading. White surface give 0-1 reading.
 distanceLeft = 0
 distanceRight = 0
 FOR freqSelect = 0 TO 4
 LOOKUP freqSelect,[37500,38250,39500,40500,41500], irFrequency

 FREQOUT 8,1,irFrequency
 irDetectLeft = IN9
 distanceLeft = distanceLeft + irDetectLeft

 FREQOUT 2,1,irFrequency
 irDetectRight = IN0
 distanceRight = distanceRight + irDetectRight
 NEXT
 RETURN

Send_Pulse:
' Send a single pulse to the servos in between IR readings.
 PULSOUT 13,pulseLeft
 PULSOUT 12,pulseRight
 PAUSE 5 ' PAUSE reduced due to IR readings
 RETURN

P2. If you create an interesting Boe-Bot maze project and you want to share it with

others, you may want to join the StampsInClass Yahoo! Group, listed behind the
title page of Robotics with the Boe-Bot. Or, you can email the parallax
Educational Team directly at stampsinclass@parallax.com.

 Appendix A: PC to BASIC Stamp Communication Trouble-Shooting · Page 301

Appendix A: PC to BASIC Stamp Communication
Trouble-Shooting

Here is a list of things to try to quickly fix any difficulties getting the BASIC Stamp
Editor to communicate with your BASIC Stamp:

√ If you are using a Board of Education Rev C, make sure the power switch is set
to position-1.

√ Rule out dead batteries and incorrect or malfunctioning power supplies by using
a new 9 V battery or four new 1.5 V AA alkaline batteries in the battery pack.

√ Make sure the serial cable is firmly connected to both the computer’s COM port
and the DB9 connector on the Board of Education or BASIC Stamp HomeWork
Board.

√ Make sure that your serial cable is a normal (straight-through) serial cable. DO
NOT USE A NULL MODEM CABLE. Most null modem cables are labeled
NULL or Null Modem; visually inspect the cable for any such labeling.

√ Disable any palmtop communication software.

If you are using a BASIC Stamp and Board of Education, also check the following:

√ Make sure the BASIC Stamp was inserted into the socket right-side-up as shown

in Figure 1-24 on page 17.
√ If you are using a DC power supply that plugs into the wall, make sure it is

plugged in to both the wall and the Board of Education. Verify that the green
Pwr light on the Board of Education emits light when the DC supply is plugged
in.

√ Make sure the BASIC Stamp is firmly inserted into the socket.
√ Visually inspect the BASIC Stamp module to make sure that none of the pins

folded under the module instead of sinking into their sockets on the Board of
Education.

If your Identification window looks similar to Figure A-1, it means that the BASIC
Stamp Editor cannot find your BASIC Stamp on any COM port. If you have this
problem, try the following:

Page 302 · Robotics with the Boe-Bot

Figure A-1
Identification Window

Example: BASIC Stamp
2 not found on COM
ports.

If you know the number of the COM port, but it does not appear in the Identification
Window:

√ Use the Edit Port List button to add that COM port. When you return to the
Identification window, click the Refresh button to find out if the BASIC Stamp 2
is now detected.

√ Close the Identification window.
√ In the BASIC Stamp Editor, Click Edit and select Preferences. Click the Editor

Operation tab, and set the Default COM Port to AUTO.
√ Try the Run → Identify test again.

If you are unsure of which COM port your BASIC Stamp is connected to, or if you are
using a USB to serial port adaptor, you may need to look in your computer's Device
Manager to find the list of COM ports in use.

√ Click on your computer desktop’s Start button.
√ To view the list of COM ports in use, make the selections listed next to your

operating system :

Windows® 98: Control Panel → System → Hardware → Device Manager

→ Ports(COM & LPT1).
Windows® 2000: Settings → Control Panel → System → Hardware →

Device Manager → Ports (COM & LPT).
Windows® XP: Control Panel → Printers and Other Hardware.
 In the See Also box select System.
 Select Hardware → Device Manager → Ports
Windows® XP Pro: Settings → Control Panel → System → Hardware →

Device Manager → Ports (COM & LPT).

 Appendix A: PC to BASIC Stamp Communication Trouble-Shooting · Page 303

√ If you are using a serial port (no USB to serial adaptor), make a note of the COM
ports listed. If one or more of these COM ports do not appear in your BASIC
Stamp Editor's list, make a note of the numbers for each COM port that doesn't
appear in the list now.

√ If you are using an FTDI USB to Serial adaptor, look for the COM port that
reads FTDI USB to Serial COM…

√ Repeat the Run → Identify test.
√ Click the Edit Ports List button and add the missing COM port numbers.
√ Repeat the Run → Identify test again, this time, the Identification window should

"find" your BASIC Stamp 2.

Still no BASIC Stamp Detected?

√ If you have more than one COM port, try connecting your Board of Education or
BASIC Stamp HomeWork Board to a different COM port and see if Run →
Identify works then.

√ If you have a second computer, try it on the different computer.

If you get the error message “No BASIC Stamp Found” but the Run → Identify test shows
a “Yes” in both columns for one of the COM ports, you may need to change a setting to
your FIFO Buffers. This happens occasionally with Microsoft Windows® 98 and XP
users. Make a note of the COM port with the “Yes” messages, and try this:

Windows® 98:

√ Click on your computer desktop’s Start button.
√ Select Settings→ Control Panel → System → Device Manager → Ports (COM & LPT).
√ Select the COM port that was noted by the Run → Identify test.
√ Select Properties → Port Settings → Advanced.
√ Uncheck the box labeled “Use FIFO Buffers” then click OK.
√ Click OK as needed to close each window and return to the BASIC Stamp Editor.
√ Try downloading a program once more.

Windows® 2000:

√ Click on your computer desktop’s Start button.
√ Select Settings → Control Panel → System → Hardware → Device Manager → Ports

(COM & LPT).

Page 304 · Robotics with the Boe-Bot

√ Select the COM port that was noted by the Run → Identify test.
√ Select → Port Settings → Advanced.
√ Uncheck the box labeled “Use FIFO Buffers” then click OK.
√ Click OK as needed to close each window and return to the BASIC Stamp Editor.
√ Try downloading a program once more.

Windows® XP:

√ Click on your computer desktop’s Start button.
√ Select Control Panel → Printers and Other Hardware.
√ In the See Also box select System.
√ Select Hardware → Device Manager → Ports.
√ Enter the COM port number noted by the Run→ Identify test.
√ Select Port Settings → Advanced.
√ Uncheck the box labeled “Use FIFO Buffers” then click OK.
√ Click OK to close each window as needed and return to the BASIC Stamp Editor.
√ Try downloading a program once more.

Windows® XP Pro:

√ Click on your computer desktop’s Start button.
√ Select Control Panel → System → Hardware → Device Manager → Ports(COM & LPT1).
√ Select the Communications Port number noted by the Run → Identify test.
√ Select Properties → Port Settings → Advanced.
√ Uncheck the box labeled “Use FIFO Buffers” then click OK.
√ Click OK to close each window as needed and return to the BASIC Stamp Editor.
√ Try downloading a program once more.
√

If none of these solutions work, you may go to www.parallax.com and follow the Support
link. Or, email support@parallax.com or call Tech Support toll free at 1-888-99-STAMP.

 Appendix B: BASIC Stamp and Carrier Board Components and Features · Page 305

Appendix B: BASIC Stamp and Carrier Board
Components and Features

The BASIC STAMP® 2 Microcontroller Module

Figure B-1 shows a close-up of the BASIC Stamp® 2 microcontroller module. Its major
components and their functions are indicated by labels.

Figure B-1: BASIC Stamp® 2 Microcontroller Module
Components and Their Functions

Page 306 · Robotics with the Boe-Bot

The Board of Education® Rev C Carrier Board

The Board of Education® Rev C carrier board for BASIC Stamp® 24-pin microcontroller
modules is shown in Figure B-2. Its major components and their functions are indicated
by labels.

Figure B-2: Board of Education® Rev C Carrier Board

 Appendix B: BASIC Stamp and Carrier Board Components and Features · Page 307

The BASIC Stamp® HomeWork Board™ Project Platform

The BASIC Stamp® HomeWork Board™ project platform is shown in Figure B-3. Its
major components and their functions are indicated by labels.

Figure B-3: BASIC Stamp® HomeWork Board™ Project Platform

Page 308 · Robotics with the Boe-Bot

The Board of Education® Rev B Carrier Board

Figure B-4 shows the Board of Education® Rev B carrier board for BASIC Stamp® 24-
pin microcontroller modules. Its major components and their functions are indicated by
labels.

Figure B-4: Board of Education® Rev B Carrier Board

 Appendix C: Resistor Color Codes · Page 309

Appendix C: Resistor Color Codes

Resistors like the ones we are using in this student guide have colored stripes that tell you
what their resistance values are. There is a different color combination for each
resistance value. For example, the color code for the 470 Ω resistor is yellow-violet-
brown.

There may be a fourth stripe that indicates the resistor’s tolerance. Tolerance is measured
in percent, and it tells how far off the part’s true resistance might be from the labeled
resistance. The fourth stripe could be gold (5%), silver (10%), or no stripe (20%). For
the activities in this book, a resistor’s tolerance does not matter, but its value does.

Each color bar that tells you the resistor’s value corresponds to a digit, and these
colors/digits are listed in Table C-1. Figure C-1 shows how to use each color bar with the
table to determine the value of a resistor.

Table C-1:
Resistor Color Code

Values

Digit Color

0 Black
1 Brown
2 Red
3 Orange
4 Yellow
5 Green
6 Blue
7 Violet
8 Gray
9 White

First Digit

Second Digit

Number of Zeros

Tolerance
Code

Figure C-1
Resistor Color
Codes

Here is an example that shows how Table C-1 and Figure C-1 can be used to figure out a
resistor value by proving that yellow-violet-brown is really 470 Ω:

• First stripe is yellow, which means leftmost digit is a 4.
• Second stripe is violet, which means next digit is a 7.

Page 310 · Robotics with the Boe-Bot

• Third stripe is brown. Since brown is 1, it means add one zero to the right of the
first two digits.

Yellow-Violet-Brown = 4-7-0.

 Appendix D: Breadboarding Rules · Page 311

Appendix D: Breadboarding Rules

Look at your Board of Education or HomeWork Board. The white square with lots of
holes, or sockets, in it is called a solderless breadboard. This breadboard, combined with
the black strips of sockets along two of its sides, is called the prototyping area (shown in
Figure D-1).

The example circuits in this text are built by plugging components such as resistors,
LEDs, speakers, and sensors into these small sockets. Components are connected to each
other with the breadboard sockets. You will supply your circuit with electricity from the
power terminals, which are the black sockets along the top labeled Vdd, Vin, and Vss.
The black sockets on the left are labeled P0, P1, up through P15. These sockets allow
you to connect your circuit to the BASIC Stamp’s input/output pins.

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

X3
Vdd VssVin

Figure D-1
Prototyping Area

Power terminals (black
sockets along top), I/O pin
access (black sockets along
the side), and solderless
breadboard (white sockets)

The breadboard has 17 rows of sockets separated into two columns by a trough. The
trough splits each of the seventeen rows of sockets into two rows of five. Each row of
five sockets is electrically connected inside the breadboard. You can use these rows of
sockets to connect components together as dictated by a circuit schematic. If you insert
two wires into any two sockets in the same 5-socket row, they are electrically connected
to each other.

A circuit schematic is a roadmap that shows how to connect components together. It uses
unique symbols each representing a different component. These component symbols are
connected by lines to indicate an electrical connection. When two circuit symbols are

Page 312 · Robotics with the Boe-Bot

connected by lines on a schematic, the line indicates that an electrical connection is made.
Lines can also be used to connect components to voltage supplies. Vdd, Vin, and Vss all
have symbols. Vss corresponds to the negative terminal of the battery supply for the
Board of Education or BASIC Stamp HomeWork Board. Vin is the battery’s positive
terminal, and Vdd is regulated to +5 volts.

Let’s take a look at an example that uses a schematic to connect the parts shown in Figure
D-2. For each of these parts, the part drawing is shown above the schematic symbol.

470 Ω

Yellow
Violet

Brown

Gold
Silver
or
Blank

+

LED

Figure D-2
Part Drawings and
Schematic Symbols

LED(left) and
470 Ω resistor (right)

Figure D-3 shows an example of a circuit schematic on the left and a drawing of a circuit
that can be built using this schematic on the right. Notice how the schematic shows that
one end of the jagged line that denotes a resistor is connected to the symbol for Vdd. In
the drawing, one of the resistor’s two leads is plugged into one of the sockets labeled
Vdd. In the schematic, the other terminal of the resistor symbol is connected by a line to
the + terminal of the LED symbol. Remember, the line indicates the two parts are
electrically connected. In the drawing, this is accomplished by plugging the other resistor
lead into the same row of 5 sockets as the + lead on the LED. This electrically connects
the two leads. The other terminal of the LED is shown connected to the Vss symbol in
the schematic. In the drawing, the other lead of the LED is plugged into one of the
sockets labeled Vss.

 Appendix D: Breadboarding Rules · Page 313

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

X3
Vdd VssVin

Vdd

Vss

LED

470 Ω

+

Figure D-3
Example Schematic and
Wiring Diagram

Schematic (left) and wiring
diagram (right)

Figure D-4 shows a second example of a schematic and wiring diagram. This schematic
shows P14 connected to one end of a resistor, with the other end connected to the +
terminal of an LED, and the – terminal of the LED is connected to Vss. The schematic
only differs by one connection. The resistor lead that used to be connected to Vdd is now
connected to BASIC Stamp I/O pin P14. The schematic might look more different than
that, mainly because the resistor is shown drawn horizontally instead of vertically. But in
terms of connections, it only differs by one, P14 in place of Vdd. The wiring diagram
shows how this difference is handled with the resistor lead that used to be plugged into
Vdd, now plugged into P14.

Page 314 · Robotics with the Boe-Bot

P14

Vss

LED
470 Ω

P15

P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

P14

X2

X3
Vdd VssVin

+

Figure D-4
Example Schematic and
Wiring Diagram

Schematic (left) and
wiring diagram (right)

Here is a more complex example that involves two additional parts, a photoresistor and a
capacitor. The schematic symbols and part drawings for these components are shown in
Figure D-5.

0.01 µF

Figure D-5
Part Drawings and
Schematic Symbols

Photoresistor (top) and
non-polar capacitor (bottom)

Since this schematic shown in Figure D-6 calls for a 220 Ω resistor, the first step is to
consult Appendix C: Resistor Color Codes to determine the color code for a 220 Ω
resistor. The color code is Red, Red, Brown. This resistor is connected to P6 in the
schematic, which corresponds to the resistor lead plugged into the socket labeled P6 in

 Appendix D: Breadboarding Rules · Page 315

the prototyping area (Figure D-7). In the schematic, the other lead of the resistor is
connected to not one, but two other component terminals. A terminal from the
photoresistor and capacitor both share this connection. On the breadboard, the other
resistor lead is plugged into one of the rows of 5 sockets. This row also has leads from
the capacitor and photoresistor plugged into it. In the schematic, the other terminals of
the photoresistor and capacitor are connected to Vss. Here is a trick to keep in mind
when building circuits on a breadboard. You can use a wire to connect an entire row on
the breadboard to another row, or even to I/O pins or power terminals such as Vdd or
Vss. In this case, a wire was used to connect Vss to a row on the breadboard. Then, the
leads for the capacitor and photoresistor were plugged into the same row, completing the
circuit.

Vss

220 Ω
P6

0.1 µF

Figure D-6
Resistor, Photoresistor, and
Capacitor Schematic

Page 316 · Robotics with the Boe-Bot

P15
P14
P13
P12
P11
P10
P9
P8
P7

P5
P4
P3
P2
P1
P0

P6

X2

X3
Vdd VssVin

Figure D-7
Resistor, Photoresistor,
and Capacitor Wiring
Diagram

Keep in mind that the wiring diagrams presented here as solutions to the schematics are
not the ONLY solutions to those schematics. For example, Figure D-8 shows another
solution to the schematic just discussed. Follow the connections and convince yourself
that it does satisfy the schematic.

P15
P14
P13
P12
P11
P10
P9
P8
P7

P5
P4
P3
P2
P1
P0

P6

X2

X3
Vdd VssVin

Figure D-8
Resistor, Photoresistor, and
Capacitor Wiring Diagram

Note the alternative parts
placement.

 Appendix E: Boe-Bot Parts Lists · Page 317

Appendix E: Boe-Bot Parts Lists

To complete the activities in this text, you will need a complete Boe-Bot and the
electronic components necessary to build the example circuits. There are several options
for ordering these items from Parallax, which are described on the following pages.

All of the information in this appendix was current at the time of printing. Parallax may
make part substitutions at our discretion, out of necessity or to upgrade the quality of our
products. For the latest information and free downloads about your Boe-Bot and the
Robotics with the Boe-Bot Student Guide, check their individual product pages at
www.parallax.com.

Boe-Bot Robot Kit (also known as the Boe-Bot Full Kit)
Aside from a PC with a serial port and a few common household items, the Boe-Bot
Robot Kit contains all the parts and documentation you’ll need to complete the
experiments in this text.

Table E-1: Boe-Bot Robot (Full) Kit (#28132)
Parts and quantities subject to change without notice

Parallax
Stock Code Description Quantity

BS2-IC BASIC Stamp 2 microcontroller module 1
27000 Parallax CD with software and documentation 1
28124 Robotics with the Boe-Bot Parts Kit 1
28125 Robotics with the Boe-Bot Student Guide 1
28150 Board of Education Rev C 1
700-00064 Parallax Screwdriver 1
800-00003 Serial cable 1

All of these items may also be ordered separately, using the individual part numbers. You
can contact the Parallax Sales Team toll free at 1-888-512-1024 or order online at
www.parallax.com. For technical questions or assistance call our Technical Support
team at 1-888-99-STAMP.

Page 318 · Robotics with the Boe-Bot

Robotics with the Boe Bot Parts Kit
If you already have a Board of Education and BASIC Stamp, you may purchase the
Robotics with the Boe-Bot Parts kit, with or without the printed text Robotics with the
Boe-Bot Student Guide.

Table E-2: Robotics with the Boe-Bot Parts & Text, #28154
Robotics with the Boe-Bot Parts only, #28124

Parts and quantities subject to change without notice

Parallax
Stock Code Description Quantity

150-01020 1 kΩ resistor 2
150-01030 10 kΩ resistor 2
150-02020 2 kΩ resistor 2
150-02210 220 Ω resistor 8
150-04710 470 Ω resistor 4
150-04720 4.7 kΩ resistor 2
200-01031 0.01 µF capacitor 2
200-01040 0.1 µF capacitor 2
350-00003 Infrared LED 2
350-00006 Red LED 2
350-00009 Photoresistors (EG&G Vactec VT935G group B) 2
350-00014 Infrared receiver (Panasonic PNA4602M or equivalent) 2
350-90000 LED standoff for infrared LED 2
350-00001 LED light shield for infrared LED 2
451-00303 3-Pin Header 2
700-00056 Whisker wire 2
700-00015 #4 screw-size nylon washer 2
710-00007 7/8” 4-40 pan-head screw, Phillips 2
713-00007 ½” Spacer, aluminum, #4 round 2
800-00016 Jumper wires (bag of 10) 2
900-00001 Piezospeaker 1
28133 Boe-Bot Hardware Pack 1

 Appendix E: Boe-Bot Parts Lists · Page 319

Building a Boe-Bot with a HomeWork Board

If you already have a BASIC Stamp HomeWork Board that you wish to use with a Boe
Bot, you will need the Robotics with the Boe-Bot Parts kit and these additional items:

(2) 3-pin male/male headers, #451-00303
(1) Tinned-lead battery pack, #753-00001

Boe-Bot Hardware Pack
All of the Boe-Bot hardware parts can be purchased individually, as found in our on-line
Robot Component Shop if you find you need a replacement part. Please note that the
Hardware Pack is not sold as a unit separately from the Boe-Bot Robot (Full) Kit or the
Boe-Bot Parts Kit.

Table E-3: Boe-Bot Hardware Pack (#28133)
Parts and quantities subject to change without notice

Parallax
Stock Code Description Quantity

700-00002 4-40 x 3/8”machine screw, Phillips 8
700-00003 Hex nut, 4-40 zinc plated 10
700-00009 Tail wheel ball 1
700-00016 4-40 x 3/8” flathead machine screw, Phillips 2
700-00022 Boe-Bot aluminum chassis 1
700-00023 1/16" x 1.5” long cotter pin 1
700-00025 13/32" rubber grommet 2
700-00028 4-40 x 1/ 4” machine screw, Phillips 8
700-00038 Battery holder with cable and barrel plug 1
700-00060 Standoff, threaded aluminum, round 4-40 4
721-00001 Parallax plastic wheel 2
721-00002 Rubber band tire 4
900-00008 Parallax Continuous Rotation Servo 2

Page 320 · Robotics with the Boe-Bot

Board of Education Kits
Almost all of the titles in the Stamps in Class curriculum feature different hardware and
component packages that depend on the BASIC Stamp and Board of Education as a core.
The Board of Education can be purchased separately or in its own kit, as listed in Table
E-4 below.

Table E-4: Board of Education – Full Kit (#28102)
Parts and quantities subject to change without notice

Parallax
Stock Code Description Quantity

28150 Board of Education Rev C 1
800-00016 Jumper wires – pack of 10 1
BS2-IC BASIC Stamp 2 microcontroller module 1
750-00008 300 mA 9 VDC power supply 1
800-00003 Serial cable 1

 Appendix F: Balancing Photoresistors · Page 321

Appendix F: Balancing Photoresistors

In this appendix, you will test the photoresistors to find out if they respond similarly to
the same incident light levels. If the measurements they report are different for the same
incident light levels, you can modify your programs to scale the values reported by your
photoresistors. The values will then be similar for similar incident light levels, which can
help the Boe-Bot recognize different incident light levels more reliably. This technique
can in turn assist the Boe-Bot in exiting dark rooms, even with mismatched photoresistor
circuits.

RC circuits with photoresistors can report different values for the same light level for
many reasons: The stated value of the capacitors is 0.01 µF, but the actual value of
capacitors can be very different. Many common ceramic capacitors are rated with a
tolerance of +80/-20%, meaning that the actual value of the capacitor could be up to 80%
larger or 20% smaller than 0.01 µF. This means that your measured decay time could also
be between 80% larger and 20% smaller. The photoresistors themselves can also behave
differently if they come from different manufacturing batches or if they have smudged or
chipped light collecting surfaces.

Testing for Well Matched Photoresistor Circuits
This next example program displays the decay time of both photoresistors in the Debug
Terminal. It makes it easy to judge the differences between the two readings for similar
light levels.

For best results, eliminate sources of direct sunlight: In general, uniform lighting
conditions improve the Boe-Bot’s performance with photoresistors. Draw the blinds to
eliminate sources of direct sunlight. Rooms with distributed light sources such as
fluorescent lights or ceiling lamps work well.

Example Program: TestPhotoresistors.bs2

√ Enter, save, and run TestPhotoresistors.bs2.
√ Cast a shadow over the Boe-Bot’s photoresistors with a white sheet of paper.

Find a level of shade that gives you readings between 20 and 100.
√ Record the values of both time measurements in the first row of Table F-1.

Page 322 · Robotics with the Boe-Bot

√ Cup your hand over the photoresistors, making sure that you are casting equal
shade over both. For best results, the measurements should be in the 200 to 400
range.

√ Record the values of both time measurements in the second row of Table F-1.

Table F-1: RC-Time Measurements in Ambient and Low Light

Duration Values
timeLeft timeRight Description

 Photoresistors in uniform ambient light
 Photoresistors in uniform low light

' Robotics with the Boe-Bot - TestPhotoresistors.bs2
' Test Boe-Bot photoresistor circuits.

' {$STAMP BS2} ' Stamp directive.
' {$PBASIC 2.5} ' PBASIC directive.

timeLeft VAR Word ' Variable declarations.
timeRight VAR Word

DEBUG "PHOTORESISTOR VALUES", CR, ' Initialization.
 "timeLeft timeRight", CR,
 "-------- ---------"

DO ' Main routine.

 HIGH 6 ' Left RC time measurement.
 PAUSE 3
 RCTIME 6,1,timeLeft

 HIGH 3 ' Right RC time measurement.
 PAUSE 3
 RCTIME 3,1,timeRight

 DEBUG CRSRXY, 0, 3, ' Display measurements.
 DEC5 timeLeft,
 " ",
 DEC5 timeRight

 PAUSE 200

LOOP

 Appendix F: Balancing Photoresistors · Page 323

Calibrating Using a Linear Approximation
The photoresistor is often referred to as a non-linear device. In other words, if it returns
one measurement at one brightness, that doesn’t mean that the measurement will be five
times as large when the light is five times as bright. The math is more complicated and
involves logarithms. However, in cases where the measurements are confined over a
narrow range of the sensors overall detection abilities, the sensor can be treated like it’s a
linear device. You can take a couple of measurements, and then figure out how the
device will react if other measurements in its range could be plotted in a straight line.
The technique is called linear approximation.

Another thing you can do with linear devices is assume the difference between the two
lines can also be plotted as a line. In fact, if you have one linear device that has larger
measurements than the other for ambient and low light, you can use a linear
approximation for making the sensors return approximately the same values for the same
light levels. For every reading from one sensor, (we’ll call that one x), you can multiply
it by a scale factor (m), and add it to a constant (b) to get a value in the same range the
other sensor would report (y).

bmxy +=

Here is an example of how to get the values of m and b to match the left photoresistor
circuit to the right. First, assign X1 and X2 to the left photoresistor values and Y1 and Y2
to the right photoresistor values. (Table F-2) shows some example values for
mismatched photoresistors. Your values will be different.

Table F-2: RC-Time Measurements in Ambient and Low Light

Duration Values
timeLeft timeRight Description

X1 = 36 Y1 = 56 Photoresistors in uniform ambient light
X2 = 152 Y2 = 215 Photoresistors in uniform low light

Now, solve for m and b using two equations in two unknowns. One of the simpler
approaches is to write two y = mx + b equations, one in terms of X1 and Y1 and the other
in terms of X2 and Y2. Then, subtract one from the other to eliminate b. Then, solve for
m.

Page 324 · Robotics with the Boe-Bot

)xx(
)yy(m

)xx(m)yy(

)bmxy(
bmxy

12

12

1212

11

22

−
−=

−=−
−−−−−−−−−−−−−

+=−
+=

Once you’ve solved for m, you can plug m back into either of the two y = mx + b
equations you started with to get b.

22

22

mxyb
bmxy

−=
+=

So, the two equations for solving for m and b turn out to be:

)xx(
)yy(m

12

12

−
−=

 and 22 mxyb −=

Let’s plug our sample values from Table F-2 into the equations and see what the scale
factor (m) and offset constant (b) will be for the left photoresistor. First, calculate m:

37.1
116
159m

)36152(
)56215(m

)xx(
)yy(m

12

12

==

−
−=

−
−=

Then, use m, y2, and x2 to calculate b:

7b
76.6b

)15237.1(215b

≈
=

×−=

 Appendix F: Balancing Photoresistors · Page 325

Now, we know how to correct the timeLeft variable so that it reports values similar to
the timeRight variable in this narrow range of light levels:

7timeLeft37.1timeLeft
7x37.1y

bmxy

)adjusted(+×=
+=

+=

A Linear Equation in PBASIC
In most programming languages for PCs, this equation could be entered as-is. The
BASIC Stamp is a very tiny processor compared to a PC. Because of this, it takes an
extra step to multiply by a fractional value. You have to use the */ operator (it’s called
the “star-slash” operator). For the timeLeft equation, the PBASIC code to adjust the
timeLeft variable can be done like this:

timeLeft = (timeLeft */ 351) + 7

The adjusted value of timeLeft after this line of code is executed is 1.37 times the old
timeLeft, plus 7.

Why did 1.37 become 351? The way the */ operator works is that you have multiply your
fractional value by 256, and place it to the right of the */ operator. Since 1.37 X 256 =
350.72 ≈ 351, the value 351 goes to the right of the */ operator.

You can find out more about the */ operator in the BASIC Stamp Editor by clicking Help and
selecting Index. Type in */ in the field labeled “Type in keyword to find”. You can also look
up */ in the Binary operators section of the BASIC Stamp Manual.�

Your Turn – Balance Your Photoresistors with m and b

√ In Table F-1, label the first timeLeft entry X1 and the second timeLeft entry
X2.

√ Label the first timeRight entry Y1 and the second timeRight entry Y2.
√ Use these equations and your X1, X2, Y1, and Y2 values to solve for m and b.
√

)xx(
)yy(m

12

12

−
−=

 and 22 mxyb −=

Page 326 · Robotics with the Boe-Bot

√ Calculate the values of m you will use with the */ operator by multiplying m by
256.

√ Substitute your value of m and b in this line of code from
BalancePhtoresistors.bs2:

 timeLeft = (timeLeft */ 351) + 7

√ Enter, save, and run your adjusted version of BalancePhotoresistors.bs2.
√ Expose both photoresistors to the same light level.
√ Verify that the “after” values are similar and corrected for differences in the

“before” values.
√ Choose a different light level and again, expose both photoresistors to it.
√ Check the “after” values again for similarity.
√ When you have determined your values for m and b, you can modify

RoamingTowardTheLight.bs2 by uncommenting the equation between GOSUB
Test_Photoresistors and GOSUB Average_And_Difference. Your m value
will replace 351 and your b value will replace 7.

' Robotics with the Boe-Bot - BalancePhotoresistors.bs2
' Test adjustments to Boe-Bot photoresistor circuits.

' {$STAMP BS2} ' Stamp directive.
' {$PBASIC 2.5} ' PBASIC directive.

timeLeft VAR Word ' Variable declarations.
timeRight VAR Word

DEBUG "PHOTORESISTOR VALUES", CR, ' Initialization.
 "timeLeft timeRight", CR,
 "-------- ---------"

DO ' Main routine.

 HIGH 6 ' Left RC time measurement.
 PAUSE 3
 RCTIME 6,1,timeLeft

 HIGH 3 ' Right RC time measurement.
 PAUSE 3
 RCTIME 3,1,timeRight

 DEBUG CRSRXY, 0, 3, ' Display measurements.
 DEC5 timeLeft,
 " ",

 Appendix F: Balancing Photoresistors · Page 327

 DEC5 timeRight,
 " Before"

 timeLeft = (timeLeft */ 351) + 7

 DEBUG CRSRXY, 0, 5, ' Display measurements.
 DEC5 timeLeft,
 " ",
 DEC5 timeRight,
 " After"

 PAUSE 200

LOOP

 Appendix G: Tuning IR Distance Detection · Page 329

Appendix G: Tuning IR Distance Detection

Finding the Right Frequency Sweep Values
Fine tuning the Boe-Bot’s distance detection involves determining which frequency is
most reliable for each zone for each IR pair.

Note: This appendix features a method of determining the best frequencies for determining
given distances using spreadsheets. This activity takes time and patience, and is only
recommended if your distance sensing is severely out of calibration. It involves collecting
frequency sweep data and using it to determine the most reliable values for detecting
particular distances.�

√ Point both the IR LEDs and detectors straight forward.
√ Place the Boe-Bot in front of a wall with a white sheet of paper as the IR target.
√ Place the Boe-Bot so that its IR LEDs are 2.5 cm away from the paper target.

Make sure the front of the Boe-Bot is facing the paper target. Both IR LEDs and
detectors should be pointed directly at the paper.

IR Fine Tuning Program
FrequencySweep.bs2 performs a frequency sweep on the IR detector and displays the
data. Although the techniques used are similar to other programs, it has one unique
feature. The BASIC Stamp is programmed to wait for you to press the Enter key.

√ Enter and run FrequencySweep.bs2, but do not disconnect the Boe-Bot from the
serial cable.

' -----[Title]--
' Robotics with the Boe-Bot - FrequencySweep.bs2
' Test IR LED/detector response to frequency sweep.

' {$STAMP BS2} ' Stamp directive.
' {$PBASIC 2.5} ' PBASIC directive.

' -----[Variables]--

crsrPosRow VAR Byte
irFrequency VAR Word
irDetect VAR Bit
distance VAR Nib
dummy VAR crsrPosRow

Page 330 · Robotics with the Boe-Bot

' -----[Initialization]---

DEBUG CLS,
 "Click transmit windowpane,", CR,
 "then press enter to begin", CR,
 "frequency sweep...", CR, CR,

 " OBJECT", CR,
 "FREQUENCY DETECTED", CR,
 "--------- --------", CR

' -----[Main Routine]---

DO

 DEBUGIN dummy

 crsrPosRow = 6

 FOR irFrequency = 30500 TO 46500 STEP 1000

 crsrPosRow = crsrPosRow + 1

 FREQOUT 8,1, irFrequency
 irDetect = IN9

 DEBUG CRSRXY, 4, crsrPosRow, DEC5 irFrequency
 DEBUG CRSRXY, 11, crsrPosRow

 IF (irDetect = 0) THEN DEBUG "Yes" ELSE DEBUG "No "

 PAUSE 100

 NEXT

LOOP

√ Click the upper of the two window panes shown in Figure G-1.
√ Press the Enter key. The frequency response data will appear as shown in the

figure.

 Appendix G: Tuning IR Distance Detection · Page 331

Figure G-1
Debug of
Frequency
Data

The BASIC Stamp has been programmed to make the Debug Terminal display a “Yes” if
an object was detected and a “No” if an object was not detected. Figure G-1 shows that
the left sensor’s region of good signal response is between 36500 and 42500.

Page 332 · Robotics with the Boe-Bot

√ Modify the FOR...NEXT loop in Program Listing FrequencySweep.bs2 so that it

steps in increments of 250 and includes the upper and lower limits of both
detectors. Based on the data in the example shown in Figure G-1, the start, end,
and step values of the FOR...NEXT loop would be modified as follows:

FOR irFrequency = 36500 to 42500 STEP 250

√ Re-run your modified FrequencySweep.bs2, and press Enter again.
√ Record the data for left and right sides in separate spreadsheets.
√ Press the Enter key again and record the next set of data points.
√ Repeat this process three more times. When finished, you will have five sets of

data points for each sensor in separate spreadsheets for this one frequency.
√ Back the Boe-Bot up 2.5 cm. Now your Boe-Bot’s IR detectors will be 5 cm

from the paper target.
√ Record five more data sets at this distance.
√ Keep on backing up the Boe-Bot by 2.5 cm at a time and recording the five

frequency sweep data sets between each distance adjustment.
√ When the Boe-Bot has been backed up by 20 cm, the frequency sweep will

display mostly, if not all ”No” regions. When the frequency sweep is all ”No”, it
means no object is detected at any frequency within the sweep.

By careful scrutiny of the spreadsheets and process of elimination, you can determine the
optimum frequency for each IR pair for each zone. Customizing for up to eight zones
can be done without any restructuring of the Boe-Bot navigational routines. If you were
to customize for 15 zones, this would entail 30 one millisecond FREQOUT commands.
That won’t gracefully fit between servo pulses. One solution would be to take 15
measurements every other pulse.

How to determine the best frequencies for the left sensor is discussed here. Keep in mind
you’ll have to repeat this process for the right sensor. This example assumes you are
looking for six zones (zero through five).

√ Start by examining the data points taken when the Boe-Bot was furthest from the
paper target. There probably won’t be any sets of data points that are all “Yes”
readings at the same frequency. Check the data points for the next 2.5 cm
towards the paper target. Presumably, you will see a set of four or five “Yes”

 Appendix G: Tuning IR Distance Detection · Page 333

readings at a particular frequency. Note this frequency as a reliable
measurement for the dividing line between Zone 0 and Zone 1.

√ At each of the remaining five distances, find a frequency for which the output
values have just become stable.

For example, at 15 cm, three different frequencies might show five ”Yes” readings. If
you look back to the 17.5 cm mark, two of these frequencies were stable, but the other
was not. Take the frequency that was not stable at 17.5 cm but was stable at 15 cm as
your most reliable frequency for this distance. Now, this example has determined the
frequencies that can be used to separate Zones 5 and 4 and Zones 4 and 3. Repeat this
process for the remaining zone partitions.

Your Turn
√ If you succeeded in fine tuning five measurements and time permits, try

increasing the resolution to eight measurements. Save your data for both
methods.

 Appendix H: Boe-Bot Navigation Contests · Page 335

Appendix H: Boe-Bot Navigation Contests

If you're planning a competition for autonomous robots, these rules are provided courtesy
of Seattle Robotics Society.

CONTEST#1: ROBOT FLOOR EXERCISE

Purpose
The floor exercise competition is intended to give robot inventors an opportunity to show
off their robots or other technical contraptions.

Rules
The rules for this competition are quite simple. A 10-foot-by-10-foot flat area is
identified, preferably with some physical boundary. Each contestant will be given a
maximum of five minutes in this area to show off what their robot can do. The robot's
contestant can talk through the various capabilities and features of the robot. As always,
any robot that could damage the area or pose a danger to the public will not be allowed.
Robots need not be autonomous, but it is encouraged. Judging will be determined by the
audience, either indicated by clapping (the loudest determined by the judge), or some
other voting mechanism.

CONTEST#2: LINE FOLLOWING

Objective
To build an autonomous robot that begins in Area "A" (at position "S"), travels to Area
"B" (completely via the line), then travels to the Area "C" (completely via the line), then
returns to the Area "A" (at position "F"). The robot that does this in the least amount of
time (including bonuses) wins. The robot must enter areas "B" and "C" to qualify. The
exact layout of the course will not be known until contest day, but it will have the three
areas previously described.

Skills Tested
The ability to recognize a navigational aid (the line) and use it to reach the goal.

Page 336 · Robotics with the Boe-Bot

Maximum Time to Complete Course
Four minutes.

Example Course
All measurements in the example course are approximate. There is a solid line dividing
Area "A" from Area "T" at position "F.” This indicates where the course ends. The line is
black, approximately 2.25 inches wide and spaced approximately two feet from the walls.
All curves have a radius of at least one foot and at most three feet. The walls are 3 1/2
inches high and surround the course. The floor is white and made of either paper or
Dupont Tyvek®. Tyvek is a strong plastic used in mailing envelopes and house
construction.

Positions "S" and "F" are merely for illustration and are not precise locations. A
Competitor may place the robot anywhere in Area "A,” facing in any direction when
starting. The robot must be completely within Area "A.” Areas "A,” "B" and "C" are not
colored red on the actual course.

Figure H-1
Sample Contest
Course

 Appendix H: Boe-Bot Navigation Contests · Page 337

Scoring
Each contestant’s score is calculated by taking the time needed to complete the course (in
seconds) minus 10% for each "accomplishment." The contestant with the lowest score
wins.

Table H-1: Line Following Scoring

Accomplished Percent Deducted
Stops in area A after reaching B and C 10%
Does not touch any walls 10%
Starts on command 10%

("Starts on command" means the robot starts with an external, non-tactile command. This
could, for example, be a sound or light command.)

CONTEST#3: MAZE FOLLOWING

Purpose
The grand maze is intended to present a test of navigational skills by an autonomous
robot. The scoring is done in such a way as to favor robots which are either brutally fast
or which can learn the maze after one pass. The object is for a robot, which is set down at
the entrance of the maze, to find its way through the maze and reach the exit in the least
amount of time.

Physical Characteristics
The maze is constructed of 3/4" shop-grade plywood. The walls are approximately 24
inches high, and are painted in primary colors with glossy paint. The walls are set on a
grid with 24-inch spacing. Due to the thickness of the plywood and limitations in
accuracy, the hallways may be as narrow as 22 inches. The maze can be up to 20-feet
square, but may be smaller, depending on the space available for the event.

The maze will be set up on either industrial-type carpet or hard floor (depending on
where the event is held). The maze will be under cover, so your robot does not have to be
rain proof; however, it may be exposed to various temperatures, wind, and lighting

Page 338 · Robotics with the Boe-Bot

conditions. The maze is a classical two-dimensional proper maze: there is a single path
from the start to the finish and there are no islands in the maze. Both the entrance and exit
are located on outside walls. Proper mazes can be solved by following either the left wall
or the right wall. The maze is carefully designed so that there is no advantage if you
follow the left wall or the right wall.

Robot Limitations
The main limit on the robot is that it be autonomous: once started by the owner or
handler, no interaction is allowed until the robot emerges from the exit, or it becomes
hopelessly stuck. Obviously the robot needs to be small enough to fit within the walls of
the maze. It may touch the walls, but may not move the walls to its advantage -no
bulldozers. The judges may disqualify a robot which appears to be moving the walls
excessively. The robot must not damage either the walls of the maze, nor the floor. Any
form of power is allowed as long as local laws do not require hearing protection in its
presence or place any other limitations on it.

Scoring
Each robot is to be run through the maze three times. The robot with the lowest single
time is the winner. The maximum time allowed per run is 10 minutes. If a robot cannot
finish in that amount of time, the run is stopped and the robot receives a time of 10
minutes. If no robot succeeds in finding the exit of the maze, the one that made it the
farthest will be declared the winner, as determined by the contest's judge.

Logistics
Each robot will make one run, proceeding until all robots have attempted the maze. Each
robot then does a second run through the maze, then the robots all do the third run. The
judge will allow some discretion if a contestant must delay their run due to technical
difficulties. A robot may remember what it found on a previous run to try to improve its
time (mapping the maze on the first run), and can use this information in subsequent
runs-as long as the robot does this itself. It is not allowed to manually "configure" the
robot through hardware or software as to the layout of the maze.

 Index · Page 339

Index

 - * -

*/, 325

 - < -

<>, 186

 - … -

…, 52

 - 3 -

3-position switch, 16
3-position switch, 35

 - 9 -

90° turns, 132

 - A -

alarm circuit, 107
American Standard Code for

Information Interchange, 33, 151
amps, 49
anode, 46
artificial intelligence, 182
ASCII, 33, 151

 - B -

backwards motion, 127
ballast, 242
band pass frequency, 236
Basic Analog and Digital, 56
BASIC Stamp

components, 305

insertion, 17

low power mode, 28

preventing damage, 36

BASIC Stamp Editor
Identification window, 22

Identify, 302, 303, 304

installation, 10

Software, 4

Trouble-Shooting, 301

BASIC Stamp Editor’s Help, 30
BASIC Stamp HomeWork Board, 3
BASIC Stamp HomeWork Board, 4
BASIC Stamp HomeWork Board

connecting power, 20

BASIC Stamp HomeWork Board
disconnect power, 36

BASIC Stamp HomeWork Board
components, 307

BASIC Stamp Manual, 32
batteries, 60
battery pack, 96
battery pack with tinned leads, 63
BIN1, 172
binary numbers, 22
Bit, 71
block diagram, 277
Board of Education, 3, 4

components, 306

servo header, 60

Board of Education Rev A, 59
Board of Education Rev A or B

Page 340 · Robotics with the Boe-Bot

disconnect power, 36

Board of Education Rev B, 59
components, 308

Board of Education Rev C
connecting power, 16

disconnect power, 35

breadboard. See prototyping area
brownout, 105, 109
brownout detector, 105
Byte, 71

 - C -

Cadmium Sulfide, 194
capacitor, 205

part drawing, 206

schematic symbol, 206

carriage return, 28
carrier board, 3
cathode, 46
CdS, 194
centering the servos, 67
chassis, 92
closed loop control, 277
code block, 140
color code, 309
COM port, 301
COM Port, 13
command, 28
comment, 27
Compiler directives, 24
components

BASIC Stamp, 305

BASIC Stamp HomeWork Board, 307

Board of Education, 306

Board of Education Rev B, 308

computer system requirements, 5
CON, 213
condensed EEPROM Map, 147
constants, 213
control character

CR, 28

control system, 277
cotter pin, 97
CR, 28
CRSRXY, 173
crystal, 107
current, 45, 49

 - D -

DATA, 148
Word modifier, 153

DATA directive, 152
data storage, 146
DC interference, 236
DC power supply, 301
dead reckoning, 132
DEBUG, 28
DEBUG formatters

?, 73

BIN, 172

DEC, 28

SDEC, 73

Debug Terminal, 26
DEBUGIN, 112
DEC, 28
declare, 72, 213
decrement, 138
derivative control, 277

 Index · Page 341

Detailed EEPROM Map, 151
disconnect power, 35
distance calculation, 133
DO WHILE, 148
DO...LOOP, 44
Download Progress window, 26
Duration argument, 54, 109

maximum value, 54

 - E -

EEPROM, 146
electrical tape, 255, 286
electrically erasable programmable read

only memory, 146
electromagnetic radiation, 235
electronic filter, 236
ELSE, 178
ELSEIF, 178
END, 28
ENDIF, 178
EndValue, 74

 - F -

F, 205
farad, 205
feedback, 279
filter sensitivity, 270
flashlight, 210
fluorescent light, 242
fluorescent light interference, 287
fluorescent lights, 237
foot-candle, 194
FOR…NEXT, 74

counting backward, 75

decrement, 75

EndValue, 74

StartValue, 74

STEP StepValue, 75

forward motion, 124
Freq1 argument, 109
FREQOUT, 109

Duration argument, 109

Freq1 argument, 109

Pin argument, 109

frequency, 107
frequency sweep, 270
fundamental frequency, 240

 - G -

GOSUB, 141
Guarantee, 2

 - H -

hardware adjustment, 129
harmonic frequency, 240
hertz, 109
hexadecimal, 151
HIGH, 50

PIN argument, 50

hysteresis, 277

 - I -

I/O pins
as inputs or outputs, 196

default to input, 171

Identification window, 22, 301
Identify, 302, 303, 304
IF…THEN, 178

nesting statements, 182

illuminance, 193, 194
incident light, 194

Page 342 · Robotics with the Boe-Bot

Index argument, 271
Industrial Control, 277
infrared detector, 237
infrared interference, 242
infrared led, 237
infrared spectrum, 235
initialize, 72
input register, 172
integral control, 277
IR interference, 236

 - J -

jumper, 60

 - K -

kilohertz, 109
Kp, 278

 - L -

label
subroutine, 141

LDR, 194
lead vehicle, 277
LED, 46
LED light shield assembly, 237
light dependent resistor, 193
light emitting diode, 46

anode, 46

cathode, 46

schematic symbol, 46

terminals, 46

linear approximation, 323
logic threshold, 197
LOOKUP, 271

Index argument, 271

ValueN argument, 271

Variable argument, 271

LOW, 50
PIN argument, 50

low power mode, 28
lux, 194

 - M -

math order of operations, 214, 280
measuring distance, 133
Memory Map, 147
microfarad, 205, 206
milliamps, 49
millisecond, 42

 - N -

nanofarad, 206
negative numbers, 73
Nib, 71
nodes, 208
null modem cable, 301
nylon washer, 167

 - O -

ohm, 46
omega, 46
operator, 72
operator block, 278
output adjust, 278

 - P -

Parallax Continuous Rotation servos, 41
part drawing

capacitor, 206

LED, 46

photoresistor, 193

 Index · Page 343

piezoelectric speaker, 106

resistor, 46

PAUSE, 42
Duration argument, 42

PBASIC, 1
variables, 71

PBASIC commands
DEBUG, 28

DEBUGIN, 112

DO WHILE, 148

DO...LOOP, 44

ELSE, 178

ELSEIF, 178

END, 28

ENDIF, 178

FOR…NEXT, 74

FREQOUT, 109

GOSUB, 141

HIGH, 50

IF…THEN, 178

LOOKUP, 271

LOW, 50

PAUSE, 42

PULSOUT, 54

RCTIME, 209

READ, 148

RETURN, 140

SELECT...CASE...ENDSELECT, 149

STOP, 248

PBASIC directive, 28
PBASIC directives

CON, 213

DATA, 148

PBASIC, 28

Stamp, 28

PBASIC operators
*/, 325

<>, 186

photoresistor, 193, 194
calibration, 323

part drawing, 193

schematic symbol, 193

photoresistor voltage divider
troubleshooting, 199

picofarad, 206
piezoelectric crystal, 107
piezoelectric element, 107
piezoelectric speaker, 106

part drawing, 106

schematic symbol, 106

piezospeaker, 106
alarm circuit, 107

Pin argument, 50, 109
pivoting motion, 128
plastic wheel, 98
poster board, 255
potentiometer, 70
program storage, 146

Page 344 · Robotics with the Boe-Bot

programs
saving, 26, 27

proportional constant, 278
proportional control, 277
prototyping area

input/output pins, 311

prototyping areas
socket, 311

PULSOUT, 54
Duration argument, 54

 - R -

RADAR, 235
RAM, 146
ramping, 137
random access memory, 146
RC decay time, 208
RCTIME, 209

Duration argument, 209

Pin argument, 209

State argument, 209

READ, 148
Reset button, 28
Reset button, 26
resistor, 45

color code, 309

leads, 46

light dependent resistor, 193

series resistors, 197

tolerance, 309

voltage divider, 197

RETURN, 140
rotational velocity, 115
RPM, 115
rubber band tire, 97
rubber grommet, 92, 96

 - S -

saving programs, 26, 27
schematic symbol

capacitor, 206

LED, 46

photoresistor, 193

piezoelectric speaker, 106

resistor, 46

screwdriver, 67, 91
screws, 7/8", 167
SDEC, 73
second, 42
SELECT...CASE...ENDSELECT, 149
serial cable, 13
servo

header, 60

output shafts, 98

servos
avoiding damage, 60, 69

labeling, 94

troubleshooting, 104

shadow vehicle, 277
SODAR, 235
software adjustment, 129
SONAR, 235
spacer, 167
Stamp Directive, 28

 Index · Page 345

standoffs, 92, 100, 167
start/reset indicator, 106
StartValue, 74
STEP StepValue, 75
stepValue, 75
STOP, 248
straightening the trajectory, 130
subroutine call, 140, 141
subroutine label, 141
subroutines, 140
summing junction, 278

 - T -

tactile switches, 165
tail wheel, 97
threshold voltage, 197
timing diagram, 52, 56
tokens, 146
tolerance, 309
tones, 106
tools required, 91
transfer curve, 115
Transmit windowpane, 111
troubleshooting

BASIC Stamp to PC communication, 301

electrical tape course, 289

IR detectors, 241

photoresistor voltage divider, 199

servos, 103, 104, 105

Tyvek, 336

 - U -

US232B, 14
USB to Serial Adapter, 13, 14
USB to Serial Adaptor, 5

 - V -

VAR, 71
variable, 71

declare, 72

default value, 72

initialize, 72

VAR, 71

variable sizes, 71
Vbp, 64
Vdd, 49, 311
Vin, 311
voltage, 49
voltage divider, 197
Vss, 311

 - W -

What’s a Microcontroller? Student
Guide, 2

whisker wires, 167
Word, 71
Word modifier, 153

 - Μ -

µF, 205

Parts and quantities in the various Boe-Bot Robot kits are subject to change without
notice. Parts may differ from what is shown in this picture. Please contact
stampsinclsss@parallax.com if you have any questions about your kit.

