

Applied Robotics with the
SumoBot
Student Guide

VERSION 1.0

WARRANTY
Parallax Inc. warrants its products against defects in materials and workmanship for a period of 90 days from receipt
of product. If you discover a defect, Parallax Inc. will, at its option, repair or replace the merchandise, or refund the
purchase price. Before returning the product to Parallax, call for a Return Merchandise Authorization (RMA)
number. Write the RMA number on the outside of the box used to return the merchandise to Parallax. Please enclose
the following along with the returned merchandise: your name, telephone number, shipping address, and a description
of the problem. Parallax will return your product or its replacement using the same shipping method used to ship the
product to Parallax.

14-DAY MONEY BACK GUARANTEE
If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a
full refund. Parallax Inc. will refund the purchase price of the product, excluding shipping/handling costs. This
guarantee is void if the product has been altered or damaged. See the Warranty section above for instructions on
returning a product to Parallax.

COPYRIGHTS AND TRADEMARKS

This documentation is Copyright 2005 by Parallax Inc. By downloading or obtaining a printed copy of this
documentation or software you agree that it is to be used exclusively with Parallax products. Any other uses are not
permitted and may represent a violation of Parallax copyrights, legally punishable according to Federal copyright or
intellectual property laws. Any duplication of this documentation for commercial uses is expressly prohibited by
Parallax Inc. Duplication for educational use is permitted, subject to the following Conditions of Duplication:
Parallax Inc. grants the user a conditional right to download, duplicate, and distribute this text without Parallax's
permission. This right is based on the following conditions: the text, or any portion thereof, may not be duplicated for
commercial use; it may be duplicated only for educational purposes when used solely in conjunction with Parallax
products, and the user may recover from the student only the cost of duplication.

This text is available in printed format from Parallax Inc. Because we print the text in volume, the consumer price is
often less than typical retail duplication charges.

BASIC Stamp, Stamps in Class, Board of Education, Boe-Bot SumoBot, SX-Key and Toddler are registered
trademarks of Parallax, Inc. If you decide to use registered trademarks of Parallax Inc. on your web page or in
printed material, you must state that "(registered trademark) is a registered trademark of Parallax Inc.” upon the first
appearance of the trademark name in each printed document or web page. HomeWork Board, Parallax, and the
Parallax logo are trademarks of Parallax Inc. If you decide to use trademarks of Parallax Inc. on your web page or in
printed material, you must state that "(trademark) is a trademark of Parallax Inc.”, “upon the first appearance of the
trademark name in each printed document or web page. Other brand and product names are trademarks or registered
trademarks of their respective holders.

ISBN 1-928982-34-4

DISCLAIMER OF LIABILITY
Parallax Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of
warranty, or under any legal theory, including lost profits, downtime, goodwill, damage to or replacement of
equipment or property, or any costs of recovering, reprogramming, or reproducing any data stored in or used with
Parallax products. Parallax Inc. is also not responsible for any personal damage, including that to life and health,
resulting from use of any of our products. You take full responsibility for your BASIC Stamp application, no matter
how life-threatening it may be.

INTERNET DISCUSSION LISTS
We maintain active web-based discussion forums for people interested in Parallax products. These lists are accessible
from www.parallax.com via the Support → Discussion Forums menu. These are the forums that we operate from our
web site:

• BASIC Stamps – This list is widely utilized by engineers, hobbyists and students who share their
BASIC Stamp projects and ask questions.

• Stamps in Class® – Created for educators and students, subscribers discuss the use of the Stamps in
Class curriculum in their courses. The list provides an opportunity for both students and educators to
ask questions and get answers.

• Parallax Educators –Exclusively for educators and those who contribute to the development of
Stamps in Class. Parallax created this group to obtain feedback on our curricula and to provide a
forum for educators to develop and obtain Teacher’s Guides.

• Translators – The purpose of this list is to provide a conduit between Parallax and those who
translate our documentation to languages other than English. Parallax provides editable Word
documents to our translating partners and attempts to time the translations to coordinate with our
publications.

• Robotics – Designed exclusively for Parallax robots, this forum is intended to be an open dialogue
for robotics enthusiasts. Topics include assembly, source code, expansion, and manual updates.
The Boe-Bot®, Toddler®, SumoBot®, HexCrawler and QuadCrawler robots are discussed here.

• SX Microcontrollers and SX-Key – Discussion of programming the SX microcontroller with
Parallax assembly language SX – Key® tools and 3rd party BASIC and C compilers.

• Javelin Stamp – Discussion of application and design using the Javelin Stamp, a Parallax module
that is programmed using a subset of Sun Microsystems’ Java® programming language.

ERRATA
While great effort is made to assure the accuracy of our texts, errors may still exist. If you find an error, please let us
know by sending an email to editor@parallax.com. We continually strive to improve all of our educational materials
and documentation, and frequently revise our texts. Occasionally, an errata sheet with a list of known errors and
corrections for a given text will be posted to our web site, www.parallax.com. Please check the individual product
page’s free downloads for an errata file.

Table of Contents · Page i

Table of Contents

Preface..iii
Introduction.. iii
Educator Resources.. iv
The Stamps In Class Educational Series .. iv
Foreign Translations...v
Special Contributors .. vi

Chapter #1: Mechanical Adjustments ..7
Before You Get Started ..7
Small Adjustments can Make a Big Difference ..7
ACTIVITY #1: Adjusting the Plow...8
ACTIVITY #2: Preventing Servo SlowDown...16
ACTIVITY #3: Friction Forces - Your SumoBot's Allies..22
Summary ..38

Chapter #2: EEPROM Tricks and Program Tips..41
EEPROM and Program Management ..41
ACTIVITY #1: A Closer Look at the EEPROM...42
ACTIVITY #2: Using and Reusing Variables..50
ACTIVITY #3: Program On/Off with Reset ...55
ACTIVITY #4: Pushbutton, LED, and Speaker...58
ACTIVITY #5: Pushbutton Program Mode Selection ...65
ACTIVITY #6: Integrating Programs...69
Summary ..75

Chapter #3: Sensor Management..77
Sensors - Testing, Tuning, and Storing the Results...77
ACTIVITY #1: Testing and Tuning Infrared Object Detectors78
ACTIVITY #2: A Closer Look at the QTI Line Sensors...95
ACTIVITY #3: Self Calibrating QTI Sensors...102
ACTIVITY #4: Reading the QTI Sensors More Quickly..107
ACTIVITY #5: Adding and Testing Sensors and Indicators117
ACTIVITY #6: Testing All Sensors ...122
ACTIVITY #7: Organizing Sensors with Flag Bits ..129
ACTIVITY #8: Variable Management for Large Programs.....................................132
Summary ..140

Chapter #4: Navigation Tips ..143
Sensor Flags and Navigation States ..143
ACTIVITY #1: Servo Control with Lookup Commands...144
ACTIVITY #2: Setting Your Sights on the Opponent..155

Page ii · Applied Robotics with the SumoBot

ACTIVITY #3: Using Peripheral Vision...164
ACTIVITY #4: Introduction to State Machines and Diagrams................................170
ACTIVITY #5: Search Pattern and Tawara Avoidance ..176
ACTIVITY #6: Fully Functional Sumo Example Programs.....................................186
Summary..203

Chapter #5: Debugging and Datalogging .. 207
Seeing what it Sees and Understanding what it Does ...207
ACTIVITY #1: Using the LED to Signal an Event...208
ACTIVITY #2: Conditional Compiling ...212
ACTIVITY #3: Debugging Problem Behaviors ...216
ACTIVITY #4: Datalogging a Competition Round..233
Summary..253

Appendix A: System Requirements and Parts Listing....................................... 255
Index.. 259

Preface · Page iii

Preface

INTRODUCTION
Robotics is currently enjoying ever increasing popularity with students. Especially when
it involves a contest or competition, enthusiasm runs high as participants put everything
they've got into their robots in hopes of winning top honors. With this in mind, Parallax
developed the SumoBot® Robot Competition Kit and SumoBot Competition Ring as an
inexpensive way for technology, programming, pre-engineering, and engineering classes
to hold their own robotics competitions.

This textbook guides students through a variety of electronics, programming and physics
activities as they prepare their SumoBot robots for SumoBot vs. SumoBot competition.
Each of the principles presented are of general value to robotics students, applied in such
a way as to add something to the SumoBot's competition performance.

Examples from electronics are mostly review from What's a Microcontroller and
Robotics with the Boe-Bot, the entry-level texts to the Stamps in Class series, and include
basics such as controlling LED indicators, speakers, and servos. Sensor basics include
digital devices like pushbuttons and infrared receivers as well as analog devices like the
QTI line sensors, which involve RC-decay measurements. More advanced electronic
topics such as frequency response and thresholds for RC-decay measurements are also
included.

Physics principles include introductions to time vs. distance at a constant velocity, force,
mass, acceleration, coefficients of friction, and free body diagrams. While the physics
experiments are optional, they can give students a new view to the direct benefit of
experimentation to mechanical designs.

The programming topics in this book include many of the basics, such as looping,
conditions, subroutines, saving variable space, using compiler directives, and adhering to
coding conventions for the sake of debugging and reusable code. Some unique robotics
and embedded systems topics are also included, such as sensor management, state
machine design, and datalogging to capture real-time sensor events and navigation states
for isolating robotic misbehaviors.

Page iv · Applied Robotics with the SumoBot

EDUCATOR RESOURCES
While the SumoBot Competition kit is designed for the classroom, it really provides an
excellent starting point for the robotics enthusiast who wants to have a first taste of robot
sumo wrestling. This book is written for ages 14 and up, and it contains lessons that can
be useful additions to a variety of courses, including robotics, physics, technology, and
pre-engineering.

Students as well as hobbyists working through this text are encouraged to use the public
Stamps in Class forum to collaborate on the questions, exercises and projects at the end
of each chapter. You can get there by going to forums.parallax.com, then click the
Stamps in Class link.

As of this 1.0 revision, there are no answer keys or teachers guides available. Parallax
does, however, have many resources and a support forum specially designed for
instructors to use as a collaborative tool. Instructors should contact Parallax Inc. directly
for more details.

THE STAMPS IN CLASS EDUCATIONAL SERIES
Applied Robotics with the SumoBot is considered an advanced text in the Stamps in Class
educational series, and it is recommended that the student be familiar with the concepts
introduced in Robotics with the Boe-Bot. All of the books listed are available for free
download from www.parallax.com. The versions cited below were current at the time of
this printing. Please check our web sites www.parallax.com or www.stampsinclass.com
for the latest revisions; we continually strive to improve our educational program.

Stamps in Class Student Guides:

There are two entry-level text to choose from; either one is an appropriate gateway to the
rest of the series.

“What’s a Microcontroller?”, Student Guide, Version 2.2, Parallax Inc., 2004
“Robotics with the Boe-Bot”, Student Guide, Version 2.2, Parallax Inc., 2004

For a well-rounded introduction to the design practices that go into modern devices and
machinery, continue on with the following titles:

Preface · Page v

“Applied Sensors”, Student Guide, Version 1.3, Parallax Inc., 2003
“Basic Analog and Digital”, Student Guide, Version 1.3, Parallax Inc., 2004
“Industrial Control”, Student Guide, Version 1.1, Parallax Inc., 1999

Educational Project Kits:

Elements of Digital Logic, Understanding Signals and Experiments with Renewable
Energy focus more closely on topics in electronics, while StampWorks provides a variety
of projects that are useful to hobbyists, inventors and product designers interested in
trying a variety of projects. Advanced Robotics with the Toddler further develops robotics
skills with a bipedal walking robot.

“Elements of Digital Logic”, Student Guide, Version 1.0, Parallax Inc., 2003
“Experiments with Renewable Energy”, Student Guide, Version 1.0, Parallax
Inc., 2004
“StampWorks”, Manual, Version 1.2, Parallax Inc., 2001
“Understanding Signals”, Student Guide, Version 1.0, Parallax Inc., 2003
“Advanced Robotics: with the Toddler”, Student Guide, Version 1.2, Parallax
Inc., 2003

Reference

This book is an essential reference for all Stamps in Class Student Guides. It is packed
with information on the BASIC Stamp series of microcontroller modules, our BASIC
Stamp Editor, and our PBASIC programming languages.

 “BASIC Stamp Manual”, Version 2.2, Parallax Inc., 2005

FOREIGN TRANSLATIONS
Parallax educational texts may be translated to other languages with our permission (e-
mail stampsinclass@parallax.com). If you plan on doing any translations please contact
us so we can provide the correctly-formatted MS Word documents, images, etc. We also
maintain a discussion group for Parallax translators which you may join. Go to
www.yahoogroups.com and search for “Parallax Translators.” This will ensure that you
are kept current on our frequent text revisions.

Page vi · Applied Robotics with the SumoBot

SPECIAL CONTRIBUTORS
Parallax Inc. would like to recognize the Education Team members who made this book
possible: Education and Project Manager Aristides Alvarez, Author and Engineer Andy
Lindsay, Technical Illustrator Rich Allred, Graphic Designer Jen Jacobs, and Technical
Editor Stephanie Lindsay. Special thanks also go to Ryan Clarke in Tech Support and
Kris Magri in Education for their insightful and speedy review, and, as always, to Ken
Gracey, the founder of Parallax Inc.’s Stamps in Class educational program.

Chapter 1: Mechanical Adjustments · Page 7

Chapter #1: Mechanical Adjustments

BEFORE YOU GET STARTED
To complete the activities in this book, you will need to build, program and test two
complete SumoBot robots by following the activities in the SumoBot Manual. Also, since
Applied Robotics with the SumoBot is an advanced robotics text that builds upon the
concepts introduced in Robotics with the Boe-Bot, familiarity with that material is
recommended. Robotics with the Boe-Bot is available for download from
www.parallax.com.

You will also need additional electronic components and a SumoBot Robot Competition
Ring poster. The complete robot kits and these other items are all included in the
SumoBot Robot Competition Kit. If you already own two SumoBot robots, the
components and poster can also be purchased separately from www.parallax.com. A few
common household items are also needed for some activities. Please see Appendix A for
the full parts listings.

As you go through the activities in this text, you can type all of the program code directly
into the BASIC Stamp Editor from the listings in this book, or you can download the
listed programs from the SumoBot Robot Competition Kit product page at
www.parallax.com.

SMALL ADJUSTMENTS CAN MAKE A BIG DIFFERENCE
This chapter introduces some of the mechanical adjustments you can make to your
SumoBot robot to improve its performance against other SumoBots. They include plow
adjustments, making sure your servos are running at full speed, and modifications you
can make to improve your SumoBot's grip on the ring.

When it's SumoBot vs. SumoBot, something as simple as a small adjustment to the plow
can make a big difference, as you will see in Activity #1. While motor speed doesn't
make as much of a difference, it is another factor that can impact a SumoBot's likelihood
of winning each round. Activity #2 will demonstrate how taking too much time to read
sensors between delivering control pulses to the servos can slow your SumoBot down.

Friction is that force which prevents your SumoBot from sliding. More friction between
the SumoBot's tire tread and the sumo ring means the SumoBot can push harder against

Page 8· Applied Robotics with the SumoBot

its opponent. The less friction, the more easily the SumoBot slips, which means it can no
longer push as hard.

There are two ways to increase the friction between the tire tread and sumo ring. First,
increase the SumoBot's weight, and second, find the best possible tread material. The
interesting thing about tire tread materials is that they have to be paired with the material
the sumo ring is made out of. While one material might work best in the SumoBot
Competition Ring poster, a different material might work better on a painted wood
surface. Activity #3 introduces experiments you can perform to quantify the increases in
friction from both increasing the SumoBot's weight and changing the tread materials.

ACTIVITY #1: ADJUSTING THE PLOW
One of the keys to increasing your SumoBot's chances of winning a match against
another Parallax SumoBot is adjusting the plow so that it's more likely to pass under the
opponent's plow. For example, the "winning" SumoBot in Figure 1-1 has the mechanical
advantage, with its opponent off balance. In this activity, you will repeatedly test and
adjust your SumoBots' plows while looking for the setting that will give one of your
SumoBots the best chances in the sumo ring.

 Losing Winning

Figure 1-1
SumoBots Wrestling
The one on the right
has the advantage

Parts Required

(2) Fully assembled and tested Parallax SumoBot robots
(1) SumoBot Competition Ring poster, or other sumo ring
Clear tape (not included)
Black felt-tip marker (not included)

Chapter 1: Mechanical Adjustments · Page 9

Setting up the SumoBot Competition Ring Poster

The SumoBot robot and SumoBot Robot Competition Ring poster are for indoor use
only. For best results, follow these setup instructions:

√ Unfold the SumoBot Competition Ring poster, and re-fold it the opposite way so
the creases will lie flat, then unfold it again.

√ Find a location with these characteristics:
o Indoors, and well away from direct or indirect sunlight
o Fluorescent or indirect incandescent lighting
o Hard, flat, smooth surface such as a large table or floor; not on carpet
o Surface any color other than white, and preferably not super-shiny, or

the infrared detectors may see it
o No walls or other objects within 1 meter of the outside of the ring

√ Place the ring on this surface, and secure the corners and edges with clear tape to
make it lie flat.

√ If, from frequent folding and unfolding, the creases start to appear white, touch
them up with a black felt-tip marker.

√ If possible, place some heavy books on top of the creases for a couple of days to
flatten them out.

Initial Adjustments

The plow is held to the chassis by two screws shown in Figure 1-2. Each screw passes
through a slot in the plow. Adjusting the plow is a simple matter of loosening the two
screws, changing the plow's position, then retightening the screws. Each slot only has a
few millimeters of wiggle room. Even so, the slight adjustments you can make to the
plow’s height and tilt can make a big difference in performance.

√ Start by adjusting each plow so that it is flush to the sumo ring's surface along its
whole length, as shown in Figure 1-2.

Figure 1-2
Adjusting the Plow

Page 10· Applied Robotics with the SumoBot

Testing Plow Adjustments

A simple program to make each SumoBot go forward should be used to test the plows.
This eliminates the possibility of IR object detectors interfering with the SumoBot's
forward motion. For example, if one of the SumoBot's IR detectors briefly misses its
opponent, the SumoBot will hesitate and might not be going full speed when the two
SumoBots collide. It's true that this will also happen during a match, but during practice
it's best to test only one variable at a time, in this case, the plow adjustment.

Example Source Code Available

Remember, you can save yourself some typing and debugging! The example BASIC Stamp
programs printed in this text are available for free download as .bs2 source code from the
Applied Robotics with the SumoBot product page at www.parallax.com. The various
modifications and “Your Turn” programs are not provided.

√ Label both your SumoBots so that you can distinguish them. If A and B aren't

interesting enough labels, some searching on the Internet will yield names of
sumo legends as well as present stars.

√ Enter Forward100Pulses.bs2 into the BASIC Stamp Editor (listed on the next
page).

√ Load the program into both SumoBots.
√ Place both SumoBots facing each other as shown in Figure 1-3.

Figure 1-3
Facing Off on the
Shikiri Lines

Place the SumoBots
so that they are
directly facing each
other before pressing
and releasing Reset.

√ Press and release both SumoBot Reset buttons at the same time.
√ Make notes on which SumoBot appeared to be winning the match and why.

Chapter 1: Mechanical Adjustments · Page 11

√ Repeat five to ten times to be sure which SumoBot's plow adjustment has the
advantage.

√ Adjust the plow of the SumoBot that appeared to lose more often, and repeat the
test.

√ When you are confident that one of your SumoBots has a winning plow
adjustment, try lots of different adjustments on the other SumoBot to find out if
there is any better adjustment that can make it the winner.

√ When you are satisfied with your winning SumoBot's plow, leave its adjustment
as-is, and tune the other SumoBot's plow until its chances of winning/losing are
close to even.

Example Program: Forward100Pulses.bs2
' -----[Program Description]--
' Applied Robotics with the SumoBot - Forward100Pulses.bs2
' SumoBot goes forward 100 pulses after Reset button is pressed and released.
' To repeat the forward motion, press/release the Reset button twice.
'
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[I/O Definitions]---

ServoLeft PIN 13 ' Left servo connected to P13
ServoRight PIN 12 ' Right servo connected to P12

' -----[EEPROM Data]--

RunStatus DATA 0 ' Start with program not running

' -----[Variables]--

temp VAR Byte ' Temporary variable
counter VAR Byte ' FOR...NEXT loop counter

' -----[Initialization]---

DEBUG CLS ' Clear the Debug Terminal
Reset_Button:

 READ RunStatus, temp ' read current status
 temp = ~temp ' invert status
 WRITE RunStatus, temp ' save for next reset
 IF (temp > 0) THEN ' 0 -> End, 1 -> Main routine
 DEBUG "Press/release Reset..."
 END
 ENDIF

Page 12· Applied Robotics with the SumoBot

 DEBUG "Main program running...", CR ' Display program status

' -----[Main Routine]---

FOR counter = 1 TO 100 ' Deliver 100 forward pulses
 PULSOUT ServoLeft, 850
 PULSOUT ServoRight, 650
 PAUSE 20
NEXT

DEBUG "Done!", CR, ' User instructions
 "Press/release reset", CR,
 "twice to restart...", CR
END

Understanding Forward100Pulses.bs2

When you click the BASIC Stamp Editor's Run button, the program downloads to the
SumoBot's BASIC Stamp. The Reset_Button routine in the Initialization displays the
message "Press/release Reset...", then it ends the program. When you press and release
the Reset button on the SumoBot board, the same Reset_Button routine displays the
message "Main program running..." and moves on to the Main Routine and the servos
start turning. If you leave the SumoBot connected to its serial cable and press/release the
Reset button a third time, you will again see the "Press/release Reset button" prompt.
Repeat a fourth time, and the servos will run for a couple seconds.
The reason the Reset_Button routine is able to perform this function is because it
manipulates values stored in the SumoBot's EEPROM program memory. The portion of
this memory that is not used to store the program can be used to store values. While the
BASIC Stamp's RAM memory is erased whenever the power is turned off or the Reset
button is pressed and released, the EEPROM memory retains the values stored in it.
That's why the same program runs after your turn the SumoBot's power off, then back on.

The ability to retrieve values stored in EEPROM, change them, and store them back into
EEPROM is what allows the Reset_Button routine to track whether you've pressed and
released the Reset button an odd or even number of times. The mechanics of exactly how
the Reset_Button routine does this is covered in more detail in Chapter 2, Activity #2.
For now, just keep in mind that the Reset_Button routine allows the program to
continue to the Main Routine when you have pressed and released the SumoBot's Reset
button an odd number of times. That means, the first, third, fifth,... time you press and
release the Reset button, the program will continue to the Main Routine, and the servos
will turn for about 2 1/2 seconds. Whenever you have pressed/released the Reset button

Chapter 1: Mechanical Adjustments · Page 13

an even number of times, including zero, the Reset_Button routine just displays the
message prompting you to press the Reset button, then it ends the program ends.

If you have already completed Robotics with the Boe-Bot, the forward motion code in
Forward100Pulses.bs2's Main Routine should be very familiar. Although Chapter 4,
Activity #1 features a quick review of the servo control principles that were introduced in
Robotics with the Boe-Bot, the information box below lists a few activities you can try to
get up to speed.

Understanding How Pulses Control Servos

If you have not already worked through Robotics with the Boe-Bot v2.2, download it from
www.parallax.com, and try the following chapters and activities:

Chapter 2, Activity #6

Chapter 3, Activity #4

Chapter 4, Activity #1 to Activity #6

The servos are connected to the same I/O pins, so the example programs will run correctly
in your SumoBot. The only part that will not work is the piezospeaker, which is connected to
P4 in Robotics with the Boe-Bot. If your piezospeaker circuit is connected to P1, simply
update every instance of FREQOUT 4, 2000, 3000 to FREQOUT 1, 2000, 3000.

Figure 1-4 shows the servo connections you made in the SumoBot text. The left servo
connects to header X7 on the SumoBot board. The plug at the end of the servo's cable
plugs into X7 so that the black wire connects to the B pin, the red wire connects to the R
pin, and the white signal line connects to the pin labeled 13. Traces on the SumoBot
printed circuit board in turn connect the header pin labeled 13 to BASIC Stamp I/O pin
P13. The also connect the pin labeled R to Vdd, which is the board's regulated 5 V
power supply, and the pin labeled B to Vss, which is the board's ground or 0 V
connection. The right servo connects to header X6. The difference with X6 is that it
connects that servo's white signal line to BASIC Stamp I/O pin P12 instead of P13.

Page 14· Applied Robotics with the SumoBot

Figure 1-4 SumoBot Servo Connections

The instructions that make the SumoBot move forward starts with these PIN declarations:

ServoLeft PIN 13
ServoRight PIN 12

The SumoBot's left servo is connected to P13, so I/O pin P13 is given the name
ServoLeft. Likewise, P12 is connected to the right servo, so it's named ServoRight.

In order for the program to apply 100 pulses, a counter variable is declared:

counter VAR Byte

This FOR...NEXT loop delivers 100 forward pulses to the SumoBot's servos. According
to Robotics with the Boe-Bot, this loop delivers 40.65 pulses per second, so the SumoBot
will roll forward for 100 ÷ 40.65 = 2.46 seconds.

FOR counter = 1 TO 100
 PULSOUT ServoLeft, 850
 PULSOUT ServoRight, 650
 PAUSE 20
NEXT

Your Turn - Does Angle of Approach Matter?

By experimenting with different angles of approach, you might (or might not) find an
even more "winning combination". Figure 1-5 shows examples of two different
approaches. The edge of a SumoBot's plow collides with the flat of the other's (left). The
SumoBot is using a curved approach (right). They aren't necessarily better approaches,
but they are worth investigating for the sake of better understanding the relative merits
and drawbacks of each.

Chapter 1: Mechanical Adjustments · Page 15

Figure 1-5
Other Collision Paths

One SumoBot can
approach at an angle,
or even with a curved
path.

Do not adjust your plows.

The strategies presented in this book will use the head-on approach. You can modify your
programs (and the plows) to optimize for different approach angles, but wait until after
Chapter 5.

√ Test a variety of approach angles and plow intersection points with the same

full-speed-forward settings.

To test curved approaches, you will need make one of the servos turn slower than the
other. You can do this by modifying the code in the Main Routine. Simply reduce one of
the PULSOUT command's Duration arguments closer to 750. If you want it to curve
right, change PULSOUT ServoRight, 650 to PULSOUT ServoRight, 720. For a
tighter turn, try PULSOUT ServoRight, 730. PULSOUT ServoRight, 735 will make
the turn tighter still. For a wider turn, try PULSOUT ServoRight, 715, or even PULSOUT
ServoRight, 710.

You can repeat this for left turns. First, restore the right servo to PULSOUT ServoRight,
650. Then, change the left servo's control signal to PULSOUT ServoLeft, 780. The
same adjustment pattern applies for the left servo. For tighter turns, adjust the PULSOUT
commands Duration argument closer to 750, and for wider turns adjust it closer to 850.

√ Experiment with a curved approach with one SumoBot and a straight approach
with the other.

√ Also experiment with curved vs. curved.

Page 16· Applied Robotics with the SumoBot

A notebook for your observations - keep notes on the various results you observe for
developing wrestling strategies.

ACTIVITY #2: PREVENTING SERVO SLOWDOWN
A SumoBot that executes certain maneuvers more quickly will have an edge over a
slower opponent. One of the things that can slow your SumoBot down is trying to read
too many sensors between servo pulses. This activity examines how much time your
SumoBot can actually take between servo pulses before it starts to slow down. Later
activities will introduce ways to reduce the time it takes to read certain sensors.

Maximizing speed and strength

In robotics clubs, competitors often rely on new servo gear sets or DC motors along with
hobby RC batteries to optimize their competition robot for speed and brute force.

Parts Required

(2) Parallax SumoBot robots
(8) New 1.5 volt AA batteries - same brand and type

Top Speed vs. Low Time

The high time of both pulse trains in Figure 1-6 control servo speed and direction.
Because both pulse trains have high times of 1.7 ms, either pulse train will make a servo
turn full speed counterclockwise. The problem is that full speed for a servo with 40 ms
between pulses isn't quite as fast as the full speed for a servo with 20 ms between pulses.
For example, the servo might turn 53 RPM with 20 ms pauses between pulses, but only
47 RPM with 40 ms.

Chapter 1: Mechanical Adjustments · Page 17

Figure 1-6 Top Speed vs. Low Time

As mentioned earlier, taking too much time between pulses to check sensors can cause
the servos to slow down. IR object detectors don't take a very big bite out of the low time
between servo pulses. Each one only takes a couple milliseconds to read. QTI line
detectors, on the other hand, can take up to 20 milliseconds each. The time it takes a QTI
to complete its measurement depends on ambient light and how reflective the surface is.
The problem is, if both QTIs take 20 ms to read, that pushes the low time into the 40 ms
range, which means the servos will slow down, which may put your SumoBot at a
disadvantage.

In this activity, you will determine just how much time you can take between servo
pulses before the servos start to slow down. This will be an important consideration in
the sensor management chapter. One of the goals of sensor management will be to figure
out how to read as many sensors as possible between each servo pulse without exceeding
the time limit. By making a note of the maximum low time before servo slowdown in
this activity, you will have a key piece of information for the sensor management chapter.

Testing Speed vs. Low Time - How Much Does it Matter?

A SumoBot race is a good way to examine the speed difference a longer low time can
make. Simply program both SumoBots to travel forward at full speed, with different low
times. Both programs should deliver pulses in an infinite loop. Each program should
also make use of the same initialization routine from Activity #1 so that you can use the
Reset button to start and stop the race.

53 RPM

47 RPM

Page 18· Applied Robotics with the SumoBot

With a couple modifications to Forward100Pulses.bs2 from Activity #1, you'll be ready
to go.

√ Save Forward100Pulses.bs2 as ForwardLowTimeTest.bs2.
√ Add a LowTime constant declaration:

LowTime CON 20

√ Change the FOR...NEXT loop in the Main Routine to a DO...LOOP, and
substitute the LowTime constant for the 20 in the PAUSE command's Duration
argument:

DO
 PULSOUT ServoLeft, 850
 PULSOUT ServoRight, 650
 PAUSE LowTime
LOOP

It's important to use new batteries in both SumoBots. It's also best to swap programs and
re-test to make sure that one SumoBot doesn't happen to be slower than the other. This
can be especially common in the classroom, where servos may have been subject do
differing levels of wear and tear over time.

Example Program: ForwardLowTimeTest.bs2

√ Load fresh alkaline batteries into both SumoBots.
√ Enter and download ForwardLowTimeTest.bs2 to SumoBot A.
√ Change the LowTime CON directive from 20 to 40.
√ Download the modified program into SumoBot B.
√ Set them on a flat surface for the race.
√ Press/release both Reset buttons at the same time to start the race.
√ Follow the SumoBots for 3 seconds, then press/release the Reset buttons again to

end the race.
√ Measure the distance each SumoBot traveled, and make a note of it.
√ Divide the distance by 3 to calculate each SumoBot's speed in distance per

second.
√ Swap the programs so that SumoBot B now has the program with 20 ms pauses

and SumoBot A has the program with 40 ms pauses.
√ Repeat the race and measurement.

Chapter 1: Mechanical Adjustments · Page 19

√ Compare the results of the two trials and determine which program gives the
SumoBot better performance.

' -----[Program Description]--
' Applied Robotics with the SumoBot - ForwardLowTimeTest.bs2
' SumoBot goes forward indefinitely. Use the Reset button to start and stop
' the forward motion.
'
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[I/O Definitions]---

ServoLeft PIN 13 ' Left servo connected to P13
ServoRight PIN 12 ' Right servo connected to P12

' -----[EEPROM Data]--

RunStatus DATA 0 ' Start with program not running

' -----[Constants]--

LowTime CON 20 ' Try 1 SumoBot with 20 ms pulses
 ' Try the other with 40 ms pulses

' -----[Variables]--

temp VAR Byte ' Temporary variable
counter VAR Byte ' FOR...NEXT loop counter

' -----[Initialization]---

DEBUG CLS ' Clear the Debug Terminal

READ RunStatus, temp ' read current status
temp = ~temp ' invert status
WRITE RunStatus, temp ' save for next reset
IF (temp > 0) THEN ' 0 -> End, 1 -> Main routine
 DEBUG "Press/release Reset..."
 END
ENDIF

DEBUG "Main program running...", CR ' Display program status

' -----[Main Routine]---

DO ' Forward pulses indefinitely
 PULSOUT ServoLeft, 850
 PULSOUT ServoRight, 650
 PAUSE LowTime

Page 20· Applied Robotics with the SumoBot

LOOP

DEBUG "Press/release reset", CR, ' User instructions
 "twice to restart...", CR

END

Your Turn - More Pulses, Less Distance

Chapter 4, Activity #3 in Robotics with the Boe-Bot demonstrates how the amount of
time a servo turns translates to distance traveled. When there's less time between each
pulse, the program will have to send the servos more pulses to make them turn for the
same amount of time. This can make a huge difference in certain maneuvers, especially
distance and turns. Let's take a closer look at turns. If the low time between pulses is cut
in half, it means you have to deliver around twice as many pulses to execute the same
maneuver.

√ Save ForwardLowTimeTest.bs2 as ForwardLowTimeTestYourTurn.bs2
√ Set the LowTime CON directive to 40.
√ Replace the DO...LOOP in the Main Routine with this:

For counter = 1 to 15 ' Deliver 15 left turn pulses
 PULSOUT ServoLeft, 850
 PULSOUT ServoRight, 850
 PAUSE LowTime
NEXT

√ Download the modified program to SumoBot A.

√ Set the LowTime CON directive to 20.
√ Modify the Main Routine again, this time doubling the number in the

FOR...NEXT loop's EndValue:

FOR counter = 1 to 30 ' Deliver 30 left turn pulses
 PULSOUT ServoLeft, 850
 PULSOUT ServoRight, 850
 PAUSE LowTime
NEXT

√ Download the modified program to SumoBot B.

Chapter 1: Mechanical Adjustments · Page 21

The distance traveled will not be exactly the same because the servos don't turn as fast
with 40 ms pauses. This means that you'll probably have to use a little less than twice as
many pulses with 20 ms pauses to match the distance of the program with 40 ms pulses.

√ Tune the EndValue in the FOR...NEXT loop with the 20 ms pauses to get as
close as possible to the distance traveled with 40 ms pauses.

How Much Time Can the SumoBot Take between Pulses?

ForwardLowTimeTest.bs2 can also be used to determine the maximum PAUSE Duration
between pulses before servo slowdown sets in. You can do this by measuring a servo's
speed with a 20 ms low time, then again with a 21 ms low time, then 22 ms, and so on.

√ Slip a jumper wire under one of the rubber band tires as shown in Figure 1-7.
This will serve as a marker for counting wheel revolutions.

Figure 1-7
Jumper Wire Marker
under Tire Tread

√ Start over with an unmodified version of ForwardLowTimeTest.bs2.
√ Begin with the LowTime constant set to 20, and run the program.
√ Press/release the Reset button to start the servos, and start counting revolutions.
√ Press/release the Reset button 10 seconds later, and make a note of how many

revolutions the wheel turned.
√ Multiply this value by 6 to calculate the servo's rotational speed in RPM. For

example, if the servo turned 8.75 revolutions in 10 seconds, the servo is turning
at 52.5 RPM:

√ Change the LowTime constant to 21.

RPM52.5
minute

srevolution52.5
minute
seconds60

seconds10
srevolution8.75 ==×

Page 22· Applied Robotics with the SumoBot

√ Run the modified program.
√ Repeat the 10 second measurement and record the servo speed.
√ Keep increasing the LowTime constant and measuring servo speed until you note

obvious speed decay.
√ Record the maximum LowTime value you can use without slowing down your

SumoBot in your notes for future reference.

Your Turn - Wheel Rotation Speed Measurements

You can also calculate the percent speed reduction for a given pause time. Here's an
example of how to compare the percent speed reduction between programs with 20 and
40 ms pause times. Start by dividing the wheel's rotational speed (RPM) with 40 ms
pause times by its rotational speed (RPM) with 20 ms pause times. Subtract the
fractional value from 1, then multiply by 100%. If your result turns out to be a value like
12%, that means the SumoBot goes 12% slower with 40 ms low times.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−×=

)ms20(RPM
)ms40(RPM1%100reductionspeedPercent

√ Calculate the percent impact of 40 ms vs. 20 ms pause times on your servo's

speed.

ACTIVITY #3: FRICTION FORCES - YOUR SUMOBOT'S ALLIES
Friction between tire treads and the sumo ring surface is another performance issue that
you will likely examine and reexamine as you customize your SumoBot. There are two
areas that you can change to improve your SumoBot's traction on the sumo ring. The
first is to increase the SumoBot's mass from 354 grams up to the maximum allowed 500
grams. The second is to experiment with tire tread materials that will grip the ring better.
This activity explains some of the physics principles behind each of these strategies and
introduces tests you can perform to measure the resulting changes in your SumoBot's
ability to push harder against its opponent.

Measurements - Force Vs. Mass

Pounds and ounces are measurements of weight. Weight is the force a planet's gravity
exerts on an object. Mass, on the other hand, is a measure of how much stuff an object is
made of - a grand total of protons, neutrons, and electrons.

Chapter 1: Mechanical Adjustments · Page 23

Scales that show both ounces and grams are not uncommon, likewise with scales that
show both kilograms and pounds. They all appear to work because they are being used
on the Earth's surface. When astronauts took equipment from the earth to the moon, the
equipment weighed less because gravity on the moon isn't as strong. However, each
piece of equipment still had the same mass (total protons neutrons and electrons). Since
scales that measure mass are actually measuring mass based on earth-weight and calling
it mass, those scales would incorrectly tell you the object had less mass on the moon.

Understanding the difference between weight (force) and mass isn't just required for
space travel. There are lots of equations that involve force, mass, and acceleration that go
into the design of all things mechanical. The designs of bridges, generators, airplanes,
cars, and missiles all depend on the correct use of force and mass in a variety of
equations. If an engineer tries to use a force value where a mass value was actually
required, his/her design won't work right. Table 1-1 shows a list of forces, masses, and
accelerations in three different systems - SI, cgs, and British Engineering.

Table 1-1: Units of Force, Mass, and Acceleration
System of Units Force Mass Acceleration

System International (SI) Newton
 (N)

kilogram
(kg)

meter per second squared
(m/s2)

cgs dyne gram
(g)

centimeter per second squared
(cm/s2)

British Engineering pound
(lb) slug foot per second squared

(ft/s2)

The force exerted on an object is equal to its mass multiplied by the rate at which it
accelerates. That's (F)orce = (m)ass × (a)cceleration:

 amF ×=

Newton's second law of motion states that the acceleration of an object is directly
proportional the applied force and inversely proportional to its mass.

m
Fa =

To get from this to F=m×a, put the terms on opposite sides of the = sign, then multiply both
sides by m.

Page 24· Applied Robotics with the SumoBot

Since weight is a force, and gravity is a form of acceleration, an equation you will find
useful in your calculations is:

 gmW ×=

The acceleration due to gravity is 9.8 m/s2 in the SI system and 32 ft/s2 in the British
Engineering system.

Problem: An object has a mass of 0.75 kg, what's its weight in newtons?
Solution: Start with the equation w = mg, and figure out which system to use and which
pieces of information you already know. Also, look at Table 1-1 again. The units of your
result should be in kg×m/s2. Since the mass is in kg units, we can start with the SI
system. The acceleration due to gravity in the SI system is 9.8 m/s2. Now that we know
two pieces of the puzzle, we can calculate the third.

N35.7
s/mkg35.7

s/m8.9kg75.0
mgw

2

2

=
=

×=
=

A newton is in fact a kg m/s2. Likewise, a pound is a slug ft/s2.

Unit Conversions

There are 1000 grams in 1 kilogram. That's:

 kg1g1000 =

If you divide both sides of the equal sign by one of these values, you will have 1 =
conversion factor. For example:

 1

kg1
g1000and

g1000
kg11 ==

Chapter 1: Mechanical Adjustments · Page 25

If you measure an object's mass to be a certain number of grams, converting to kilograms
is a matter of using the conversion factor that will make the units you don't want cancel
out.

Problem: You measured your mass to be 280 g, and you want kg.
Solution: Multiply by the conversion factor with the g in the denominator.

g1000
kg11 =

It will cancel out the g in the numerator of the term you are starting with (280 g), and the
result will have units of kg.

 1 ft = 0.3048 m 1 lb = 16 oz 1 lb = 453.592 g

Problem: Your scale gives you a measurement of 8 oz, but you need kilograms for your
SI force calculations.
Solution: There isn't a single term in information box to get you from ounces to
kilograms, but we do know how many ounces are in a pound, how many grams are in a
pound, and how many grams are in a kilogram. Knowing this, you can make three
fractions, all equal to 1, for conversion.

g1000
kg11kg1g1000

lb1
g6.4531g6.453lb1

oz16
lb11oz16lb1

=→=

=→=

=→=

Next, all you have to do is multiply 8 oz by 1 three times. Look closely at the second line
of the calculation below. In this cascade of conversion factors, the oz measurements
cancel, then the lb measurements cancel, then the g measurements cancel, and you are
left with just kg units.

Page 26· Applied Robotics with the SumoBot

These unit conversions take some practice; here are some tips:

√ Find the equality with your desired result units first.
√ Make it a conversion factor with the desired units in the numerator.
√ Find equalities with units that link your starting units to your result units.
√ To make them fractions equal to 1, start by making sure that the denominator of

your first fraction cancels the units of the value you are starting with.
√ Repeat that until you get to the desired result.

Friction Forces

Figure 1-8 shows the forces at work if you try to slide an object like a block along a flat
surface like a table. The arrows are called vectors, and they indicate the magnitude and
direction of the forces applied. The (W) vector in Figure 1-8 indicates gravity's action on
the book's mass, a downward force on the table. The table responds with an equal and
opposite force, which is typically labeled (N) for normal force. In this case, the term
normal has a special meaning - it's the force that's perpendicular to the contact surface,
and it prevents the block from falling through the table. (F) is the force applied that tries
to slide the block along the table. The forces of friction between the block and the table
(fS or fk) cause the table to oppose the applied force that's trying to make the block slide.
If you're not pushing hard enough to make it slide, the force comes from static friction
(fS). If you have pushed hard enough to overcome the force of static friction and the
block starts moving, the slightly weaker force of kinetic friction (fK) takes over.

Figure 1-8
Forces Acting on an
Object

Forces of friction that
result from pushing
an object along a
level surface

kg2268.0
g1000

kg1
lb1

g6.453
oz16
lb1oz8

111oz8oz8

=

×××=

×××=

Chapter 1: Mechanical Adjustments · Page 27

Figure 1-8 also shows a close-up of the contact surfaces, where little components of the
force you apply to the block and the frictional forces are opposing each other. While
some of the frictional forces actually do come from the surface's roughness, there is also
interaction between the molecules in the two surfaces that govern frictional forces.

Free body diagrams like the one in Figure 1-9 are used to analyze the forces at work for
both static (non moving) and kinetic (moving) objects. There are two tricks to analyzing
a free body diagram. The first is to set a convention for positive directions. For example,
in Figure 1-9 the x axis is positive to the right, and the y axis is positive pointing up. The
second trick is to add the forces up in each axis direction, and set the sum equal to zero.
If a force vector is pointing in the negative direction, you are adding a negative value, in
effect subtracting.

Figure 1-9
Free Body Diagram
with Positive x and y
Axes Shown

Here is how that analysis would work for Figure 1-9. Start by setting the sum of the
forces in the x direction equal to zero:

Ff
fF

0fF
0Fx

S

S

S

=
=

=−

=∑

The Greek letter sigma Σ denotes the sum of a list of values. So, ΣFx = 0 is can be read,
"the sum of the forces in the x axis direction equals zero."

fs = F essentially states that the force of static friction is equal and opposite to the force
applied on the object. The same rule can then be applied to the force in the y axis
direction:

Page 28· Applied Robotics with the SumoBot

WN
0WN

0Fy

=
=−

=∑

N = W indicates that the normal force, N, is pushing back just as hard as the object's
weight is pushing down on the surface. This has to be true. If it wasn't, the block would
sink through the table, or maybe the table would start sinking into the earth.

Newton's Third Law can be summarized like this: if two bodies (such as the block and the
surface it's on) interact, each body exerts an equal and opposite force on the other.

The drawings of the forces acting on the block and setting the sum of all the forces equal to
zero is dictated by this law.

Coefficients of Friction

Different pairs of surfaces tend to exert different kinetic and maximum static frictional
forces. For example, if you try to slip your shoe along concrete on a sidewalk, it'll
probably resist pretty strongly. However, if there's ice on the sidewalk, your shoe will
slip right along it with barely any frictional force.

Since each pair of materials resists the applied force with different levels of fS and fK, a
term called the coefficient of friction is used to predict how much force it will take to
make one material slide along another. In the case of static friction, this coefficient, µs is
the maximum force you can apply before the object starts sliding divided by the normal
force. In the case of kinetic friction, µk is the force required to keep the object sliding,
divided by the normal force.

 N
fand

N
f K

K
Max,S

S == µµ

The Greek letter mu - µ - is commonly used for to denote coefficients of friction. µ is also a
coefficient for units such as seconds, amps, and meters (µs, µA, µm). In those cases, µ is a
different coefficient, with a value of one-one-millionth (1/1,000,000). If you are referring to the
coefficient of static friction, µS, always remember to subscript the capital S. When referring
to microseconds, it's just µs, with a lower-case 's'.

Chapter 1: Mechanical Adjustments · Page 29

To appreciate how different the coefficients of friction can be for different pairs of
materials, take a look at Table 1-2.

Table 1-2: Examples of Coefficients of Friction[3]
Materials µS µK

Rubber on Concrete 1.0 0.8
Copper on steel 0.53 0.36

Ice on ice 0.1 0.003

Strategy Consideration: The coefficient for each pair of materials is different. Let's say
your class will have a contest on a painted wood ring, but you are using the SumoBot
Competition Ring poster for practice. The tread material with the highest friction on the
poster isn't necessarily the material with the highest friction on the painted surface. If you
get the chance, test your collection of tread materials on the contest ring in advance.

Figure 1-10 shows a graph you may have seen or will likely see in a physics book at
some point. The left side of the graph shows how the frictional force responds to the
applied force while the object is at rest. As more force (F) is applied, the frictional
opposing force increases by the same amount. When the applied force is more than the
product of the coefficient of friction and the normal force, the object will start to slide.
Once the object is sliding, the left side of the graph no longer applies. Since kinetic
forces are now at work, the right side of the graph explains what happens next. The
applied force can continue to increase, but all it does is increase the object's acceleration.
Reason being, force of kinetic friction resisting the applied force just doesn't get larger
than µk×N. Any force that exceeds this value contributes to acceleration, which can be
calculated using F = m×a.

Page 30· Applied Robotics with the SumoBot

Figure 1-10 Friction vs. Applied Forces

Another Strategy Consideration

Figure 1-9 shows that the SumoBot can exert its highest force of friction just before losing
traction. After it starts slipping, it can't push as hard against its opponent because its treads
only have kinetic friction to rely on.

Problem: You had to apply 5 lb of force to make an object that weighs 10 lb start to slide
on a surface. What is the coefficient of friction?
Solution: Use the µS equation and substitute 5 lb for fS, Max and 10 lb for N.

5.0
lb10
lb5
N

f Max,S
S

=

=

=µ

Chapter 1: Mechanical Adjustments · Page 31

Coefficients of friction do not have units. A friction force is always equal to the
coefficient of friction, multiplied by the normal force. There are no units that need to cancel
each other out. For example, if you start with a normal force that's in newtons, and multiply
by a coefficient of friction, the result will be a frictional force in newtons.

Problem: It took a 700 g mass (W1) hanging from this pulley system shown in Figure 1-
11 to make a 2100 g mass (W2) start to slide. Find the coefficient of static friction, µS.

Figure 1-11
Pulley Problem

Tension in the string
applies force equal to
weight W1 to the
block on the surface.

Solution: If the system is exactly at T = fS,Max, nothing is moving yet. From Figure 1-11,
we know that T and T1 are equal and opposite:

 1TT =

The next step is to draw separate free body diagrams for each object (see Figure 1-12).
The sum of the forces for the hanging block should add up to zero:

11

11

WT
0WT

0Fy

=
=−

=∑

Page 32· Applied Robotics with the SumoBot

Figure 1-12
Individual Free Body
Diagrams

Since we already know that T = T1, we now know that T = W1. Next, calculate the sum
of the forces of the block on the table in both the x and y axis directions.

WN
0WN

0Fy

=
=−

=∑

1S

S1

S1

S

X

Wf
fW

0fW
0fT

0F

=
=

=−
=−

=∑

So, our key for solving this puzzle is that the normal force N is equal to the object's
weight, and the force of static friction fS is equal to the weight of the hanging object. We
already know the masses of both objects, and we also know that fS is the weight of W1,
and N is the weight of W. So, all that's left is to calculate the forces. To solve for this in
terms of force, first convert the weights to SI units of kg. Then, convert the masses to
newton forces, and finally, plug these values into the equation for the coefficient of
kinetic friction.

First, convert to SI units of kg:

kg1.2
g1000

kg1g2100

kg7.0
g1000

kg1g700

=×

=×

Chapter 1: Mechanical Adjustments · Page 33

Next, convert to the corresponding units of force (newtons):

N86.6
s/m8.9kg7.0f

N58.20
s/m8.9kg1.2N

mgW

2
S

2

=
×=

=
×=

=

Finally, plug these forces into the coefficient of kinetic friction equation and calculate the
result:

...333.0
N58.20
N86.6

N
fK

S

=

=

=µ

Why couldn't I have just used the ratio of the masses? For this particular problem on the
earth's surface, you can use this shortcut. The ratio of the masses does give you the correct
answer, 700/2100 = 0.333... However, you should always keep in mind that the µs and µk
are ratios of forces. While you won't encounter it in this book, the problems get more
complex when they incorporate things like thrust and a body's tendency to rotate. In
general, when the problems get more complex, you will have to be strict about the difference
between mass and force.

Coefficients of friction make predicting how much force it will take to get something to
slide really easy. The same applies for sustained sliding and the coefficient of kinetic
friction. In either case, all you have to do is multiply the normal force by the coefficient
of friction.

 NfandNf KKSS ×=×= µµ

When the surface is tilting, the normal force takes some extra calculating, but when it's
horizontal to the ground, like in Figure 1-8, the normal force is just the object's weight on
the surface. The force to start it sliding is the coefficient of friction multiplied by the
object's weight, and the force to keep it sliding is the coefficient of kinetic friction
multiplied by the object's weight.

 WfandWf KKSS ×=×= µµ

Page 34· Applied Robotics with the SumoBot

Problem: The coefficient of static friction for two surfaces is 0.1 (pretty slippery). How
much force will it take to get a 10 lb weight to start to slide if the contact surfaces are
level?

Solution: It takes 1 lb of force to start the object's slide:

lb1
lb101.0

Wf SS

=
×=
×= µ

Problem: If you increase the weight from the previous problem to 20 lb, how much force
will you need to overcome static friction?

Solution: Twice the weight means you need to apply twice the force.

lb2
lb201.0

Wf SS

=
×=
×= µ

This is the reason adding weight to your SumoBot will increase the friction force the sumo
ring exerts on it.

Parts and Equipment

A pulley and weight system will be used to test the SumoBot tread's coefficient of
friction and response to increased weight. Unless noted, these parts are not included in
the SumoBot Robot Competition Kit

(1) SumoBot (included)
(1) Sumo ring (included)
(1) String or fishing line strong enough to suspend both your SumoBots. Length

should be approximately 1 m.
(1) Scale able to measure grams or ounces
(1) Pulley and attachment hardware
(1) Disposable plastic cup
(misc) Assorted weights (nails, nuts, bolts, pennies, fishing sinkers, etc).

Chapter 1: Mechanical Adjustments · Page 35

Don't worry if you don't happen to have a gram scale or pulley and attachment. Thanks
to the popularity of calorie counting, dietary scales can be purchased at most food
markets and drug stores for under $10 (US). Pulleys and mounting hardware are also
easy to get from hardware stores for $5 or less, just ask where to find the sliding door
replacement parts. Figure 1-13 shows examples of both pieces of equipment.

Figure 1-13
Example of
Inexpensive Scale
and Pulley

Make sure the pulley turns freely! The calculations assume the pulley and string have no
effect on the system. In reality, they always do, so it's important to reduce their effects until
they become "negligible" compared to the other forces involved. The string should be light,
and the pulley and string together should offer next to no resistance. You may need to
experiment with different pulleys. Be creative, and don't limit yourself to door replacement
hardware. For example, you can build a home-made pulley with heavy coat hanger wire
and an empty thread spool.

Friction Force Calculations and Tests

Figure 1-14 shows the setup you will use to test frictional forces.

√ Weigh the SumoBot.
√ Build the system shown in Figure 1-14.

Page 36· Applied Robotics with the SumoBot

Figure 1-14
Friction Force Test

When you have constructed this setup, follow these steps.

√ Draw free body diagrams and write the equations for Figure 1-14. Use the
problem and solution with Figure 1-11 and Figure 1-12 as your guide.

√ Record the SumoBot's weight as W = _____.
√ Add weight to the cup until the SumoBot starts to slide.
√ Remove enough weight so that the SumoBot doesn't slide.
√ Add small increments of weight until the SumoBot starts to slide again.
√ Weigh the cup and its contents, and record your value as W1S = _____.
√ Remove about 1/3 of the weight from the cup.
√ Push the SumoBot to start it sliding. It should stop. If it doesn't stop, keep

removing weight until it does stop after every time you give it a starting push.
√ Add small increments of weight until you can push the SumoBot to get it started,

and it keeps sliding slowly. This indicates the applied force has only slightly
exceeded the force of kinetic friction.

√ Weigh the cup and contents, and record it as W1K = _____.

Chapter 1: Mechanical Adjustments · Page 37

√ Use your weights and the equations introduced in this activity to calculate the
coefficients of static and kinetic friction for the SumoBot tire treads and the
sumo ring surface.

√ Put the SumoBot on the scale, and add mass until the scale indicates your
SumoBot and payload is just under 500 g.

√ Repeat these tests with your 500 g SumoBot.
√ Compare the forces of friction the sumo ring exerts on the tire tread with and

without payload.
√ Remove the tire treads and repeat the experiment.

Your Turn

√ Repeat Activity #1, and test to find out if the position of the payload added to the
SumoBot can be adjusted to give it added advantage.

√ Be creative with testing different materials for tire treads. Try cutting a balloon
in half and then stretch it around each tire. How about the material in surgical
gloves? Neoprene, broccoli rubber-bands, sections of bicycle innertube, silicone
tubing, paint-on urethane, rubber cement?

Page 38· Applied Robotics with the SumoBot

SUMMARY
This chapter introduced a variety of mechanical adjustments you can make to the
SumoBot. Adjusting the plow angle is one important consideration. Managing the pause
time between servo pulses is another important consideration because it can result in
slower servo motor operation. Frictional forces are yet another important consideration.
There are two ways to increase the friction between the SumoBot's tire treads and the
competition ring. The first is to increase the SumoBot's weight. Adding mass to get it to
the maximum allowed 500 g can make a significant difference. Choosing a tire tread
material that features the highest possible coefficient of friction between the tread and
ring surfaces is a second way to increase the friction forces. These friction forces are
what will make it possible for your SumoBot to push harder against its opponent.

This chapter introduced several experimental approaches along the way. Adjusting the
SumoBot's plow involved trial and error. Testing for servo speed involved percent
difference calculations. Testing for frictional forces involved designing and building a
pulley system to test and quantify forces of static and kinetic friction between the tire
tread and sumo ring. The friction forces activity also introduced a number of physics
principles including static and kinetic friction and their coefficients. Free body diagrams
were also introduced as a way to analyze the sum of the forces acting on an object. Free
body diagrams were also applied to the SumoBot to analyze the forces involved in the
pulley experiment.

Questions

1. What does the Reset_Button routine in Forward100Pulses.bs2 do?
2. How many servo control pulses does Forward100Pulses.bs2 send to a servo

signal line?
3. How does the PULSOUT command control servo speed?
4. How is reducing the left servo speed different from reducing the right servo

speed?
5. What sensor considerations have to be made with regards to the maximum time

between servo pulses?
6. What's the equation for percent speed reduction when comparing a faster and

slower servo?
7. What's the difference between force and mass?
8. What's the SI unit of force?
9. What's the SI unit for acceleration?

Chapter 1: Mechanical Adjustments · Page 39

10. What's the British Engineering unit of mass?
11. How does force relate to mass and acceleration?
12. What's the acceleration due to gravity in SI units?
13. What is an object's weight in terms of its mass and the earth's gravity?
14. How do you apply a conversion factor to a quantity whose units you want to

convert?
15. What's a free body diagram?
16. Should a free body diagram of a block show the surface it's sliding on?
17. What does ΣFy mean?
18. What is kinetic friction?
19. What is a coefficient of static friction?
20. How do you calculate the coefficient of kinetic friction?
21. What's a normal force?
22. How can different coefficients of frictions indicate different frictional forces,

given the same weight?

Exercises

1. Write a block of code that makes your SumoBot travel in a path that curves to
the left indefinitely.

2. Modify Forward100Pulses.bs2 so that it makes the SumoBot go forward 200
pulses instead.

3. If a SumoBot's wheel makes 9.25 revolutions in 10 seconds, calculate the
wheel's rotational speed in RPM.

4. If a particular piece of code slows the servo's speed from 60 to 50 RPM,
calculate the percent speed reduction.

5. Calculate the weight of a 450 g SumoBot in newtons.
6. Calculate the weight of a 475 g SumoBot in newtons.
7. Calculate the SI mass of a SumoBot that weighs 17.12 oz.
8. Calculate the SI mass of a SumoBot that weighs 17.46 oz.
9. Calculate the force it takes to start a 10 lb rubber object sliding along a level

concrete sidewalk.
10. Calculate the force it takes to start a 5 kg rubber object sliding along a level

concrete sidewalk.
11. Calculate the force it takes to start an 8 oz steel object sliding along a level

copper surface.
12. Calculate the force it takes to start a 100 lb block of ice sliding across a frozen

lake.

Page 40· Applied Robotics with the SumoBot

13. It takes 70 lbs of force to start a 100 lb object sliding along a level surface.
Calculate the coefficient of static friction between the object and the surface.

14. It takes 28 lb of force to start a 37 lb object sliding along a level surface.
Calculate the coefficient of static friction between the object and the surface.

15. It takes 4.9 N of force to start a 1 kg object sliding along a level surface.
Calculate the coefficient of static friction between the object and the surface.

16. It takes 9.3 N of force to start a 1 kg object sliding along a level surface.
Calculate the coefficient of static friction between the object and the surface.

Projects

1. How much does 40 ms between pulses reduce the likelihood of winning a round
compared to 20 ms between pulses. Start by adjusting the plows so that each
SumoBot gets the advantage in 5 out of 10 trials. You may want to repeat 20 or
30 trials to be sure the odds are close to 50/50.

Modify Forward100Pulses.bs2 so that the SumoBots' servos turn indefinitely.
The trial should then be run long enough to give you a clear idea of which
SumoBot will win the round. You will want to see one SumoBot obviously
losing ground and getting pushed backwards by the other.

Modify a second version of Forward100Pulses.bs2 so that it runs indefinitely
with 40 ms pause times instead of 20 ms pause times. Repeat another 30 trials.
How many times did the SumoBot with 20 ms PAUSE times win? Is this a
significant or negligible increase?

2. How much advantage does a SumoBot with a payload that increases its mass to
500 g have over a SumoBot with no payload? As with Project 1, start with two
SumoBots that are equally matched for gaining plow advantage. Use
Forward100Pulses.bs2 in each SumoBot. This time, the programs should have
identical PAUSE durations. Add a payload to one of the SumoBots to increase
its mass to about 500 g. Repeat 30 trials and compare to the initial advantage.
How many times did the SumoBot with more mass win? Again, is this a
significant or negligible increase.

Chapter 2: EEPROM Tricks and Program Tips · Page 41

Chapter #2: EEPROM Tricks and Program Tips

The BASIC Stamp's EEPROM is a great tool for storing values that you don't want to get
erased. After you've stored a value to EEPROM, it doesn't matter whether the power has
been turned off or the Reset button has been pressed and released. The value will still be
there (in EEPROM) when your program needs it.

This chapter introduces some of the techniques that will be reused in later chapters for
things like self-calibrating sensors (Chapter 3) and datalogging a sumo round (Chapter 5).
This chapter also takes a closer look at how a PBASIC program can make the Reset
button function as an on/off switch for sumo wrestling mode. When used with a
pushbutton, speaker, and LED, the EEPROM programming techniques make it possible
to select between many different modes of operation, which can come in handy for
strategy changes on the fly.

This chapter also introduces some conventions that will allow you to use just a couple of
variables to do many different jobs. These conventions, along with some program design
and organization strategies, will make it possible for you to mix and match old code into
future application programs.

EEPROM AND PROGRAM MANAGEMENT
DATA directives are great tools for setting aside bytes, words, and clusters of bytes for
later use in the program. DATA directives can pre-store values in EEPROM, and they can
also give the beginning of a group of reserved EEPROM bytes a unique name that your
program can then use to always find the particular bytes it needs to do its jobs.
Regardless of whether you're logging data, calibrating sensors, or toggling between
wrestling modes, if you've arranged your EEPROM with DATA directives that have
Symbol names, it will make retrieving and storing all the values a snap.

Following common code conventions also yields a variety of benefits. For example, if
your subroutines make effective use of temporary variables for counting and
manipulating values, you'll be able to copy subroutines from old programs into new
programs and get them working with minimal trouble-shooting. Another feature that
helps when combining old and new programs is maintaining clearly defined sections, like
EEPROM Data, Variables, Main Routine, Subroutines, and so on. When integrating
parts of older programs into current programs, going through section by section greatly
simplifies the job.

Page 42· Applied Robotics with the SumoBot

As the SumoBot programs get larger and more complex, both good EEPROM
management and strict adherence to code conventions will make large and complex
programs seem easy, or at least, not nearly as hard as they might look.

ACTIVITY #1: A CLOSER LOOK AT THE EEPROM
The optional Symbol names that you can use to precede DATA directives are powerful
programming tools that make storing and accessing values much easier. Especially when
you're dealing with more than one list of stored values, Symbol names are indispensable.
This activity starts by examining the relationship between a DATA directive's Symbol
name and the values the DATA directive pre-writes to EEPROM when the program
downloads.

This activity also introduces techniques you can use to store new values in an EEPROM
byte to track how many times the Reset button has been pressed and released. In
addition, distinguishing between odd and even values as well as odd and even numbers of
resets is introduced.

Symbol Names, Addresses, and EEPROM Bytes

The BASIC Stamp 2's EEPROM is 2048 bytes. Each byte has an address that can store
either program tokens or values you tell it to store. When a program is downloaded to
EEPROM, it occupies the highest addresses, starting at address 2047, 2046, 2045, etc. If
a program is 500 bytes, it will occupy memory from EEPROM addresses 2047 to 1548.
That leaves EEPROM addresses 0 to 1547 free for storing data.

You can use DATA directives to pre-store values in available EEPROM bytes (those not
being used for program storage) at the time a program is downloaded. Once the program
is running, EEPROM bytes are not like variables in that they cannot be manipulated
directly, but READ commands can copy values stored in EEPROM to variables. After the
values are copied to variables, they can be manipulated, used for comparisons, etc, and
then WRITE commands can copy the values stored in those variables back to EEPROM.

The program SymbolNamesVsAddressContents.bs2 declares several DATA directives:

Numbers DATA 7, 20, 11, 2, 80
RunStatus DATA 0
UndefData DATA (20)
Alphabet DATA "ABCDEFG"

Chapter 2: EEPROM Tricks and Program Tips · Page 43

Figure 2-1 shows what the DATA directives will store in the EEPROM bytes with
addresses 0 to 31. It also points out the first byte address of each DATA directive with
Symbol names. Keep in mind that the BASIC Stamp Editor makes each DATA directive's
Symbol name a constant equal to the address of the first byte in the DATA directive. That
way, you can always use the Symbol name to reference the first DataItem in a given
DATA directive.

When the program is downloaded, the values 7, 20, 11, 2, and 80 get stored in EEPROM
bytes at addresses 0, 1, 2, 3, and 4. The BASIC Stamp Editor assigns the Numbers
Symbol name the constant value 0. The RunStatus DATA directive stores the value 0 in
the EEPROM byte at address 5, so RunStatus becomes the constant value 5.

UndefData sets aside 20 bytes of EEPROM for use by the program. No values are
written to those EEPROM bytes, and if values are already stored there, they won't be
overwritten. As with the rest of the DATA directives, UndefData can now be used in
place of the number 6. Since UndefData reserves 20 bytes, the Alphabet DATA
directive doesn't start until byte 26 in EEPROM. Alphabet becomes the constant value
26, and "A" is stored at address 26, "B" at address 27, and so on.

Figure 2-1 EEPROM Addresses 0 to 32

Page 44· Applied Robotics with the SumoBot

EEPROM stands for Electrically Erasable Reprogrammable Read Only Memory.

EEPROM memory is nonvolatile. That means, you can store a value in EEPROM,
disconnect power, then reconnect power, and the values you stored will still be there.

Compile-time vs. Run-time - DATA directives are processed when the BASIC Stamp Editor
compiles the program. In other words, DATA directives are processed at compile-time. The
WRITE command can change the values in EEPROM while the program is running. That's
why WRITE commands are said to be run-time commands.

Example Program - SymbolNamesVsAddressContents.bs2

This example program helps demonstrate the distinction between the DATA directive
Symbol names in and the actual data that gets stored in EEPROM bytes.

√ Review SymbolNamesVsAddressContents.bs2, and predict what it's going to
display before you run the program.

√ Enter, save, and run SymbolNamesVsAddressContents.bs2
√ Compare the output in the Debug Terminal to your predictions, and reconcile

any differences.

' Applied Robotics with the SumoBot - SymbolNamesVsAddressContents.bs2

' {$STAMP BS2}
' {$PBASIC 2.5}

Numbers DATA 7, 20, 11, 2, 80
RunStatus DATA 0
UndefData DATA (20)
Alphabet DATA "ABCDEFG"

temp VAR Word
counter VAR Byte

DEBUG "Address of Numbers..........", DEC Numbers, CR

DEBUG "Value stored at Numbers....."
READ Numbers, temp
DEBUG DEC temp, CR

DEBUG "Value at (Numbers + 1)....."
READ Numbers + 1, temp
DEBUG DEC temp, CR, CR

DEBUG "Address of RunStatus........", DEC RunStatus, CR
DEBUG "Value stored at RunStatus..."

Chapter 2: EEPROM Tricks and Program Tips · Page 45

READ RunStatus, temp
DEBUG DEC temp, CR

DEBUG "Address of UndefData........", DEC UndefData, CR, CR

DEBUG "Address of Alphabet........", DEC Alphabet, CR
DEBUG "Values stored........."
FOR counter = 0 TO 6
 READ Alphabet + counter, temp
 DEBUG temp
 PAUSE 200
NEXT

END

Your Turn - Examining EEPROM Symbol name Values

Figure 2-2 shows the Memory Map window for SymbolNamesVsAddressContents.bs2.

√ Click the BASIC Stamp Editor's Run menu, then select Memory Map. The
window that appears should resemble the one shown in Figure 2-2.

Figure 2-2 Memory Map

The values of the EEPROM bytes and the addresses along the top and side of the
EEPROM map are all displayed as hexadecimal (base-16) numbers. Hexadecimal counts
like this: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10, 11, 12... To convert from
hexadecimal to decimal, multiply the rightmost digit by 160 = 1, then the 2nd digit from

Page 46· Applied Robotics with the SumoBot

the right by 161 = 16, then the third digit from the right by 162 = 256, and so on. Add up
all the products, and you've got your conversion. For example,

7C3 = (3 × 160) + (C × 161) + (7 × 162) place values
 = (3 × 1) + (C × 16) + (7 × 256) power expansion
 = (3 × 1) + (12 × 16) + (7 × 256) hex digit value
 = 3 + 192 + 1792
 = 1987

The first five bytes in the EEPROM map are the hexadecimal equivalents of list of
DataItems from the Numbers DATA directive: 7, 20, 11, 2, and 80. The fifth byte is 0
from the RunStatus DATA directive. Notice on your monitor that the next 20 bytes have
a darker green color code corresponding to undefined data. These are the EEPROM
bytes that were reserved by the UndefData DATA directive. The final list of digits starts
at hexadecimal address 1A (decimal-26). These are the ASCII codes for "A", "B", "C",
etc.

√ To view the list of characters in the last DATA directive, click the Display ASCII
checkbox in the Memory map window.

√ Look for the ABCDEFG in the Memory Map.

DATA directives build sequentially from EEPROM address 0 upward. However, you can
use the optional @Address operator to specify a particular starting address for each DATA
directive.

√ Use the optional @Address operator to move RunStatus to the 10th byte in
EEPROM like this:

RunStatus DATA @10, 0

√ View the Memory Map again and note the effect.
√ Try the example program with this modification. Because of the way the

optional Symbol names are used, it should make no difference to the way the
program behaves.

You can also use the Word modifier to store values larger than 255. The Word modifier
stores the value in EEPROM as 2 bytes. It works with the DATA directive as well as the
READ and WRITE commands.

Chapter 2: EEPROM Tricks and Program Tips · Page 47

√ Modify the RunStatus DATA directive like this:

RunStatus DATA @10, Word 500

√ Modify the command that reads the EEPROM byte at the RunStatus address
like this:

READ RunStatus, Word temp

√ Test the program to make sure it can retrieve and display 500.
√ Check the Memory Map and verify that the RunStatus DATA directive sets

aside 2 bytes instead of 1.

Changing EEPROM Values Between Resets

Let's take a closer look at how an EEPROM byte can be used to track the number of
times the SumoBot's Reset button has been pressed and released. This technique can also
be applied to counting the number of times the power to the BASIC Stamp has been
turned off and back on. You can just as easily insert the READ and WRITE commands
from the next example program into an IF...THEN statement and count sensor events.

EEPROM is not a replacement for RAM. EEPROM bytes can certainly be used to store
values, count events, and so on. However, the EEPROM on the BASIC Stamp 2 is limited
to 10-million rewrites. In contrast, variables, which reference values stored in the BASIC
Stamp's RAM memory, do not have a limitation on the number of times you can rewrite the
values they store.

If your BASIC Stamp modifies a single byte in EEPROM once a minute, that EEPROM byte
will wear out in between 19 and 20 years. At once per second, the EEPROM byte will wear
out in around 4 months.

This EepromCounter DATA directive from the next example program stores a 0 to an
EEPROM byte when the program is downloaded. The Symbol name EepromCounter
becomes a constant for the address of that byte.

EepromCounter DATA 0

A byte variable will be used to manipulate a copy of the EEPROM value.

temp VAR Byte

The program can then use the READ command to fetch the value stored in the EEPROM
byte whose address is EepromCounter, and copy it to the temp variable.

Page 48· Applied Robotics with the SumoBot

READ EepromCounter, temp

To make the program count the number of consecutive resets, simply add 1 to the value
of temp and write it back to the EEPROM byte at the EepromCounter address. Next
time the program starts, the value the READ command fetches will be higher by 1.

temp = temp + 1

WRITE EepromCounter, temp

The program can then make decisions based on the value of the temp variable. To
simplify things, the next example program subtracts 1 from temp before analyzing it with
the IF...THEN statement. Subtracting 1 from temp is not necessary, it just makes the
Your Turn section a little easier to follow.

temp = temp - 1

IF temp = 0 THEN
 DEBUG "Since download, you have", CR,
 "pressed Reset ", DEC temp,
 " times.", CR
ELSE
 DEBUG CRSRX, 11, "...", DEC temp,
 " times.", CR
ENDIF

Example Program: ResetButtonCounter.bs2

This program displays the number of times you have pressed and released the SumoBot's
Reset button after the program was downloaded.

√ Enter, save, and run ResetButtonCounter.bs2.
√ Watch the Debug Terminal as you repeatedly press/release the SumoBot's Reset

button.

' Applied Robotics with the SumoBot - ResetButtonCounter.bs2

' {$STAMP BS2}
' {$PBASIC 2.5}

EepromCounter DATA 0

temp VAR Byte

READ EepromCounter, temp

Chapter 2: EEPROM Tricks and Program Tips · Page 49

temp = temp + 1

WRITE EepromCounter, temp

temp = temp - 1

IF temp = 0 THEN
 DEBUG "Since download, you have", CR,
 "pressed Reset ", DEC temp,
 " times.", CR
ELSE
 DEBUG CRSRX, 11, "...", DEC temp,
 " times.", CR
ENDIF

END

Your Turn - Distinguishing Odd from Even

You can determine whether the Reset button has been pressed/released an odd or even
number of times by examining the temp variable as a binary number. When a variable
counts up in binary, the rightmost binary bit (1 or 0) changes every time. Here is an
example:

Decimal Binary
 0 %0000
 1 %0001
 2 %0010
 3 %0011
 4 %0100
 5 %0101
 6 %0110
 7 %0111

Aside from the fact that it changes every time, notice that the rightmost bit is always 1 for
odd numbers and 0 for even numbers. If you want your program to take action based on
whether a value is odd or even, you'll need to access this rightmost binary bit and use it in
IF...THEN statements.

PBASIC has the .BIT (pronounced "dot-bit") operator for accessing the individual binary
values in a variable. The rightmost binary value, is accessed with .BIT0. The second

Page 50· Applied Robotics with the SumoBot

binary value from the right is accessed with .BIT1; the third binary value is accessed
with .BIT2, and so on.

Here is an IF...THEN statement you can use to determine whether the value of temp is
odd or even in ResetButtonCounter.bs2:

IF temp.BIT0 = 0 THEN
 DEBUG DEC temp, " is even.", CR
ELSE
 DEBUG DEC temp, " is odd.", CR
ENDIF

√ Save ResetButtonCounter as ResetButtonCounterYourTurn.bs2
√ Insert the odd/even IF...THEN statement just before the END command in the

program.
√ Run the program, and verify that it correctly identifies each successive value of

temp as odd or even.

ACTIVITY #2: USING AND REUSING VARIABLES
The next example program demonstrates how you can do many different tasks with three
variables. It will prompt you to enter a threshold value, after which, it will prompt you to
enter up to 20 more values. To enter your values, click the Transmit windowpane shown
in Figure 2-3. Then type each value and press the enter key. When you are done entering
values, press the 0 (zero) key, then press Enter. The program will then ask you if you
want to compare the values to the threshold you entered. If you respond by pressing the
"y" key, the program will display all the values you entered and compare them to the
threshold value you entered.

Chapter 2: EEPROM Tricks and Program Tips · Page 51

Figure 2-3 Debug Terminal Transmit and Receive Windowpanes

Illustrating Many Jobs with a Few Variables

The temp and counter variables get used and re-used in the next example program. In
later example programs they will be used and re-used by many different subroutines. The
temp variable is first used in a DEBUGIN command to get a threshold variable from the
Debug Terminal's Transmit windowpane.

' Get threshold value and store it in EEPROM

DEBUG CLS,
 "Enter a threshold value", CR,
 "between 100 and 1000", CR,
 ">"

DEBUGIN DEC temp
WRITE Threshold, Word temp

Next, the temp variable is used to get successive values from the Debug Terminal and
store each in EEPROM. This is also the first (but not the last) time in the program that
the counter variable is used as a loop counter.

Transmit Windowpane
Type each value here,
then press Enter.

Receive Windowpane
Prompts you to enter
values and replies into
the Transmit
Windowpane.

Page 52· Applied Robotics with the SumoBot

DEBUG CR,
 "Enter up to 20 values", CR,
 "between 100 and 1000", CR,
 "Press 0 (zero) when done", CR,
 ">"

counter = 0
DO UNTIL counter >= 40 OR temp = 0

 DEBUGIN DEC temp
 WRITE Values + counter, Word temp
 counter = counter + 2
 DEBUG ">"

LOOP

The temp variable is then used to get a character from the Debug Terminal's Transmit
windowpane and use it to make a decision.

' Display & compare values? (y/n)

DEBUG CR, "Compare values to ", CR,
 "threshold? (y/n)", CR,
 ">"

DEBUGIN temp

' Display and compare values

IF temp = "y" OR temp = "Y" THEN

Finally, temp is used to store successive values that get fetched from EEPROM. In this
case, counter is re-used as a loop counter, and a third variable, compare, is used to store
the threshold value for comparison.

' Display and compare values

IF temp = "y" OR temp = "Y" THEN

 DEBUG CR,
 " Threshold", CR,
 "Value Comparison", CR,
 "---------- ----------", CR
 counter = 0
 READ Threshold, Word compare

 DO UNTIL counter >= 40 OR temp = 0

 READ Values + counter, Word temp

Chapter 2: EEPROM Tricks and Program Tips · Page 53

 DEBUG CRSRX, 0, DEC5 temp, CRSRX, 12
 IF temp > compare THEN
 DEBUG "greater than"
 ELSEIF temp < compare THEN
 DEBUG "less than"
 ELSE
 DEBUG "equal to"
 ENDIF
 DEBUG CR
 counter = counter + 2

 LOOP

ENDIF

Example Program: ThreeVariablesManyJobs.bs2

√ Enter, save, and run ThreeVariablesManyJobs.bs2.
√ Try feeding the program the same values shown in Figure 2-3 first. Then re-run

the program and use your own values.
√ Review the program. Pay special attention to the different kinds of jobs the

program does and how it uses and reuses temp and counter so many times.

' Applied Robotics with the SumoBot - ThreeVariablesManyJobs.bs2

' {$STAMP BS2}
' {$PBASIC 2.5}

' Variable Declarations

counter VAR Byte
temp VAR Word
compare VAR Word

' Set aside EEPROM storage space

Values DATA (40)
Threshold DATA Word 0

' Get threshold value and store it in EEPROM

DEBUG CLS,
 "Enter a threshold value", CR,
 "between 100 and 1000", CR,
 ">"

DEBUGIN DEC temp
WRITE Threshold, Word temp

Page 54· Applied Robotics with the SumoBot

' Get values and store them to EEPROM

DEBUG CR,
 "Enter up to 20 values", CR,
 "between 100 and 1000", CR,
 "Press 0 (zero) when done", CR,
 ">"

counter = 0
DO UNTIL counter >= 40 OR temp = 0

 DEBUGIN DEC temp
 WRITE Values + counter, Word temp
 counter = counter + 2
 DEBUG ">"

LOOP

' Display & compare values? (y/n)

DEBUG CR, "Compare values to ", CR,
 "threshold? (y/n)", CR,
 ">"

DEBUGIN temp

' Display and compare values

IF temp = "y" OR temp = "Y" THEN

 DEBUG CR,
 " Threshold", CR,
 "Value Comparison", CR,
 "---------- ----------", CR
 counter = 0
 READ Threshold, Word compare

 DO UNTIL counter >= 40 OR temp = 0

 READ Values + counter, Word temp
 DEBUG CRSRX, 0, DEC5 temp, CRSRX, 12
 IF temp > compare THEN
 DEBUG "greater than"
 ELSEIF temp < compare THEN
 DEBUG "less than"
 ELSE
 DEBUG "equal to"
 ENDIF
 DEBUG CR
 counter = counter + 2

Chapter 2: EEPROM Tricks and Program Tips · Page 55

 LOOP

ENDIF

DEBUG CR, "All done!"

END

ACTIVITY #3: PROGRAM ON/OFF WITH RESET
It's really handy to be able to start and halt a sumo wrestling program by pressing and
releasing the SumoBot's Reset button. This technique was first introduced in Chapter 3
of the SumoBot book. It makes it possible to press and release the Reset button to toggle
between two separate program modes: wrestle, and wait for reset.

Reset Subroutine for the New Program Design

The new Reset subroutine will still depend on an EEPROM byte with the Symbol name
RunStatus. This DATA directive will write 0 to the RunStatus address when the
program is downloaded.

' -----[EEPROM Data]--

RunStatus DATA 0 ' Run status EEPROM byte

The Reset routine from the SumoBot text was a code block in the program's
Initialization section. The programs in this text will instead call a subroutine named
Reset from the Initialization routine.

' -----[Initialization]---

GOSUB Reset ' Wait for Reset press/release
GOSUB Start_Delay ' 5 Second delay

' -----[Main Routine]---

ResetTest:

 DEBUG CR, "Done!" ' Verify we made it to main.
 END

Here is the new Reset subroutine. It uses the odd/even number technique introduced in
Activity #1 of this chapter. In this subroutine, if temp is odd (after 1 has been added to
it), it displays the "Press/release Reset button" message, and then ends the program. If

Page 56· Applied Robotics with the SumoBot

temp is even, it displays "Program running..." and returns the program to initialization
and onward from there.

' -----[Subroutine - Reset]---

Reset:

 READ RunStatus, temp ' Byte @RunStatus -> temp
 temp = temp + 1 ' Increment temp
 WRITE RunStatus, temp ' Store new value for next time

 IF (temp.BIT0 = 1) THEN ' Examine temp.BIT0
 DEBUG CLS, "Press/release Reset", CR, ' 1 -> end, 0 -> keep going
 "button..."
 END
 ELSE
 DEBUG CR, "Program running..."
 ENDIF

 RETURN

If the program has just been downloaded, the DATA directive causes a 0 to be written to
the RunStatus address. Then, READ RunStatus, temp copies the value 0 from the
EEPROM byte at the RunStatus address to the temp variable. temp = temp + 1 adds 1
to temp. The command WRITE RunStatus, temp stores this 1 back to the EEPROM
byte at the RunStatus address. Since temp.BIT0 is 1, the subroutine displays the
message "Press/release Reset button...". Then, the program ends, which in turn causes
the BASIC Stamp goes into low power mode.

At this point, there is a 1 in the EEPROM byte at the RunStatus address. When you
press and release the Reset button, READ RunStatus, temp fetches that 1 and copies it
to the temp variable. temp = temp + 1 changes that 1 to a 2, and WRITE RunStatus,
temp writes that 2 back to EEPROM. The IF...THEN statement does not end the
program this time. Since temp is now an even number, temp.BIT0 stores a 0. As a
result, the IF...THEN statement instead displays the message "Program running...".
After that, the RETURN statement sends the program back to the Initialization routine,
where it calls the next subroutine, then moves on to the Main Routine.

If you press/release the Reset button a third time, it starts again by fetching the 2 from the
RunStatus EEPROM byte, adds 1 to make it 3, then stores it back to EEPROM, and
ends the program with the "Press/release Reset button..." message. If you press/release
the Reset button a fourth time, it fetches the 3, adds 1 to make it 4, stores it, and

Chapter 2: EEPROM Tricks and Program Tips · Page 57

continues to the rest of the program. As you keep pressing the Reset button, the odd/even
pattern continues, as does the program's alternation between the "Press/release Reset..."
and "Program running..." messages.

Example Program: TestResetButton.bs2

√ Enter, save, and download TestResetButton.bs2.
√ Verify that it displays the "Press/release reset button..." message and ends the

program.
√ Press/release the Reset button. Verify that the program displays the message

"Program running...", beeps 5 times, then displays the message "Done!".
√ Press/release the Reset button a second time.
√ Verify that the program behaves the same as it did when you first downloaded it.
√ Press/release the Reset button a third time, and verify that it behaves the same

way it did the first time you did it.
√ Keep repeating a few more times to make sure the odd/even pattern continues.

' -----[Title]--
' Applied Robotics with the SumoBot - TestResetButton.bs2

' {$STAMP BS2} ' Target = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

' -----[I/O Definitions]---

LedSpeaker PIN 5 ' P5 controls LED & speaker

' -----[Variables]--

temp VAR Word ' Temporary variable
counter VAR Byte ' Loop counting variable.

' -----[EEPROM Data]--

RunStatus DATA 0 ' Run status EEPROM byte

' -----[Initialization]---

GOSUB Reset ' Wait for Reset press/release
GOSUB Start_Delay ' 5 Second delay

' -----[Main Routine]---

ResetTest:

 DEBUG CR, "Done!" ' Verify we made it to main.

Page 58· Applied Robotics with the SumoBot

 END

' -----[Subroutine - Reset]---

Reset:

 READ RunStatus, temp ' Byte @RunStatus -> temp
 temp = temp + 1 ' Increment temp
 WRITE RunStatus, temp ' Store new value for next time

 IF (temp.BIT0 = 1) THEN ' Examine temp.BIT0
 DEBUG CLS, "Press/release Reset", CR, ' 1 -> end, 0 -> keep going
 "button..."
 END
 ELSE
 DEBUG CR, "Program running..."
 ENDIF

 RETURN

' -----[Subroutine - Start_Delay]---

Start_Delay:

 FOR counter = 1 TO 5 ' 5 beeps, 1/second
 PAUSE 900
 FREQOUT LedSpeaker, 100, 3000
 NEXT

 RETURN

Your Turn

√ Try modifying the program so that it displays the number of times you have
pressed and released the Reset button.

ACTIVITY #4: PUSHBUTTON, LED, AND SPEAKER
The LED and speaker can be used as status indicators. Primarily, the beeping and LED
blinking helps you know when the SumoBot is doing its 5 second countdown. These
indicators are also useful for trouble-shooting SumoBot behavior problems. The single
pushbutton can be used along with the indicators to adjust the SumoBot's behavior
between sumo rounds and even select between different operation modes.

Chapter 2: EEPROM Tricks and Program Tips · Page 59

Building and Testing the LED and Piezospeaker Circuits

The LED and piezospeaker circuit shown in Figure 2-4 is an interesting combination of
the individual circuits. Instead of connecting the LED and piezospeaker to separate I/O
pins, both circuits are connected to the same I/O pin. This circuit can come in handy,
especially if you are running low on available I/O pins. Keep in mind that this circuit
will always light the LED when the speaker plays a tone. Likewise, if the LED is turned
on/off, the speaker will make a clicking sound. The clicking sound when the LED
changes state can actually be useful for "hearing" what's going on with the status
indicator LED during debugging sessions.

√ Remove all existing circuits from the SumoBot's white breadboard space.
√ Build the LED circuit shown in Figure 2-4 on the SumoBot's breadboard.

Parts List

(2) Jumper wires
(1) LED - red
(1) Resistor - 470 Ω (yellow-violet-brown)
(1) Piezospeaker

Figure 2-4 Parallel LED and Piezospeaker Circuits

This circuit should be tested to make sure your programs can make the LED turn on/off
as well as make the piezospeaker chime a few notes. In the next example program, you
will see this PIN directive:

Page 60· Applied Robotics with the SumoBot

LedSpeaker PIN 5

After declaring this PIN directive, the name LedSpeaker can be used as either an input or
an output. The BASIC Stamp Editor examines each command with LedSpeaker as an
argument and decides whether to send an output to the pin or store the input value sensed
by the pin. When used in the PIN argument of commands like HIGH, LOW, TOGGLE, or
FREQOUT, the BASIC Stamp Editor treats the I/O pin as an output.

Example Program: TestLedSpeaker.bs2

√ Enter, save, and run TestLedSpeaker.bs2.
√ Verify that it makes the LED rapidly turn on/off several times.
√ The piezospeaker should then play a brief tone.
√ If either of the components do not behave as expected, check your circuit and

program for errors.

Remember Each time the LED changes state, the speaker will make a clicking noise, and
each time the speaker plays, the LED will turn on.

If the LED doesn't turn on, remember from What's a Microcontroller and Robotics with the
Boe-Bot that the LED is a 1-way current valve. The LED's shorter cathode lead should be
connected to Vss; otherwise current will not flow through it.

' -----[Title]--
' Applied Robotics with the SumoBot - TestLedSpeaker.bs2
' Tests the LED and piezospeaker circuit connected to P5 by flashing
' the LED on/off 15 times, then playing a tone on the speaker.

' {$STAMP BS2} ' Target = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

' -----[I/O Definitions]---

LedSpeaker PIN 5 ' LED/speaker connected to P5

' -----[Variables]--

counter VAR Byte ' Loop counting variable

' -----[Initialization]---

DEBUG CLS, "LED flashing..." ' Prompt to check LED

' -----[Main Routine]---

Chapter 2: EEPROM Tricks and Program Tips · Page 61

FOR counter = 1 TO 30 ' Flash LED on/off 15 times
 TOGGLE LedSpeaker
 PAUSE 250
NEXT

DEBUG CR, "Speaker playing tone" ' Prompt to listen for tone

FREQOUT LedSpeaker, 2000, 3000 ' Play 3 kHz tone for 2 seconds

DEBUG CR, "All done." ' Prompt user - program finished

END

Your Turn - Playing Musical Notes

The LOOKUP command can be handy for storing brief sequences of musical notes.

√ Save a copy of the program as TestLedSpeakerYourTurn.bs2.
√ Add the variable declaration note VAR Word.
√ Replace the single FREQOUT command in TestLedSpeaker.bs2 with this

FOR...NEXT loop.

FOR counter = 0 TO 7
 LOOKUP counter, [1046, 1175, 1319,
 1397, 1580, 1760,
 1976, 2093], note
 FREQOUT 5, 500, note
 PAUSE 25
NEXT

√ Run the program and listen to the results.
√ Save the modified program.

Building and Testing the Pushbutton Circuit

Figure 2-5 shows the pushbutton circuit connected to P6. When the pushbutton is not
pressed, P6 senses ground through the 470 Ω and 10 kΩ resistors, and stores a 0 in its
IN6 input register. If the pushbutton is pressed, P6 senses the direct connection to Vdd,
and stores a 1 in IN6.

√ Build the circuit shown in Figure 2-5.

Page 62· Applied Robotics with the SumoBot

Parts List

(1) Jumper wire
(1) LED - red
(1) 1 Resistor - 470 Ω (yellow-violet-brown)
(1) 1 Resistor - 10 kΩ (brown-black-orange)

Figure 2-5 Pushbutton Circuit added to LED and Piezospeaker

A PIN directive can also be used for P6:

pBSense PIN 6

Now the name pBSense can be used in DEBUG commands to display whichever
pushbutton state the I/O pin senses. pBSense can also be used in IF...THEN and other
conditional statements that might need to make decisions based on the state of the
pushbutton. In other words, you can use DEBUG BIN1 pbSense or IF pbSense = ...
just as you would use DEBUG BIN1 IN6 and IF IN6 = ... Either way, the decision is
actually made based on the value stored in the BASIC Stamps IN6 input register, which
is where the 1 or 0 sensed by the I/O pin is actually stored. Nonetheless, using a PIN
symbol like pbSense just makes programs more convenient to write and easier to read.

The next example program should display a series of zeros while the pushbutton on the
breadboard is not pressed, and a series of ones while it is pressed. Figure 2-6 shows an
example.

Chapter 2: EEPROM Tricks and Program Tips · Page 63

Figure 2-6
Debug Terminal
Displaying the State
of pbSense

Zeros repeat every
1/10 second while the
button is not pressed.
Ones repeat while
the button is pressed.

Example Program: TestPushbutton.bs2

√ Enter, save, and run TestPushButton.bs2.
√ The Debug Terminal should display a message, and then start displaying a series

of repeating zeros every 1/10 second.
√ Watch the Debug Terminal as you press, hold, and release the pushbutton.

While you were holding the pushbutton down, the Debug Terminal should have
displayed a series of ones instead of zeros.

Troubleshooting if the Debug Terminal doesn't display 1s while you have the button
pressed, check your circuit. Also check your circuit if the program displays 1s while the
pushbutton is not pressed.

If the program starts over again instead of continuing to display binary values, make sure to
press/hold/release the button on the breadboard, not the Reset button on the SumoBot
PCB.

' -----[Title]--
' Applied Robotics with the SumoBot - TestPushButton.bs2
' Displays the state of the pushbutton sensed by P6 in the Debug Terminal.

' {$STAMP BS2} ' Target = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

' -----[I/O Definitions]---

Page 64· Applied Robotics with the SumoBot

pbSense PIN 6 ' Pushbutton connected to P6

' -----[Initialization]---

DEBUG CLS, "Press/hold/release" , CR, ' PROMPT press/release pushbutton
 "pushbutton on", CR,
 "breadboard...", CR

' -----[Main Routine]---

DO ' DO...LOOP repeats indefinitely

 DEBUG BIN1 pbSense ' Display state of pbSense (IN6)
 PAUSE 100 ' Delay for slower PCs

LOOP

Your Turn - Controlling the LED with the Pushbutton

After adding the LedSpeaker PIN directive to this program, you can make the LED
flash on/off while you hold down the pushbutton. All it takes in an IF...THEN added to
the DO...LOOP in the main routine.

√ Save a copy of the program as TestPushButtonYourTurn.bs2.
√ Add the PIN directive LedSpeaker PIN 5.
√ Replace the DO...LOOP in the Main Routine with this one:

DO ' DO...LOOP repeats indefinitely

 DEBUG BIN1 pbSense ' Display state of pbSense (IN6)

 IF pbSense = 1 THEN ' Flash LED if pbSense = 1
 TOGGLE LedSpeaker
 ELSE
 LOW LedSpeaker ' Otherwise, keep pin low
 ENDIF

 PAUSE 100 ' Delay for slower PCs

LOOP

√ Run the program and verify that you now have pushbutton control of the LED.
√ Save the modified program.
√ For fun, try modifying the program so that it plays a list of notes when you

press/release the button.

Chapter 2: EEPROM Tricks and Program Tips · Page 65

ACTIVITY #5: PUSHBUTTON PROGRAM MODE SELECTION
In some competitions, changing strategy between sumo rounds could make a big
difference in your SumoBot's standing. This activity introduces a simple technique you
can use to select the SumoBot's mode of operation based on cues from the speaker.

Selecting the Mode

In the next example program, you can enter a mode selection by pressing and holding the
pushbutton while you press and release the Reset button. After releasing the Reset
button, the program will beep once, then twice, then three times, and so on up to five
times. To select mode one, let go of the pushbutton after the speaker has beeped once.
To select mode two, keep holding the pushbutton, and instead let go after the speaker has
beeped twice. For mode three, wait for three beeps before letting go, and so on.

This program uses an EEPROM byte with a different Symbol name - ModeSelect. This
is another value that is initialized to zero when the program is downloaded, but WRITE
commands will change this value during run-time.

' -----[EEPROM Data]---

ModeSelect DATA 0 ' Program select byte

This IF...THEN statement in the Initialization routine checks to see if the pushbutton is
pressed. If it is, the Mode_Select subroutine gets called. Otherwise, the program just
moves on to the next command.

' -----[Initialization]--

IF pbSense = 1 THEN GOSUB Mode_Select ' Call Mode_Select subroutine

The Mode_Select subroutine uses a pair of nested FOR...NEXT loops. The outer loop
uses the temp variable to count from 1 to 5. The inner loop counts from 1 to temp. The
first time through the outer loop, temp is 1, so the inner loop beeps the speaker once. The
inner loop is followed by a 1-second PAUSE, after which, an IF...THEN statement checks
the pushbutton. If the pushbutton has been released, the IF...THEN statement writes the
value 1 stored by temp to the ModeSelect EEPROM byte and exits the outer loop.

If the pushbutton has not yet been released, the outer loop repeats. The second time
through the FOR...NEXT loop, temp will be 2. So, the inner loop beeps twice. After
another 1 second PAUSE, the outer loop again checks the pushbutton. If the pushbutton

Page 66· Applied Robotics with the SumoBot

has still not been released, the outer loop repeats again, the inner loop beeps three times,
and so on.

' -----[Subroutine - Mode_Select]------------------------------------

' Selects mode of operation

Mode_Select:

 DEBUG CR, ' Display user instructions
 CR, "Release pushbutton after",
 CR, "number of beeps to select",
 CR, "mode (1 to 5)."

 FOR temp = 1 TO 5 ' Cycle 5 times
 FOR counter = 1 TO temp ' temp beeps, 1/second
 PAUSE 100
 FREQOUT LedSpeaker, 100, 4000
 NEXT
 PAUSE 1000 ' 1 second between beeps
 IF pbSense = 0 THEN ' Button released?
 WRITE ModeSelect, temp ' Record mode to EEPROM
 EXIT ' Exit FOR...NEXT loop
 ENDIF
 NEXT

 RETURN

The Main Routine checks to find out which mode was selected with the command READ
ModeSelect, temp. An IF...THEN statement checks to see if the mode argument is
zero, which indicates that a mode was not selected. In this case, more instructions are
displayed in the Debug Terminal. The ELSE condition features a DEBUG command and
SELECT...CASE code block that displays the mode.

' -----[Main Routine]--

ModeTest:

 READ ModeSelect, temp ' Fetch mode from EEPROM

 IF temp = 0 THEN ' Mode = 0 -> no mode selected
 DEBUG CR, "No mode selected",
 CR, "Hold down pushbutton",
 CR, "then press/release",
 CR, "Reset button."
 ELSE ' mode <> 0 -> display mode
 DEBUG CR, CR,
 "Operating in mode ", CR ' Mode Message
 SELECT temp ' Select mode value to display

Chapter 2: EEPROM Tricks and Program Tips · Page 67

 CASE 1
 DEBUG "one"
 CASE 2
 DEBUG "two"
 CASE 3
 DEBUG "three"
 CASE 4
 DEBUG "four"
 CASE 5
 DEBUG "five"
 ENDSELECT
 ENDIF

 END ' End program

Strategy Tip

Your SumoBot programs could use this mode argument any number of ways. For example,
it might use SELECT...CASE to choose between different kinds of navigation routines that
search for opponents. On the other hand, it might just select something like a frequency to
use to make the SumoBot's IR object detectors more nearsighted, or a different number of
pulses for turning in place in the ring.

Example Program: PushbuttonMode.bs2

√ Enter, save, and run PushbuttonMode.bs2.
√ Press and hold the pushbutton as you press and release the Reset Button.
√ Wait until the speaker beeps three consecutive times before letting go of the

pushbutton.
√ Verify that the Debug Terminal indicates mode 3 has been selected.
√ Repeat and try selecting different modes.

' -----[Title]--
' Applied Robotics with the SumoBot - PushbuttonMode.bs2

' {$STAMP BS2} ' Target = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

' -----[I/O Definitions]---

pbSense PIN 6 ' Pushbutton connected to P6
LedSpeaker PIN 5 ' LED/speaker connected to P5

' -----[Variables]--

temp VAR Word ' Temporary variable
counter VAR Byte ' Loop counting variable.

Page 68· Applied Robotics with the SumoBot

' -----[EEPROM Data]--

ModeSelect DATA 0 ' Program

' -----[Initialization]---

IF pbSense = 1 THEN GOSUB Mode_Select ' Call Mode_Select subroutine

' -----[Main Routine]---

READ ModeSelect, temp ' Fetch mode from EEPROM

IF temp = 0 THEN ' Mode = 0 -> no mode selected
 DEBUG CR, "No mode selected",
 CR, "Hold down pushbutton",
 CR, "then press/release",
 CR, "Reset button."
ELSE ' mode <> 0 -> display mode
 DEBUG CR, CR, "Operating in mode ", CR ' Mode Message
 SELECT temp ' Select mode value to display
 CASE 1
 DEBUG "one"
 CASE 2
 DEBUG "two"
 CASE 3
 DEBUG "three"
 CASE 4
 DEBUG "four"
 CASE 5
 DEBUG "five"
 ENDSELECT
ENDIF

END ' End program

' -----[Subroutine - Mode_Select]---

' Selects mode of operation

Mode_Select:

 DEBUG CR, ' Display user instructions
 CR, "Release pushbutton after",
 CR, "number of beeps to select",
 CR, "mode (1 to 5)."

 FOR temp = 1 TO 5 ' Cycle 5 times
 FOR counter = 1 TO temp ' temp beeps, 1/second
 PAUSE 100
 FREQOUT LedSpeaker, 100, 4000

Chapter 2: EEPROM Tricks and Program Tips · Page 69

 NEXT
 PAUSE 1000 ' 1 second between beeps
 IF pbSense = 0 THEN ' Button released?
 WRITE ModeSelect, temp ' Record mode to EEPROM
 EXIT ' Exit FOR...NEXT loop
 ENDIF
 NEXT

 RETURN

Your Turn

√ Try modifying PushbuttonMode.bs2 so that you can choose different forward
distances to make the SumoBot travel in case you have to repeat plow
adjustments or other tests.

ACTIVITY #6: INTEGRATING PROGRAMS
PBASIC application programs typically contain the following sections:

• Title or heading information
• Compiler definitions
• I/O Definitions
• Constant declarations
• Variable declarations
• EEPROM Data
• Initialization
• Main Routine
• Subroutines

There are several reasons for all these sections. First, it helps prevent larger programs
from getting out of hand by keeping them well organized. Second, it makes the program
more readable. Third, it helps keep the elements in each program modular.

Modular program components are really important. Why? Because it makes it possible
to re-use components from a previous project in new projects. For example, let's say you
move on from SumoBots to a complex maze solving contest. If you developed lots of
valuable techniques with your SumoBot, you may want to copy selected subroutines into
the maze solving robot's program. If your code follows conventions to keep it modular,
you'll be able to do this with minimal hassle.

Page 70· Applied Robotics with the SumoBot

One of the most important ingredients of modular programs is keeping the same naming
conventions for variables. For example, in this book, temp is a temporary variable that is
used to receive and manipulate stored information and sensor measurements. After
decisions are made based on temp in one subroutine, temp is always free to be used in the
next subroutine. The same applies to the counter variable. When it's done counting in a
loop in one subroutine, it is free to count in a different loop in the next subroutine.

In this activity, you will combine two programs that were developed in this chapter:
TestResetButton.bs2 from Activity #3, and PushbuttonMode.bs2 from Activity #5.
Because both programs follow the same rules for sectioning and temporary variable use,
they will be really easy to combine. Both of these programs have clearly defined
sections (I/O Definitions, Variables, EEPROM Data, Subroutines and so on). Both
programs also follow the same naming conventions for reusable variables like temp and
counter. As you will see, these are two key ingredients for making all of your test and
application programs building blocks for future programs.

Combining the Reset and Pushbutton Mode Programs

The first step to combining TestResetButton.bs2 and PushbuttonMode.bs2 is to save a
copy of one of the programs. We'll start by saving TestResetButton.bs2 as
ResetAndStartMode.bs2. Then, we'll copy the elements from PushbuttonMode.bs2 that
were not already in TestResetButton.bs2. For example, TestResetButton.bs2 already had
the LedSpeaker PIN directive, but not the pbSense PIN directive. So, the pbSense
PIN directive will be copied from PushbuttonMode.bs2 to the new
ResetAndStartMode.bs2. After repeating this process for each section (Variables,
EEPROM Data, Initialization, etc), we'll have a complete program that performs both the
reset-start function and the mode-select function.

√ Open TestResetButton.bs2 and save it as ResetStartAndMode.bs2
√ Open PushbuttonMode.bs2.
√ Copy the pbSense PIN directive from the I/O definitions section in

PushbuttonMode.bs2, and paste it into the I/O definitions section in
ResetAndStartMode.bs2.

√ Copy the ModeSelect DATA directive from the EEPROM Data section in
PushbuttonMode.bs2, and paste it to the EEPROM Data section in
ResetAndStartMode.bs2.

Chapter 2: EEPROM Tricks and Program Tips · Page 71

While all the steps up to this point were purely mechanical, the Initialization section will
take some thought. There are several options. You can put the IF...THEN statement
from PushbuttonMode.bs2's initialization as the first, second or third step. To make the
decision, think about how the program would work if the IF...THEN is the first step.
Then, consider how it would work differently if it was the second step, and so on. An
advantage to having it as the first step is that you can set the mode regardless of whether
the main program is going to run or not, so we'll try that.

Example Program: ResetAndStartMode.bs2

√ Copy the IF pbSense = 1 THEN GOSUB Mode_Select from the Initialization
section in PushbuttonMode.bs2, and paste it to the Initialization section in
ResetAndStartMode.bs2.

√ Copy the ModeTest routine from the main routine in PushbuttonMode.bs2, and
paste it to the beginning of the Main Routine in ResetAndStartMode.bs2. The
ModeTest routine should come before the ResetTest routine.

Be careful with END commands in the main routine. Both the ModeTest and ResetTest
routines contain END statements. If you forget to delete the END command at the end of
the ModeTest routine, you'll never get through the ResetTest routine..

√ If you have not already done so, delete the END that comes before the

ResetTest routine.
√ Copy the Mode_Select subroutine from the Subroutines section in

PushbuttonMode.bs2, and paste it to the Subroutines section in
ResetAndStartMode.bs2. Pasting it as the last subroutine in
ResetAndStartMode.bs2 is fine.

√ Update the Title section so that it has the current program name and a correct
program description.

√ Compare your program to ResetAndStartMode.bs2 shown below.

' -----[Title]--
' ---> Updated <---
' Applied Robotics with the SumoBot - ResetAndStartMode.bs2
' Program constructed by copying and pasting code from
' PushbuttonMode.bs2 into TestResetButton.bs2.

' {$STAMP BS2} ' Target = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

Page 72· Applied Robotics with the SumoBot

' -----[I/O Definitions]--

LedSpeaker PIN 5 ' P5 controls LED & speaker

' ---> Pasted from PushbuttonMode.bs2 <---
pbSense PIN 6 ' Pushbutton connected to P6

' -----[Variables]--

temp VAR Word ' Temporary variable
counter VAR Byte ' Loop counting variable.

' -----[EEPROM Data]--

RunStatus DATA 0 ' Run status EEPROM byte

' ---> Pasted from PushbuttonMode.bs2 <---
ModeSelect DATA 0 ' Program

' -----[Initialization]---

' ---> Pasted from PushbuttonMode.bs2 <---
IF pbSense = 1 THEN GOSUB Mode_Select ' Call Mode_Select subroutine

GOSUB Reset ' Wait for Reset press/release
GOSUB Start_Delay ' 5 Second delay

' -----[Main Routine]---

' ---> Pasted from PushbuttonMode.bs2 (ModeTest routine)<---
ModeTest:
 READ ModeSelect, temp ' Fetch mode from EEPROM

 IF temp = 0 THEN ' Mode = 0 -> no mode selected
 DEBUG CR, "No mode selected",
 CR, "Hold down pushbutton",
 CR, "then press/release",
 CR, "Reset button."
 ELSE ' mode <> 0 -> display mode
 DEBUG CR, CR, "Operating in mode ", CR ' Mode Message
 SELECT temp ' Select mode value to display
 CASE 1
 DEBUG "one"
 CASE 2
 DEBUG "two"
 CASE 3
 DEBUG "three"
 CASE 4
 DEBUG "four"
 CASE 5

Chapter 2: EEPROM Tricks and Program Tips · Page 73

 DEBUG "five"
 ENDSELECT
 ENDIF

ResetTest:
 DEBUG CR, "Done!" ' Verify we made it to main.
 END

' -----[Subroutine - Reset]---

Reset:

 READ RunStatus, temp ' Byte @RunStatus -> temp
 temp = temp + 1 ' Increment temp
 WRITE RunStatus, temp ' Store new value for next time

 IF (temp.BIT0 = 1) THEN ' Examine temp.BIT0
 DEBUG CLS, "Press/release Reset", CR, ' 1 -> end, 0 -> keep going
 "button..."
 END
 ELSE
 DEBUG CR, "Program running..."
 ENDIF

 RETURN

' -----[Subroutine - Start_Delay]---

Start_Delay:

 FOR counter = 1 TO 5 ' 5 beeps, 1/second
 PAUSE 900
 FREQOUT LedSpeaker, 100, 3000
 NEXT

 RETURN

' ---> Pasted from PushbuttonMode.bs2 (Mode_Select subroutine) <---
' -----[Subroutine - Mode_Select]---

' Selects mode of operation

Mode_Select:

 DEBUG CR, ' Display user instructions
 CR, "Release pushbutton after",
 CR, "number of beeps to select",
 CR, "mode (1 to 5)."

 FOR temp = 1 TO 5 ' Cycle 5 times
 FOR counter = 1 TO temp ' temp beeps, 1/second

Page 74· Applied Robotics with the SumoBot

 PAUSE 100
 FREQOUT LedSpeaker, 100, 4000
 NEXT
 PAUSE 1000 ' 1 second between beeps
 IF pbSense = 0 THEN ' Button released?
 WRITE ModeSelect, temp ' Record mode to EEPROM
 EXIT ' Exit FOR...NEXT loop
 ENDIF
 NEXT

 RETURN

Your Turn - Testing the New Program

There should be two ways to set the program mode. The first is to hold down the
pushbutton as you download the program. The other is to hold the pushbutton down as
you press and release the Reset button. Since EEPROM memory is used to store the
mode, it's nonvolatile, meaning that disconnecting power or pressing and releasing Reset
cannot erase the value. You can also change the mode value by simply holding down the
pushbutton as you press and release Reset again.

√ Hold down the pushbutton (not the Reset button!) as you download
ResetAndStartMode.bs2 to your SumoBot.

√ Keep holding the button down until the SumoBot makes three consecutive beeps,
then let go.

√ Press and release the Reset button.
√ Verify that the SumoBot is operating in mode three.
√ Don't hold the pushbutton down as you press and release the Reset button a few

more times to verify that the SumoBot retains the mode three setting.
√ Press and hold the pushbutton, then press/release the Reset button.
√ Keep holding the pushbutton until after four consecutive beeps, then let go.
√ Press and release the Reset button again, and verify that the SumoBot has now

retained mode four.
√ Download the program one more time, and verify that the mode setting has been

erased (because the ModeSelect DATA directive writes a 0 to ModeSelect.
√ Try also changing ModeSelect DATA 0 to just ModeSelect DATA. That way,

the program won't overwrite the mode you chose whenever you download it.

You pretty much always have the choice of making the DATA directive pre-store values in
EEPROM, or just having them reserve the space.

Chapter 2: EEPROM Tricks and Program Tips · Page 75

SUMMARY
This chapter introduced a variety of EEPROM and program management techniques.
EEPROM management focused on declaring and naming DATA directives for all
EEPROM bytes and groups of bytes used in the program. Techniques for counting resets
were introduced for both toggling between different SumoBot program modes and for
selecting from a list of program modes. Programming focused on adhering to code
conventions for the sake of making large programs easy to build from smaller programs
in your library.

A DATA directive is a compile-time command that pre-stores values to EEPROM when
the program is downloaded. DATA directives can also be used to organize the portion of
EEPROM used for storing values. An optional Symbol name preceding the DATA
keyword can be used to give a meaningful name to the starting address of each group of
bytes. Since this Symbol name represents an address in EEPROM it simplifies READ and
WRITE operations in programs that maintain more than one group of EEPROM
DataItems.

A procedure was introduced for merging components of smaller programs into larger
programs. It depended on keeping programs organized in common sections: Title,
Compiler Directives, I/O Definitions, Constants, Variables, EEPROM Data,
Initialization, Main Routine, and Subroutines. It also depended on using a common
naming convention for temporary and counting variables.

Questions

1. How many bytes are in the BASIC Stamp 2's EEPROM memory?
2. If your program took 20 bytes, what would be the addresses of the bytes that

store the program?
3. If your program takes 1024 bytes, how many bytes are available for EEPROM

storage of values?
4. If your program has a DATA directive Values DATA 1, 2, 3, and DEBUG DEC

Values displays the value 100, what does that mean?
5. What does EEPROM stand for?
6. What's does compile-time mean?
7. What number system does the BASIC Stamp's EEPROM map use to display the

byte addresses and contents?
8. What is the hexadecimal number for decimal-15?

Page 76· Applied Robotics with the SumoBot

9. What is the decimal number for hexadecimal-E?
10. What PBASIC operator allows you to examine individual bits in larger

variables?
11. What does the IF...THEN statement in the Reset subroutine do if the temp

variable is even?
12. What variable stores the binary 1/0 values sensed by pbSense?
13. In PushbuttonMode.bs2, what how is temp used?
14. Why are PBASIC programs separated into sections?
15. What's the advantage in using the optional Symbol name for all DATA directives?

Exercises

1. Write a DATA directive that stores the prime numbers between 0 and 100. Write
a routine to display all the values.

2. Calculate the decimal equivalent of hexadecimal-3FF.
3. Write a routine that displays each bit in a byte variable.
4. Modify the SELECT...CASE statement in PushbuttonMode.bs2 so that you can

select forward travel in different distances with each mode.
5. Write a line of code that sets aside 100 consecutive EEPROM bytes as

undefended data.
6. Write a routine that captures two values from the Debug Terminal's Transmit

windowpane and compares them.

Projects

1. Use the techniques from Activity #5 to make an adjustable version of
Forward100Pulses.bs2 from Chapter 1, Activity #1. Make it so you can select
between 6 different distances ranging from 100 to 500 in steps of 100 and
infinite loop mode.

2. Modify the Reset subroutine so that you can use the Reset button to select from
four different modes of operation. Test this routine in a modified version of
Pushbuttonmode.bs2 that does not require the pushbutton.

Chapter 3: EEPROM Tricks and Program Tips · Page 77

Chapter #3: Sensor Management

The SumoBot's sensors are critical components to its performance in the Sumo ring. To
get the most out of the sensors that come in the SumoBot Robot Competition Kit, it's
important to have a better understanding of how the sensors work. Understanding each
sensor's strengths, weaknesses and pitfalls will be important ingredients to your SumoBot
strategies. It's also important to know how to write code to calibrate sensors, as well as
code to make them self-calibrating.

Preventing sensor measurements from taking too much time is important, as is preventing
them from taking too much memory. Beyond that, storing each sensor's reading in a way
that makes it easier for the program to make decisions can help you translate your
strategies into PBASIC programs. Sensor subroutines should also follow the coding
conventions introduced in the previous chapter. That way, you can mix and match
different sensors on the same robot with minimal difficulty integrating them into your
sumo wrestling code.

SENSORS - TESTING, TUNING, AND STORING THE RESULTS
This chapter will take a closer look at how the SumoBot's IR detectors work. In addition
to the basics, reliability testing, IR interference testing, and procedures for tuning IR
receiver sensitivity will be introduced. Side-mounted IR object detectors will also be
added to give your SumoBot peripheral vision.

This chapter will also take a closer look at how QTIs work and how PBASIC code for
making the QTIs self-calibrating works. In addition, techniques that limit the QTI
measurement times to prevent servo slowdown are also introduced.

By the end of the chapter, your SumoBot will be sporting four IR detectors, two QTIs,
and a pushbutton. You'll find that some of the techniques for storing sensor results that
this chapter introduces are very useful for future navigation decisions. Techniques
introduced in Chapter 2 for the naming of temporary variables and placing code in
sections will be revisited here as all the sensor readings are combined into a single
program.

Page 78· Applied Robotics with the SumoBot

ACTIVITY #1: TESTING AND TUNING INFRARED OBJECT DETECTORS
Figure 3-1 shows the SumoBot and the locations of its front left and front right infrared
(IR) object detectors. The IR LED and receivers were plugged into headers X8 and X9
and tested in the Chapter 4 of the SumoBot Manual. Testing and tuning these object
detectors can make a huge difference in your SumoBot's performance in the competition
ring. This activity introduces four important tests you should perform on your SumoBot's
IR detectors before starting a match:

1. Basic functionality
2. Sources of IR interference
3. Electrical continuity
4. Effective range

Figure 3-1 Front IR Object Detectors in the X8/X9 Headers

Parts Required

(1) SumoBot with QTIs and IR detectors mounted. See SumoBot text, Chapter 4 for
instructions.

IR Object Detection

Figure 3-2 shows schematics of the left and right IR object detectors. The left detector is
connected to header X8, and the right to X9. Each schematic is separated into three
columns. The leftmost column shows the connections that are built into the SumoBot
printed circuit board (PCB). The middle column shows the silk-screened markings next

IR Object
Detector
Front Left

IR Object
Detector

Front Right

Chapter 3: EEPROM Tricks and Program Tips · Page 79

to the header. The right column shows the components that you plugged into the header,
the IR receiver, and shielded IR LED.

Figure 3-2 IR Object Detection Circuits

Testing the front left IR detector involves sending a 38500 kHz signal to P4, then
immediately storing the value sensed at P11 in a bit variable. Here is an example of some
PBASIC code that will do this:

irLF VAR Bit
 .
 .
 .
FREQOUT 4, 1, 38500
irLF = IN11

The SumoBot's IR receivers are designed to send a low signal to the BASIC Stamp
whenever they detect infrared light flashing on/off at frequencies in the neighborhood of 38.5
kHz. 38.5 kHz is 38,500 on/off cycles per second. The IR receivers send a high signal if
they do not see IR flashing on/off at that rate.

To detect objects, the SumoBot's BASIC Stamp has to use its IR LED headlights to shine
infrared flashing on/off at 38,500 times per second. If the infrared is reflected off an object
and bounces back, the IR receiver will detect it.

The command FREQOUT Pin, Duration, 38500 actually sends a harmonic signal at
38.5 kHz. The IR receivers can't really tell the difference between a fundamental and a
harmonic. To learn more about this and other IR object detection techniques, see Chapters
7 and 8 in Robotics with the Boe-Bot.

Page 80· Applied Robotics with the SumoBot

If the IR receiver is sending 5 V to P11, it means it doesn't see any reflected infrared. If
this is the case, the BASIC Stamp stores the value 1 in the P11 input register bit IN11. If
the IR receiver does detect infrared reflected off some object, it will send 0 V to P11.
While P11 senses 0 V, IN11 stores a 0. The problem is, the IR receiver only sends that 0
V for a fraction of a millisecond after the FREQOUT command stops. After the IR
receiver's output rebounds to 5 V, IN11 stores a 1 again. That's why the command irLF
= IN11 must come immediately after the FREQOUT command. Even though IN11 will
return to 1 by the time the next PBASIC command gets executed, the value 0 gets safely
stored in the irLF (short for infrared-left-front) variable for as long as the program needs
it.

A more formal way to write the IR detection routine is to use a PIN directive, and give
P11 a name like irSenseLF, which stands for infrared-sensor-left-front. Likewise, you
can give P4 a name, like IrLedLF, which is short for infrared-light-emitting-diode-left-
front. You can then use these pin names in place of the 4 and the IN11. In addition, give
the value 38500 a constant name, like IrFreq. Your code will then look like this:

IrLedLF PIN 4
IrSenseLF PIN 11
 .
 .
 .
IrFreq CON 38500
 .
 .
 .
irLF VAR Bit
 .
 .
 .
FREQOUT IrLedLF, 1, IrFreq
irLF = IrSenseLF

The PIN directive has lots of advantages. For example, imagine you have a program that
uses the same I/O pin in 20 different places. What if you disconnect the circuit from the
I/O pin you were using and connect it to a different I/O pin? Instead of replacing 20
different references to the I/O pin, simply update the number in the PIN directive, and
the program is fixed. Another PIN directive advantage is that the BASIC Stamp Editor
looks at each command and decides whether you are using the I/O pin as an output or an
input.

Chapter 3: EEPROM Tricks and Program Tips · Page 81

The IR receivers are active-low, meaning they send a low signal to signify the active
condition (IR signal detected). When your SumoBot is dealing with lots of sensors, the
programming and trouble shooting will all be easier if they are all active-high.

The problem is this: irLF stores a 0 when an object is detected and a 1 when it is not.
Instead, we want irLF to store the opposite, a 1 when an object is detected, and a 0 when
it is not. This problem is solved by placing the invert bits operator, a tilde (~), in front of
IrSenseLF in the statement:

irLF = ~IrSenseLF

Now, if IrSenseLF stores a 1, the ~ operator inverts this value to 0 before copying it to
irLF. Likewise, if IrSenseLF stores a 0, the ~ operator inverts it to 1 before storing it in
irLF.

Testing the IR Detectors

The next example program tests the IR object detectors for basic functionality. When the
IR object detectors connected to the X8 and X9 headers are pointed straight ahead, their
detection pattern look roughly like Figure 3-3. While running
TestFrontIrObjectDetectors.bs2, the Debug Terminal should display a 1 when an object is
detected, and a 0 when it's not. In the figure, the SumoBot has detected an opponent with
the right detector, but not with its left. In later activities, you will experiment with
navigation corrections to get the opponent centered and engaged head-on.

Page 82· Applied Robotics with the SumoBot

Figure 3-3
Opponent Detected
at Front-Right

Example Program - TestFRontIrObjectDetectors.bs2

√ Enter, save, and run TestFrontIrObjectDetectors.bs2.
√ Point your SumoBot away from nearby objects. It may actually detect walls as

far as 1 to 2 m away. If your detectors are pointing slightly downward, they will
also detect the floor, so point the IR LEDs level to the ground, or even slightly
upward if needed.

√ Pass your other SumoBot across your test SumoBot's field of vision at a distance
of 10 cm. As you do so, starting from left to right, the readings displayed by the
Debug Terminal should be 00, 10, 11, 01, 00.

Trouble-Shooting

If 0 is always displayed, check your wiring and program for errors. Make sure your IR LED
is not connected with the wrong polarity. Like normal LEDs, the IR LED is a 1-way current
valve, and won't emit infrared light if it's plugged in the wrong way. The shorter of the IR
LEDs two pins is the cathode terminal, and it should be connected to Vss. If the pins have
been trimmed, you can still identify the cathode terminal by locating the flat spot on the
LED's clear plastic case. The pin closest to this flat spot is the cathode terminal.

If 1 is always displayed, try pointing your SumoBot in a direction where there are no objects
for several meters. If this doesn't work, also check your wiring and program.

Chapter 3: EEPROM Tricks and Program Tips · Page 83

' -----[Title]--
' Applied Robotics with the SumoBot - TestFrontIrObjectDetectors.bs2
' This program tests the IR object detectors mounted on the X8 and X9 headers
' on the front of the SumoBot.

' {$STAMP BS2} ' Target = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

' -----[I/O Definitions]---

IrLedLF PIN 4 ' Left IR LED connected to P4
IrSenseLF PIN 11 ' Left IR detector to P11

IrLedRF PIN 15 ' Right IR LED connected to P15
IrSenseRF PIN 14 ' Right IR detector to P14

' -----[Constants]--

IrFreq CON 38500 ' IR LED transmit frequency

' -----[Variables]--

irLF VAR Bit ' State of Left Front IR
irRF VAR Bit ' State of Right Front IR

' -----[Initialization]---

DEBUG CLS, "FRONT IR DETECTORS", CR, ' Display heading
 "Left Right", CR,
 "---- -----", CR

' -----[Main Routine]---

DO ' DO...LOOP repeats indefinitely

 FREQOUT IrLedLF, 1, IrFreq ' Left IRLED shines IR light
 irLF = ~IrSenseLF ' Save IR receiver output

 FREQOUT IrLedRF, 1, IrFreq ' Repeat for right IRLED/receiver
 irRF = ~IrSenseRF

 DEBUG CRSRX, 1, BIN1 irLF, ' Display object detect bits
 CRSRX, 9, BIN1 irRF

 PAUSE 100 ' Delay for slower PCs

LOOP

Page 84· Applied Robotics with the SumoBot

Your Turn - Headlight Adjustments

A small change in the direction the SumoBot's IR LEDs are pointing can make a huge
difference in its performance. Remember this when testing the competition code at the
end of chapter 4 and the datalogging code at the end of Chapter 5. You will probably
find yourself adjusting the direction each IR LED points to get the most consistent
detection of your opponent.

For the programs in this text, you should start by pointing the IR LEDs straight ahead.
Pointing the IR LEDs outward can cause the SumoBot to not realize its opponent is
straight in front of it because both IR detectors can't see the opponent at the same time.
Pointing the IR LEDs inward can result in the SumoBot thinking the opponent is on it's
front right, when it is in fact on its front left (and visa-versa). Pointing the IR LEDs
upward can result in missing an opponent because the headlights are too high.

One adjustment that can be useful is pointing the IR LEDs slightly downward. The angle
should be very slight, certainly not more than 5° below horizontal when viewed from the
side. When viewed from the top, the IR LEDs should still be pointing straight ahead,
there should be no detectable angle outward or inward.

The slight downward angle can be helpful during the part of a round when the SumoBots
are pushing against each other. As they push against each other, sometimes both the
SumoBots tip upward briefly. At this moment, if the IR LEDs are not tilting slightly
down, it can cause even the SumoBot with the advantage to think its opponent is no
longer in front of it. Its program might cause it to change from lunging forward to
executing a search pattern, which will in turn cause it to give up its advantage.

√ With TestFrontIrObjectDetectors.bs2, try pushing the SumoBots against each
other to create the symptom just described.

√ Try to tilt the IR LEDs so that it still sees its opponent if it has the plow
advantage (Chapter 1, Activity #1), and so that it loses sight of its opponent if it
has the plow disadvantage.

√ Make a note to yourself to revisit this issue during Chapter 4, Activity #6 and
also during Chapter 5, Activity #4.

Certain SumoBots may benefit from very slight outward or inward adjustments as well.
This again will be a trail and error experiment you can try in Chapter 4, Activity #6 and
also during Chapter 5, Activity #4.

Chapter 3: EEPROM Tricks and Program Tips · Page 85

Testing for Sources of IR Interference

Fluorescent lights have a part called a ballast built into them. The ballast is responsible
for amplifying the AC outlet voltage to a level that is high enough to make the gas inside
the glass tube fluoresce and emit light. Some of the electronic ballasts built into more
recently manufactured fluorescent lights can be a problem for the infrared detectors.
These ballasts cause the light to send off a signal that the IR receiver is sensitive to.
When the IR receiver detects this signal, it sends a low signal to the BASIC Stamp, and
the BASIC Stamp thinks an object has been detected when it really hasn't. To make
matters more confusing, certain other devices like handheld remotes and video cameras
or camcorders can also send out interfering signals.

It's best to stage your SumoBot competitions well away from fluorescent lights and other
devices that broadcast this kind of interference, either by turning off the light, or moving
the competition ring. With a few modifications to TestFrontIrObjectDetectors.bs2, you
can then use your SumoBot as an IR interference sniffer. To test and make sure the
SumoBot can indeed detect IR interferences, simply run the unmodified version of
TestFrontIrObjecDetectors.bs2 in the other SumoBot. Point the two SumoBots at each
other, and the one running the modified code should sense the IR from the other
SumoBot and sound the alarm.

The key to making an IR interference sniffer is to not send out any IR before checking
the IR receiver's output. In other words, remove the FREQOUT commands to the
IrLedLeft and IrLedRight pins. If the SumoBot's infrared headlights are off, but it the
receivers are still detecting an infrared signal in the neighborhood of 38.5 kHz, it must
mean it's coming from a source of IR interference. So, sound the alarm.

The next example program started as TestFrontIrObjectDetectors.bs2. The two most
important changes that convert TestFrontObjectDetectors.bs2 to IrInterferenceSniffer.bs2
are:

(1) removing the FREQOUT commands, and
(2) adding code that makes sounds if either of the IR receivers tell the BASIC Stamp

they detect an infrared signal.

Page 86· Applied Robotics with the SumoBot

' -----[Main Routine]--

DO ' DO...LOOP repeats indefinitely

 irLF = ~IrSenseLF ' Save IR receiver outputs
 irRF = ~IrSenseRF
 ' Sound alarm if IR detected
 IF irLF = 1 OR irRF = 1 THEN
 DEBUG "IR interference detected!!!", CR
 FOR counter = 1 TO 7
 FREQOUT LedSpeaker, 50, 4000
 PAUSE 50
 NEXT
 ENDIF

LOOP ' Repeat DO...LOOP

The modified Main Routine also necessitates a few smaller changes, like a PIN
declaration for LedSpeaker as well as a counter variable for sending a series of rapid
alarm beeps. The Initialization message in the next example program is also changed, as
are the comments at the beginning of the program.

Example Program: IrInterferenceSniffer.bs2

IrInterferenceSniffer.bs2 sounds the SumoBot's piezospeaker alarm whenever it receives
infrared signals in the neighborhood of 38.5 kHz. This could be from another SumoBot,
a handheld remote that controls a TV, a video recorder, or fluorescent lights with an
interfering ballast.

√ Make sure one of your SumoBots is running TestFrontIrObjectDetectors.bs2.
√ Disconnect that first SumoBot from the serial cable and set it aside.
√ Enter and save run IrInterferenceSniffer.bs2.
√ Download it to the second SumoBot.
√ Point the first SumoBot's IR LED headlights at the second SumoBot. The

second SumoBot's alarm should sound indicating it has detected IR interference.
√ Point the first SumoBot away from the second SumoBot, and the alarm should

stop.
√ Try walking under various fluorescent lights while pointing the second SumoBot

(running IrInterferenceSniffer.bs2) at them. Does its alarm sound? If not, that's
good. If yes, you'll want to keep your SumoBot Competition Ring well away
from those lights, or turn them off.

Chapter 3: EEPROM Tricks and Program Tips · Page 87

Always test for and eliminate sources of IR interference near your SumoBot
Competition Ring.

' -----[Title]--
' Applied Robotics with the SumoBot - IrInterferenceSniffer.bs2
' This program tests for IR interference from other fluorescent lights,
' handheld remotes, video recorders and other SumoBot robots.

' {$STAMP BS2} ' Target = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

' -----[I/O Definitions]---

IrLedLF PIN 4 ' Left IR LED connected to P4
IrSenseLF PIN 11 ' Left IR detector to P11

IrLedRF PIN 15 ' Right IR LED connected to P15
IrSenseRF PIN 14 ' Right IR detector to P14

LedSpeaker PIN 5 ' LED/speaker connected to P5

' -----[Variables]--

irLF VAR Bit ' State of Left Front IR
irRF VAR Bit ' State of Right Front IR

counter VAR Byte ' Loop counting variable

' -----[Initialization]---

DEBUG CLS, "Checking for IR interference...", CR, CR

' -----[Main Routine]---

DO ' DO...LOOP repeats indefinitely

 irLF = ~IrSenseLF ' Save IR receiver output
 irRF = ~IrSenseRF

 IF irLF = 1 OR irRF = 1 THEN
 DEBUG "IR interference detected!!!", CR
 FOR counter = 1 TO 7
 FREQOUT LedSpeaker, 50, 4000
 PAUSE 50
 NEXT
 ENDIF

LOOP

Page 88· Applied Robotics with the SumoBot

Testing for Electrical Continuity

The leads on the IR LEDs and receivers tend to be thinner than jumper wires and other
component leads. The X8 and X9 sockets on some SumoBot boards may also have
sockets with slightly larger holes than the ones in the breadboard. A resulting loose fit
could be a problem for some IR LEDs and detectors. During a match, vibration can
cause brief electrical continuity interruptions between the IR component pins and the
header sockets. This in turn can result in the SumoBot losing sight of its opponent, or
maybe never even catching a glimpse.

Electrical Continuity is when there's a continuous pathway through which current can flow.
If two conductive metals are firmly pressed against each other, it provides electrical
continuity. If the pieces of metal are separated briefly, current can no longer flow, and
electrical continuity is interrupted.

Sometimes skin oils or surface oxidation on the metal can prevent the actual conductive
parts of the metal from making contact. The act of inserting a lead into a breadboard socket
typically abrades the surfaces enough to establish electrical continuity.

Continuity Tests

√ Remove one of the IR components from either the X8 or X9 header, and make a
note of how much force you used. Did it slide right out, or did the socket kind of
gently grip the components leads and resist the component's removal?

Especially if the component slid right out, the leads will lose contact (electrical
continuity) during the jostling and vibration of a sumo match.

√ If you are unsure if the socket gripped the leads firmly enough, compare it to
removing the same component from the breadboard sockets.

If it's way easier to remove the component from the X8/X9 header than it is to remove it
from the breadboard, it's also a good indicator that there will continuity problems during
a match.

√ Repeat for each component in the X8/X9 headers.

Ensuring Continuity

The SumoBot Robot Competition Kit may have extra components that are not used in the
activities in this book, such as 10 µF capacitors. The leads on these spare capacitors or

Chapter 3: EEPROM Tricks and Program Tips · Page 89

other parts can be clipped into small segments and inserted into very loose-fitting X8 and
X9 sockets along with the component leads. Figure 3-4 shows examples.

If the IR component leads already have a snug fit in the X8/X9 sockets, do not follow
these steps. Instead, move on to testing and tuning effective range.

√ Clip one 5/16 inch (or 8 mm) segment of lead off a capacitor or other spare

component for each excessively loose socket in the X8 and X9 headers.
√ Make sure the IR component is properly inserted in the socket.
√ Using a needle-nose pliers, insert the segment of capacitor lead into the socket

along with the component lead. It may be a pretty tight fit, but that will give you
some collision insurance during a match.

Figure 3-4 Clip Leads from Spare Components and Insert them into Loose Header Sockets

Testing and Tuning the Effective Range

In Figure 3-5's left scenario, the SumoBot sees its opponent, and will likely win the
round. On the right, the same SumoBot is perusing an object outside the ring.
Meanwhile, its opponent isn't having any problems with objects outside the ring, and will
likely win the round.

Page 90· Applied Robotics with the SumoBot

Figure 3-5 Opponent vs. Distraction

If your SumoBot has a tendency to get distracted by nearby objects, there are ways to
make it more nearsighted. The sensitivity of the IR receivers can be adjusted by
changing either the resistance in series with the IR LED or the FREQOUT command's
frequency. A larger series resistor would make the IR LED headlights dimmer, and
different frequencies would make the IR receivers less sensitive to reflected infrared.

However, changing the resistance in series with the IR LEDs isn't really a good option
because the SumoBot board has 220 Ω IR LED series resistors built-in. So, we'll take a
closer look at changing frequencies to make the IR object detectors more near/farsighted.

The way to test the relationship between near/farsightedness and IR LED frequency is to
write a program that displays the detection results at a number of different frequencies.
Then, test with objects outside the ring at different distances. Finally, test with an
opponent SumoBot inside the ring at different distances. In some cases, the goal will be
to find a frequency for each IR object detector that will be most likely to see its opponent
and least likely to see objects outside the competition ring. This might also be the goal if
the most sensitive IR frequency causes the IR object detectors to see the reflection of the
floor outside the ring. On the other hand, if onlookers stay a meter or more outside the
ring, and the reflection of the floor around the ring doesn't interfere, use the most
sensitive frequency. It will give your SumoBot the best chances of detecting its
opponent.

Figure 3-6 shows two examples of the Debug Terminal output from the next example
program. The program makes the IR LED send frequencies ranging from 36 to 42 kHz,

Chapter 3: EEPROM Tricks and Program Tips · Page 91

and at each frequency, the Debug Terminal displays a "yes" if the IR receiver detected an
object, or a "no" if it didn't. Notice how the Debug Terminal shows a lot more "yes"
detections for the 0.6 m distance test than it does for the 0.85 m test. The 0.85 m test
demonstrates that 39.5 kHz is the most sensitive frequency for the detectors being tested.
This won't necessarily be the case for your particular IR object detectors, which is why
it's important to do these tests.

Figure 3-6 IR Receiver Frequency Response with an Object at Two Different Distances

Testing to find out if the SumoBot sees the reflection of the floor outside the ring:

If the Debug Terminal shows "yes" responses with no nearby objects, it may be seeing the
floor's reflection. You can confirm this by tipping the SumoBot so that it's looking upward at
an angle. If the "yes" responses change to "no", it's the floor's reflection.

White wall at 0.6 m

White wall at 0.85 m

Page 92· Applied Robotics with the SumoBot

The next example program is another modified version of
TestIrFrontObjectDetectors.bs2. The IrFreq constant in the FREQOUT command's
Freq1 argument is replaced with a Word variable named frequency. This variable is
swept from 36000 to 42000 in steps of 500 by a FOR...NEXT loop. It's a quick and easy
way to perform a frequency sweep with the IR LEDs and capture the IR receivers'
frequency responses.

' -----[Main Routine]---

FOR frequency = 36000 TO 42000 STEP 500

 FREQOUT IrLedLF, 1, frequency ' Left IRLED shines IR light
 irLF = ~IrSenseLF ' Save IR receiver output

 FREQOUT IrLedRF, 1, frequency ' Repeat for right IRLED/receiver
 irRF = ~IrSenseRF

 DEBUG CR, DEC frequency, CRSRX, 11 ' Display yes/no for detection
 IF irLF = 1 THEN DEBUG "yes" ELSE DEBUG "no"
 DEBUG CRSRX, 19
 IF irRF = 1 THEN DEBUG "yes" ELSE DEBUG "no"

 PAUSE 50 ' Delay for slower PCs

NEXT

Frequency Sweep and Frequency Response

Transmitting a sequence of frequencies is commonly referred to as "frequency sweep". The
response of a sensor or circuit to a frequency sweep is called its "frequency response".

Example Program: TestFrequencyResponse.bs2

This program should be used with a white wall at various distances from the front of the
SumoBot to get an idea of which frequencies make it more nearsighted and which
frequencies make it more farsighted. These tests should then be repeated with a
SumoBot in the ring. The goal is to determine a frequency for each detector that is most
likely to detect the SumoBot opponent and least likely to detect a nearby onlooker.

√ Enter, save, and run TestFrequencyResponse.bs2, and leave the SumoBot
connected to the serial cable.

√ Face the SumoBot at a white wall 1 m away.
√ Press and release the Reset button.

Chapter 3: EEPROM Tricks and Program Tips · Page 93

√ If zero "yes" readings appear, move the SumoBot 5 cm closer to the wall. If
several "yes" readings appear, move the SumoBot 5 cm farther from the wall.

√ Press and release the Reset button to refresh the Debug Terminal.
√ Repeat until you find the distance threshold between no object detections and a

few object detections at the most sensitive frequencies.
√ Move the SumoBot closer in 5 cm increments, testing the frequency response

between each move.
√ Take notes and make an order of which frequencies can be used for closer and

farther objects.
√ Repeat this experiment with a SumoBot opponent across the ring.
√ Keep moving the SumoBot closer in 5 cm increments, and track which

frequencies detect it at which distances.

Selecting a frequency to use will depend on the location of the competition ring. If
onlookers stay more than 1 m away from the outside of the ring and IR detectors aren't
seeing the floor outside the ring, choose the most sensitive frequency. If onlookers are likely
to be only 0.5 m outside the ring, or the object detectors see the floor's reflection, choose a
compromise frequency that will be less likely to detect the floor or onlookers, but still pretty
likely to detect its opponent.

You may also want to consider adding extra distance sensors, such as the Parallax Ping)))
Ultrasonic Sensor. You can use its distance measurement capabilities to help your
SumoBot decide whether it's viewing an onlooker or its opponent.

' -----[Title]--
' Applied Robotics with the SumoBot - TestFrequencyResponse.bs2
' This program can be used with objects at varying distances to determine
' which frequencies make the SumoBot more nearsighted or farsighted.

' {$STAMP BS2} ' Target = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

' -----[I/O Definitions]---

IrLedLF PIN 4 ' Left IR LED connected to P4
IrSenseLF PIN 11 ' Left IR detector to P11

IrLedRF PIN 15 ' Right IR LED connected to P15
IrSenseRF PIN 14 ' Right IR detector to P14

' -----[Variables]--

irLF VAR Bit ' State of Left Front IR
irRF VAR Bit ' State of Right Front IR
frequency VAR Word ' Stores Frequencies

Page 94· Applied Robotics with the SumoBot

' -----[Initialization]---

DEBUG CLS, "FRONT IR DETECTORS", CR, ' Display heading
 "Frequency Left Right", CR,
 "--------- ---- -----", CR

' -----[Main Routine]---

FOR frequency = 36000 TO 42000 STEP 500

 FREQOUT IrLedLF, 1, frequency ' Left IRLED shines IR light
 irLF = ~IrSenseLF ' Save IR receiver output

 FREQOUT IrLedRF, 1, frequency ' Repeat for right IRLED/receiver
 irRF = ~IrSenseRF

 DEBUG CR, DEC frequency, CRSRX, 11 ' Display yes/no for detection
 IF irLF = 1 THEN DEBUG "yes" ELSE DEBUG "no"
 DEBUG CRSRX, 19
 IF irRF = 1 THEN DEBUG "yes" ELSE DEBUG "no"

 PAUSE 50 ' Delay for slower PCs

NEXT

Your Turn - Frequency Constants

Sometimes it is useful to “comment-out” a line of code in your program by placing an
apostrophe to the left of it, effectively removing it from your executable code without
removing it from your program. It's a good idea to keep some commented-out IrFreq
constants along with the one you use regularly, as in the example below. That way, you
can comment and uncomment various constants depending on what environment you are
testing in. For example, when prototyping maneuvers, it's better to make your SumoBot
nearsighted so that it only detects an object when you place your hand close to the sensor
you want to detect an object. Medium range might work better for a competition ring in
tight quarters, and maximum range might work better for a competition ring in a spacious
area.

' -----[Constants]--

IrFreq CON 39500 ' Maximum range
' IrFreq CON 38500 ' Medium range
' IrFreq CON 41500 ' Close range

Chapter 3: EEPROM Tricks and Program Tips · Page 95

√ Modify TestIrFrontObjecDetectors.bs2 so that it has 3 or 4 useful versions of the
IrFreq CON directive.

ACTIVITY #2: A CLOSER LOOK AT THE QTI LINE SENSORS
The SumoBot shown in Figure 3-7 has its QTI line sensors mounted under left and right
sides of the plow. The QTIs are designed to detect the white tawara line, which is the
border of the competition ring. This activity reviews the testing procedure for the QTI
line sensors and takes a closer look at how they work.

Figure 3-7 QTI Line Sensor's on the SumoBot

Testing the QTI Line Sensors

Figure 3-8 shows schematics of your SumoBot's two front QTI line sensors. Like the IR
object detectors, the QTI's are connected to headers on your SumoBot. When you plug
the cable into the QTI, the white wire should line up with the W on the QTI. Likewise,
the red wire should line up with the R, and black with B. When plugging the other end of
the cable into the header on the SumoBot board, make sure to line up the black wire with
the pin labeled B. On the SumoBot PCB, the X5 header connects the pin labeled 10 to
BASIC Stamp I/O pin P10. The PCB also connects the pin labeled 9 to I/O pin P9, and
the pin labeled B to Vss. Header X4 makes similar connections, but with different I/O
pin connections.

QTI Line Sensor
(Front Left)

QTI Line Sensor
(Front Right)

Page 96· Applied Robotics with the SumoBot

Figure 3-8 Front Left and Right QTI Schematics

Each QTI has four components mounted on its PCB, a 220 Ω resistor, a 470 Ω resistor, a
0.01 µF capacitor, and a QRD1114 reflective object sensor. The way these parts are
connected to the QTI's 3-pin header make it so that you can turn its power on or off by
sending either a high or low signal to its W pin. The actual sensor measurements are
taken through its R pin. For example, to turn the left QTI sensor on, send a high signal to
P10. The left QTI is controlled and monitored through P9. The SumoBot's BASIC
Stamp must set P9 high, waits 1 ms, then uses the RCTIME command to measure the time
it takes for the voltage to drop to 1.4 V. If this time is small, the QTI senses a white
surface. If this time is long, the QTI senses a black surface.

The QRD1114 contains two components. The device inside it that controls how long the
voltage takes to drop from around 5 V to 1.4 V is called an infrared transistor. The
schematic symbol for the IR transistor is shown in Figure 3-9. While an LED is like a 1
way current valve, a transistor is more like a variable current valve. It's analogous to a
faucet. The more you turn the handle, the more water comes out. With an infrared
transistor, the more infrared light that strikes the base (B) surface, the more current (I) the
transistor allows to pass through its collector (C) and emitter (E).

 Figure 3-9
Infrared Transistor

Chapter 3: EEPROM Tricks and Program Tips · Page 97

The QRD1114 has an IRLED in it that shines IR light on the surface it's facing. Unlike
the IR object detectors we just finished testing, this device does not need to flash the IR
on/off at 38.5 kHz. That's because the QTI is designed to be held close enough to its
target surface that IR from the window and the lamps in the room won't be as likely
interfere.

Figure 3-10 shows a simplified version of the QTI circuit with the power already turned
on. The IR LED shines infrared on the nearby surface, which reflects this light, and it
bounces back onto the base of the IR transistor. A white surface will reflect most of the
IR while a black surface will absorb it. When more IR is reflected and strikes the base of
the IR transistor, it lets more current through from the capacitor to Vss. When less IR is
reflected, the IR transistor lets less current through from the capacitor to Vss.

Figure 3-10
Simplified Version of
the QTI Circuit

By setting I/O pin P9 high for a while (1 ms), the voltage V0 at the lower plate of the
capacitor approaches 5 V. When P9 is set to an input, V0 will start to decay because P9 is
no longer forcing it to 5 V. The time it takes the voltage to decay to 1.4 V is controlled
by the IR transistor. Here's how:

• More IR at the transistor's base, more current through the transistor.
• More current through the transistor, less decay time.
• Less IR at the transistor's, base, less current through the transistor.
• Less current through the transistor, more decay time.

The RCTIME command measures the time it takes for the voltage to decay to around 1.4 V
and stores it in a variable. Here is a code snippet that sets P9 high, pauses for 1 ms, then

Page 98· Applied Robotics with the SumoBot

uses RCTIME to measure and store the time it took for V0 to decay to 1.4 V in a variable
named temp:

HIGH 9
PAUSE 1
RCTIME 9, 1, temp

Remember that P10 has to be set high to turn on the QTI, and low to turn it back off
again when the measurement is done. With the use of PIN directives to give each I/O pin
a name, the code should look about like this:

qtiPwrLeft PIN 10 ' Left QTI on/off pin
qtiSigLeft PIN 9 ' Left QTI signal pin

qtiLeft VAR Word ' Stores left QTI time

HIGH qtiPwrLeft ' Turn left QTI on
HIGH qtiSigLeft ' Discharge capacitor
PAUSE 1
RCTIME qtiSigLeft, 1, temp ' Measure charge time
LOW qtiPwrLeft ' Turn left QTI off

DEBUG CRSRX, 0, DEC5 qtiLeft ' Display time measurement

The rate at which the voltage decays is shown in Figure 3-11. When the QTI is over the
white tawara line that surrounds the sumo ring surface, lots of reflected IR makes it to the
IR transistor's base. In this situation, the IR transistor will conduct more current, and V0
will drop very quickly. A typical RCTIME value for this is 85, though it could range
anywhere between 15 and 350 depending on the surface and the ambient light in the
room. When the QTI is placed over the black sumo ring, the value might be 1500. That's
because the black surface absorbs infrared, and not nearly as much makes it to the base of
the IR transistor. With less IR striking its base, the transistor conducts less current, and
V0 decays much more slowly.

Chapter 3: EEPROM Tricks and Program Tips · Page 99

Figure 3-11 QTI RC-Decay for Different Surfaces

If there is no surface to reflect IR from the QTI's IR LED, the only source of infrared for
the IR transistor's base is the ambient light in the room. That might be a lot of infrared if
sunlight is streaming through the windows, or a little if the blinds are closed and only a
few fluorescent lights are on. That's the case with the 3500 RCTIME measurement. Keep
in mind, your values will also vary with the type of surfaces you are using.

Figure 3-12 shows an example of the SumoBot with one QTI over the white tawara line,
and the other QTI over the black sumo ring surface. It also shows an example of what
the Debug Terminal might display under these conditions. The left QTI only reads 66, a
strong indication that the QTI is over a white line. The right sensor reads 1554, which is
typical for a dark surface. These values will vary from one room and sumo ring to the
next, and in an upcoming activity, we'll take a close look at self calibration so that your
SumoBot can automatically adjust to its environment.

Avoiding Interference to the QTI’s –The QTI sensor has a built-in daylight filter that is
adequate for indirect sunlight indoors. However, you should still avoid placing your sumo
ring in direct or bright indirect sunlight. If you find that your sumo-ring’s surface is too
reflective in direct sunlight, causing false QTI readings, move your ring to an indoor shaded
location.

Page 100· Applied Robotics with the SumoBot

Figure 3-12 White Tawara vs. Black Sumo Ring Surface

Example Program - TestFrontQtiLineSensors.bs2

Keep well away from direct sunlight and other sources of bright light. Your SumoBot
and SumoBot Robot Competition Ring poster should be well away from any sources of
direct sunlight and other bright lights. Close nearby blinds if necessary, and make sure the
light sources in your work area are either fluorescent or indirect incandescent.

√ Enter, save, and run TestFrontQtiLineSensors.bs2.
√ Test both QTI sensors light and dark surfaces.
√ Test both QTI sensors on the Sumo Ring poster in the black area, the white

tawara border, and the dark gray shikiri lines.
√ Make notes of all the QTI measurements.
√ Try it in a brightly lit room.
√ Try it in a dimly lit room and compare the difference.
√ Try a variety of black and white surfaces and consider what value you think

would be best for your programs to decide whether a QTI is over a black or
white surface.

' -----[Title]--
' Applied Robotics with the SumoBot - TestFrontQtiLineSensors.bs2
' Tests values returned by QTI lines sensors mounted on
' the front of the SumoBot.

Chapter 3: EEPROM Tricks and Program Tips · Page 101

' {$STAMP BS2} ' Target = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

' -----[I/O Definitions]---

qtiPwrLeft PIN 10 ' Left QTI on/off pin
qtiSigLeft PIN 9 ' Left QTI signal pin

qtiPwrRight PIN 7 ' Right QTI on/off pin
qtiSigRight PIN 8 ' Right QTI signal pin

' -----[Variables]--

qtiLeft VAR Word ' Stores left QTI time
qtiRight VAR Word ' Stores right QTI time

' -----[Initialization]---

DEBUG CLS, "FRONT QTI Sensors", CR, ' Display heading
 "Left Right", CR,
 "----- -----", CR

' -----[Main Routine]---

DO ' DO...LOOP repeats indefinitely

 GOSUB Read_Line_Sensors ' Update qtiLeft & qtiRight

 DEBUG CRSRX, 0, DEC5 qtiLeft ' Display time measurement
 DEBUG CRSRX, 8, DEC5 qtiRight ' Display time measurement

 PAUSE 100 ' Delay for slower PCs

LOOP

' -----[Subroutines]--

Read_Line_Sensors:

 HIGH qtiPwrLeft ' Turn left QTI on
 HIGH qtiSigLeft ' Discharge capacitor
 PAUSE 1
 RCTIME qtiSigLeft, 1, qtiLeft ' Measure charge time
 LOW qtiPwrLeft ' Turn left QTI off

 HIGH qtiPwrRight ' Turn right QTI on
 HIGH qtiSigRight ' Discharge capacitor
 PAUSE 1
 RCTIME qtiSigRight, 1, qtiRight ' Measure charge time

 RETURN

Page 102· Applied Robotics with the SumoBot

Your Turn - Detecting Tilt

What if the QTIs were to give you a unique signature when the SumoBot is tilted
backward?

√ Try tilting the SumoBot while it's sitting on the sumo ring.
√ Are the readings different from black and white?
√ How does the light level in the room effect tilt measurements?

Strategy tip

While it seems like this might be a great way to detect whether your SumoBot is at a
disadvantage, it tends not to work in practice. Whether the SumoBot's plow is under or over
its opponent’s, both SumoBots may tip upward for a moment as they push against each
other. Therefore, detecting a tilt does not necessarily indicate that your SumoBot is winning
or losing, so these measurements would not necessarily be helpful in deciding what type of
maneuver to do next. While QTI tilt is probably a blind alley, similar experiments may lead
to more useful sensor data and new strategies.

ACTIVITY #3: SELF CALIBRATING QTI SENSORS
As mentioned earlier, different lighting conditions and different competition rings will
cause the QTIs to give different measurements. If you selected a value to discern
between the black ring and the white tawara line based on your own practice ring, you
might be in for a surprise when you move your ring to a different location or use a ring
made of different materials. Reason being, the value you chose for your practice ring
might not work with the new conditions. When this happens, your SumoBot will drive
right out of the ring, maybe before it's even had a chance to engage with its opponent.

The solution to this problem was first introduced in the SumoBot text - a QTI self-
calibration routine. In this activity, you will take a closer look at how this kind of self-
calibration routine works.

QTI Self Calibration Code

Making the QTIs self calibrating isn't difficult if you start with the example program
from this chapter's Activity #2 - TestFrontQtiLineSensors.bs2. The first step is to add a
word variable to store a threshold value.

qtiThreshold VAR Word

Since the SumoBot will have to start off in the middle of the ring, the only piece of
information it will have is the QTI measurements for the black surface. The program

Chapter 3: EEPROM Tricks and Program Tips · Page 103

should measure the QTI readings for the black surface and use them as a basis for setting
a threshold value to decide whether the QTIs are "seeing" black or white. As you may
have noticed from Activity #2, white QTI measurements are very small in comparison.
Your program can safely set the threshold at 1/4 of the average of the two QTI sensors'
measurements of black. It takes three steps: (1) call the Read_Line_Sensors subroutine
to update the values of qtiLeft and qtiRight. (2) take the average of the two
readings. (3) divide this average by 4. Here is an example:

GOSUB Read_Line_Sensors
qtiThreshold = (qtiLeft + qtiRight) / 2
qtiThreshold = qtiThreshold / 4

You can set higher or lower thresholds. For example, if you divide qtiThreshold by 3
instead of 4, the threshold will be higher. If you divide qtiThreshold by 5 or 6, the
threshold will be lower. A lower threshold value makes the SumoBot less likely to mistake a
crease in the SumoBot Robot Competition Ring for a white tawara line. It also helps
somewhat in brightly lit rooms. In contrast, a higher threshold value may be better for rings
where there is less difference in IR reflectivity between black and white.

You can also save a line of code. These two lines of code:

qtiThreshold = (qtiLeft + qtiRight) / 2
qtiThreshold = qtiThreshold / 4

are equivalent to this one line of code:

qtiThreshold = (qtiLeft + qtiRight) / 8

To discern whether the QTI is looking at black or white, use IF...THEN statements:

 IF qtiLeft < qtiThreshold THEN
 DEBUG "White"
 ELSE
 DEBUG "Black"
 ENDIF

The next example program uses these code blocks to tell you whether each QTI is
looking at black or white. Figure 3-13 shows an example of how this program can be
used to test the calibration routine and make sure it's working right.

Page 104· Applied Robotics with the SumoBot

Figure 3-13 White Tawara vs. Black Sumo Ring Surface

Example Program: QtiSelfCalibrate.bs2

√ Place the SumoBot on the black part of your practice ring.

Lighting Reminder

Your SumoBot and SumoBot Robot Competition Ring poster should be well away from any
sources of direct sunlight and other bright lights. Close nearby blinds if necessary, and
make sure the light sources in your work area are either fluorescent or indirect
incandescent.

√ Enter, save and run QtiSelfCalibrate.bs2.
√ Position your SumoBot so that the left QTI is over the white tawara line as

shown in Figure 3-13, and verify that the display reports white for the left side.
√ Repeat for the right QTI, then for both QTIs.

' -----[Title]--
' Applied Robotics with the SumoBot - QtiSelfCalibrate.bs2
' This program sets a threshold between black and white, and then displays
' whether the QTI sees black or white.

' Important: You must start with the QTIs seeing black.

Chapter 3: EEPROM Tricks and Program Tips · Page 105

' {$STAMP BS2} ' Target = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

' -----[I/O Definitions]---

qtiPwrLeft PIN 10 ' Left QTI on/off pin
qtiSigLeft PIN 9 ' Left QTI signal pin

qtiPwrRight PIN 7 ' Right QTI on/off pin
qtiSigRight PIN 8 ' Right QTI signal pin

' -----[Variables]--

qtiLeft VAR Word ' Stores left QTI time
qtiRight VAR Word ' Stores right QTI time
qtiThreshold VAR Word ' Stores black/white threshold

' -----[Initialization]---

GOSUB Read_Line_Sensors ' Get reflection values
qtiThreshold = (qtiLeft + qtiRight) / 2 ' Calculate average
qtiThreshold = qtiThreshold / 4 ' Take 1/4 average

DEBUG CLS, "Threshold = ",DEC qtiThreshold ' Display threshold

DEBUG CR, CR, "FRONT QTI Sensors", CR, ' Display column headings
 "Left Right", CR,
 "----- -----", CR

' -----[Main Routine]---

DO ' DO...LOOP repeats indefinitely

 GOSUB Read_Line_Sensors ' Get reflection values

 DEBUG CRSRXY, 0, 5,
 DEC5 qtiLeft, CRSRX, 8, ' Display reflection values
 DEC5 qtiRight, CR

 IF qtiLeft < qtiThreshold THEN ' Indicate what left QTI sees
 DEBUG "White"
 ELSE
 DEBUG "Black"
 ENDIF

 DEBUG CRSRX, 8

 IF qtiRight < qtiThreshold THEN ' Indicate what right QTI sees
 DEBUG "White"
 ELSE

Page 106· Applied Robotics with the SumoBot

 DEBUG "Black"
 ENDIF

 PAUSE 100 ' Delay for slower PCs

LOOP

' -----[Subroutine - Read_Line_Sensors]-------------------------------------

Read_Line_Sensors:

 HIGH qtiPwrLeft ' Turn left QTI on
 HIGH qtiSigLeft ' Discharge capacitor
 PAUSE 1
 RCTIME qtiSigLeft, 1, qtiLeft ' Measure charge time
 LOW qtiPwrLeft ' Turn left QTI off

 HIGH qtiPwrRight ' Turn right QTI on
 HIGH qtiSigRight ' Discharge capacitor
 PAUSE 1
 RCTIME qtiSigRight, 1, qtiRight ' Measure charge time

 RETURN

Your Turn - QTI Navigation Decisions

Incorporating navigation can be as simple as an IF...THEN statement that calls
subroutines that perform preprogrammed maneuvers. Instead of subroutine calls, the
code block below uses DEBUG commands to display what action should be taken.

√ Save QtiSelfCalibrate.bs2 as QtiSelfCalibrateYourTurn.bs2
√ Remove the two IF...THEN...ENDIF code blocks, and replace them with this:

' Indicate maneuver that should be taken based on QTI readings

 DEBUG CR, "Maneuver",
 CR, "-----------", CR

 IF qtiLeft < qtiThreshold AND qtiRight < qtiThreshold THEN
 DEBUG "Avoid tawara - both"
 ELSEIF qtiLeft < qtiThreshold THEN
 DEBUG "Avoid tawara - left"
 ELSEIF qtiRight < qtiThreshold THEN
 DEBUG "Avoid tawara - right"
 ELSE
 DEBUG "search"
 ENDIF
 DEBUG CLREOL

Chapter 3: EEPROM Tricks and Program Tips · Page 107

√ Save and then run the modified program, starting with both QTIs over a black
portion of the practice ring.

√ Repeat your tests with the tawara line, and verify that the SumoBot is making the
correct navigation decisions.

ACTIVITY #4: READING THE QTI SENSORS MORE QUICKLY
How much time does it take to read QTIs? It depends a lot on the surface and the
lighting conditions in the room. If both QTIs are on the black surfaces in the examples
from Activities #2 and #3, they tend to be in the 1000 to 4000 range. The time
measurement the RCTIME command stores in a variable are in terms of 2 µs units. So, an
RCTIME measurement of 2000 equates to 4 ms:

ms4
s1000

ms1s4000

s1000
ms1s22000

s1000
ms1s2tmeasuremenRCTIME)ms(time

=

×=

××=

××=

µ
µ

µ
µ

µ
µ

Since there are two QTIs, that's 8 ms between servo pulses. What if the material is more
absorbent of infrared, and the room is dark? Maybe both QTIs will return a measurement
of 3600, which equates to 7.2 ms per QTI, and 14.4 ms for the pair of them. There's
probably 2 ms of processing time to execute all the commands in the
Read_Line_Sensors subroutine, and another 2 ms worth of PAUSE commands to set up
for the RCTIME measurements. That adds up to 18.4 ms. By the measurements in
Chapter 1, Activity #2, there's probably still enough time to check the IR detectors
without slowing down the servos.

What if you want to add a pair of QTIs to check the back of the SumoBot? That's twice
the time, or 36.4 ms. That will slow the servos down, and there still hasn't been any time
to check the IR detectors. You might be able to fix the problem by checking some of the
sensors between one set of servo pulses, and another set of sensors between the next. It
will reduce the time between servo pulses, but at the same time, it will increase the risk
that your SumoBot won't see something in time, like its opponent or the white tawara
line.

Page 108· Applied Robotics with the SumoBot

With some creative programming, you can actually check as many QTIs as you want, and
it will only a fraction of the time that it takes to check just one QTI with the RCTIME
command when it's detecting black. This activity will show you how.

The Pulse-Decay Trick

Figure 3-14 is a repeat of Figure 3-10, a schematic for what's happening inside the QTIs
after Vdd has been applied to its on/off input, P10.

Figure 3-14
Simplified Version of
the QTI circuit

Below is a routine that calibrates only the left QTI. After turning the device on by setting
P10 high, P9 is also set high, which pushes the value of V0 toward 5 V. After a 1 ms
pause, the RCTIME command measures the time it takes for V0 to decay to 1.4 V. The
amount of time it takes gets stored in the time variable. The threshold variable is set
equal to 1/4 the value of the time variable.

HIGH 10
HIGH 9
PAUSE 1
RCTIME 9, 1, time
threshold = time / 4

The program could next use the RCTIME command and compare the decay time to the
threshold time. If the decay time is greater than the threshold time, the program can
assume the QTI is detecting black. If the decay time is less than the threshold time, the
program can assume the QTI is detecting white.

Chapter 3: EEPROM Tricks and Program Tips · Page 109

The code block below takes less time than an RCTIME command would over a black
surface. It starts like it's going to take an RCTIME measurement, by setting P9 high and
waiting 1 ms for the V0 to approach 5 V. Instead of taking an RCTIME measurement, the
code bock changes P9 from output to input. That's the same thing the RCTIME command
does internally, and it's what causes the voltage to start to decay. Instead of waiting for
the voltage to decay all the way to 1.4 V like the RCTIME command would, this code
block sends a PULSOUT command to an I/O pin whose circuit will not be affected by it
(the pushbutton).

 HIGH 9
 PAUSE 1
 INPUT 9
 PULSOUT 6, threshold
 qtiStateLeft = IN9

What about the pushbutton?

True, P6 is connected to the pushbutton, but while the pushbutton is not being monitored,
PULSOUT commands can be sent to it. It is safe to be used as an output because of the 470
Ω current-limiting resistor between the I/O pin and the pushbutton terminal. Regardless of
whether the pushbutton is pressed or not pressed, the I/O pin is protected. Before the
pushbutton is checked, P6 will have to be set back to input with the command INPUT 6, or
if you have used the PIN declaration for it in your program, INPUT pbSense.

Keep in mind that the Duration of this PULSOUT command is the threshold variable.
Figure 3-15 shows what happens in terms of the signals. The instant the PULSOUT
command finishes is the instant the threshold amount of time has passed. The code block
takes a snapshot of IN9 at that instant by copying the value it stores into a variable named
QtiStateLeft. If the QTI sees white, V0 will have decayed below 1.4 V, and IN9 will
store 0. If the QTI sees black, V0 will not have decayed below 1.4 V, and IN9 will
store 1.

Page 110· Applied Robotics with the SumoBot

Figure 3-15 Pulse-Decay Trick Timing

Accounting for Command Execution Times

Figure 3-15 shows the ideal situation, ignoring the amount of time it takes for the BASIC
Stamp 2 to transition from one command to the next. Subtracting 220 from the threshold
variable will make your PULSOUT 6, threshold command delay for the correct amount of
time. Of course, if you subtract 220 from a value that's smaller than 220, your program will
have a negative result, which won't be any good either. That's why it's best to have an
IF...THEN statement check the value of time before subtracting 220

HIGH 10
HIGH 9
PAUSE 1
RCTIME 9, 1, time
threshold = time / 4

IF threshold > 220 THEN ' Account for code overhead
 threshold = threshold - 220
ELSE
 threshold = 0
ENDIF

You can measure these times with the Parallax USB Oscilloscope. To learn more about the
‘scope and the Understanding Signals student guide, see the #28119 product page at
www.parallax.com.

Chapter 3: EEPROM Tricks and Program Tips · Page 111

Example Program: QtiPulseTrickLeft.bs2

The QtiPulseTrickLeft.bs2 program verifies that this technique works. Examine it
carefully. Especially make sure you can match the commands that deal with P5 and P9 to
the timing diagram in Figure 3-15.

√ Make sure the left QTI is over the black surface in your sumo ring.
√ Enter, save, and run QtiPulseTrickLeft.bs2.
√ Verify that the Debug Terminal shows that the qtiStateLeft variable is 1

when the left QTI sees black and 0 when it sees white.

' Applied Robotics with the SumoBot - QtiPulseTrickLeft.bs2

' {$STAMP BS2} ' Target device = BS2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

qtiStateLeft VAR Bit ' Store left QTI state
time VAR Word ' Store QTI decay time
threshold VAR Word ' Store b/w threshold

' Calibrate QTIs

HIGH 10 ' Turn on left QTI
HIGH 9 ' Discharge QTI capacitor
PAUSE 1 ' Wait for discharge
RCTIME 9, 1, time ' Vo decay time as cap charges
threshold = time / 4 ' Use to set threshold

IF threshold > 220 THEN ' Account for code overhead
 threshold = threshold - 220
ELSE
 threshold = 0
ENDIF

' Main Routine

DO

 HIGH 9 ' Discharge QTI capacitor
 PAUSE 1 ' Wait for discharge
 INPUT 9 ' Start RC decay
 PULSOUT 6, threshold ' Wait until threshold time
 qtiStateLeft = IN9 ' Save state of P9

 DEBUG HOME, ? qtiStateLeft ' Display state of P9
 PAUSE 100 ' Delay for slower PCs

LOOP

Page 112· Applied Robotics with the SumoBot

Your Turn - Incorporating the Right QTI

Here's the interesting part, you can add another QTI measurement to the same block of
code that performed the time measurement on the left QTI. The routine will take
approximately the same amount of time, but you will be measuring two QTIs.

√ Add a variable declaration for the state of the right QTI.

qtiStateLeft VAR Bit

√ Add this code block right after the code that sets the threshold based on P9
measurements. It should be inserted just above the IF threshold > 220 THEN
statement.

 HIGH 7
 HIGH 8
 PAUSE 1
 RCTIME 8, 1, time

 threshold = (threshold + (time / 4)) / 2

√ Add the commands with ' <---Add comments to the existing code in the Main
Routine’s DO...LOOP:

 HIGH 9
 HIGH 8 ' <--- Add
 PAUSE 1
 INPUT 9
 INPUT 8 ' <--- Add
 PULSOUT 5, threshold
 qtiStateLeft = IN9
 qtiStateRight = IN8 ' <--- Add

 DEBUG HOME, ? qtiStateLeft
 DEBUG ? qtiStateRight ' <--- Add
 PAUSE 100

√ Save and run the program
√ Test the program and verify that both QTI's now indicate white tawara line with

0 or black ring surface with 1.

Chapter 3: EEPROM Tricks and Program Tips · Page 113

Incorporating the Pulse-Decay Trick into Another Program

Here is how to incorporate the test code from QtiPulseTrickLeft.bs2 into
TestFrontQtiLineSensors.bs2 from Activity #2. The first step is to declare a dummy PIN
name for P6.

DummyPin PIN 6

Also declare a couple of extra bit variables to store the states of qtiSigLeft (P9) and
qtiSigRight (P8). Remember, they need a snapshot immediately after the PULSOUT
command that passes the threshold amount of time:

qtiStateLeft VAR Bit
qtiStateRight VAR Bit

Next, move the entire contents of the QTI calibration code block from the initialization
routine into a single subroutine and name it Calibrate_Qtis:

Calibrate_Qtis:

 HIGH qtiPwrLeft ' Turn left QTI on
 HIGH qtiSigLeft ' Discharge capacitor
 PAUSE 1
 RCTIME qtiSigLeft, 1, qtiLeft ' Measure charge time
 LOW qtiPwrLeft ' Turn left QTI off

 HIGH qtiPwrRight ' Turn right QTI on
 HIGH qtiSigRight ' Discharge capacitor
 PAUSE 1
 RCTIME qtiSigRight, 1, qtiRight ' Measure charge time

 qtiThreshold = (qtiLeft + qtiRight) / 2 ' Calculate average
 qtiThreshold = qtiThreshold / 4 ' Take 1/4 average

 IF threshold > 220 THEN ' For code overhead
 threshold = threshold - 220
 ELSE
 threshold = 0
 ENDIF

 RETURN

After the Calibrate_Qtis subroutine is called, the program can use a modified version
of the Read_Line_Sensors subroutine that uses the pulse-decay trick. Here it is, and it's
essentially the same as the code block from the previous Your Turn.

Page 114· Applied Robotics with the SumoBot

Read_Line_Sensors:

 HIGH qtiPwrLeft ' Turn on QTIs
 HIGH qtiPwrRight
 HIGH qtiSigLeft ' Push signal voltages to 5 V
 HIGH qtiSigRight
 PAUSE 1 ' Wait 1 ms for capacitors

 INPUT qtiSigLeft ' Start the decays
 INPUT qtiSigRight
 PULSOUT DummyPin, qtiThreshold ' Wait for threshold time

 qtiStateLeft = qtiSigLeft ' Snapshot of QTI signal states
 qtiStateRight = qtiSigRight

 LOW qtiPwrLeft ' Turn off QTIS
 LOW qtiPwrRight

 RETURN

The last step is to go through the Main Routine and change references to variables from
qtiLeft and qtiRight to qtiStateLeft and qtiStateRight. The values also have to
be compared to 0 or 1 instead of threshold. For example:

IF qtiLeft < qtiThreshold THEN

has to be changed to

IF qtiStateLeft = 0 THEN

Example Program: QtiPulseDecayTrick.bs2

√ Start with your SumoBot parked on the black part of your practice sumo ring.
√ Enter, save, and run QtiPulseDecayTrick.bs2.
√ Verify that the Debug Terminal shows that the QTIs report 1 if they are over the

black practice ring surface or 0 if they are over the white tawara line.

' -----[Title]--
' Applied Robotics with the SumoBot - QtiPulseDecayTrick.bs2
' This program uses the Pulse-Decay trick to discern between black and white
' with QTI line sensors.

' Important: You must start with the QTIs seeing black.

' {$STAMP BS2} ' Target = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

Chapter 3: EEPROM Tricks and Program Tips · Page 115

' -----[I/O Definitions]---

qtiPwrLeft PIN 10 ' Left QTI on/off pin
qtiSigLeft PIN 9 ' Left QTI signal pin

qtiPwrRight PIN 7 ' Right QTI on/off pin
qtiSigRight PIN 8 ' Right QTI signal pin

DummyPin PIN 6 ' Unused I/O pin

' -----[Variables]--

qtiStateLeft VAR Bit ' Stores snapshot of QtiSigLeft
qtiStateRight VAR Bit ' Stores snapshot of QtiSigRight
qtiLeft VAR Word ' Stores left QTI time
qtiRight VAR Word ' Stores right QTI time
qtiThreshold VAR Word ' Stores black/white threshold

' -----[Initialization]---

GOSUB Calibrate_Qtis

DEBUG CLS, "FRONT QTI Sensors", CR, ' Display column headings
 "Left Right", CR,
 "----- -----", CR

' -----[Main Routine]---

DO ' DO...LOOP repeats indefinitely

 GOSUB Read_Line_Sensors ' Get reflection values

 DEBUG CRSRXY, 0, 3,
 BIN1 qtiStateLeft, CRSRX, 8, ' Display reflection values
 BIN1 qtiStateRight, CR

 IF qtiStateLeft = 0 THEN ' Indicate what left QTI sees
 DEBUG "White"
 ELSE
 DEBUG "Black"
 ENDIF

 DEBUG CRSRX, 8

 IF qtiStateRight = 0 THEN ' Indicate what right QTI sees
 DEBUG "White"
 ELSE
 DEBUG "Black"
 ENDIF

 PAUSE 100 ' Delay for slower PCs

Page 116· Applied Robotics with the SumoBot

LOOP

' -----[Subroutine - Calibrate_Qtis]--

Calibrate_Qtis:

 HIGH qtiPwrLeft ' Turn left QTI on
 HIGH qtiSigLeft ' Discharge capacitor
 PAUSE 1
 RCTIME qtiSigLeft, 1, qtiLeft ' Measure charge time
 LOW qtiPwrLeft ' Turn left QTI off

 HIGH qtiPwrRight ' Turn right QTI on
 HIGH qtiSigRight ' Discharge capacitor
 PAUSE 1
 RCTIME qtiSigRight, 1, qtiRight ' Measure charge time

 GOSUB Read_Line_Sensors ' Get reflection values
 qtiThreshold = (qtiLeft + qtiRight) / 2 ' Calculate average
 qtiThreshold = qtiThreshold / 4 ' Take 1/4 average

 IF qtiThreshold > 220 THEN ' Account for code overhead
 qtiThreshold = qtiThreshold - 220
 ELSE
 qtiThreshold = 0
 ENDIF

 RETURN

' -----[Subroutine - Read_Line_Sensors]-------------------------------------

Read_Line_Sensors:

 HIGH qtiPwrLeft ' Turn on QTIs
 HIGH qtiPwrRight
 HIGH qtiSigLeft ' Push signal voltages to 5 V
 HIGH qtiSigRight
 PAUSE 1 ' Wait 1 ms for capacitors

 INPUT qtiSigLeft ' Start the decays
 INPUT qtiSigRight
 PULSOUT DummyPin, qtiThreshold ' Wait for threshold time

 qtiStateLeft = qtiSigLeft ' Snapshot of QTI signal states
 qtiStateRight = qtiSigRight

 LOW qtiPwrLeft ' Turn off QTIS
 LOW qtiPwrRight

 RETURN

Chapter 3: EEPROM Tricks and Program Tips · Page 117

Your Turn - Active High vs. Active Low

At present, the alert for the SumoBot encountering the white tawara line is when either
qtiStateLeft or qtiStateRight store 0. You can use the invert bits operator (~) to
change this so that the qtiState variables store 1 when they see they see white.

√ Use the invert bits operator, the tilde ~, to invert the states of the qtiSig PIN
names before storing them in the qtiState variables. In other words, change:

 qtiStateLeft = qtiSigLeft
 qtiStateRight = qtiSigRight

to

 qtiStateLeft = ~ qtiSigLeft
 qtiStateRight = ~ qtiSigRight

√ Update the IF...THEN statements that are checking for qtiState variables
being equal to zero. They need to check for the qtiState variables being equal
to 1.

√ Save, run and test your modified program.

ACTIVITY #5: ADDING AND TESTING SENSORS AND INDICATORS
Figure 3-16 shows the SumoBot with IR object detectors added to the breadboard that
will detect opponents on the side. The next activity adds and tests these sensors.

Page 118· Applied Robotics with the SumoBot

Figure 3-16 Sensors and Indicators Built on the Breadboard

Building and Testing the Side-Mounted IR Object Detector Circuits

Figure 3-17 shows schematics of the side mounted IR LED and IR receiver pairs that
comprise the left and right side object detectors. These detectors have the essentially the
same components as the ones connected to the X8/X9 headers. A 470 Ω resistor has
been added to the IR receiver outputs to prevent problems that can occur if you
accidentally try to send a signal to P0 or P1. P0 and P1 should always be inputs,
receiving signals from the IR receiver output pins.

Parts Required

(2) IR LEDs
(2) IR LED standoffs
(2) IR LED light shields
(2) IR detectors
(2) Resistors - 470 Ω (yellow-violet-brown)
(2) Resistors - 220 Ω (red-red-brown)
(7) Jumper wires

√ Build the circuit shown in Figure 3-17 with the help of the wiring diagram in
Figure 3-18.

IR Object Detector
(Right Side)

IR Object Detector
(Left Side)

Chapter 3: EEPROM Tricks and Program Tips · Page 119

Figure 3-17 Side-mounted IR Object Detection Circuits
 Right Left

Figure 3-18 Wiring Diagram

Page 120· Applied Robotics with the SumoBot

You will see that TestSideIrObjectDetectors.bs2 is just a modified version of
TestFrontIrObjectDetectors.bs2. Different PIN directives for the side mounted IR LEDs
and receivers are declared, likewise for bit variables that store the IR receivers' output
states. All of these different names are also updated in the FREQOUT commands,
IF...THEN statements, and so on.

Figure 3-19 shows the detection pattern for the side mounted IR object detectors. For
best chances of detection, the object should be facing the beam, not at an angle to it.

Figure 3-19
Object Detection on
the Sides

√ Enter, save, and run TestSideIrObjectDetectors.bs2.
√ Make sure the side mounted IR detectors are not pointing at any nearby objects.

They may be quite sensitive, detecting white walls up to 1 or even 2 meters
away.

√ Verify that each object detector displays a 0 when an object is not detected.
√ Place the other SumoBot in the IR detectors beam at a distance of 10 cm. Verify

that it causes the Debug Terminal to display a 1 instead of a 0, indicating that the
SumoBot has been detected on that side.

√ If the IR detector circuits are not functioning as expected, repeat the trouble-
shooting steps in this chapter's Activity #1.

Chapter 3: EEPROM Tricks and Program Tips · Page 121

Example Program: TestSideIrObjectDetectors.bs2
' -----[Title]--
' Applied Robotics with the SumoBot - TestSideIrObjectDetectors.bs2
' This program tests only IR object detectors on the SumoBot's breadboard
' that look to the left and right. It does not test the ones mounted in
' front.

' {$STAMP BS2} ' Target = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

' -----[I/O Definitions]---

IrLedLS PIN 2 ' Left IR LED connected to P2
IrSenseLS PIN 1 ' Left IR detector to P1

IrLedRS PIN 3 ' Right IR LED connected to P3
IrSenseRS PIN 0 ' Right IR detector to P0

' -----[Constants]--

IrFreq CON 38500 ' IR LED transmit frequency

' -----[Variables]--

irLS VAR Bit ' State of Left Side IR
irRS VAR Bit ' State of Right Side IR

' -----[Initialization]---

DEBUG CLS, "IR DETECTORS", CR, ' Display heading
 "Left Right", CR,
 "---- -----", CR

' -----[Main Routine]---

DO ' DO...LOOP repeats indefinitely

 FREQOUT IrLedLS, 1, IrFreq ' Left IRLED shines IR light
 irLS = ~IrSenseLS ' Save IR receiver output

 FREQOUT IrLedRS, 1, IrFreq ' Repeat for Right IRLED/receiver
 irRS = ~IrSenseRS

 DEBUG CRSRX, 1, BIN1 irLS, ' Display object detect bits
 CRSRX, 9, BIN1 irRS

 PAUSE 100 ' Delay for slower PCs

LOOP

Page 122· Applied Robotics with the SumoBot

Your Turn - Testing All Four

Your SumoBot will eventually need to check and process information from all four IR
object detectors each time through the Main Routine’s DO...LOOP. In this case, it's a
matter of incorporating elements from the IR object detector programs from this activity
and Activity #1 into a single program. If you start with one of the programs, you can
copy the following elements from the other program: PIN directives, variable
declarations, FREQOUT commands and statements that set variables equal to pin names.
After that, all that remains is modifying a couple of DEBUG commands.

√ Save a copy of TestSideIrObjectDetectors.bs2 as TestAllIrObjectDetectors.bs2.
√ Copy all the elements you need from TestFrontIrObjectDetectors.bs2 into your

new program.
√ Modify the DEBUG commands to display all the object detection bits.
√ Test and troubleshoot until you've got it working.
√ Save the modified program.

ACTIVITY #6: TESTING ALL SENSORS
This activity combines portions of test code that have already been developed for the
following sensors into one program:

• Front IR object detectors
• Side IR object detectors
• Front QTI line sensors
• Pushbutton

Combining Programs

So far, the SumoBot has seven sensors: 2 QTI line sensors, 4 IR object detectors, and 1
pushbutton. Each has a test program that displays binary values for these sensors, either
one at a time or in pairs. This next example combines them into a master program that
stores the state of each sensor via a series of subroutines, then displays them all with a
single DEBUG command. This can actually be done with minimal additions, effort, and
debugging.

Chapter 3: EEPROM Tricks and Program Tips · Page 123

√ Start by opening all of the following programs:

o TestLedSpeaker.bs2
o TestPushButton.bs2
o TestFrontIrObjectDetectors.bs2
o QtiPulseDecayTrick.bs2
o TestSideIrObjectDetectors.bs2

√ Save QtiPulseDecayTrick.bs2 as TestAllSensors.bs2
√ Copy and paste the I/O definitions and variables from the other programs into

your new program.
√ Add one more bit variable that was not found in the other programs, to store the

state of the pushbutton:

pushbutton VAR Bit

√ Make subroutines for the speaker, IR detectors, and QTI detectors from the
functional portions of their test programs. If the actual work of a sensor is done
in the program's Main Routine, (like IR object detection), paste that part of the
routine into a subroutine. For example, a Read_Object_Detectors subroutine
could take four lines from the Main Routine of TestFrontIrObjectDetectors.bs2,
and four more from TestSideIrObjectDetectors.bs2.

Read_Object_Detectors:

 FREQOUT IrLedRS, 1, IrFreq ' Right side IR LED headlight
 irRS = ~IrSenseRS ' Save right side IR receiver

 FREQOUT IrLedRF, 1, IrFreq ' Repeat for right-front
 irRF = ~IrSenseRF

 FREQOUT IrLedLF, 1, IrFreq ' Repeat for left-front
 irLF = ~IrSenseLF

 FREQOUT IrLedLS, 1, IrFreq ' Repeat for left side
 irLS = ~IrSenseLS

 RETURN

The subroutine for the pushbutton needs a different approach. Remember that pbSense
and DummyPin both reference P6, which is serving two purposes. It's getting used as an
output when DummyPin sends the PULSOUT command pulses from the
Read_Line_Sensors subroutine. For P6 to next be used to monitor the pushbutton, it

Page 124· Applied Robotics with the SumoBot

has to be changed back to an input first. So, the Main Routine of TestPushButton.bs2
will not serve our purpose, but this simple subroutine will.

√ Add a Read_Pushbutton subroutine:

Read_Pushbutton:

 INPUT pbSense ' Set I/O pin to input
 pushbutton = pbSense ' Store state of pbSense

 RETURN

Some of the initialization routines will not be necessary. Others, like Calibrate_Qtis
are crucial. It's important to pick and choose what you'll need for both the Initialization
and Main Routine. You'll need to make sure to call all the subroutines and display only
the relevant values.

√ Construct an Initialization section and Main Routine that will make your
program function.

√ Test and troubleshoot it.
√ Convert all active low bit variables to active high.
√ Compare what you came up with to the TestAllSensors.bs2 below.

Example Program: TestAllSensors.bs2

√ Run and test TestAllSensors.bs2.

' -----[Title]--
' Applied Robotics with the SumoBot - TestAllSensors.bs2
' This program is a combination of the following:

' - QtiPulseDecayTrick.bs2
' - TestFrontIrObjectDetectors.bs2
' - TestSideIrObjectDetectors.bs2
' - TestPushButton.bs2
' - TestLedSpeaker.bs2

' Important: You must start with the QTIs seeing black.

' {$STAMP BS2} ' Target = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

' -----[I/O Definitions]---

Chapter 3: EEPROM Tricks and Program Tips · Page 125

qtiPwrLeft PIN 10 ' Left QTI on/off pin P10
qtiSigLeft PIN 9 ' Left QTI signal pin P9

qtiPwrRight PIN 7 ' Right QTI on/off pin P7
qtiSigRight PIN 8 ' Right QTI signal pin P8

DummyPin PIN 6 ' I/O pin for pulse-decay P6

IrLedLF PIN 4 ' Left IR LED connected to P4
IrSenseLF PIN 11 ' Left IR detector to P11

IrLedRF PIN 15 ' Right IR LED connected to P15
IrSenseRF PIN 14 ' Right IR detector to P14

IrLedLS PIN 2 ' Left IR LED connected to P2
IrSenseLS PIN 1 ' Left IR detector to P1

IrLedRS PIN 3 ' Right IR LED connected to P3
IrSenseRS PIN 0 ' Right IR detector to P0

pbSense PIN 6 ' Pushbutton connected to P6

LedSpeaker PIN 5 ' LED/speaker connected to P5

' -----[Constants]--

IrFreq CON 38500 ' IR LED transmit frequency

' -----[Variables]--

qtiLeft VAR Word ' Stores left QTI time
qtiRight VAR Word ' Stores right QTI time

qtiThreshold VAR Word ' Stores black/white threshold

irLS VAR Bit ' State of Left Side IR
irLF VAR Bit ' State of Left Front IR
irRF VAR Bit ' State of Right Front IR
irRS VAR Bit ' State of Right Side IR

qtiStateLeft VAR Bit ' Stores snapshot of QtiSigLeft
qtiStateRight VAR Bit ' Stores snapshot of QtiSigRight

pushbutton VAR Bit ' Stores pushbutton state

' -----[Initialization]---

GOSUB Calibrate_Qtis ' Determine b/w threshold

DEBUG CLS ' Clear Debug Terminal

Page 126· Applied Robotics with the SumoBot

' -----[Main Routine]---

DO ' DO...LOOP repeats indefinitely

 GOSUB Read_Line_Sensors ' Look for lines
 GOSUB Read_Object_Detectors ' Look for objects
 GOSUB Read_Pushbutton ' Check pushbutton

 DEBUG HOME, ' Display all sensors states
 ? irLS,
 ? irLF,
 ? irRF,
 ? irRS,
 ? qtiStateLeft,
 ? qtiStateRight,
 ? pushbutton
 ' Delay for slower PCs
 PAUSE 100

LOOP

' -----[Subroutine - Calibrate_Qtis]--

Calibrate_Qtis:

 HIGH qtiPwrLeft ' Turn left QTI on
 HIGH qtiSigLeft ' Discharge capacitor
 PAUSE 1
 RCTIME qtiSigLeft, 1, qtiLeft ' Measure charge time
 LOW qtiPwrLeft ' Turn left QTI off

 HIGH qtiPwrRight ' Turn right QTI on
 HIGH qtiSigRight ' Discharge capacitor
 PAUSE 1
 RCTIME qtiSigRight, 1, qtiRight ' Measure charge time

 GOSUB Read_Line_Sensors ' Get reflection values
 qtiThreshold = (qtiLeft + qtiRight) / 2 ' Calculate average
 qtiThreshold = qtiThreshold / 4 ' Take 1/4 average

 IF qtiThreshold > 220 THEN ' Account for code overhead
 qtiThreshold = qtiThreshold - 220
 ELSE
 qtiThreshold = 0
 ENDIF

 RETURN

' -----[Subroutine - Read_Line_Sensors]-------------------------------------

Read_Line_Sensors:

Chapter 3: EEPROM Tricks and Program Tips · Page 127

 HIGH qtiPwrLeft ' Turn on QTIs
 HIGH qtiPwrRight
 HIGH qtiSigLeft ' Push signal voltages to 5 V
 HIGH qtiSigRight
 PAUSE 1 ' Wait 1 ms for capacitors

 INPUT qtiSigLeft ' Start the decays
 INPUT qtiSigRight
 PULSOUT DummyPin, qtiThreshold ' Wait for threshold time

 qtiStateLeft = ~ qtiSigLeft ' Snapshot of QTI signal states
 qtiStateRight = ~ qtiSigRight

 LOW qtiPwrLeft ' Turn off QTIS
 LOW qtiPwrRight

 RETURN

' -----[Subroutine - Read_Object_Detectors]---------------------------------

Read_Object_Detectors:

 FREQOUT IrLedRS, 1, IrFreq ' Right side IR LED headlight
 irRS = ~IrSenseRS ' Save right side IR receiver

 FREQOUT IrLedRF, 1, IrFreq ' Repeat for right-front
 irRF = ~IrSenseRF

 FREQOUT IrLedLF, 1, IrFreq ' Repeat for left-front
 irLF = ~IrSenseLF

 FREQOUT IrLedLS, 1, IrFreq ' Repeat for left side
 irLS = ~IrSenseLS

 RETURN

' -----[Subroutine - Read_Pushbutton]---------------------------------------

Read_Pushbutton:

 input pbSense
 pushbutton = pbSense ' Store state of pbSense

 RETURN

Page 128· Applied Robotics with the SumoBot

Your Turn - Cleaning up Names

These variable declaration names have some room for improvement:

irLS VAR Bit ' State of Left Side IR
irLF VAR Bit ' State of Left Front IR
irRF VAR Bit ' State of Right Front IR
irRS VAR Bit ' State of Right Side IR

qtiStateLeft VAR Bit ' Stores snapshot of QtiSigLeft
qtiStateRight VAR Bit ' Stores snapshot of QtiSigRight

The main problem is that they are not really consistent. The object detector variables are
pretty good, there's irLF for IR-detector-left-front (LF), right-front(RF), and so on. The
qtiState variables don't match the object variable's name conventions, but they should.
If you change it here, you should make sure that every instance in the program is also
changed. This is where the BASIC Stamp Editor's Edit -> Find/Replace feature comes in
handy.

√ Save TestAllSensors as TestAllSensorsYourTurn.bs2.
√ In the BASIC Stamp Editor, click Edit and select Find/Replace.
√ Enter qtiStateLeft into the Find field and qtiLF into the replace field as

shown in Figure 3-20.

Figure 3-20
Find/Replace
Window

√ Click Replace all. A message displaying the number of replacements should tell

you how many changes were made as shown in Figure 3-21.

 Figure 3-21
Information Window

Chapter 3: EEPROM Tricks and Program Tips · Page 129

√ Repeat by using this feature to change qtiStateLeft to qtiLF.
√ Some of the comments may now be out of alignment. Go through the program

and insert spaces to line the side comments back up to column 46.
√ Save your modified program; you will need it in the next couple activities.

ACTIVITY #7: ORGANIZING SENSORS WITH FLAG BITS
Storing each sensor value as an individual bit is great for decision making, especially if
you want to isolate only one or two variables. In other cases, it's better to have all your
bits in a larger variable. It makes it easier for your program to analyze patterns in the
sensor flags. With PBASIC, you can have it both ways. This activity demonstrates how
to declare a sensors variable, and then declare individual flag bits within that variable.

Bit Declarations inside a Byte

By storing all your flag bits in a larger variable, they are still accessible as individual
values, but they are also accessible as a group for pattern analysis. It doesn't make
programming any more difficult. In fact, with PBASIC all you have to do is declare a
byte variable, and then declare the names of each individual bit in the byte.

For example, here are the 7 bit-variable declarations from TestAllSensorsYourTurn.bs2.

irLS VAR Bit ' State of Left Side IR
irLF VAR Bit ' State of Left Front IR
irRF VAR Bit ' State of Right Front IR
irRS VAR Bit ' State of Right Side IR

qtiLF VAR Bit ' Stores snapshot of QtiSigLeft
qtiRF VAR Bit ' Stores snapshot of QtiSigRight

pushbutton VAR Bit ' Stores pushbutton state

To arrange these in a byte, simply declare the byte variable, and then declare each bit as a
member of the byte variable. For example, if the byte is named sensors, irRS can be
sensors.BIT0, irRF can be sensors.BIT1, and so on. Here is the entire series of
variable declarations within a single sensors byte variable:

sensors VAR Byte ' Sensor flags byte

pushbutton VAR sensors.BIT6 ' Stores pushbutton state

qtiLF VAR sensors.BIT5 ' Stores snapshot of QtiSigLeft
qtiRF VAR sensors.BIT4 ' Stores snapshot of QtiSigRight

Page 130· Applied Robotics with the SumoBot

irLS VAR sensors.BIT3 ' State of Left Side IR
irLF VAR sensors.BIT2 ' State of Right Side IR
irRF VAR sensors.BIT1 ' State of Right Front IR
irRS VAR sensors.BIT0 ' State of Right Side IR

The best thing about this arrangement is that no other changes in the program have to be
made. The program will still function normally, and you can display each bit value as
before.

√ Save TestAllSensorsYourTurn.bs2 as SensorsWithFlagsByte.bs2.
√ Modify the variable declarations as explained in this activity.
√ Test the program and verify that it still works the same.

Your Turn - Working with the Sensors Byte

Here is an alternate Initialization and Main Routine you can try to see how a byte can
show you different patterns of bits (1s and 0s). A DEBUG command in the Initialization
builds a display heading to label each bit in the sensors variable, with a reference to the
sensor whose status that bit stores. Then a DO...LOOP in the Main Routine constantly
updates the value of the sensors variable, and displays in a second DEBUG command.

' -----[Initialization]--

GOSUB Calibrate_Qtis ' Determine b/w threshold

' Display heading
DEBUG CLS, " PB", CR, ' Pushbutton
 " |QTI",CR, ' QTI line sensors
 " |||IROD",CR, ' Infrared Object Detectors
 " |||||||",CR,
 CR, ' Sensors byte goes here
 " |||||||", CR,
 " LRLLRR", CR, ' Left/right
 " FFSFFS" ' Front/side

' -----[Main Routine]--

DO ' DO...LOOP repeats indefinitely
 GOSUB Read_Line_Sensors ' Look for lines
 GOSUB Read_Object_Detectors ' Look for objects
 GOSUB Read_Pushbutton ' Check pushbutton

 DEBUG CRSRXY, 0, 4, BIN8 sensors ' Display Sensors Variable
 PAUSE 100 ' Delay for slower PCs
LOOP

Chapter 3: EEPROM Tricks and Program Tips · Page 131

Figure 3-22 shows an example of how these modified routines display the contents of the
sensors byte. But first let’s look at this line for a moment:

DEBUG CRSRXY, 0, 4, BIN8 sensors

DEBUG CRSRXY, 0, 4, places the Debug Terminal cursor at column 0, row 4 (the top
row is row 0) right inside the display heading built by the Initialization DEBUG command.
BIN8 sensors displays the value of sensors as an 8-digit binary number, allowing us
to view each bit, and therefore the status of each sensor’s I/O pin.

The bit pattern in Figure 3-22 indicates that the left and right front IR detectors see an
object, making it a good time for your SumoBot to lunge forward. In the next chapter,
your programs will examine this variable, sometimes for patterns, and other times for
changes in certain groups of bits.

Figure 3-22
The sensors Byte

The left front (LF) and
right front (RF)
infrared object
detectors (IROD)
have detected
objects

√ Save SensorsWithFlagsByte.bs2 as SensorsByteDisplay.bs2.
√ Replace the Initialization and Main Routine with the ones above.
√ Save and run the program.

Page 132· Applied Robotics with the SumoBot

√ In order from BIT0 to BIT6, test the sensors in this order: infrared object
detectors - right side, right front, left front, left side. QTI line sensors - right
front, left front, pushbutton.

ACTIVITY #8: VARIABLE MANAGEMENT FOR LARGE PROGRAMS
When you have a project with a lot of sensors and programmed machine reactions,
variable space can become pretty tight. For example, the program in the previous activity
uses three words and one byte. There's one byte to take each QTI reading, and another to
store the QTI threshold. All three of these bytes are used at the beginning of the
program, but only one (threshold) is accessed repeatedly as the program runs. Since
threshold isn't even changed repeatedly as the program runs, it's not necessarily the best
use of a RAM variable either.

This activity uses the techniques introduced in Chapter 2, Activity #2 to use and reuse
temporary variables. As you go through the activities in this book, you will use the same
few temporary variables to monitor sensors, control servos, log data, and perform a
variety of maneuvers. In virtually every subroutine you build to perform these functions,
the same few variables will be used in different ways. Even after the activities in this
book, you can continue to add functionality to your SumoBot, without worrying that the
next sensor might take up too much RAM.

Incorporating Temporary Variables into SensorsWithByteDisplay.bs2

It's important to modify the sensor testing program (SensorsWithByteDisplay.bs2) so that
it uses the memory management techniques introduced in ThreeVariablesManyJobs.bs2.
Specifically, it has to use and re-use temporary variables and use EEPROM to store and
access values that don't change frequently. After the program has been modified, features
like more sensors, servo control, navigation, and datalogging can be added in many cases
without ever having to declare any more RAM variables.

√ Start by saving SensorsWithByteDisplay.bs2 as SensorsWithTempVariables.bs2.
√ Next, the qtiLeft, qtiRight, and qtiThreshold variable declarations need to

be commented out. In place of these three variables, you can use two word
variables - temp (short for temporary) and multi (short for multipurpose).

' -----[Variables]---

' qtiLeft VAR Word ' Stores left QTI time
' qtiRight VAR Word ' Stores right QTI time

Chapter 3: EEPROM Tricks and Program Tips · Page 133

' qtiThreshold VAR Word ' Stores black/white threshold

temp VAR Word ' <--- New temporary variable
multi VAR Word ' <--- New multipurpose variable

As mentioned earlier, a variable doesn't have to store the QTI decay black/white
threshold value because it doesn't change after it is set at the beginning of the program.
This makes it a prime candidate for EEPROM storage. We can use a DATA directive to
set aside a word-size variable to hold this threshold value.

√ Add this DATA directive to give this EEPROM address the Symbol name
QtiThresh.

' -----[EEPROM Data]---

QtiThresh DATA Word 0 ' Word for QTI threshold time

Even though the DATA directive writes a 0 to this EEPROM location when the program is
downloaded, a WRITE command can change this value after the program starts running.
Any value that is stored in EEPROM will remain there even if the power is disconnected
from the SumoBot. The only things that can change that value are another WRITE
command, or a download with a DATA directive that overwrites it.

All commands in the Calibrate_Qtis subroutine that involve the qtiLeft, qtiRight,
or qtiThreshold variables can be replaced with commands that use temp and multi.
Each command that got replaced was commented, with an apostrophe ' placed to the left
of it. Each command that was added has a comment to the right with either ' <--- Add
or ' <--- New. Notice that multi and temp are also used to calculate the threshold
time. Notice also that the threshold value is then copied from the multi variable to the
byte at the QtiThresh address in EEPROM.

√ Go through and examine each commented command and its replacement in this
entire subroutine.

' -----[Subroutine - Calibrate_Qtis]---------------------------------

Calibrate_Qtis:

 HIGH qtiPwrLeft ' Turn left QTI on
 HIGH qtiSigLeft ' Discharge capacitor
 PAUSE 1

' RCTIME qtiSigLeft, 1, qtiLeft ' Measure charge time

Page 134· Applied Robotics with the SumoBot

 RCTIME qtiSigLeft, 1, temp ' <--- New measure charge time

 LOW qtiPwrLeft ' Turn left QTI off
 multi = temp ' <--- Add

 HIGH qtiPwrRight ' Turn right QTI on
 HIGH qtiSigRight ' Discharge capacitor
 PAUSE 1
' RCTIME qtiSigRight, 1, qtiRight ' Measure charge time
 RCTIME qtiSigRight, 1, temp ' <--- New measure charge time

' qtiThreshold = (qtiLeft + qtiRight) / 2 ' Calculate average
 multi = (multi + temp) / 2 ' <--- New calculate average

' qtiThreshold = qtiThreshold / 4 ' Take 1/4 average
 multi = multi / 4 ' <--- New take 1/4 average

'IF qtiThreshold > 220 THEN ' Account for code overhead
' qtiThreshold = qtiThreshold - 220
' ELSE
' qtiThreshold = 0
' ENDIF

 IF multi > 220 THEN ' <--- New
 multi = multi - 220 ' <--- New
 ELSE ' <--- New
 threshold = 0 ' <--- New
 ENDIF ' <--- New

 WRITE QtiThresh, multi ' <--- New threshold to EEPROM

 RETURN

Since there's no more qtiThreshold variable and the value is instead stored at the
QtiThresh address in EEPROM, the Read_Line_Sensors subroutine will have to be
changed too. A READ command is used to copy the QtiThresh value from EEPROM to
the temp variable. Then, PULSOUT DummyPin, temp replaces PULSOUT DummyPIN,
qtiThreshold.

' -----[Subroutine - Read_Line_Sensors]------------------------------

Read_Line_Sensors:
 .
 .
 .
 READ QtiThresh, Word temp ' <-- Add get threshold time

 INPUT qtiSigLeft ' Start the decays
 INPUT qtiSigRight

Chapter 3: EEPROM Tricks and Program Tips · Page 135

' PULSOUT DummyPin, qtiThreshold ' Wait for threshold time
 PULSOUT DummyPin, temp ' <--- New wait threshold time

 qtiLF = ~qtiSigLeft ' Snapshot of QTI signal states
 qtiRF = ~qtiSigRight
 .
 .
 .

Remember, the goal of all this work is to make the program more easily expandable. The
other goal is to make it so that you can move parts of this program to other programs that
follow the same conventions. However, it still has to perform the same functions that it
did before the adjustments.

Example Program: SensorsWithTempVariables.bs2

√ Enter, save, and run SensorsWithTempVariables.bs2
√ Verify that the QTIs work the same as before.

' -----[Title]--
' Applied Robotics with the SumoBot - SensorsWithTempVariables.bs2
' Demonstrates the use of a temporary and multipurpose variable in conjunction
' with DATA, WRITE, and READ for calculating, storing, and using the qti
' threshold value.

' {$STAMP BS2} ' Target = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

' -----[I/O Definitions]---

qtiPwrLeft PIN 10 ' Left QTI on/off pin P10
qtiSigLeft PIN 9 ' Left QTI signal pin P9

qtiPwrRight PIN 7 ' Right QTI on/off pin P7
qtiSigRight PIN 8 ' Right QTI signal pin P8

DummyPin PIN 6 ' I/O pin for pulse-decay P6

IrLedLF PIN 4 ' Left IR LED connected to P4
IrSenseLF PIN 11 ' Left IR detector to P11

IrLedRF PIN 15 ' Right IR LED connected to P15
IrSenseRF PIN 14 ' Right IR detector to P14

IrLedLS PIN 2 ' Left IR LED connected to P2
IrSenseLS PIN 1 ' Left IR detector to P1

Page 136· Applied Robotics with the SumoBot

IrLedRS PIN 3 ' Right IR LED connected to P3
IrSenseRS PIN 0 ' Right IR detector to P0

pbSense PIN 6 ' Pushbutton connected to P6

LedSpeaker PIN 5 ' LED/speaker connected to P5

' -----[Constants]--

IrFreq CON 38500 ' IR LED transmit frequency

' -----[Variables]--

' qtiLeft VAR Word ' Stores left QTI time
' qtiRight VAR Word ' Stores right QTI time
' qtiThreshold VAR Word ' Stores black/white threshold

temp VAR Word ' <--- New temporary variable
multi VAR Word ' <--- New multipurpose variable

sensors VAR Byte ' Sensor flags byte

pushbutton VAR sensors.BIT6 ' Stores pushbutton state

qtiLF VAR sensors.BIT5 ' Stores snapshot of QtiSigLeft
qtiRF VAR sensors.BIT4 ' Stores snapshot of QtiSigRight

irLS VAR sensors.BIT3 ' State of Left Side IR
irLF VAR sensors.BIT2 ' State of Left Front IR
irRF VAR sensors.BIT1 ' State of Right Front IR
irRS VAR sensors.BIT0 ' State of Right Side IR

' -----[Initialization]---

GOSUB Calibrate_Qtis ' Determine b/w threshold

' Display heading
DEBUG CLS, " PB", CR, ' Pushbutton
 " |QTI",CR, ' QTI line sensors
 " |||IROD",CR, ' Infrared Object Detectors
 " |||||||",CR,
 CR, ' Sensors byte goes here
 " |||||||", CR,
 " LRLLRR", CR, ' Left/right
 " FFSFFS" ' Front/side

' -----[EEPROM Data]--

QtiThresh DATA Word 0 ' Word for QTI threshold time

' -----[Main Routine]---

Chapter 3: EEPROM Tricks and Program Tips · Page 137

DO ' DO...LOOP repeats indefinitely

 GOSUB Read_Line_Sensors ' Look for lines
 GOSUB Read_Object_Detectors ' Look for objects
 GOSUB Read_Pushbutton ' Check pushbutton

 DEBUG CRSRXY, 0, 4, BIN8 sensors ' Display Sensors Variable
 ' Delay for slower PCs
 PAUSE 100

LOOP

' -----[Subroutine - Calibrate_Qtis]--

Calibrate_Qtis:

 HIGH qtiPwrLeft ' Turn left QTI on
 HIGH qtiSigLeft ' Discharge capacitor
 PAUSE 1

' RCTIME qtiSigLeft, 1, qtiLeft ' Measure charge time
 RCTIME qtiSigLeft, 1, temp ' <--- New measure charge time

 LOW qtiPwrLeft ' Turn left QTI off
 multi = temp ' <--- Add

 HIGH qtiPwrRight ' Turn right QTI on
 HIGH qtiSigRight ' Discharge capacitor
 PAUSE 1
' RCTIME qtiSigRight, 1, qtiRight ' Measure charge time
 RCTIME qtiSigRight, 1, temp ' <--- New measure charge time

' qtiThreshold = (qtiLeft + qtiRight) / 2 ' Calculate average
 multi = (multi + temp) / 2 ' <--- New calculate average

' qtiThreshold = qtiThreshold / 4 ' Take 1/4 average
 multi = multi / 4 ' <--- New take 1/4 average

' IF threshold > 220 THEN ' Account for code overhead
' threshold = threshold - 220
' ELSE
' threshold = 0
' ENDIF

 IF multi > 220 THEN ' <--- New
 multi = multi - 220 ' <--- New
 ELSE ' <--- New
 multi = 0 ' <--- New
 ENDIF ' <--- New

Page 138· Applied Robotics with the SumoBot

 WRITE QtiThresh, Word multi ' <--- New threshold to EEPROM

 RETURN

' -----[Subroutine - Read_Line_Sensors]-------------------------------------

Read_Line_Sensors:

 HIGH qtiPwrLeft ' Turn on QTIs
 HIGH qtiPwrRight
 HIGH qtiSigLeft ' Push signal voltages to 5 V
 HIGH qtiSigRight
 PAUSE 1 ' Wait 1 ms for capacitors

 READ QtiThresh, Word temp ' <-- Add get threshold time

 INPUT qtiSigLeft ' Start the decays
 INPUT qtiSigRight

' PULSOUT DummyPin, qtiThreshold ' Wait for threshold time
 PULSOUT DummyPin, temp ' <--- New wait threshold time

 qtiLF = ~qtiSigLeft ' Snapshot of QTI signal states
 qtiRF = ~qtiSigRight

 LOW qtiPwrLeft ' Turn off QTIS
 LOW qtiPwrRight

 RETURN

' -----[Subroutine - Read_Object_Detectors]---------------------------------

Read_Object_Detectors:

 FREQOUT IrLedRS, 1, IrFreq ' Right side IR LED headlight
 irRS = ~IrSenseRS ' Save right side IR receiver

 FREQOUT IrLedRF, 1, IrFreq ' Repeat for right-front
 irRF = ~IrSenseRF

 FREQOUT IrLedLF, 1, IrFreq ' Repeat for left-front
 irLF = ~IrSenseLF

 FREQOUT IrLedLS, 1, IrFreq ' Repeat for left side
 irLS = ~IrSenseLS

 RETURN

' -----[Subroutine - Read_Pushbutton]---------------------------------------

Read_Pushbutton:

Chapter 3: EEPROM Tricks and Program Tips · Page 139

 INPUT pbSense
 pushbutton = pbSense ' Store state of pbSense

 RETURN

Your Turn - Program Cleanup

√ Review the commented lines of code and their replacements.
√ Remove the commented lines of code.
√ Run the program and verify that it still works properly.

Page 140· Applied Robotics with the SumoBot

SUMMARY
This chapter reviewed how the SumoBot's IR detectors work, then introduced basic IR
detector testing along with IR interference, electrical continuity, and IR receiver
frequency response tests. Using these tests will help ensure that the SumoBot's IR
detectors are reliable, and more likely to detect an opponent than lead the SumoBot on a
snipe hunt. Side-mounted IR object detectors were added to the breadboard to give the
SumoBot peripheral vision.

This chapter also reviewed how QTI line sensors work, and then introduced a technique
you can use in your programs to read multiple QTI sensors, all in less than the time it
takes to read a single QTI sensor on a black surface. Self calibration techniques for QTI
line sensors were reviewed and refined so that your SumoBot can automatically adjust to
different sumo ring surfaces and ambient lighting conditions.

Programs were developed to read and track the values of each of the seven sensors (4 IR
detectors, 2 QTI sensors, and 1 pushbutton). A flags variable was introduced as a way of
storing the state of each of the individual sensor bits for pattern analysis. Temporary
variables for storage and counting were then incorporated into the program so that each
subroutine doesn't require its own special set of variables, which is an unnecessary use of
variable space.

Questions

1. What label designates the header with the front-left IR detector?
2. What connections does the SumoBot board make to the header with the front-left

IR detector that you don't have to build on a breadboard?
3. What does FREQOUT 4, 1, 38500 do?
4. What does FREQOUT 14, 1, 38500 do?
5. Are the SumoBot's IR receivers active-low or active-high output devices?
6. What is a ballast?
7. What's the main coding difference between "sniffing" for IR interference and IR

object detection?
8. What is an interruption in electrical continuity?
9. What problems can occur if your SumoBot's IR object detectors are set for

maximum sensitivity?
10. What does "frequency response" refer to?

Chapter 3: EEPROM Tricks and Program Tips · Page 141

11. What factors should you keep in mind when selecting a frequency for a given
SumoBot ring?

12. What label designates the header with the front-left QTI sensor?
13. What connections does the SumoBot board make to the header with the front-left

QTI Sensor that you don't have to build on a breadboard?
14. How does the BASIC Stamp turn the power to a QTI on and off?
15. How many components are on the QTI sensor?
16. What water analogy was used for the infrared transistor inside the QRD1114?
17. Does the QRD1114 need a 38.5 kHz infrared signal?
18. Regarding Figure 3-11 on page 99, why does V0 decay more quickly when the

infrared transistor receives more IR?
19. Regarding Figure 3-11 on page 99, what does each of the three downward curves

indicate?
20. How does voltage decay relate to the amount of infrared a surface reflects? Use

black and white as examples.
21. What are the measurement units of RCTIME and PULSOUT in the BASIC Stamp

2?
22. What code block can you use to improve the accuracy of the pulse-decay trick?
23. With the pulse-decay trick, are the QTIs active-high or active low?
24. How do the circuits from the side-mounted IR object detectors differ from the

front-mounted ones?
25. How much more memory does it take to use a sensors variable to store all the

individual sensor bits?

Exercises

1. Write a routine that counts the number of IR interferences detected in a minute.
2. Write a routine that tests the IR receiver's frequency response at increments of

250 instead of 500.
3. Calculate the value threshold will store in QtiSelfCalibrate.bs2 if the white

measurement is 100 and the black measurement is 2000.
4. Expand the band of frequencies examined by TestFrequencyResponse.bs2 from

36 kHz ≤ f ≤ 42 kHz to 33 kHz ≤ f ≤ 45 kHz
5. Modify TestFrontQtiLineSensors.bs2 so that it notifies you if tilt is detected.
6. Calculate the time it would take 3 QTIs to each take measurements that average

RCTIME measurements of 2500.
7. Modify the Your Turn program from Activity #7 so that it displays a 1 in

sensors.BIT7 if all IR detectors simultaneously detect an object.

Page 142· Applied Robotics with the SumoBot

Projects

1. Write a program that beeps at different notes to tell you which sensor it detects.
2. Place an object on the SumoBot's left at a distance outside the SumoBot

Competition Ring that the SumoBot can detect with only its most sensitive IR
object detection frequencies. Place the other SumoBot on the right side. Write a
self calibrating routine to select the frequency that most effectively detects the
SumoBot, but not the object outside the competition ring.

Chapter 4: Navigation Tips · Page 143

Chapter #4: Navigation Tips

Effectively using four object detectors and two QTI line sensors for SumoBot navigation
can seem a little daunting at first, especially when you consider that there are 64 different
possible combinations of detected and not detected that you can get from this array. It
turns out that you can reduce all these possibilities to a very simple
IF...ELSEIF...ELSE...ENDIF statement. In fact, just an IF, six ELSIFs, and one
ELSE can control the whole show and give you a highly functional wrestling program.

The IF, all the ELSEIFs and the ELSE conditions in the final program call subroutines that
do specific maneuvers until either a sensor condition is detected indicating the subroutine
succeeded, or the allowed amount of time for the subroutine to execute the maneuver has
expired. It makes the SumoBot's behavior both predictable and automated. This chapter
demonstrates the various building blocks that go into a program that simplifies the
SumoBot's decision process and automates maneuver's responses to sensor events.

SENSOR FLAGS AND NAVIGATION STATES
There are several ingredients to building a program that makes a lot of different sensors
and maneuvers easy to manage. First, build a subroutine that makes selecting servo pulse
durations fully automated. All your program should have to do is set a variable equal to a
maneuver name, and then call the servo control subroutine. Second, build a subroutine
that calls both the servo control subroutine and updates all the sensors. That way, after
your program has picked its maneuver, the sensors variable can be completely updated
between each servo pulse. Third, construct independent navigation states. Each
navigation state should be a subroutine that does a job with no further intervention until it
has either succeeded or its time for the maneuver has expired. Finally, construct an
IF...THEN statement that checks and responds to the most important sensor flags first,
and then goes down a list of possible conditions that the SumoBot should react to. This
IF...THEN statement simply responds to each sensor condition by calling the navigation
subroutine that is designed to respond to that condition.

It takes a few steps to get to the final form of the program, starting as always with small
programs. These small programs are then converted into programs that feature sections
and a common variable use convention. After several of these are built, they can be
merged into a larger test program. After the test program is tested, it can be rearranged
into a simplified Main Routine that makes executive decisions and then passes control to
navigation subroutines.

Page 144· Applied Robotics with the SumoBot

ACTIVITY #1: SERVO CONTROL WITH LOOKUP COMMANDS
Since all the other subroutines in this book have utilized some combination of the
counter and temp variables, why not make it so for servo control subroutines? This
activity demonstrates a way to do it with the LOOKUP command.

Servo Control Review

Figure 4-1 is a repeat of Figure 1-4 from Chapter 1, Activity #1. A quick review: The left
servo is connected to header X7 on the SumoBot board. The SumoBot's BASIC Stamp
will send the left servo control signals from I/O pin P13. The right servo is connected to
header X6. The SumoBot's BASIC Stamp will send the right servo control signals from
I/O pin P12.

Figure 4-1 SumoBot Servo Connections

Left Right

Your PBASIC programs can control each servo’s speed, direction and run-times with
PULSOUT commands inside a FOR...NEXT loop. Figure 4-2 shows an example. This
FOR...NEXT loop makes the SumoBot's servos turn full speed for one second. The
SumoBot's left servo, which is connected to P13 turns full speed counterclockwise while
its right servo, which is connected to P12, turns full speed clockwise. This combination
of wheel rotations makes the SumoBot travel forward.

Chapter 4: Navigation Tips · Page 145

Figure 4-2 The Servo Control Loop

The FOR...NEXT loop's EndValue is the number of 1/41 second increments the servo
will run. Every time through the loop takes about 24.6 ms, so 41 times through the 24.6
ms loop takes about 41 × 0.0246 ≈ 1 second. Increasing the FOR...NEXT loop's
EndValue argument to 82 would make the servos run for twice the time, about 2 seconds.
Half a second of servo rotation would be an EndValue of 20, and so on.

Sensors will change the effective PAUSE time. When the effective PAUSE time has
changed, it will take some experimenting to re-tune the FOR...NEXT loop EndValues to
get the servo rotation times you want.

The servos have to turn opposite directions to make the SumoBot roll forward. If this
seems counterintuitive, look at the SumoBot's right side. That wheel has to turn clockwise
to make the SumoBot roll forward. Now look at the SumoBot's left side. That wheel has to
turn counterclockwise to make the SumoBot roll forward.

Applying the same train of though for rolling backward, the right servo has to turn
counterclockwise, and the left servo has to turn clockwise. By rotating both servos the same
direction, you can either make the SumoBot rotate right or left. To make the SumoBot rotate
left, both wheels must turn clockwise. To make the SumoBot rotate right, both wheels must
turn counterclockwise.

The graph in Figure 4-3 shows how you can use the PULSOUT command's Duration
argument to control the servo's speed and direction. Recall that the PULSOUT Duration
argument has units of 2 µs. A pulse width of 1300 µs, equal to a PULSOUT Duration of
650, is full speed clockwise. A Duration of 850 (1700 µs) is full speed
counterclockwise. A Duration of 750 (1500 µs) yields no rotation.

Page 146· Applied Robotics with the SumoBot

With some experimentation, you can also control the speed of the servos too. Note from
Figure 4-3 that the relationship between pulse width and rotational velocity is not simply
linear. For example, a Duration of 700 is still pretty close to full speed clockwise, but
as you increase to 710, 720, 730, and so on, there should be a noticeable reduction in
speed. The closer Duration is to 750, the slower the servo will turn. Likewise, 800 is
still pretty close to full speed counterclockwise, but as Duration gets closer to 750, the
servo will rotate counterclockwise more slowly.

Figure 4-3 PULSOUT Duration vs. Rotational Velocity for Parallax Continuous Rotation Servo

ServoControlExample.bs2 demonstrates how to use PULSOUT Duration and FOR...NEXT
loop EndValue arguments to determine the SumoBot's maneuver and the time the
SumoBot spends executing that maneuver.

Example Program: ServoControlExample.bs2

√ Enter, save, and run the ServoControlExample.bs2.
√ Verify that the SumoBot executes each of the maneuvers mentioned in the

comments.

Speed Reduces

Pulse Width, µs 1300 1350 1400 1450 1500 1550 1600 1650 1700

PULSOUT Duration 650 675 700 725 750 775 800 825 850

Full Speed
Clockwise

Full Speed
Counterclockwise

Full
Stop Speed Reduces

 60

 40

 20

 0

-20

-40

-60

R
ot

at
io

na
l V

el
oc

ity
, R

PM

Chapter 4: Navigation Tips · Page 147

' Applied Robotics with the SumoBot - ServoControlExample.bs2

' {$STAMP BS2}
' {$PBASIC 2.5}

counter VAR byte

' SumoBot goes forward 3 seconds.
FOR counter = 1 TO 122
 PULSOUT 13, 850
 PULSOUT 12, 650
 PAUSE 20
NEXT

' SumoBot goes backward 3 seconds.
FOR counter = 1 TO 122
 PULSOUT 13, 650
 PULSOUT 12, 850
 PAUSE 20
NEXT

' SumoBot rotates left .75 seconds.
FOR counter = 1 TO 30
 PULSOUT 13, 650
 PULSOUT 12, 650
 PAUSE 20
NEXT

' SumoBot rotates right .75 seconds.
FOR counter = 1 TO 30
 PULSOUT 13, 850
 PULSOUT 12, 850
 PAUSE 20
NEXT

' SumoBot pivots right 1.5 seconds.
FOR counter = 1 TO 61
 PULSOUT 13, 850
 PULSOUT 12, 750
 PAUSE 20
NEXT

' SumoBot curves left 1.5 seconds.
FOR counter = 1 TO 61
 PULSOUT 13, 765
 PULSOUT 12, 650
 PAUSE 20
NEXT

Page 148· Applied Robotics with the SumoBot

Your Turn - Using PIN Definitions and Constants

Instead of the number 13 in the PULSOUT command's Pin argument, the example program
can use the PIN directive ServoLeft. Likewise, the program can use ServoRight in
place of the number 12. Since we know that 650 is the PULSOUT Duration for full-
speed-clockwise, a good constant name for this number would be FS_CW. Along the
same lines, 850 can be FS_CCW for full speed counterclockwise, and 750 can be NO_ROT
for no rotation.

√ Add these PIN directives and constant declarations to the program:

' -----[I/O Definitions]--

ServoLeft PIN 13 ' Left servo connected to P13
ServoRight PIN 12 ' Right servo connected to P12

' -----[Constants]---

' Servo pulse width rotation constants

FS_CCW CON 850 ' Full speed counterclockwise
FS_CW CON 650 ' Full speed clockwise
NO_ROT CON 750 ' No rotation

Here is an example of the first one updated with PIN directives and constant names.

' SumoBot goes forward 3 seconds.
FOR counter = 1 TO 122
 PULSOUT ServoLeft, FS_CCW
 PULSOUT ServoRight, FS_CW
 PAUSE 20
NEXT

√ Modify all the motion routines to use these constants.

LOOKUP Command Review

The LOOKUP command picks a value from the lookup table (the list within the square
braces) and copies that value to Variable. The value LOOKUP picks depends on the
Index variable.

LOOKUP Index, [Value1, Value2, ... ValueN], Variable

Chapter 4: Navigation Tips · Page 149

Let's take a second look at that LOOKUP command from Chapter 2, Activity #4. If
counter is 0, the LOOKUP command will copy 1046 to the note variable. If counter is
1, LOOKUP will copy 1175 to the note variable. If counter is 2, 1319 will be copied to
note, and so on.

 LOOKUP counter, [1046, 1175, 1319,
 1397, 1580, 1760,
 1976, 2093], note

Example Program: LookupExample.bs2

√ Enter, save, and run LookupExample.bs2.
√ Use the Debug Terminal to verify the relationship between the value counter

stores and the number between the square brackets that gets stored in the note
variable.

' Applied Robotics with the SumoBot - LookupExample.bs2

' {$STAMP BS2}
' {$PBASIC 2.5}

LedSpeaker PIN 5

counter VAR Byte
note VAR Word

DEBUG "Counter Note",CR,
 "------- -------", CR

FOR counter = 0 TO 7
 LOOKUP counter, [1046, 1175, 1319,
 1397, 1580, 1760,
 1976, 2093], note
 DEBUG DEC counter, CRSRX, 9, DEC note, CR
 FREQOUT 5, 500, note
 PAUSE 25
NEXT

END

Your Turn

You can declare constants equal to the note values, and then use those constants in the
lookup table.

Page 150· Applied Robotics with the SumoBot

√ Save the example program as LookupExampleYourTurn.bs2
√ Add these constant declarations with the CON directive:

C_6 CON 1046
D_6 CON 1175
E_6 CON 1319
F_6 CON 1397
G_6 CON 1580
A_6 CON 1760
B_6 CON 1976
C_7 CON 2093

√ Change the lookup table to this:

 LOOKUP counter, [C_6, D_6, E_6,
 F_6, G_6, A_6,
 B_6, C_7], note

√ Run the program, and verify that it works the same as before.

A Servo Control Subroutine with the LOOKUP Command

In addition to the counter and temp variables, this activity's example program will use
a nibble variable named maneuver:

maneuver VAR Nib ' SumoBot travel maneuver

The maneuver variable will be set equal to various constants before calling a servo
control subroutine.

Forward CON 0 ' Forward
Backward CON 1 ' Backward
RotateLeft CON 2 ' RotateLeft
RotateRight CON 3 ' RotateRight

For example, you can set maneuver equal to a value and then call the servo control
subroutine like this:

maneuver = Forward
GOSUB Pulse_Servos

If you want to deliver 35 pulses, put it in a FOR...NEXT loop:

FOR counter = 1 TO 35 ' Forward 35 pulses
 maneuver = Forward
 GOSUB Pulse_Servos
NEXT

Chapter 4: Navigation Tips · Page 151

The servo control subroutine will send pulse values to the servos. Constants for full
speed counterclockwise (FS_CCW), full speed clockwise (FS_CW), and no rotation
(NO_ROT) will make the subroutine easier to write.

FS_CCW CON 850 ' Full speed counterclockwise
FS_CW CON 650 ' Full speed clockwise
NO_ROT CON 750 ' No rotation

Here is the Pulse_Servos subroutine. Remember that Forward is a constant, set to 0
by a constant declaration (Forward CON 0). If maneuver is set to Forward before the
Pulse_Servos subroutine is called, the LOOKUP command takes the zeroth element in
the lookup table, and copies it to the temp variable. The first lookup command copies
FS_CCW (850) to temp. Then PULSOUT ServoLeft, temp sends that pulse to the left
servo, which is connected to P13. It's equivalent to PULSOUT 13, 850. The second
LOOKUP and PULSOUT commands in the subroutine place FS_CCW (650) into the temp
variable. So PULSOUT ServoRight, temp is equivalent to PULSOUT 12, 650, which
makes the right servo turn full speed clockwise.

' -----[Subroutine - Pulse_Servos]-----------------------------------

Pulse_Servos:

 ' Pulse to left servo
 LOOKUP maneuver, [FS_CCW, FS_CW, FS_CW, FS_CCW], temp
 PULSOUT ServoLeft, temp

 ' Pulse to right servo
 LOOKUP maneuver, [FS_CW, FS_CCW, FS_CW, FS_CCW], temp
 PULSOUT ServoRight, temp

 ' Pause between pulses (remove when using IR object detectors + QTIs)
 PAUSE 20

 RETURN

If maneuver is set equal to the constant Backward, the LOOKUP command copies FS_CW
to the temp variable for the PULSOUT ServoLeft, temp command, and FS_CCW to temp
for the PULSOUT ServoRight, temp command. If maneuver is RotateLeft (2),
FS_CW is copied to temp for both PULSOUT commands. Finally, if maneuver is
RotateRight (3), FS_CCW gets copied to both temp variables, and the PULSOUT
commands send 850 to the servos.

Page 152· Applied Robotics with the SumoBot

Example Program: ServoControlWithLookup.bs2

√ Enter and save ServoControlWithLookup.bs2
√ Move the 3-position switch on the SumoBot circuit board to position 1.
√ Download the program to the SumoBot.
√ Hold down the Reset button on the SumoBot circuit board, then move the 3-

position switch from 1 to 2.
√ Place the SumoBot on the practice ring, let go of the Reset button, and watch it

navigate. It should move forward around 10 inches (25 cm), then rotate left
almost 90°, then rotate right almost 180°, then rotate left almost 90° to return to
the direction it was first facing. It should then continue forward and repeat the
“look left, look right” jog after another 10 inches.

The usefulness of the Reset subroutine. It sure was easier to just tap that Reset button to
make the SumoBot stop and wait wasn’t it? All you have to do is copy and paste a few
sections from TestResetButton.bs2 from Chapter 2, Activity #3 into this example program,
and you'll have that functionality again.

Calibration: Your servos may perform differently, so you many need to adjust the
FOR...NEXT loops' EndValue arguments to get your SumoBot to perform the search
pattern the way it was just described.

' -----[Title]--
' Applied Robotics with the SumoBot - ServoControlWithLookup.bs2

' {$STAMP BS2} ' Target = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

' -----[I/O Definitions]---

ServoLeft PIN 13 ' Left servo connected to P13
ServoRight PIN 12 ' Right servo connected to P12

' -----[Constants]--

' SumoBot maneuver constants

Forward CON 0 ' Forward
Backward CON 1 ' Backward
RotateLeft CON 2 ' Rotate in place turning left
RotateRight CON 3 ' Rotate in place turning right

' Servo pulse width rotation constants

FS_CCW CON 850 ' Full speed counterclockwise
FS_CW CON 650 ' Full speed clockwise

Chapter 4: Navigation Tips · Page 153

NO_ROT CON 750 ' No rotation

' -----[Variables]--

temp VAR Word ' Temporary variable
counter VAR Byte ' Loop counting variable.

maneuver VAR Nib ' SumoBot travel maneuver

' -----[Main Routine]---

Test_Search_Pattern:

 DO

 FOR counter = 1 TO 35 ' Forward 35 pulses
 maneuver = Forward
 GOSUB Pulse_Servos
 NEXT

 FOR counter = 1 TO 12 ' Rotate left 12 pulses
 maneuver = RotateLeft
 GOSUB Pulse_Servos
 NEXT

 FOR counter = 1 TO 24 ' Rotate right 24 pulses
 maneuver = RotateRight
 GOSUB Pulse_Servos
 NEXT

 FOR counter = 1 TO 12 ' Rotate Left 12 pulses
 maneuver = RotateLeft
 GOSUB Pulse_Servos
 NEXT

 LOOP

' -----[Subroutine - Pulse_Servos]--

Pulse_Servos:
 ' Pulse to left servo
 LOOKUP maneuver, [FS_CCW, FS_CW, FS_CW, FS_CCW], temp
 PULSOUT ServoLeft, temp

 ' Pulse to right servo
 LOOKUP maneuver, [FS_CW, FS_CCW, FS_CW, FS_CCW], temp
 PULSOUT ServoRight, temp

 ' Pause between pulses (remove when using IR object detectors + QTIs).
 PAUSE 20
 RETURN

Page 154· Applied Robotics with the SumoBot

Your Turn

Here is a wider variety of maneuver constants along with extra servo pulse width rotation
constants you will need to implement all 10 maneuvers.

' -----[Constants]---

' SumoBot maneuver constants

Forward CON 0 ' Forward
Backward CON 1 ' Backward
RotateLeft CON 2 ' Rotate in place turning left
RotateRight CON 3 ' Rotate in place turning right
PivotLeft CON 4 ' Pivot on 1 wheel turning left
PivotRight CON 5 ' Pivot on 1 wheel turning right
CurveLeft CON 6 ' Curve to the left
CurveRight CON 7 ' Curve to the right
PivotLeftBack CON 8 ' Pivot backward-left
pivotRightBack CON 9 ' Pivot backward-right

' Servo pulse width rotation constants

FS_CCW CON 850 ' Full speed counterclockwise
FS_CW CON 650 ' Full speed clockwise
NO_ROT CON 750 ' No rotation
LS_CCW CON 770 ' Low speed counterclockwise
LS_CW CON 730 ' Low speed clockwise

√ Save ServoControlWithLookup.bs2 as ServoControlWithLookupYourTurn.bs2.
√ Update the constants section with all the new declarations.

Here is the Pulse_Servos subroutine with its LOOKUP commands modified to
accommodate the PivotLeft and PivotRight maneuvers:

Pulse_Servos:

 ' Pulse to left servo
 LOOKUP maneuver, [FS_CCW, FS_CW, FS_CW, FS_CCW,
 NO_ROT, FS_CCW], temp
 PULSOUT ServoLeft, temp

 ' Pulse to right servo
 LOOKUP maneuver, [FS_CW, FS_CCW, FS_CW, FS_CCW,
 FS_CW, NO_ROT], temp
 PULSOUT ServoRight, temp

 ' Pause between pulses (remove when using IR object detectors + QTIs)
 PAUSE 20
 RETURN

Chapter 4: Navigation Tips · Page 155

√ Modify the Pulse_Servos subroutine to accommodate the rest of the maneuvers
in the SumoBot maneuver constants list.

√ For the CurveLeft and CurveRight maneuvers, tune them so that the SumoBot

can do a full circle in the ring without passing over the white tawara line (see
Figure 4-4).

Figure 4-4
Circling inside the
Sumo Ring

Spend some time refining CurveLeft and CurveRight. These two maneuvers are
strategically important to your SumoBot.

Since maneuver is a nibble variable, it can store any one of up to 16 different maneuvers.
LOOKUP commands can have up to 256 different Value arguments, so if you change the
maneuver variable to a byte, you will likely have more maneuver possibilities than a
person could dream up.

√ Try making up some of your own, and add them to the maneuver constants list.
Remember, you will need new entries added to the LOOKUP command’s table.

ACTIVITY #2: SETTING YOUR SIGHTS ON THE OPPONENT
As soon as your SumoBot sees its opponent with one infrared object detecting "eye", it
needs to maneuver so that it can see it with both eyes. There are lots of ways to do this.
For example, the SumoBot can be programmed to do a standard Boe-Bot maneuver by
rotating in place until it sees its opponent with both eyes. The drawback to this approach
involves a nearby opponent shown in Figure 4-5. If your SumoBot halts all forward

Page 156· Applied Robotics with the SumoBot

motion and the opponent collides with it at that moment, it will be at a disadvantage. If
the SumoBots are already pushing each other and one of them does this maneuver, it will
also give its opponent an opportunity to push it closer to the white tawara line.

Figure 4-5
Nearby Opponent

Seen by only one IR
object detector

Other approaches include pivoting on one wheel and curving while continuing forward.
Pivoting on one wheel has similar drawbacks to rotating in place. Drawing a curve has
some advantages over an opponent that's very close. The curve keeps the SumoBot
moving toward its opponent as it lines up to start pushing. If the two SumoBots are
already pushing on each other, and the SumoBot happens to lose sight of its opponent
with one eye for a moment, it doesn't lose as much advantage correcting with a curve. In
some cases, it may even help.

Curving to see the opponent with both eyes has its own drawbacks though. For example,
if the opponent is still some distance off and traveling away from the one eye that
detected it, curving won't catch up with it. (See Figure 4-6.)

Chapter 4: Navigation Tips · Page 157

Figure 4-6
Nearby Opponent

Seen by one IR
object detector, but
not for long if curving
is the only method
employed.

You can also program the SumoBot for more complex maneuvers, such as curving for a
while, then rotating in place. With a limited amount of curve time, it gives the SumoBot
a chance to get lined up with its opponent if it is close to making contact or has already
done so. If the opponent is across the ring and traveling away from the eye that detected
it, following a limited curve by a rotate in place can really help.

This activity introduces some coding techniques for orchestrating single and multi-step
maneuvers like the ones just described. Your SumoBot can use them to more effectively
face its opponent. With some experimentation, you will likely settle on an optimal
combination like curving and then rotating in place, or maybe curving, then pivoting.
The final choice will be yours. The final choice of how long to curve, then how far to
rotate in place will also be yours.

Executing a Maneuver While Watching the Sensors

This next example program makes the SumoBot pivot in place if it detects an object with
only one eye. It pivots in place until it sees the object with both eyes, then lunges
forward.

Remember, pivoting is probably not the best maneuver for this job. This example
program uses it because it's both easy to explain, and easy to test. This activity's Your Turn
section will introduce a more effective technique.

Regardless of whether it's pivoting, curving in place, or curving then rotating in place, the
key to making the maneuver successful is checking the sensors as often as possible. One

Page 158· Applied Robotics with the SumoBot

way to ensure this is to keep a subroutine that's in charge of both sending pulses to the
servos and checking sensors. In the code below, every time the Main Routine calls
Servos_And_Sensors, both the Pulse_Servos subroutine and the sensors subroutines
(Read_Object_Detectors in this case) get checked.

' -----[Subroutine - Servos_And_Sensors]-----------------------------

Servos_And_Sensors:

 GOSUB Pulse_Servos ' Call Pulse_Servos subroutine

 ' Call sensor subroutine(s).

 sensors = 0 ' Clear previous sensor values

 GOSUB Read_Object_Detectors ' Call Read_Object_Detectors
 RETURN

Below is an excerpt from the next example program. The ELSEIF code block sets
maneuver equal to PivotLeft, then it calls Servos_And_Sensors. The statement DO
UNTIL (irLF = 1 AND irRF = 1) OR counter > 15 is what looks for the correct
condition. Notice that the loop has two conditions that will cause the program to exit the
loop. The first is (irLF = 1 AND irRF = 1). It makes the loop will automatically
stop when the SumoBot has pivoted far enough to see the object with both eyes. The
condition ...OR counter > 15 prevents the SumoBot from pivoting indefinitely while
its opponent pushes it out of the ring.

DO

 IF irLF = 1 AND irRF = 1 THEN ' Both?
 maneuver = Forward ' State = Lunge forward
 GOSUB Servos_And_Sensors
 ELSEIF irLF = 1 THEN ' Just left?
 counter = 0 ' State = track front left object
 DO UNTIL (irLF = 1 AND irRF = 1) OR counter > 15
 maneuver = PivotLeft ' Pivot left 15
 GOSUB Servos_And_Sensors
 counter = counter + 1
 LOOP
 ELSEIF irRF = 1 THEN ' Just right?
 .
 .
 .
LOOP

Chapter 4: Navigation Tips · Page 159

You can test this next example program by positioning the SumoBot so that neither of its
IR object detectors see an object. Then place your hand in front of one of the detectors.
The SumoBot should rotate toward your hand until both detectors see it. Then it should
lunge forward at your hand. If you remove your hand, the SumoBot will stop and wait.
That's because the ELSE condition in the IF...THEN...ELSIF...ELSE statement. All it
does is checks the IR detectors.

 ELSE ' No objects detected?
 GOSUB Read_Object_Detectors ' State = search pattern
 ENDIF

Example Program: FrontIrNavigation.bs2

√ Enter, save, and run FrontIrNavigation.bs2.
√ Place the SumoBot somewhere where any objects its detectors are pointing at

will be more than a couple meters away. If there are objects near the ring,
consider using an IrFreq CON directive with a value that makes the SumoBot
nearsighted.

√ Place your hand in front of the left IR object detector. The SumoBot should turn
toward your hand, then lunge forward at it.

√ Remove your hand, the SumoBot should stop moving.
√ Repeat for the right object detector.
√ Place your hand in front of both object detectors at the same time, then take it

away again. So long as both irLF and irRF went from 0 to 1 at the same time,
the SumoBot should lunge and stop immediately when you hand disappears from
view.

√ Wave your hand briefly in front of one of the detectors. The SumoBot should
pivot for between 1/4 and 1/5 of a second before stopping.

Recycling sections and subroutines. This program was built by combining elements from
other programs following the same procedure introduced in Chapter 2, Activity #6. Elements
from the various declarations sections and subroutines were copied from two programs:

SensorsWithTempVariables.bs2 from Chapter 3, Activity #7, and

ServoControlWithLookup.bs2 from Activity #1 in this chapter.

Try incorporating TestResetButton.bs2 from Chapter 2, Activity #3. It'll make the
program a lot easier to test.

Page 160· Applied Robotics with the SumoBot

' -----[Title]--
' Applied Robotics with the SumoBot - FrontIrNavigation.bs2
' When it sees an object with only one object detecting eye, it corrects
' it's heading until it sees the object with both eyes.

' {$STAMP BS2} ' Target = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

' -----[I/O Definitions]---

ServoLeft PIN 13 ' Left servo connected to P13
ServoRight PIN 12 ' Right servo connected to P12

IrLedLS PIN 2 ' Left IR LED connected to P2
IrSenseLS PIN 1 ' Left IR detector to P1

IrLedLF PIN 4 ' Left IR LED connected to P4
IrSenseLF PIN 11 ' Left IR detector to P11

IrLedRF PIN 15 ' Right IR LED connected to P15
IrSenseRF PIN 14 ' Right IR detector to P14

IrLedRS PIN 3 ' Right IR LED connected to P3
IrSenseRS PIN 0 ' Right IR detector to P0

' -----[Constants]--

' SumoBot maneuvers

Forward CON 0 ' Forward
Backward CON 1 ' Backward
RotateLeft CON 2 ' RotateLeft
RotateRight CON 3 ' RotateRight
PivotLeft CON 4 ' Pivot to the left
PivotRight CON 5 ' Pivot to the right
CurveLeft CON 6 ' Curve to the left
CurveRight CON 7 ' Curve to the right

' Servo pulse width rotations

FS_CCW CON 850 ' Full speed counterclockwise
FS_CW CON 650 ' Full speed clockwise
NO_ROT CON 750 ' No rotation
LS_CCW CON 770 ' Low speed counterclockwise
LS_CW CON 730 ' Low speed clockwise

' IR object detectors

IrFreq CON 38500 ' IR LED frequency

' -----[Variables]--

Chapter 4: Navigation Tips · Page 161

temp VAR Word ' Temporary variable
counter VAR Byte ' Loop counting variable.

maneuver VAR Nib ' SumoBot travel maneuver

sensors VAR Byte ' Sensor flags byte

irLS VAR sensors.BIT3 ' State of Left Side IR
irLF VAR sensors.BIT2 ' State of Left Front IR
irRF VAR sensors.BIT1 ' State of Right Front IR
irRS VAR sensors.BIT0 ' State of Right Side IR

' -----[Main Routine]---

DO

 IF irLF = 1 AND irRF = 1 THEN ' Both?
 maneuver = Forward ' State = Lunge forward
 GOSUB Servos_And_Sensors
 ELSEIF irLF = 1 THEN ' Just left?
 counter = 0 ' State = track front left object
 DO UNTIL (irLF = 1 AND irRF = 1) OR counter > 15
 maneuver = PivotLeft ' Pivot left 15
 GOSUB Servos_And_Sensors
 counter = counter + 1
 LOOP
 ELSEIF irRF = 1 THEN ' Just right?
 counter = 0 ' State=track front right object
 DO UNTIL (irLF = 1 AND irRF = 1) OR counter > 15
 maneuver = PivotRight ' Pivot right 15
 GOSUB Servos_And_Sensors
 counter = counter + 1
 LOOP
 ELSE ' No objects detected?
 GOSUB Read_Object_Detectors ' State = search pattern
 ENDIF

LOOP

' -----[Subroutine - Servos_And_Sensors]------------------------------------

Servos_And_Sensors:

 GOSUB Pulse_Servos ' Call Pulse_Servos subroutine

 ' Call sensor subroutine(s).

 sensors = 0 ' Clear previous sensor values

 GOSUB Read_Object_Detectors ' Call Read_Object_Detectors

Page 162· Applied Robotics with the SumoBot

 RETURN

' -----[Subroutine - Pulse_Servos]--

Pulse_Servos:

 ' Pulse to left servo
 LOOKUP maneuver, [FS_CCW, FS_CW, FS_CW, FS_CCW,
 NO_ROT, FS_CCW, LS_CCW, FS_CCW], temp
 PULSOUT ServoLeft, temp

 ' Pulse to right servo
 LOOKUP maneuver, [FS_CW, FS_CCW, FS_CW, FS_CCW,
 FS_CW, NO_ROT, FS_CW, LS_CW], temp
 PULSOUT ServoRight, temp

 ' Pause between pulses (remove when using IR object detectors + QTIs).
 PAUSE 20

 RETURN

' -----[Subroutine - Read_Object_Detectors]---------------------------------

Read_Object_Detectors:

 FREQOUT IrLedRS, 1, IrFreq ' Right side IR LED headlight
 irRS = ~IrSenseRS ' Save right side IR receiver

 FREQOUT IrLedRF, 1, IrFreq ' Repeat for right-front
 irRF = ~IrSenseRF

 FREQOUT IrLedLF, 1, IrFreq ' Repeat for left-front
 irLF = ~IrSenseLF

 FREQOUT IrLedLS, 1, IrFreq ' Repeat for left side
 irLS = ~IrSenseLS

 RETURN

Your Turn - Orchestrating a Multi-Step Maneuver

Here is a two-step maneuver. The first DO UNTIL...LOOP curves toward the opponent.
If it doesn't see the opponent with both eyes after 15 pulses, it moves on to the second
step. In the second step, the SumoBot rotates in place (maneuver = RotateLeft) until
either both IR detectors can see the opponent or until 30 pulses have completed. Again,
that way, the SumoBot won't indefinitely rotate in place.

Chapter 4: Navigation Tips · Page 163

 ELSEIF irLF = 1 THEN ' Just left?
 DO UNTIL (irLF = 1 AND irRF = 1) OR counter > 15
 maneuver = CurveLeft ' Curve left 15
 GOSUB Servos_And_Sensors
 counter = counter + 1
 LOOP
 DO UNTIL (irLF = 1 AND irRF = 1) OR counter > 30
 maneuver = RotateLeft ' Rotate left 30
 GOSUB Servos_And_Sensors
 counter = counter + 1
 LOOP

The Main Routine below incorporates this code for both sides, and is a drop-in
replacement for the main routine in FrontIrNavigation.bs2.

√ Save FrontIrNavigation.bs2 as FrontIrNavigationYourTurn.bs2.
√ Replace the Main Routine in the program with the one shown below.
√ Test the program and note the differences in the way the SumoBot faces and

lunges toward your hand.

' -----[Main Routine]---

DO

 IF irLF = 1 AND irRF = 1 THEN ' Both?
 maneuver = Forward ' State = Lunge forward
 GOSUB Servos_And_Sensors
 ELSEIF irLF = 1 THEN ' Just left?
 counter = 0 ' State = track front left object
 DO UNTIL (irLF = 1 AND irRF = 1) OR counter > 15
 maneuver = CurveLeft ' Curve left 15
 GOSUB Servos_And_Sensors
 counter = counter + 1
 LOOP
 DO UNTIL (irLF = 1 AND irRF = 1) OR counter > 30
 maneuver = RotateLeft ' Rotate left 30
 GOSUB Servos_And_Sensors
 counter = counter + 1
 LOOP
 ELSEIF irRF = 1 THEN ' Just right?
 counter = 0 ' State=track front right object
 DO UNTIL (irLF = 1 AND irRF = 1) OR counter > 15
 maneuver = CurveRight ' Curve right 15
 GOSUB Servos_And_Sensors
 counter = counter + 1
 LOOP
 DO UNTIL (irLF = 1 AND irRF = 1) OR counter > 30
 maneuver = RotateRight ' Rotate right 30

Page 164· Applied Robotics with the SumoBot

 GOSUB Servos_And_Sensors
 counter = counter + 1
 LOOP
 ELSE ' No objects detected?
 GOSUB Read_Object_Detectors ' State = search pattern
 ENDIF

LOOP

ACTIVITY #3: USING PERIPHERAL VISION
When autonomous robots start a sumo match facing each other, the match tends to be
more a battle of brawn than brains. When a match starts with the SumoBot robots
sideways to each other, things get a little more interesting. Is the opponent on the
SumoBot's left or right, and for that matter, which direction is the opponent facing?
Sumo cards like the ones shown in Figure 4-7 can help keep this random. Between each
round in a match, a new card should be drawn to determine the placement of the
SumoBots for the start of the next round.

Figure 4-7 Random Cards to Draw for Start Positions

As shown in Figure 4-8, peripheral vision with the help of side mounted IR object
detectors can give your SumoBot an advantage, both at the start of the match, and in
detecting attacks from the side. This activity introduces a coding technique you can use
to make effective use of the SumoBot's peripheral vision afforded by those side-mounted
IR object detectors.

Chapter 4: Navigation Tips · Page 165

Figure 4-8 Peripheral Vision for Opponent Detection

Responding to an Object Detection on the Side

This code for side IR object detection works about the same as the examples from the
previous activity. They can be added to the IF...THEN statements in the previous
example program's main routine. They will make the SumoBot respond by rotating in
place to turn toward objects it detects on either side. If an object is on the SumoBot's left
side, the ELSEIF irLS = 1 THEN code block will get executed. The DO UNTIL...LOOP
makes the SumoBot rotate left until either one of the front IR detectors sees the object.
The ELSEIF irRS = 1 THEN... code block behaves similarly for objects on the right
side.

 ELSEIF irLS = 1 THEN ' Object left side?
 DO UNTIL irRF = 1 OR irLF = 1 ' State = track left side object
 maneuver = RotateLeft ' Rotate left
 GOSUB Servos_And_Sensors
 LOOP
 ELSEIF irRS = 1 THEN ' Object right side?
 DO UNTIL irRF = 1 OR irLF = 1 ' State = track right side object
 maneuver = RotateRight ' Rotate right
 GOSUB Servos_And_Sensors
 LOOP

Page 166· Applied Robotics with the SumoBot

Example Program: FrontAndSideIrNavigation.bs2

The beauty in terminating the rotate loop as soon as one of the front IR detectors sees the
object is that one of the other code blocks will then take over to get the SumoBot to face
its opponent. Let's see how it performs:

√ Save FrontIrNavigiation.bs2 as FrontAndSideIrNavigation.bs2
√ Insert the peripheral vision ELSEIF...THEN... code blocks shown above just

before the ELSE keyword in the Main Routine.
√ Use the printed example program to check your work.
√ Run the program.
√ Press and hold the Reset button as you take the SumoBot to the practice ring.

Make sure there all objects are well away from the SumoBot's front and side. If
there are objects near the ring, consider using an IrFreq CON directive that
makes the SumoBot nearsighted.

√ Set the SumoBot on the practice ring so that you are behind it. Otherwise, it will
see you and react immediately. Make sure that there are no other objects within
a couple meters of the ring.

√ Let go of the Reset button. The SumoBot should stay still because it doesn't see
anything.

√ Place your hand in view of its right IR object detector. The SumoBot should
immediately turn to face your hand and then lunge forward.

√ Press and hold the Reset button, and again place the SumoBot so that it can't see
you.

√ Place your hand in view of its left IR object detector and verify that it rounds on
an object to its left as well.

' -----[Title]--
' Applied Robotics with the SumoBot - FrontAndSideIrNavigation.bs2
' This is FrontIrNavigation.bs2 with peripheral IR object detection added.

' {$STAMP BS2} ' Target = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

' -----[I/O Definitions]---

ServoLeft PIN 13 ' Left servo connected to P13
ServoRight PIN 12 ' Right servo connected to P12

IrLedLS PIN 2 ' Left IR LED connected to P2
IrSenseLS PIN 1 ' Left IR detector to P1

Chapter 4: Navigation Tips · Page 167

IrLedLF PIN 4 ' Left IR LED connected to P4
IrSenseLF PIN 11 ' Left IR detector to P11

IrLedRF PIN 15 ' Right IR LED connected to P15
IrSenseRF PIN 14 ' Right IR detector to P14

IrLedRS PIN 3 ' Right IR LED connected to P3
IrSenseRS PIN 0 ' Right IR detector to P0

' -----[Constants]--

' SumoBot maneuvers

Forward CON 0 ' Forward
Backward CON 1 ' Backward
RotateLeft CON 2 ' RotateLeft
RotateRight CON 3 ' RotateRight
PivotLeft CON 4 ' Pivot to the left
PivotRight CON 5 ' Pivot to the right
CurveLeft CON 6 ' Curve to the left
CurveRight CON 7 ' Curve to the right

' Servo pulse width rotations

FS_CCW CON 850 ' Full speed counterclockwise
FS_CW CON 650 ' Full speed clockwise
NO_ROT CON 750 ' No rotation
LS_CCW CON 770 ' Low speed counterclockwise
LS_CW CON 730 ' Low speed clockwise

' IR object detectors

IrFreq CON 38500 ' IR LED frequency

' -----[Variables]--

temp VAR Word ' Temporary variable
counter VAR Byte ' Loop counting variable.

maneuver VAR Nib ' SumoBot travel maneuver

sensors VAR Byte ' Sensor flags byte

irLS VAR sensors.BIT3 ' State of Left Side IR
irLF VAR sensors.BIT2 ' State of Left Front IR
irRF VAR sensors.BIT1 ' State of Right Front IR
irRS VAR sensors.BIT0 ' State of Right Side IR

' -----[Main Routine]---

DO

Page 168· Applied Robotics with the SumoBot

 IF irLF = 1 AND irRF = 1 THEN ' Both?
 maneuver = Forward ' State = Lunge forward
 GOSUB Servos_And_Sensors
 ELSEIF irLF = 1 THEN ' Just left?
 counter = 0 ' State = track front left object
 DO UNTIL (irLF = 1 AND irRF = 1) OR counter > 15
 maneuver = CurveLeft ' Curve left 15
 GOSUB Servos_And_Sensors
 counter = counter + 1
 LOOP
 DO UNTIL (irLF = 1 AND irRF = 1) OR counter > 30
 maneuver = RotateLeft ' Rotate left 30
 GOSUB Servos_And_Sensors
 counter = counter + 1
 LOOP
 ELSEIF irRF = 1 THEN ' Just right?
 counter = 0 ' State=track front right object
 DO UNTIL (irLF = 1 AND irRF = 1) OR counter > 15
 maneuver = CurveRight ' Curve right 15
 GOSUB Servos_And_Sensors
 counter = counter + 1
 LOOP
 DO UNTIL (irLF = 1 AND irRF = 1) OR counter > 30
 maneuver = RotateRight ' Rotate right 30
 GOSUB Servos_And_Sensors
 counter = counter + 1
 LOOP
 ELSEIF irLS = 1 THEN ' Object left side?
 DO UNTIL irRF = 1 OR irLF = 1 ' State = track left side object
 maneuver = RotateLeft ' Rotate left
 GOSUB Servos_And_Sensors
 LOOP
 ELSEIF irRS = 1 THEN ' Object right side?
 DO UNTIL irRF = 1 OR irLF = 1 ' State = track right side object
 maneuver = RotateRight ' Rotate right
 GOSUB Servos_And_Sensors
 LOOP
 ELSE ' No objects detected?
 GOSUB Read_Object_Detectors ' State = search pattern
 ENDIF

LOOP

' -----[Subroutine - Servos_And_Sensors]------------------------------------

Servos_And_Sensors:

 GOSUB Pulse_Servos ' Call Pulse_Servos subroutine

 ' Call sensor subroutine(s).

Chapter 4: Navigation Tips · Page 169

 sensors = 0 ' Clear previous sensor values

 GOSUB Read_Object_Detectors ' Call Read_Object_Detectors

 RETURN

' -----[Subroutine - Pulse_Servos]--

Pulse_Servos:

 ' Pulse to left servo
 LOOKUP maneuver, [FS_CCW, FS_CW, FS_CW, FS_CCW,
 NO_ROT, FS_CCW, LS_CCW, FS_CCW], temp
 PULSOUT ServoLeft, temp

 ' Pulse to right servo
 LOOKUP maneuver, [FS_CW, FS_CCW, FS_CW, FS_CCW,
 FS_CW, NO_ROT, FS_CW, LS_CW], temp
 PULSOUT ServoRight, temp

 ' Pause between pulses (remove when using IR object detectors + QTIs).
 PAUSE 20

 RETURN

' -----[Subroutine - Read_Object_Detectors]---------------------------------

Read_Object_Detectors:

 FREQOUT IrLedRS, 1, IrFreq ' Right side IR LED headlight
 irRS = ~IrSenseRS ' Save right side IR receiver

 FREQOUT IrLedRF, 1, IrFreq ' Repeat for right-front
 irRF = ~IrSenseRF

 FREQOUT IrLedLF, 1, IrFreq ' Repeat for left-front
 irLF = ~IrSenseLF

 FREQOUT IrLedLS, 1, IrFreq ' Repeat for left side
 irLS = ~IrSenseLS

 RETURN

Page 170· Applied Robotics with the SumoBot

Your Turn - Limiting Rotation

Unlike the front IR detectors, the loops for the side IR detectors do not limit the amount
of rotation in place the SumoBot will perform.

√ Add conditions to the DO UNTIL...LOOP code blocks that allow your SumoBot
to turn and face objects detected to the side, but that prevent the SumoBot from
rotating more than 180°.

Is it worth sweeping back in case the SumoBot might have missed something on its first
rotation? Maybe. It might be something to fine tune after getting more familiar with
how your SumoBot performs in matches.

ACTIVITY #4: INTRODUCTION TO STATE MACHINES AND DIAGRAMS
True to its name, a state machine is a machine that can operate in different states or
modes of operation. A desk lamp is a very simple state machine, with two states, on or
off. If the desk lamp starts out in the off state, and you flip its on/off switch, it will
transition to the on state. Flip the switch again, and it transitions back to the off state.
The act of flipping the switch is considered a condition that causes a transition from one
state to another.

Traffic lights are somewhat more complex state machines, transitioning from green to
yellow, to red, and then back to green again. In some traffic lights, these transitions are
initiated by the traffic light's timer. Other traffic lights use a combination of a timer and
sensors under the pavement. The transition from green to yellow might occur due to a
timer, or it might occur because a car going the other direction is waiting (over the sensor
under the pavement) for a green light. Both the timer and the sensor under the street
provide the traffic light's state machine with conditions for changing states.

Reset state is another state machine term. For example, maintenance workers might shut
off the power to the traffic lights at an intersection for repairs. When they turn the power
back on, the traffic lights start in a particular pattern, such as red for the east/west street and
green for the north/south street. Turning the power back on is an example of a reset
condition, and green on north/south and red on east/west is would be called the initial or
reset state.

Computers, cell phones, and factory production machines are significantly more complex
state machines, but they still have something in common with desk lamps and traffic
lights. They all operate in a finite number of states, and so they are defined as "finite

Chapter 4: Navigation Tips · Page 171

state machines". However, the term "state machine" is commonly used to refer to finite
state machines.

Your SumoBot is without a doubt, a state machine. The last couple of example programs
have used terms like "State = search pattern" and "State = track front left object" in the
comments. The IR object detectors sense conditions, and the SumoBot's embedded
BASIC Stamp executes a program that interprets each new condition and makes the
transition to the correct state. Of course, the SumoBot reads the sensors and transitions
between states because the PBASIC program it runs makes it do that.

This activity examines how PBASIC code can make the SumoBot transition from one
state to the next based on sensor input. This activity also introduces a visual aid for
planning the SumoBot's states and transitions - the state diagram.

A Simple State Diagram and Program

Figure 4-9 shows an example of a simple state diagram. Each circle signifies a state that
the SumoBot can operate in. Both states are labeled, LED Off and Blink LED. Some of the
arrows curve around and point back to the same state while other arrows point to the
other state. These arrows represent state transitions. Each state transition arrow is
labeled with a condition, like pbSense = 0 or pbSense = 1. The reset condition is the
arrow with the jagged shaft labeled Reset, and it indicates that this system will start in the
LED Off state.

Figure 4-9
Simple State
Machine Diagram

The curved arrow that keeps returning to the LED off state labeled pbSense = 0 indicates
that so long as pbSense stores zero, the state machine will just keep transitioning back to
the LED off state. The arrow that points from LED Off to Blink LED shows that when the
condition is pbSesne = 1, the state machine will transition from the LED off state to the
Blink LED state. The Blink LED state also has two transition arrows, one that keeps it in

Page 172· Applied Robotics with the SumoBot

that state while pbSense = 1, and the other that transitions to LED off when
pbSesnse = 0.

State diagrams can be visual aids for describing the different states in certain programs
along with the conditions the programs use to transition from one state to the next. For
example, PushbuttonLed.bs2 can be thought of as the instructions to make the SumoBot a
state machine implementation of Figure 4-9.

Example Program: PushbuttonLed.bs2

√ Enter, save, and run PushbuttonLed.bs2
√ Monitor the LED and Debug Terminal as you press and hold and then release the

pushbutton on the SumoBot's breadboard. Do you agree that this program really
does implement the state machine diagram in Figure 4-9? Is it the only way the
figure can be implemented?

' Applied Robotics with the SumoBot - PushbuttonLed.bs2
' Simple finite state machine example.

' {$STAMP BS2}
' {$PBASIC 2.5}

pbSense PIN 6
LedSpeaker PIN 5

LOW LedSpeaker

DO

 IF pbSense = 1 THEN
 DEBUG HOME, "State = Blink LED"
 TOGGLE LedSpeaker
 ELSE
 DEBUG HOME, "State = Led off", CLREOL
 LOW LedSpeaker
 ENDIF

 PAUSE 100

LOOP

Chapter 4: Navigation Tips · Page 173

Your Turn

Figure 4-10 shows a modified version of the state machine diagram that involves a
variable named counter. Because of the 100 ms pause between repeats of the
DO...LOOP in PushubttonLed.bs2, the counter variable keeps the LED blink-time less
than or equal to 2 seconds (assuming the counter starts at 1). It also ensures a 1 second
delay before the LED starts blinking again, even if you keep pressing the button.

Figure 4-10
Modified State
Diagram

√ Save PushbuttonLed.bs2 as PushbuttonLedYourTurn.bs2.
√ Modify the program so that it conforms to the state machine shown in Figure 4-

10. Hint: use loops like DO UNTIL counter ≥ 10 inside the IF and ELSE
code blocks.

√ Run and test the program, and trouble-shoot code as needed.

Hybrid State Diagrams for SumoBot Code Visual Aids

Here is the Main Routine from FrontIrNavigation.bs2 (See Activity #2 in this chapter). If
you rigidly adhered to the format from Figure 4-9 to make a state diagram for this code
block, it would be pretty complicated. Certainly complicated enough to make it useless
as a visual aid for designing more complex navigation routines.

DO

 IF irLF = AND irRF = 1 THEN ' Both?
 maneuver = Forward ' State = Lunge forward
 GOSUB Servos_And_Sensors
 ELSEIF irLF = 1 THEN ' Just left?
 counter = 0 ' State = track front left object
 DO UNTIL (irLF = AND irRF = 1) OR counter > 15
 maneuver = PivotLeft ' Pivot left 15
 GOSUB Servos_And_Sensors
 counter = counter + 1

Page 174· Applied Robotics with the SumoBot

 LOOP
 ELSEIF irRF = 1 THEN ' Just right?
 counter = 0 ' State=track front right object
 DO UNTIL (irLF = AND irRF = 1) OR counter > 15
 maneuver = PivotRight ' Pivot right 15
 GOSUB Servos_And_Sensors
 counter = counter + 1
 LOOP
 ELSE ' No objects detected?
 GOSUB Read_Object_Detectors ' State = search pattern
 ENDIF

LOOP

Software that is used for designing and modeling state machines that go into automated
machinery and/or integrated circuits have various ways of both simplifying state
diagrams and at the same time making them more versatile. One of the techniques is
assigning priority to various conditions for transition from one state to another. That
way, the programmer (or the software that writes the program from the hybrid state
diagram) can decide in what order to examine each condition. It also simplifies the
conditions and reduces the number of transitions. Another common technique is to have
a node in the transition line that can branch to multiple states depending on multiple
conditions – “conditional branch.”

Figure 4-11 shows an example of a hybrid state diagram that describes the
FrontIrNavigation.bs2's Main Routine. The "Next State" state is unconventional, as are
the numbers inside the Next State circle that show what order it evaluates the conditions
for transition. Even so, the figure describes what's happening in the main routine much
more succinctly than a normal state diagram.

Chapter 4: Navigation Tips · Page 175

Figure 4-11 Hybrid State Machine Diagram

√ Compare Figure 4-11 to the Main Routine from FrontIrNavigation.bs2 and
verify that they describe the same state transitions.

State diagrams are not a replacement for flowcharts. While state diagrams introduced in
this activity provide an overview of states in a state machine design, flow charts provide a
detailed visual description of what the code in a program does. Flowcharts are introduced in
the Stamps in Class Industrial Control text, available for download from www.parallax.com.

The NOT(irLF = 1 AND irRF = 1) conditions are taken care of implicitly by DO UNTIL
(irLF = AND irRF = 1).

Page 176· Applied Robotics with the SumoBot

Your Turn - Drawing a State Machine Diagram

√ Try drawing a hybrid state machine diagram for the Main Routine in
FrontAndSideIrNavigation.bs2 from this chapter's Activity #3.

ACTIVITY #5: SEARCH PATTERN AND TAWARA AVOIDANCE
Before your SumoBot will be ready for a match, it's got to be able to stay inside that
white tawara line. When it doesn't see anything with its IR object detectors, it's also got
to have a search pattern that's more effective than sitting in one spot and waiting.
Especially for matches that start the SumoBots facing away from each other, an effective
search technique can make a huge difference in your SumoBot's likelihood of winning
each round. While this activity demonstrates one of many search patterns you can use, it
will be up to you to develop an optimal search pattern for your SumoBot.

Another State Machine Main Routine

The example program in this activity is the QTI version of the programs from this
Chapter's Activity #2 and Activity #3. Those programs combined the IR detection pin
definitions, constants, variables, and subroutines developed in Chapter 3 with the
navigation routines from Activity #1 in this chapter. The example program in this
activity combines the QTI line sensor program elements that were developed in chapter 3,
again with the navigation program elements developed in this chapter.

You've seen all the PIN and DATA directives, constant and variable declarations and
subroutines before. The only thing that's really new is the Main Routine below, and even
that follows the techniques similar to the ones introduced in this chapter's Activity #2 and
#3.

Notice that the code blocks that handle the QTI detections (IF qtiLF..., ELSIF
qtiRF...) do not have any sensor conditions for exiting the loops. While it makes
absolutely sure that the SumoBot doesn't accidentally exit the ring chasing after a
spectator who's too close, it also prevents the SumoBot from decisively finishing off its
opponent in some cases. More about this double-edged sword on the Your Turn section.

Chapter 4: Navigation Tips · Page 177

' -----[Main Routine]---

DO

 IF qtiLF = 1 THEN ' Left qti sees line?
 FOR counter = 1 TO 15 ' State = Avoid tawara left
 maneuver = Backward ' Back up
 GOSUB Servos_And_Sensors
 NEXT
 FOR counter = 1 TO 15 ' Turn right
 maneuver = RotateRight
 GOSUB Servos_And_Sensors
 NEXT
 ELSEIF qtiRF = 1 THEN ' Right qti sees line?
 FOR counter = 1 TO 15 ' State = Avoid tawara right
 maneuver = Backward ' Back up
 GOSUB Servos_And_Sensors
 NEXT
 FOR counter = 1 TO 15 ' Turn left
 maneuver = RotateLeft
 GOSUB Servos_And_Sensors
 NEXT
 .
 .
 .

The ELSE condition in the Main Routine performs the same search pattern introduced in
this chapter's Activity #1, but with a twist - IF sensors <> 0 THEN GOTO

Next_State. This IF...THEN statement is in all four FOR...NEXT loops in the search
pattern. If none of the sensors see anything, each FOR...NEXT loop continues to
execute. However, if any sensor sees something, the sensors variable will no longer be
zero. When that happens, the ELSE condition terminates. Next, the outermost
DO...LOOP in the Main Routine repeats itself, and the correct state for handling the
sensor(s) that changed from 0 to 1 handle the situation. Since there are no IR detectors in
this program, the only sensors that can cause this condition are the QTIs. In the next
activity, all four IR detectors and both QTIs will have an opportunity to set a bit in the
sensors variable, causing the program to terminate the search condition and transition to
the state that handles the sensor that went high.
 .
 .
 .
 ELSE ' No objects detected?
 FOR counter = 1 TO 35 ' State = search pattern
 maneuver = Forward ' Straight ahead 35 pulses
 GOSUB Servos_And_Sensors
 IF sensors <> 0 THEN GOTO Next_State
 NEXT

Page 178· Applied Robotics with the SumoBot

 FOR counter = 1 TO 12 ' Look right
 maneuver = RotateRight
 GOSUB Servos_And_Sensors
 IF sensors <> 0 THEN GOTO Next_State
 NEXT
 FOR counter = 1 TO 24 ' Look left
 maneuver = RotateLeft
 GOSUB Servos_And_Sensors
 IF sensors <> 0 THEN GOTO Next_State
 NEXT
 FOR counter = 1 TO 12 ' Re-align to forward
 maneuver = RotateRight
 GOSUB Servos_And_Sensors
 IF sensors <> 0 THEN GOTO Next_State
 NEXT
 Next_State: ' Exit point of search pattern
 ENDIF

LOOP

Figure 4-12 shows the search pattern. Because your servos may behave differently, it
will probably take some tuning to get your SumoBot to perform this search pattern.
While this search pattern works reasonably well, there's lots of room for improvement.
We'll take a closer look in the Your Turn section.

Figure 4-12
Sample SumoBot
Search Pattern

Example Program: SearchPatternAndAvoidTawara.bs2

√ If you are using the SumoBot Robot Competition Ring Poster, make sure that
you have followed the poster setup instructions (starting on page 9).

√ Enter, save, and run SearchPatternAndAvoidTawara.bs2.

Chapter 4: Navigation Tips · Page 179

√ Press and hold the Reset button until you place it on the ring as shown in Figure
4-12.

√ Let go of the Reset button, and compare your search pattern to the one shown in
the figure.

Does your SumoBot mistake creases in the poster for white tawara lines? If your
SumoBot backs up and then executes a turn before it gets to the white tawara line, it may be
detecting one or more of the creases in the SumoBot Competition Ring poster. This is most
likely to happen when the SumoBot Competition Ring poster is in or near direct sunlight.

√ If your SumoBot is having problems detecting the creases on the poster, go back
to page 9 and make sure you have followed the setup instructions.

If the lighting conditions are still too bright, you can make the QTI self calibration code set a
lower threshold by changing this command:

 multi = multi / 4 ' Take 1/4 average

√ Instead of dividing multi by 4, try 5, 6, 7, 8, 9, and 10.

The higher the value divided into multi, the lower the threshold, and the less sensitive the
SumoBot will be to creases in the poster. This is a bit of a double-edged sword, because it
also makes the SumoBot less sensitive to the white tawara line, and we don't want it to miss
that.

√ Tune your FOR...NEXT loops so that your SumoBot's search pattern either starts

to resemble the one in the figure, or if you have a search pattern in mind that you
think will be effective, modify the State = search routine as you see fit.

' -----[Title]--
' Applied Robotics with the SumoBot - SearchPatternAndAvoidTawara.bs2
' SumoBot searches the sumo ring for opponent and changes direction whenever
' it encounters the white Tawara line.

' {$STAMP BS2} ' Target = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

' -----[I/O Definitions]---

ServoLeft PIN 13 ' Left servo connected to P13
ServoRight PIN 12 ' Right servo connected to P12

qtiPwrLeft PIN 10 ' Left QTI on/off pin P10
qtiSigLeft PIN 9 ' Left QTI signal pin P9

qtiPwrRight PIN 7 ' Right QTI on/off pin P7
qtiSigRight PIN 8 ' Right QTI signal pin P8

Page 180· Applied Robotics with the SumoBot

DummyPin PIN 6 ' I/O pin for pulse-decay P6

' -----[Constants]--

' SumoBot maneuvers

Forward CON 0 ' Forward
Backward CON 1 ' Backward
RotateLeft CON 2 ' RotateLeft
RotateRight CON 3 ' RotateRight
PivotLeft CON 4 ' Pivot to the left
PivotRight CON 5 ' Pivot to the right
CurveLeft CON 6 ' Curve to the left
CurveRight CON 7 ' Curve to the right

' Servo pulse width rotations

FS_CCW CON 850 ' Full speed counterclockwise
FS_CW CON 650 ' Full speed clockwise
NO_ROT CON 750 ' No rotation
LS_CCW CON 770 ' Low speed counterclockwise
LS_CW CON 730 ' Low speed clockwise

' -----[Variables]--

temp VAR Word ' Temporary variable
multi VAR Word ' Multipurpose variable
counter VAR Byte ' Loop counting variable.

maneuver VAR Nib ' SumoBot travel maneuver

sensors VAR Byte ' Sensor flags byte

qtiLF VAR sensors.BIT5 ' Stores snapshot of QtiSigLeft
qtiRF VAR sensors.BIT4 ' Stores snapshot of QtiSigRight

' -----[EEPROM Data]--

QtiThresh DATA Word 0 ' Word for QTI threshold time

' -----[Initialization]---

GOSUB Calibrate_Qtis ' Determine b/w threshold

' -----[Main Routine]---

DO

 IF qtiLF = 1 THEN ' Left qti sees line?
 FOR counter = 1 TO 15 ' State = Avoid tawara left

Chapter 4: Navigation Tips · Page 181

 maneuver = Backward ' Back up
 GOSUB Servos_And_Sensors
 NEXT
 FOR counter = 1 TO 15 ' Turn right
 maneuver = RotateRight
 GOSUB Servos_And_Sensors
 NEXT
 ELSEIF qtiRF = 1 THEN ' Right qti sees line?
 FOR counter = 1 TO 15 ' State = Avoid tawara right
 maneuver = Backward ' Back up
 GOSUB Servos_And_Sensors
 NEXT
 FOR counter = 1 TO 15 ' Turn left
 maneuver = RotateLeft
 GOSUB Servos_And_Sensors
 NEXT
 ELSE ' No objects detected?
 FOR counter = 1 TO 35 ' State = search pattern
 maneuver = Forward
 GOSUB Servos_And_Sensors ' Forward
 IF sensors <> 0 THEN GOTO Next_State
 NEXT
 FOR counter = 1 TO 12 ' Look right
 maneuver = RotateRight
 GOSUB Servos_And_Sensors
 IF sensors <> 0 THEN GOTO Next_State
 NEXT
 FOR counter = 1 TO 24 ' Look left
 maneuver = RotateLeft
 GOSUB Servos_And_Sensors
 IF sensors <> 0 THEN GOTO Next_State
 NEXT
 FOR counter = 1 TO 12 ' Re-align to forward
 maneuver = RotateRight
 GOSUB Servos_And_Sensors
 IF sensors <> 0 THEN GOTO Next_State
 NEXT
 Next_State: ' Exit point of search pattern
 ENDIF

LOOP

' -----[Subroutine - Calibrate_Qtis]--

Calibrate_Qtis:

 HIGH qtiPwrLeft ' Turn left QTI on
 HIGH qtiSigLeft ' Discharge capacitor
 PAUSE 1

 RCTIME qtiSigLeft, 1, temp ' Measure charge time

Page 182· Applied Robotics with the SumoBot

 LOW qtiPwrLeft ' Turn left QTI off
 multi = temp ' Free temp for another RCTIME

 HIGH qtiPwrRight ' Turn right QTI on
 HIGH qtiSigRight ' Discharge capacitor
 PAUSE 1
 RCTIME qtiSigRight, 1, temp ' Measure charge time

 multi = (multi + temp) / 2 ' Calculate average

 multi = multi / 4 ' Take 1/4 average

 IF multi > 220 THEN ' Account for code overhead
 multi = multi - 220
 ELSE
 multi = 0
 ENDIF

 WRITE QtiThresh, Word multi ' Threshold to EEPROM

 RETURN

' -----[Subroutine - Servos_And_Sensors]------------------------------------

Servos_And_Sensors:

 GOSUB Pulse_Servos ' Call Pulse_Servos subroutine

 ' Call sensor subroutine(s).

 sensors = 0 ' Clear previous sensor values

' GOSUB Read_Object_Detectors ' Call Read_Object_Detectors
 GOSUB Read_Line_Sensors ' Look for lines

 RETURN

' -----[Subroutine - Pulse_Servos]--

Pulse_Servos:

 ' Pulse to left servo
 LOOKUP maneuver, [FS_CCW, FS_CW, FS_CW, FS_CCW,
 NO_ROT, FS_CCW, LS_CCW, FS_CCW], temp
 PULSOUT ServoLeft, temp

 ' Pulse to right servo
 LOOKUP maneuver, [FS_CW, FS_CCW, FS_CW, FS_CCW,
 FS_CW, NO_ROT, FS_CW, LS_CW], temp
 PULSOUT ServoRight, temp

Chapter 4: Navigation Tips · Page 183

 ' Pause between pulses (remove when using IR object detectors + QTIs).
 PAUSE 20

 RETURN

' -----[Subroutine - Read_Line_Sensors]-------------------------------------

Read_Line_Sensors:

 HIGH qtiPwrLeft ' Turn on QTIs
 HIGH qtiPwrRight
 HIGH qtiSigLeft ' Push signal voltages to 5 V
 HIGH qtiSigRight
 PAUSE 1 ' Wait 1 ms for capacitors

 READ QtiThresh, Word temp ' Get threshold time

 INPUT qtiSigLeft ' Start the decays
 INPUT qtiSigRight

 PULSOUT DummyPin, temp ' Wait threshold time

 qtiLF = ~qtiSigLeft ' Snapshot of QTI signal states
 qtiRF = ~qtiSigRight

 LOW qtiPwrLeft ' Turn off QTIS
 LOW qtiPwrRight

 RETURN

Your Turn - Looking Around at the Start and Designing a Search Pattern

Figure 4-13 is almost identical to Figure 4-12, but there is one important difference. In
Figure 4-13, the SumoBot looks around before moving forward. Especially if your
SumoBot doesn't happen to see its opponent at the beginning of the match, this first look-
around could easily determine which competitor gets the Yuko point.

Page 184· Applied Robotics with the SumoBot

Figure 4-13
Sample SumoBot
Search Pattern

This one is different
because the
SumoBot looks
around before it
starts going forward.

There are a couple of different ways to get the SumoBot to do this maneuver. The first is
to write a custom Initialization routine that performs this maneuver before moving on to
the Main Routine. Here's another way.

√ Save SearchPatternAndAvoidTawara.bs2 as a new file with YourTurn.bs2
appended to the name

√ Add the Look_About: label to the search pattern code. It's commented with
' <--- Add Starting point in the search pattern routine below.

 ELSE ' No objects detected?
 FOR counter = 1 TO 35 ' State = search pattern
 maneuver = Forward
 GOSUB Servos_And_Sensors ' Forward
 IF sensors <> 0 THEN GOTO Next_State
 NEXT
 Look_About: ' <--- Add Starting point label
 FOR counter = 1 TO 12 ' Look right
 maneuver = RotateRight
 GOSUB Servos_And_Sensors
 IF sensors <> 0 THEN GOTO Next_State
 NEXT
 .
 .
 .
 ENDIF

Chapter 4: Navigation Tips · Page 185

√ Add the GOTO Look_About command to the end of the Initialization routine.

' -----[Initialization]--

GOSUB Calibrate_Qtis ' Determine b/w threshold
GOTO Look_About ' <--- Add Start mid search pattern

√ Run the modified program and verify that it makes the SumoBot look around
before moving forward.

There are lots of questions to consider and test when designing a search pattern. For
example, is it better to look around right after turning away from the tawara, or is it better
to get away from it so that your SumoBot isn't at a disadvantage? You will have to
answer these and other questions through experimentation.

One very important thing to keep in mind when designing a search pattern is how far
your IR detectors can realistically see? While the infrared detectors might be good at
seeing a white wall a meter or more away, a black SumoBot opponent isn't nearly as
visible. One thing that will help is to measure the maximum reliable detection distance of
the other SumoBot at the frequency you are using. Then, make a plot like the one shown
in Figure 4-14. It will make it easier designing a path for your SumoBot to see as much
as possible of the ring with the least travel time.

Figure 4-14
IR Detection Range
During Search
Pattern

√ Design, program, and test your own SumoBot Search Pattern.

Page 186· Applied Robotics with the SumoBot

ACTIVITY #6: FULLY FUNCTIONAL SUMO EXAMPLE PROGRAMS
This activity features two fully functional SumoBot example programs. While they both
do the same things; they are organized a little differently. The first is simply a
combination of the example programs, mainly from this chapter. The second has the
code for each state moved to subroutines.

First Sumo Program - Navigation Code in Main Routine

This first example program followed the same steps used in Chapter 2, Activity #6 for
integrating programs. The three programs that were combined were:

• SearchPatternAndAvoidTawara.bs2 from Activity #6 in this chapter.
• FrontAndSideIrNavigation.bs2 from Activity #3 in this chapter.
• TestResetButton.bs2 from Chapter 2, Activity #2.

Example Program: TestSumoWrestler.bs2

Did you skip ahead to get here? If you skipped any thing in Chapter 3 or 4, go back
and do it now.

The programs that follow are dependent upon the sensor circuits built, tested and calibrated
in the previous activities in Chapter 3 and 4.

√ Pick a sumo start card from Activity #3, Figure 4-7.
√ Download TestSumoWrestler.bs2 to one SumoBot A and place it in the practice

ring in position A.
√ Save TestSumoWrestler.bs2 as MySumoWrestler.bs2.
√ Incorporate your search pattern into the Main Routine.
√ Download that program to SumoBot B.
√ Place it in the practice ring in position B.
√ Press/release both SumoBots' Reset buttons simultaneously.
√ Fine tune the MySumoWrestler.bs2 program for victory.
√ After enough tests to determine the probability of victory, make sure to repeat

the test with the programs swapped. SumoBot A gets SumoBot B's program and
vice versa.

Chapter 4: Navigation Tips · Page 187

' -----[Title]--
' Applied Robotics with the SumoBot - TestSumoWrestler.bs2
' Fully functional state machine based sumo wrestling program
' with peripheral vision.

' {$STAMP BS2} ' Target = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

' -----[I/O Definitions]---

ServoLeft PIN 13 ' Left servo connected to P13
ServoRight PIN 12 ' Right servo connected to P12

qtiPwrLeft PIN 10 ' Left QTI on/off pin P10
qtiSigLeft PIN 9 ' Left QTI signal pin P9

qtiPwrRight PIN 7 ' Right QTI on/off pin P7
qtiSigRight PIN 8 ' Right QTI signal pin P8

DummyPin PIN 6 ' I/O pin for pulse-decay P6

LedSpeaker PIN 5 ' LED & speaker connected to P5

IrLedLS PIN 2 ' Left IR LED connected to P2
IrSenseLS PIN 1 ' Left IR detector to P1

IrLedLF PIN 4 ' Left IR LED connected to P4
IrSenseLF PIN 11 ' Left IR detector to P11

IrLedRF PIN 15 ' Right IR LED connected to P15
IrSenseRF PIN 14 ' Right IR detector to P14

IrLedRS PIN 3 ' Right IR LED connected to P3
IrSenseRS PIN 0 ' Right IR detector to P0

' -----[Constants]--

' SumoBot maneuvers

Forward CON 0 ' Forward
Backward CON 1 ' Backward
RotateLeft CON 2 ' RotateLeft
RotateRight CON 3 ' RotateRight
PivotLeft CON 4 ' Pivot to the left
PivotRight CON 5 ' Pivot to the right
CurveLeft CON 6 ' Curve to the left
CurveRight CON 7 ' Curve to the right

' Servo pulse width rotations

FS_CCW CON 850 ' Full speed counterclockwise

Page 188· Applied Robotics with the SumoBot

FS_CW CON 650 ' Full speed clockwise
NO_ROT CON 750 ' No rotation
LS_CCW CON 770 ' Low speed counterclockwise
LS_CW CON 730 ' Low speed clockwise

' IR object detectors

IrFreq CON 38500 ' IR LED frequency

' -----[Variables]--

temp VAR Word ' Temporary variable
multi VAR Word ' Multipurpose variable
counter VAR Byte ' Loop counting variable.

maneuver VAR Nib ' SumoBot travel maneuver

sensors VAR Byte ' Sensor flags byte

qtiLF VAR sensors.BIT5 ' Stores snapshot of QtiSigLeft
qtiRF VAR sensors.BIT4 ' Stores snapshot of QtiSigRight

irLS VAR sensors.BIT3 ' State of Left Side IR
irLF VAR sensors.BIT2 ' State of Left Front IR
irRF VAR sensors.BIT1 ' State of Right Front IR
irRS VAR sensors.BIT0 ' State of Right Side IR

' -----[EEPROM Data]--

RunStatus DATA 0 ' Run status EEPROM byte
QtiThresh DATA Word 0 ' Word for QTI threshold time

' -----[Initialization]---

GOSUB Reset ' Wait for Reset press/release
GOSUB Start_Delay ' 5 Second delay
GOSUB Calibrate_Qtis ' Determine b/w threshold
GOTO Look_About ' Start mid search pattern

' -----[Main Routine]---

DO

 IF qtiLF = 1 THEN ' Left QTI sees line?
 FOR counter = 1 TO 15 ' State = Avoid tawara left
 maneuver = Backward ' Back up
 GOSUB Servos_And_Sensors
 NEXT
 FOR counter = 1 TO 15 ' Turn right
 maneuver = RotateRight
 GOSUB Servos_And_Sensors

Chapter 4: Navigation Tips · Page 189

 NEXT
 ELSEIF qtiRF = 1 THEN ' Right QTI sees line?
 FOR counter = 1 TO 15 ' State = Avoid tawara right
 maneuver = Backward ' Back up
 GOSUB Servos_And_Sensors
 NEXT
 FOR counter = 1 TO 15 ' Turn left
 maneuver = RotateLeft
 GOSUB Servos_And_Sensors
 NEXT
 ELSEIF irLF = 1 AND irRF = 1 THEN ' Both?
 maneuver = Forward ' State = Lunge forward
 GOSUB Servos_And_Sensors
 ELSEIF irLF = 1 THEN ' Just left?
 counter = 0 ' State = track front left object
 DO UNTIL (irLF = 1 AND irRF = 1) OR counter > 15
 maneuver = CurveLeft ' Curve left 15
 GOSUB Servos_And_Sensors
 counter = counter + 1
 LOOP
 DO UNTIL (irLF = 1 AND irRF = 1) OR counter > 30
 maneuver = RotateLeft ' Rotate left 30
 GOSUB Servos_And_Sensors
 counter = counter + 1
 LOOP
 ELSEIF irRF = 1 THEN ' Just right?
 counter = 0 ' State=track front right object
 DO UNTIL (irLF = 1 AND irRF = 1) OR counter > 15
 maneuver = CurveRight ' Curve right 15
 GOSUB Servos_And_Sensors
 counter = counter + 1
 LOOP
 DO UNTIL (irLF = 1 AND irRF = 1) OR counter > 30
 maneuver = RotateRight ' Rotate right 30
 GOSUB Servos_And_Sensors
 counter = counter + 1
 LOOP
 ELSEIF irLS = 1 THEN ' Object left side?
 DO UNTIL irRF = 1 OR irLF = 1 ' State = track left side object
 maneuver = RotateLeft ' Rotate left
 GOSUB Servos_And_Sensors
 LOOP
 ELSEIF irRS = 1 THEN ' Object right side?
 DO UNTIL irRF = 1 OR irLF = 1 ' State = track right side object
 maneuver = RotateRight ' Rotate right
 GOSUB Servos_And_Sensors
 LOOP
 ELSE ' No objects detected?
 FOR counter = 1 TO 35 ' State = search pattern
 maneuver = Forward
 GOSUB Servos_And_Sensors ' Forward

Page 190· Applied Robotics with the SumoBot

 IF sensors <> 0 THEN GOTO Next_State
 NEXT
 Look_About: ' Starting point label
 FOR counter = 1 TO 12 ' Look right
 maneuver = RotateRight
 GOSUB Servos_And_Sensors
 IF sensors <> 0 THEN GOTO Next_State
 NEXT
 FOR counter = 1 TO 24 ' Look left
 maneuver = RotateLeft
 GOSUB Servos_And_Sensors
 IF sensors <> 0 THEN GOTO Next_State
 NEXT
 FOR counter = 1 TO 12 ' Re-align to forward
 maneuver = RotateRight
 GOSUB Servos_And_Sensors
 IF sensors <> 0 THEN GOTO Next_State
 NEXT
 Next_State: ' Exit point of search pattern
 ENDIF

LOOP

' -----[Subroutine - Reset]---

Reset:

 READ RunStatus, temp ' Byte @RunStatus -> temp
 temp = temp + 1 ' Increment temp
 WRITE RunStatus, temp ' Store new value for next time

 IF (temp.BIT0 = 1) THEN ' Examine temp.BIT0
 DEBUG CLS, "Press/release Reset", CR, ' 1 -> end, 0 -> keep going
 "button..."
 END
 ELSE
 DEBUG CR, "Program running..."
 ENDIF

 RETURN

' -----[Subroutine - Start_Delay]---

Start_Delay:

 FOR counter = 1 TO 5 ' 5 beeps, 1/second
 PAUSE 900
 FREQOUT LedSpeaker, 100, 3000
 NEXT

 RETURN

Chapter 4: Navigation Tips · Page 191

' -----[Subroutine - Calibrate_Qtis]--

Calibrate_Qtis:

 HIGH qtiPwrLeft ' Turn left QTI on
 HIGH qtiSigLeft ' Discharge capacitor
 PAUSE 1

 RCTIME qtiSigLeft, 1, temp ' Measure charge time

 LOW qtiPwrLeft ' Turn left QTI off
 multi = temp ' Free temp for another RCTIME

 HIGH qtiPwrRight ' Turn right QTI on
 HIGH qtiSigRight ' Discharge capacitor
 PAUSE 1
 RCTIME qtiSigRight, 1, temp ' Measure charge time

 multi = (multi + temp) / 2 ' Calculate average

 multi = multi / 4 ' Take 1/4 average

 IF multi > 220 THEN ' Account for code overhead
 multi = multi - 220
 ELSE
 multi = 0
 ENDIF

 WRITE QtiThresh, Word multi ' Threshold to EEPROM

 RETURN

' -----[Subroutine - Servos_And_Sensors]------------------------------------

Servos_And_Sensors:

 GOSUB Pulse_Servos ' Call Pulse_Servos subroutine

 ' Call sensor subroutine(s).

 sensors = 0 ' Clear previous sensor values

 GOSUB Read_Object_Detectors ' Call Read_Object_Detectors
 GOSUB Read_Line_Sensors ' Look for lines

 RETURN

' -----[Subroutine - Pulse_Servos]--

Pulse_Servos:

Page 192· Applied Robotics with the SumoBot

 ' Pulse to left servo
 LOOKUP maneuver, [FS_CCW, FS_CW, FS_CW, FS_CCW,
 NO_ROT, FS_CCW, LS_CCW, FS_CCW], temp
 PULSOUT ServoLeft, temp

 ' Pulse to right servo
 LOOKUP maneuver, [FS_CW, FS_CCW, FS_CW, FS_CCW,
 FS_CW, NO_ROT, FS_CW, LS_CW], temp
 PULSOUT ServoRight, temp

 ' Pause between pulses (remove when using IR object detectors + QTIs).
 ' PAUSE 20

 RETURN

' -----[Subroutine - Read_Object_Detectors]---------------------------------

Read_Object_Detectors:

 FREQOUT IrLedRS, 1, IrFreq ' Right side IR LED headlight
 irRS = ~IrSenseRS ' Save right side IR receiver

 FREQOUT IrLedRF, 1, IrFreq ' Repeat for right-front
 irRF = ~IrSenseRF

 FREQOUT IrLedLF, 1, IrFreq ' Repeat for left-front
 irLF = ~IrSenseLF

 FREQOUT IrLedLS, 1, IrFreq ' Repeat for left side
 irLS = ~IrSenseLS

 RETURN

' -----[Subroutine - Read_Line_Sensors]-------------------------------------

Read_Line_Sensors:

 HIGH qtiPwrLeft ' Turn on QTIs
 HIGH qtiPwrRight
 HIGH qtiSigLeft ' Push signal voltages to 5 V
 HIGH qtiSigRight
 PAUSE 1 ' Wait 1 ms for capacitors

 READ QtiThresh, Word temp ' Get threshold time

 INPUT qtiSigLeft ' Start the decays
 INPUT qtiSigRight

 PULSOUT DummyPin, temp ' Wait threshold time

Chapter 4: Navigation Tips · Page 193

 qtiLF = ~qtiSigLeft ' Snapshot of QTI signal states
 qtiRF = ~qtiSigRight

 LOW qtiPwrLeft ' Turn off QTIS
 LOW qtiPwrRight

 RETURN

Moving the State Routines to Subroutines

Here is the Main Routine from the upcoming example program SumoWrestler.bs2, a
revision of TestSumoWrestler.bs2 in which all of the state routines have been moved to
subroutines. It's quite clean and easy to read, isn't it?

' -----[Main Routine]---

DO

 IF qtiLF = 1 THEN ' Left qti sees line?
 GOSUB Avoid_Tawara_Left ' State = avoid left tawara
 ELSEIF qtiRF = 1 THEN ' Right qti sees line?
 GOSUB Avoid_Tawara_Right ' State = avoid right tawara
 ELSEIF irLF = 1 AND irRF = 1 THEN ' Both? Lunge forward
 GOSUB Go_Forward ' State = Go forward
 ELSEIF irLF = 1 THEN ' Just left?
 GOSUB Track_Front_Left_Object ' State = Track front left obj.
 ELSEIF irRF = 1 THEN ' Just right?
 GOSUB Track_Front_Right_Object ' State = Track front right obj.
 ELSEIF irLS = 1 THEN ' Left side?
 GOSUB Track_Side_Left_Object ' State = track side left obj.
 ELSEIF irRS = 1 THEN ' Right side?
 GOSUB Track_Side_Left_Object ' State = track side right obj.
 ELSE ' Nothing sensed?
 GOSUB Search_Pattern ' State = Search pattern
 ENDIF

LOOP

The code block for each navigation state now resides in a subroutine. Here is an example
of Avoid_Tawara_Left. For the most part, the actual code in each subroutine is
unchanged from the way it was in the main routine. The only difference is usually the
label and RETURN command.

' -----[Subroutine - Avoid_Tawara_Left]------------------------------

Avoid_Tawara_Left:

 FOR counter = 1 TO 15 ' Back up

Page 194· Applied Robotics with the SumoBot

 maneuver = Backward
 GOSUB Servos_And_Sensors
 NEXT
 FOR counter = 1 TO 15 ' Turn right
 maneuver = RotateRight
 GOSUB Servos_And_Sensors
 NEXT

 RETURN

There was one small problem that had to be corrected before the program would run
properly. The last command in the initialization routine had to be changed from

GOTO Look_About ' Start mid search pattern

to

GOSUB Look_About ' Was Goto Look_About

The symptoms of this tiny coding mistake can be pretty discouraging. The SumoBot
does its 5 second delay, then looks left, then looks right, then does nothing more...
Here's why - the Look_About label is now in the Search_Pattern subroutine. GOTO
Look_About sends the program to the Look_About label, and the program executes
commands until it gets to RETURN. Since there was no GOSUB command before the
RETURN command, the BASIC Stamp sends the program to its beginning. By connecting
the SumoBot to the programming cable, the problem becomes clear, since the SumoBot
does a couple of moves, and then displays "Press/Release Reset button..." That's an
indication that the program is restarting, and the two most likely causes are tired batteries,
or a RETURN command without a GOSUB.

Example Program: SumoWrestler.bs2

Did you skip ahead to get here? If you skipped any thing in Chapter 3 or 4, go back
and do it now.

The programs that follow are dependent upon the sensor circuits built, tested and calibrated
in the previous activities in Chapter 3 and 4.

√ Examine SumoWrestler.bs2 and make sure the Main Routine and navigation

state subroutines make sense to you.
√ Make sure to substitute your IrFreq constant from Chapter 3, Activity #1 in

place of the IrFreq constant in SumoWrestler.bs2. Use the one that most

Chapter 4: Navigation Tips · Page 195

closely matches the conditions for your competition ring, taking into account
nearby objects, whether or not the floor reflects infrared, etc.

√ Also, make sure to adjust your QTI threshold calculation if you encountered
problems with detecting the crease marks in the SumoBot Robot Competition
Ring poster. See Activity #5 in this chapter.

√ Download your updated SumoWrestler.bs2 into SumoBot A.
√ Save a copy of the program as MySumoWithSubrtoutines.bs2.
√ Incorporate the changes you made in MySumoWrestler.bs2 into this new

program's Search_Pattern subroutine. What differences did you encounter?
√ Download your updated MySumoWrestler.bs2 into SumoBot B.
√ Let them compete against each other using the same starting positions as the

previous activity.

' -----[Title]--
' Applied Robotics with the SumoBot - SumoWrestler.bs2
' SumoWrestler.bs2 modified so that each state is contained by a
' subroutine.

' {$STAMP BS2} ' Target = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

' -----[I/O Definitions]---

ServoLeft PIN 13 ' Left servo connected to P13
ServoRight PIN 12 ' Right servo connected to P12

qtiPwrLeft PIN 10 ' Left QTI on/off pin P10
qtiSigLeft PIN 9 ' Left QTI signal pin P9

qtiPwrRight PIN 7 ' Right QTI on/off pin P7
qtiSigRight PIN 8 ' Right QTI signal pin P8

DummyPin PIN 6 ' I/O pin for pulse-decay P6

LedSpeaker PIN 5 ' LED & speaker connected to P5

IrLedLS PIN 2 ' Left IR LED connected to P2
IrSenseLS PIN 1 ' Left IR detector to P1

IrLedLF PIN 4 ' Left IR LED connected to P4
IrSenseLF PIN 11 ' Left IR detector to P11

IrLedRF PIN 15 ' Right IR LED connected to P15
IrSenseRF PIN 14 ' Right IR detector to P14

IrLedRS PIN 3 ' Right IR LED connected to P3

Page 196· Applied Robotics with the SumoBot

IrSenseRS PIN 0 ' Right IR detector to P0

' -----[Constants]--

' SumoBot maneuvers

Forward CON 0 ' Forward
Backward CON 1 ' Backward
RotateLeft CON 2 ' RotateLeft
RotateRight CON 3 ' RotateRight
PivotLeft CON 4 ' Pivot to the left
PivotRight CON 5 ' Pivot to the right
CurveLeft CON 6 ' Curve to the left
CurveRight CON 7 ' Curve to the right

' Servo pulse width rotations

FS_CCW CON 850 ' Full speed counterclockwise
FS_CW CON 650 ' Full speed clockwise
NO_ROT CON 750 ' No rotation
LS_CCW CON 770 ' Low speed counterclockwise
LS_CW CON 730 ' Low speed clockwise

' IR object detectors

IrFreq CON 38500 ' IR LED frequency

' -----[Variables]--

temp VAR Word ' Temporary variable
multi VAR Word ' Multipurpose variable
counter VAR Byte ' Loop counting variable.

maneuver VAR Nib ' SumoBot travel maneuver

sensors VAR Byte ' Sensor flags byte

qtiLF VAR sensors.BIT5 ' Stores snapshot of QtiSigLeft
qtiRF VAR sensors.BIT4 ' Stores snapshot of QtiSigRight

irLS VAR sensors.BIT3 ' State of Left Side IR
irLF VAR sensors.BIT2 ' State of Left Front IR
irRF VAR sensors.BIT1 ' State of Right Front IR
irRS VAR sensors.BIT0 ' State of Right Side IR

' -----[EEPROM Data]--

RunStatus DATA 0 ' Run status EEPROM byte
QtiThresh DATA Word 0 ' Word for QTI threshold time

' -----[Initialization]---

Chapter 4: Navigation Tips · Page 197

GOSUB Reset ' Wait for Reset press/release
GOSUB Start_Delay ' 5 Second delay
GOSUB Calibrate_Qtis ' Determine b/w threshold
GOSUB Look_About ' Was Goto Look_About

' -----[Main Routine]---

DO

 IF qtiLF = 1 THEN ' Left qti sees line?
 GOSUB Avoid_Tawara_Left ' State = avoid left tawara
 ELSEIF qtiRF = 1 THEN ' Right qti sees line?
 GOSUB Avoid_Tawara_Right ' State = avoid right tawara
 ELSEIF irLF = 1 AND irRF = 1 THEN ' Both? Lunge forward
 GOSUB Go_Forward ' State = Go forward
 ELSEIF irLF = 1 THEN ' Just left?
 GOSUB Track_Front_Left_Object ' State = Track front left obj.
 ELSEIF irRF = 1 THEN ' Just right?
 GOSUB Track_Front_Right_Object ' State = Track front right obj.
 ELSEIF irLS = 1 THEN ' Left side?
 GOSUB Track_Side_Left_Object ' State = track side left obj.
 ELSEIF irRS = 1 THEN ' Right side?
 GOSUB Track_Side_Right_Object ' State = track side right obj.
 ELSE ' Nothing sensed?
 GOSUB Search_Pattern ' State = Search pattern
 ENDIF

LOOP

' -----[Subroutine - Reset]---

Reset:

 READ RunStatus, temp ' Byte @RunStatus -> temp
 temp = temp + 1 ' Increment temp
 WRITE RunStatus, temp ' Store new value for next time

 IF (temp.BIT0 = 1) THEN ' Examine temp.BIT0
 DEBUG CLS, "Press/release Reset", CR, ' 1 -> end, 0 -> keep going
 "button..."
 END
 ELSE
 DEBUG CR, "Program running..."
 ENDIF

 RETURN

' -----[Subroutine - Start_Delay]---

Start_Delay:

Page 198· Applied Robotics with the SumoBot

 FOR counter = 1 TO 5 ' 5 beeps, 1/second
 PAUSE 900
 FREQOUT LedSpeaker, 100, 3000
 NEXT

 RETURN

' -----[Subroutine - Calibrate_Qtis]--

Calibrate_Qtis:

 HIGH qtiPwrLeft ' Turn left QTI on
 HIGH qtiSigLeft ' Discharge capacitor
 PAUSE 1

 RCTIME qtiSigLeft, 1, temp ' Measure charge time

 LOW qtiPwrLeft ' Turn left QTI off
 multi = temp ' Free temp for another RCTIME

 HIGH qtiPwrRight ' Turn right QTI on
 HIGH qtiSigRight ' Discharge capacitor
 PAUSE 1
 RCTIME qtiSigRight, 1, temp ' Measure charge time

 multi = (multi + temp) / 2 ' Calculate average

 multi = multi / 4 ' Take 1/4 average

 IF multi > 220 THEN ' Account for code overhead
 multi = multi - 220
 ELSE
 multi = 0
 ENDIF

 WRITE QtiThresh, Word multi ' Threshold to EEPROM

 RETURN

' -----[Subroutine - Servos_And_Sensors]------------------------------------

Servos_And_Sensors:

 GOSUB Pulse_Servos ' Call Pulse_Servos subroutine

 ' Call sensor subroutine(s).

 sensors = 0 ' Clear previous sensor values

 GOSUB Read_Object_Detectors ' Call Read_Object_Detectors

Chapter 4: Navigation Tips · Page 199

 GOSUB Read_Line_Sensors ' Look for lines

 RETURN

' -----[Subroutine - Pulse_Servos]--

Pulse_Servos:

 ' Pulse to left servo
 LOOKUP maneuver, [FS_CCW, FS_CW, FS_CW, FS_CCW,
 NO_ROT, FS_CCW, LS_CCW, FS_CCW], temp
 PULSOUT ServoLeft, temp

 ' Pulse to right servo
 LOOKUP maneuver, [FS_CW, FS_CCW, FS_CW, FS_CCW,
 FS_CW, NO_ROT, FS_CW, LS_CW], temp
 PULSOUT ServoRight, temp

 ' Pause between pulses (remove when using IR object detectors + QTIs).
 ' PAUSE 20

 RETURN

' -----[Subroutine - Read_Object_Detectors]---------------------------------

Read_Object_Detectors:

 FREQOUT IrLedRS, 1, IrFreq ' Right side IR LED headlight
 irRS = ~IrSenseRS ' Save right side IR receiver

 FREQOUT IrLedRF, 1, IrFreq ' Repeat for right-front
 irRF = ~IrSenseRF

 FREQOUT IrLedLF, 1, IrFreq ' Repeat for left-front
 irLF = ~IrSenseLF

 FREQOUT IrLedLS, 1, IrFreq ' Repeat for left side
 irLS = ~IrSenseLS

 RETURN

' -----[Subroutine - Read_Line_Sensors]-------------------------------------

Read_Line_Sensors:

 HIGH qtiPwrLeft ' Turn on QTIs
 HIGH qtiPwrRight
 HIGH qtiSigLeft ' Push signal voltages to 5 V
 HIGH qtiSigRight
 PAUSE 1 ' Wait 1 ms for capacitors

Page 200· Applied Robotics with the SumoBot

 READ QtiThresh, Word temp ' Get threshold time

 INPUT qtiSigLeft ' Start the decays
 INPUT qtiSigRight

 PULSOUT DummyPin, temp ' Wait threshold time

 qtiLF = ~qtiSigLeft ' Snapshot of QTI signal states
 qtiRF = ~qtiSigRight

 LOW qtiPwrLeft ' Turn off QTIS
 LOW qtiPwrRight

 RETURN

' -----[Subroutine - Avoid_Tawara_Left]-------------------------------------

Avoid_Tawara_Left:

 FOR counter = 1 TO 15 ' Back up
 maneuver = Backward
 GOSUB Servos_And_Sensors
 NEXT
 FOR counter = 1 TO 15 ' Turn right
 maneuver = RotateRight
 GOSUB Servos_And_Sensors
 NEXT

 RETURN

' -----[Subroutine - Avoid_Tawara_Right]------------------------------------

Avoid_Tawara_Right:

 FOR counter = 1 TO 15 ' Back up
 maneuver = Backward
 GOSUB Servos_And_Sensors
 NEXT
 FOR counter = 1 TO 15 ' Turn left
 maneuver = RotateLeft
 GOSUB Servos_And_Sensors
 NEXT

 RETURN

' -----[Subroutine - Go_Forward]--

Go_Forward:

 maneuver = Forward ' 1 forward pulse
 GOSUB Servos_And_Sensors

Chapter 4: Navigation Tips · Page 201

 RETURN

' -----[Subroutine - Track_Front_Left_Object]-------------------------------

Track_Front_Left_Object:

 counter = 0
 DO UNTIL (irLF = 1 AND irRF = 1) OR counter > 15
 maneuver = CurveLeft ' Curve left 15
 GOSUB Servos_And_Sensors
 counter = counter + 1
 LOOP
 DO UNTIL (irLF = 1 AND irRF = 1) OR counter > 30
 maneuver = RotateLeft ' Rotate left 30
 GOSUB Servos_And_Sensors
 counter = counter + 1
 LOOP

 RETURN

' -----[Subroutine - Track_Front_Right_Object]------------------------------

Track_Front_Right_Object:

 counter = 0
 DO UNTIL (irLF = 1 AND irRF = 1) OR counter > 15
 maneuver = CurveRight ' Curve right 15
 GOSUB Servos_And_Sensors
 counter = counter + 1
 LOOP
 DO UNTIL (irLF = 1 AND irRF = 1) OR counter > 30
 maneuver = RotateRight ' Rotate right 30
 GOSUB Servos_And_Sensors
 counter = counter + 1
 LOOP

 RETURN

' -----[Subroutine - Track_Side_Left_Object]--------------------------------

Track_Side_Left_Object:

 DO UNTIL irRF = 1 OR irLF = 1 ' Rotate left
 maneuver = RotateLeft
 GOSUB Servos_And_Sensors
 LOOP

 RETURN

' -----[Subroutine - Track_Side_Right_Object]-------------------------------

Page 202· Applied Robotics with the SumoBot

Track_Side_Right_Object:

 DO UNTIL irRF = 1 OR irLF = 1 ' Rotate right
 maneuver = RotateRight
 GOSUB Servos_And_Sensors
 LOOP

 RETURN

' -----[Subroutine - Search_Pattern]--

Search_Pattern:

 FOR counter = 1 TO 35 ' and watch all sensors
 maneuver = Forward ' Forward
 GOSUB Servos_And_Sensors
 IF sensors <> 0 THEN GOTO Next_State
 NEXT
 Look_About:
 FOR counter = 1 TO 12 ' Look right
 maneuver = RotateRight
 GOSUB Servos_And_Sensors
 IF sensors <> 0 THEN GOTO Next_State
 NEXT
 FOR counter = 1 TO 24 ' Look left
 maneuver = RotateLeft
 GOSUB Servos_And_Sensors
 IF sensors <> 0 THEN GOTO Next_State
 NEXT
 FOR counter = 1 TO 12 ' Re-align to forward
 maneuver = RotateRight
 GOSUB Servos_And_Sensors
 IF sensors <> 0 THEN GOTO Next_State
 NEXT

 Next_State: ' Exit point of search pattern

 RETURN

Chapter 4: Navigation Tips · Page 203

SUMMARY
This chapter introduced a technique that uses the LOOKUP command for adapting servo
control to use with the temp and counter variables. It also introduced a subroutine that
makes checking the sensors between each servo pulse automatic. DO UNTIL...LOOP
code blocks were used to respond to a sensor with an action until another sensor event
occurred or a counter exceeded a certain number of repetitions. This makes it possible
for the SumoBot to react to sensor detections on either the front or side that causes it to
face its opponent. Similar routines for detecting and avoiding the white tawara line were
also introduced along with search patterns the SumoBot can use to locate its opponent
more quickly and effectively.

The SumoBot navigation routines in this chapter can be conveniently viewed as state
machines. Selected sensor detections cause the SumoBot to transition between different
navigation states. State machine diagrams were introduced along with hybridized state
machine diagrams as a potential visual aid for mapping the SumoBot's various responses
to sensor events.

Two fully functional SumoWrestler programs were presented. Both make use of the
majority of the techniques presented earlier in this book. One contains all the navigation
states and state transitions in the main routine. The other only has state transitions in the
Main Routine, and all the navigation states are handled in subroutines.

Questions

1. Which BASIC Stamp I/O pin does the X7 signal line connect to?
2. What feature of servo motion does a FOR...NEXT loop's EndValue control?
3. What feature of SumoBot motion does a PULSOUT command's Pin argument

determine?
4. What do the numbers 700, 710, 720, 730 and 740 do for servo control?
5. Assuming a FOR...NEXT loop with 20 ms pauses, how many pulses will it take

to make the servos go forward for 3 seconds?
6. What effect do sensors have on the amount of time a loop makes the servos run?
7. What combination of PULSOUT commands does it take to make the SumoBot

execute a full speed reverse maneuver?
8. What combination of PULSOUT commands does it take to make the SumoBot

execute a right turn (rotating in place)?

Page 204· Applied Robotics with the SumoBot

9. What combination of PULSOUT commands does it take to make the SumoBot
execute a pivot-right turn?

10. In the lookup command review, what value will the counter variable have to
store to make the LOOKUP command copy 1580 to the note variable?

11. What constant values were chosen for Forward, Backward, RotateLeft, and
RotateRight?

12. What variable has to be set to a value before the Pulse_Servos subroutine is
called?

13. What PULSOUT commands does maneuver = 3; GOSUB Pulse_Servos
dictate?

14. What are the two kinds of conditions that are typically evaluated while executing
a maneuver?

15. What programming elements are needed for the SumoBot to perform one
maneuver if a sensor condition is detected and evaluate the results, then perform
another maneuver if the results are undesirable?

16. How does responding to a peripheral vision detection differ from responding to a
forward vision detection?

17. What is a reset condition?
18. What is a state?
19. In Figure 4-9, what condition keeps the LED off?
20. In Figure 4-9, what condition maintains the Blink LED state?
21. How do the Avoid_Tawara states differ from other states?
22. How can you make a program start in the beginning of its Main Routine loop?
23. In TestSumoWrestler.bs2, if the front right and front left QTIs detect the white

tawara line at the same instant, what will happen?

Exercises

1. Write routines for ServoControlExample.bs2 that make the SumoBot curve left
and then curve right.

2. Write a routine that tests all the maneuvers you added to
ServoControlWithLookup.bs2 in the Your Turn section.

3. Write a routine for FrontAndSideIrNavigation.bs2 that makes the SumoBot turn
slowly in place until it finds an object to go after.

4. Draw a hybrid state machine diagram for the Main Routine in Activity #5.

Chapter 4: Navigation Tips · Page 205

Projects

1. Hold some sumo matches, and make sure to draw cards from the list in Figure 4-
7 between each round.

2. Modify the two-eyed Basic_Competition_Program from the SumoBot Manual
text to improve its chances against the modified four-eyed SumoBot when
starting from any of the positions in Figure 4-7.

Page 206· Applied Robotics with the SumoBot

Chapter 5: Debugging and Datalogging · Page 207

Chapter #5: Debugging and Datalogging

If the SumoBot exhibits a problem behavior in the ring, figuring out the problem's actual
cause can be rather confounding. Things happen pretty fast in the sumo ring, and it's
often hard to discern what the SumoBot might have "seen" when you're watching a
round. Especially if you extensively modify SumoWrestler.bs2 or add new sensors and
navigation states, you might find yourself relying heavily on the techniques introduced in
this chapter.

Author's Note

I relied heavily on the techniques in this chapter, especially Activity #3 an #4. They helped
me figure out a number of problems, including program bugs, circuit continuity, and IR
reflected off the floor outside the SumoBot competition ring.

SEEING WHAT IT SEES AND UNDERSTANDING WHAT IT DOES
Problem behaviors aren't always confounding. In face, sometimes, it's pretty easy to
guess the cause. In that case, simply using an LED to signal when the suspect part of the
program starts to run will confirm your guess. Other times, you might expect the LED to
come on, but it just doesn't.

At that point you might have to add pieces of code throughout your program that test
other guesses. You may not want these pieces of test code to execute all the time, only
when you tell them to. There's no need to waste variable space or set up a pushbutton
controlled mode though, because the BASIC Stamp Editor supports compiler directives.
These compiler directives are added to the program to make the BASIC Stamp Editor
either include or leave out lines of code. It works both for multiple small statements
scattered throughout the program as well as for really large blocks of diagnostic code.

One really nice thing about compiler directives is you can add the diagnostic code
directly to the actual competition code. By simply changing one value at the beginning
of your program, you can incorporate debugging routines that show every sensor
detection, navigation state and maneuver your SumoBot chooses in slow motion. This
makes it possible to see what it sees, and understand the decisions it makes. Most
importantly, it's not in a separate test program, it's all part of the actual SumoWrestler.bs2
code.

Page 208· Applied Robotics with the SumoBot

Slow motion debugging leaves out one crucial element: the actual conditions the
SumoBot experiences during a round. This is where datalogging comes in. The
SumoBot can be programmed to save all the Debug Terminal information it displayed to
EEPROM. After the round, you can play it all back, and match what the SumoBot saw
and did to its problem behavior.

The Scientific Method

The five steps in the scientific method are:

1. State the problem
2. Make observations
3. Form a hypotheses
4. Do an experiment
5. Draw a conclusion

Following these steps may involve several iterations, with the first few conclusions being
"the hypothesis does not explain the SumoBot's behavior." Even so, combined with the
programming concepts introduced in this chapter, these five steps will serve you well.

ACTIVITY #1: USING THE LED TO SIGNAL AN EVENT
The LED can provide you with a number of quick tests to determine whether or not an
event occurred. For example, let's say that the SumoBot has stopped responding to
objects on its right side The problem could be with the wiring, or it could be somewhere
in your modified program.

Ruling out the wiring is easy. Just run TestSideIrObjectDetectors.bs2 from Chapter 3,
Activity #5. Then, simply waving your hand in front of the LED in question with the
Debug Terminal running will tell you whether or not the circuit is working.

Assuming the wiring checks out okay, the LED can then be used to test and find out if the
program is doing what it's supposed to. This activity demonstrates how you test for
potential problems in the program by inserting LED code into key locations.

LED Bug Testing Examples

There are a lot of potential coding problems that can come up as you modify the program.
For example, did the irRF bit get accidentally cleared somewhere in the program? If
not, is there a problem with the looping code inside the Track_Side_Right_Object
subroutine? Is there a problem with the program's branching?

Chapter 5: Debugging and Datalogging · Page 209

Before testing each of these questions, it's important to make a disposable copy of the
SumoWrestler.bs2.

√ Save SumoWrestler.bs2 as CompCodeLedTest.bs2

Testing for a Cleared Bit

The first question was "...did the irRf bit get accidentally cleared somewhere in the
program?" Some LED indicator code can certainly answer this question:

 IF irRS = 1 THEN HIGH LedSpeaker ELSE LOW LedSpeaker

Where you put this line of code can make a big difference in your test. For example, if
it's placed just after the sensor subroutines the program won't have a chance to do all the
other things it does, which might include a coding mistake that clears the irRF bit. A
better way to test this question would be to place the LED indicator code just before the
sensor subroutines get called. That way, the program will go all the way through its other
loops giving you better chances of exposing the bug.

√ Modify the Servos_And_Sensors subroutine in CompCodeLedTest.bs2 as
shown here.

' -----[Subroutine - Servos_And_Sensors]------------------------------------

Servos_And_Sensors:

 GOSUB Pulse_Servos ' Call Pulse_Servos subroutine

 ' Call sensor subroutine(s).

 IF irRS = 1 THEN HIGH LedSpeaker ELSE LOW LedSpeaker ' <--- Add

 sensors = 0 ' Clear previous sensor values

 GOSUB Read_Object_Detectors ' Call Read_Object_Detectors
 GOSUB Read_Line_Sensors ' Look for lines

 RETURN

√ Run the modified program with the SumoBot's 3-position power switch set to 1.
√ Make sure no objects are in view of the SumoBot's other three object detectors.
√ Verify that it correctly indicates when the right side object detector sees and does

not see an object. (Remember to press the SumoBot's Reset button and wait 5
seconds.

Page 210· Applied Robotics with the SumoBot

√ Try it in the practice ring with the 3-position power switch set to 2.
√ Start your test SumoBot with its opponent on the right and watch the LED to see

if you can discern when it detects its opponent.
√ After you are done with this test, make sure to either comment the IF...THEN

statement by placing an apostrophe to the left of it, or just delete it. Otherwise,
you will get incorrect results from the next test!

Did the SumoBot catch a glimpse of its opponent or not? Sometimes the LED might
stay on too briefly to actually see. If you want to catch the event, simply remove the ELSE
condition from the IF...THEN statement. It will cause the LED to turn on and stay on the
first time the event you are testing occurs.

 IF irRS = 1 THEN HIGH LedSpeaker

This statement is also really good for determining whether your IR object detectors
are oversensitive and detecting far-off objects. Simply place the SumoBot in an empty
ring and let it do its search pattern. If the LED comes on, the detector saw something it
wasn't supposed to.

Testing the Subroutine's Looping Code

Next question: "... is there a problem with the looping code inside the
Track_Side_Right_Object subroutine?" One effective way to test this is to put a
TOGGLE LedSpeaker command inside the DO...LOOP in the
Track_Side_Right_Object subroutine. It makes the LED flicker and the speaker click
rapidly as the loop repeats. To keep from leaving the LED on after the subroutine is
finished, it's a good idea to also add a LOW LedSpeaker command right before the
RETURN command.

√ Remember to first remove the test code from the Servos_And_Sensors
subroutine.

√ Modify the Track_Side_Right_Object subroutine in CompCodeLedTest.bs2
as shown here.

' -----[Subroutine - Track_Side_Right_Object]-------------------------------

Track_Side_Right_Object:

 DO UNTIL irRF = 1 OR irLF = 1 ' Rotate right

 TOGGLE LedSpeaker ' <--- Add

 maneuver = RotateRight

Chapter 5: Debugging and Datalogging · Page 211

 GOSUB Servos_And_Sensors

 LOOP

 LOW LedSpeaker ' <--- Add

 RETURN

√ Run the modified program with the SumoBot's 3-position power switch set to 1.
√ Make sure no objects are in view of the SumoBot's other three object detectors.
√ Wave your hand in front of the right object detector.
√ Verify that the LED blinks and the speaker clicks rapidly until you wave your

hand in front of one of the front IR detectors.
√ Try it in the practice ring with the 3-position power switch set to 2.
√ Start your test SumoBot, again, with its opponent on the right.
√ Press/release the Reset button, and verify that the LED flickers and the speaker

clicks as it rounds on its opponent.
√ Leave the LED code where it is for the next test.

If the LED doesn't flicker, there may be an object in front of the SumoBot, or there could
be a branching problem. To test to find out if there is an object in front of the Boe-Bot,
try moving the LED test to the Go_Forward subroutine. If the LED flickers constantly,
then it confirms the problem. This test would also have to be repeated for the
Track_Front_Left_Object and Track_Front_Right_Object subroutines.

Testing for Branching Problems

IF...THEN, GOTO, GOSUB, and RETURN are all examples of branching commands. They
can cause the code to skip from one "branch" of the program to another. If a program has
a branching problem, it would be because a command is telling the program to skip to a
place you don't want it to go to.

Let's say this is the real bug in the program is in the Main Routine. In the code block
below, the programmer typed GOSUB Track_Side_Left_Object twice by accident. It's
the correct response to the first ELSEIF, but the second ELSEIF code block should call the
Track_Side_Right_Object subroutine.

Page 212· Applied Robotics with the SumoBot

√ Modify the main routine so that this bug is incorporated.

 ELSEIF irLS = 1 THEN ' Left side?
 GOSUB Track_Side_Left_Object ' State = track side left obj.
 ELSEIF irRS = 1 THEN ' Right side?
 GOSUB Track_Side_Left_Object ' State = track side right obj.

With this particular bug, the LED would not turn on in the previous test indicating that
the code just wasn't making it there. Assuming you have already ruled out the possibility
of the front IR object detectors seeing something, the next thing to examine is a
branching problem.

√ Start by repeating the TOGGLE LedSpeaker test in the
Track_Side_Right_Object subroutine. The LED should not respond to
waving your hand in front of the SumoBot's side-right object detector because
the subroutine never gets called.

√ Remove the TOGGLE LedSpeaker command and LOW LedSpeaker commands
from the Track_Side_Right_Object subroutine.

√ Add this IF...THEN statement to the DO...LOOP in the Main Routine.

DO

 IF irRS = 1 THEN HIGH LedSpeaker ELSE LOW LedSpeaker ' <--- Add

 IF qtiLF = 1 THEN ' Left qti sees line?
 GOSUB Avoid_Tawara_Left ' State = avoid left tawara

When you wave your hand in front of the right IR object detector, the LED should turn
on. When you wave your hand in front of one of the front IR detectors, the LED should
turn off again. That indicates that a navigation subroutine is getting called, it's just that
it's not the right one. So now, check which one, and the problem will be found.

ACTIVITY #2: CONDITIONAL COMPILING
Commenting and uncommenting lines of test routines can be time consuming and leaves
the door open for a lot of mistakes. Conditional compiler directives can help, and this
activity demonstrates how.

Compiler Directives

Here is a new section, Compiler Definitions. These #DEFINE directives do not get
downloaded to the BASIC Stamp. Instead, the BASIC Stamp Editor just makes a note to

Chapter 5: Debugging and Datalogging · Page 213

itself that you have declared two symbols, LED_MODE, which has been set equal to one,
and DEBUG_MODE, which has been set equal to two.

' -----[Compiler Definitions]--

#DEFINE LED_MODE = 1
#DEFINE DEBUG_MODE = 2

Most compiler directives begin with #. Examples include #DEFINE, #IF, #THEN, #ELSE,
#SELECT, and #CASE. The others begin with the dollar sign, such as $STAMP and
$PBASIC.

The #IF...#ENDIF code block below is called a conditional compiler directive. The
condition is LED_MODE = 1. If that's how LED_MODE was declared, then the LedSpeaker
PIN directive will be compiled. In other words, the BASIC Stamp Editor will consider
LedSpeaker PIN 5 to be part of the program. If LED_MODE is any value other than 1,
the LedSpeaker PIN directive would be ignored, just as comments are ignored.

' -----[I/O Definitions]---

#IF LED_MODE = 1 #THEN
 LedSpeaker PIN 5
#ENDIF

Here is a variable declaration and DEBUG command that are not nested inside any
conditional compiler directives, so they will be part of the program regardless of the
value of DEBUG_MODE or LED_MODE.

' -----[Variables]---

counter VAR Word

' -----[Initialization]--

DEBUG CLS, "Program running...", CR, CR

Since DEBUG_MODE was declared as 2, only the command DEBUG "DEBUG_MODE = 2."
will be part of the program. Again the commands in the other #CASE directives might as
well be comments. However, if you change #DEFINE DEBUG_MODE = 2 to #DEFINE
DEBUG_MODE = 0 and re-run the program, only the DEBUG command in the #CASE 0
block will be compiled. The program would instead display the message "DEBUG_MODE
is zero."

Page 214· Applied Robotics with the SumoBot

#SELECT DEBUG_MODE
 #CASE 0
 DEBUG "DEBUG_MODE is zero."
 #CASE 1
 DEBUG "DEBUG_MODE is one."
 #CASE 2
 DEBUG "DEBUG_MODE is two."
#ENDSELECT

Because LED_MODE is 1, the code inside the commands nested in the #IF LED_MODE = 1
#THEN code block will become part of the program. The code inside the #ELSE block will
be ignored, unless of course, you change the #DEFINE LED_MODE directive to zero.

' -----[Main Routine]--

DO

 DEBUG CRSRX, 0, ? counter
 counter = counter + 1

 #IF LED_MODE = 1 #THEN

 DEBUG "LED state = ", BIN1 counter.BIT0, CRSRUP
 TOGGLE LedSpeaker
 PAUSE 200

 #ELSE

 DEBUG "LED_MODE disabled", CRSRUP
 PAUSE 100

 #ENDIF

LOOP

Example Program: CompilerDirectives.bs2

CompilerDirectives.bs2 can actually be six different programs. That's because it has
conditional compiler directives for three different DEBUG_MODEs and two different
LED_MODEs. This gives you six different combinations of DEBUG_MODE and LED_MODE.

√ Based on the LED_MODE and DEBUG_MODE #DEFINES, predict what
CompilerDirectives.bs2 is going to do when you download it to the BASIC
Stamp.

Chapter 5: Debugging and Datalogging · Page 215

√ Enter, save, and run Compiler directives.bs2 and check the program's behavior
against your predictions.

√ Change #DEFINE LED_MODE = 1 to #DEFINE LED_MODE = 0.
√ Predict how the program will behave the next time it is downloaded to the

BASIC Stamp.
√ Run the program, and again test your predictions.
√ Repeat for the other four combinations of values that you can set LED_MODE and

DEBUG_MODE equal to.

' -----[Title]--
' Applied Robotics with the SumoBot - CompilerDirectives.bs2
' How to use compiler directives to select which code blocks to run.

' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Compiler Definitions]---

#DEFINE LED_MODE = 1
#DEFINE DEBUG_MODE = 2

' -----[I/O Definitions]--

#IF LED_MODE = 1 #THEN
 LedSpeaker PIN 5
#ENDIF

' -----[Variables]--

counter VAR Word

' -----[Initialization]---

DEBUG CLS, "Program running...", CR, CR

#SELECT DEBUG_MODE
 #CASE 0
 DEBUG "DEBUG_MODE is zero."
 #CASE 1
 DEBUG "DEBUG_MODE is one."
 #CASE 2
 DEBUG "DEBUG_MODE is two."
#ENDSELECT

DEBUG CR, CR

' -----[Main Routine]---

Page 216· Applied Robotics with the SumoBot

DO

 DEBUG CRSRX, 0, ? counter
 counter = counter + 1

 #IF LED_MODE = 1 #THEN

 DEBUG "LED state = ", BIN1 counter.BIT0, CRSRUP
 TOGGLE LedSpeaker
 PAUSE 200

 #ELSE

 DEBUG "LED_MODE disabled", CRSRUP
 PAUSE 100

 #ENDIF

LOOP

Your Turn - Conditionally Compiling LED Commands

In Activity #1, you inserted four different PBASIC commands to make the LED notify
you of certain events. One command was added to the Main Routine, another to the
Servos_And_Sensors subroutine, and two commands were added to the
Track_Side_Right_Object subroutine.

√ Reopen the CompCodeLedTest.bs2 from this chapter's activity #1
√ Insert a #DEFINE LED_MODE declaration at the beginning of the program.
√ Nest the LED test commands into #IF...#THEN blocks. Make sure that the test

for each compiles its code based on a different value of LED_MODE, such as 1, 2,
and 3. Then, if you declare LED_MODE to be 0, none of the LED test codes will
be compiled.

√ Test your program.

ACTIVITY #3: DEBUGGING PROBLEM BEHAVIORS
LED tests can provide a quick indication of what's happening in a certain place in a
SumoBot's program, but that's about all it can do. In other words, the scope of LED tests
tend to be somewhat limited.

This activity introduces a Debug Terminal diagnostic tool with a much broader scope.
You can use it to watch all the sensors, navigation states and maneuvers the SumoBot

Chapter 5: Debugging and Datalogging · Page 217

performs. This kind of tool can be really helpful for isolating both program and circuit
bugs.

One important feature of this diagnostic tool, is that it all appears in conditional compiler
directives. Because of this, you will be able to change one value in your program, and
change it from a diagnostic tool back to competition code.

Incorporation Diagnostic Display Code in the SumoWrestler.bs2 Program

Watching the SumoBot's program play itself out in slow motion on the Debug Terminal
makes it a lot easier to isolate problems with sensors, in the program, and so on. It also
makes it easier to understand how the program reacts to various sensor conditions. This,
in turn makes it easier to refine and improve the program, and also to add more sensors.

The example program for this activity started as SumoWrestler.bs2. After renaming the
program, all the code that involves displaying the sensors, state, and maneuver values
were added, nested in conditional compiler directives. This makes it possible to use one
#DEFINE to change the program from a diagnostic tool to a competition program. The
Symbol the program will use for these conditional compiler directives is DEBUG_MODE.

' -----[Compiler Definitions]---

#DEFINE DEBUG_MODE = 1 ' 1 -> full debug 0 -> wrestle

The Display_All subroutine required a few modifications to the program. First, some
constants for the state values were added, again in a conditional compiler directive.

' -----[Constants]--
 .
 .
 .
#IF DEBUG_MODE = 1 #THEN
 ' State constants.
 ATL CON 0 ' Avoid_Tawara_Left
 ATR CON 1 ' Avoid_Tawara_Right
 GF CON 2 ' Go-Forward
 TFLO CON 3 ' Track_Front_Left_Object
 TFRO CON 4 ' Track_Front_Right_Object
 TSLO CON 5 ' Track_Side_Left_Object
 TSRO CON 6 ' Track_Side_Right_Object
 SP CON 7 ' Search_Pattern
#ENDIF

A variable named state is added to store these constants.

Page 218· Applied Robotics with the SumoBot

' -----[Variables]--
 .
 .
 .
#IF DEBUG_MODE = 1 #THEN
 state VAR Nib ' State machine value
#ENDIF

All the sensor, state, and maneuver values are displayed in a table, so a table heading
is added to the Initialization section.

' -----[Initialization]---
 .
 .
 .
#IF DEBUG_MODE = 1 #THEN
 DEBUG CLS, ' Display table heading
 "Sensors State Maneuver", CR,
 "-------- -------- --------", CR
#ENDIF

Since all roads lead to the Servos_And_Sensors subroutine, that's the most logical place
to put some code for displaying what's happening inside the program. In this example,
the command GOSUB Display_All has been placed at the beginning of the subroutine.
Remember, the subroutine call only becomes part of the program when DEBUG_MODE = 1.

' -----[Subroutine - Servos_And_Sensors]------------------------------------

Servos_And_Sensors:

 #IF DEBUG_MODE = 1 #THEN
 GOSUB Display_All ' Call Display_All subroutine
 #ENDIF
 .
 .
 .

Since each subroutine represents a different operating 'state' for the SumoBot, code has to
be added to the beginning of each one to set the value of the state variable. Here are
some examples.

' -----[Subroutine - Avoid_Tawara_Left]-------------------------------------

Avoid_Tawara_Left:

 #IF DEBUG_MODE = 1 #THEN state = ATL #ENDIF
 .

Chapter 5: Debugging and Datalogging · Page 219

 .
 .
' -----[Subroutine - Avoid_Tawara_Right]------------------------------------

Avoid_Tawara_Right:

 #IF DEBUG_MODE = 1 #THEN state = ATR #ENDIF
 .
 .
 .
' -----[Subroutine - Go_Forward]--

Go_Forward:

 #IF DEBUG_MODE = 1 #THEN state = GF #ENDIF
 .
 .
 .

The Display_All subroutine displays the current sensors variable’s value, navigation
state, and maneuver. The sensors variable is displayed as an 8-bit binary value with the
BIN8 operator. All the states are displayed with abbreviations that match their constant
names. The maneuver values are displayed as abbreviations of their constant names.

' -----[Subroutine - Display_All]---

#IF DEBUG_MODE = 1 #THEN

 Display_All:

 DEBUG BIN8 sensors, ' Display sensors byte as bits
 CRSRX, 10 ' Cursor to column 10

 SELECT state ' Display state
 CASE ATL
 DEBUG "ATL"
 CASE ATR
 DEBUG "ATR"
 CASE GF
 DEBUG "GF"
 CASE TFLO
 DEBUG "TFLO"
 CASE TFRO
 DEBUG "TFRO"
 CASE TSLO
 DEBUG "TSLO"
 CASE TSRO
 DEBUG "TSRO"
 CASE SP
 DEBUG "SP"

Page 220· Applied Robotics with the SumoBot

 ENDSELECT

 DEBUG CRSRX, 20 ' Cursor to column 20

 SELECT maneuver ' Display maneuver
 CASE Forward
 DEBUG "Fwd"
 CASE Backward
 DEBUG "Bkwd"
 CASE RotateLeft
 DEBUG "RotLft"
 CASE RotateRight
 DEBUG "RotRt"
 CASE CurveLeft
 DEBUG "CrvLft"
 CASE CurveRight
 DEBUG "CrvRt"
 ENDSELECT

 DEBUG CR ' Carriage return for next line

 PAUSE 200 ' Pause 0.2 seconds for reading.

 RETURN

#ENDIF

Example Program: SumoWrestlerWithDebugMode.bs2

With this program, you can examine what the SumoBot sees and how its program
responds. Before going into how it works, recall that Chapter 3, Activity #7
demonstrated how to read the bits in the sensors variable. Figure 5-1 shows the
sensors variable storing an example value.

Figure 5-1
Sensors Variable

Six of the eight bits
each correspond to a
different SumoBot
sensor. Two bits are
unused.

In this case, there is an object directly in front of the SumoBot because both the left and
right IR object detectors (irLF and irRF) store 1s. The IR object detectors on the left and

Chapter 5: Debugging and Datalogging · Page 221

right sides (irLS and irRS) do not detect objects, because they store 0s. The same
applies to the left and right front QTI object detectors (qtiLF and qtiRF), which both see
the black sumo ring surface.

Figure 5-2 shows an example of what the Debug Terminal displays.

Figure 5-2
Debug Terminal

DEBUG_MODE = 1.

Page 222· Applied Robotics with the SumoBot

In the first row, none of the sensors see anything, the state is search pattern (SP), and the
SumoBot is starting by rotating right. On the second row, the SumoBot has detected an
object on its left, and the state has transitioned to track side left object (TSLO). The
maneuver is rotate left (RotLft). The object is then moved in front of the front-left IR
object detector. The state transitions to track front left object (TFLO), and the maneuver is
curve left (CrvLft). Then, the object is moved in front of both IR detectors, which
transitions the SumoBot to the go forward state (GF) with the forward maneuver (Fwd).
The object is then taken away, and the left QTI is placed over the white tawara line. This
results in the avoid tawara left (ATL) state, which starts out with backing up (Bkwd).

√ Leave the SumoBot connected to the serial cable as you set it on the competition
ring.

√ Set the 3-position power switch to position-1.
√ Enter, save, and run SumoWrestlerWithDebugMode.bs2.
√ Press/release the SumoBot's Reset button.
√ To emulate the output shown in Figure 5-2, start with an object on the

SumoBot's left side.
√ Move it from the left side to the left front, then in front of both IR detectors.

Then, take the object away, and place the left QTI over the white tawara line.
√ Experiment with various sensor events, and compare events displayed in the

Debug Terminal to what the program is supposed to do for each event.
√ Set DEBUG_MODE to 0 and download the modified program to the SumoBot.
√ Move the 3-position power switch to position-2.
√ Press and release Reset, and verify that the program now functions at full speed,

with no diagnostic code.

' -----[Title]--
' Applied Robotics with the SumoBot - SumoWrestlerWithDebugMode.bs2
' SumoWrestlerWithStateSubroutines.bs2 modified so that
' you can toggle DEBUG_MODE between 0 (competition mode) and 1 (display mode).

' {$STAMP BS2} ' Target = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

' -----[Compiler Definitions]---

#DEFINE DEBUG_MODE = 1 ' 1 -> full debug 0 -> wrestle

' -----[I/O Definitions]---

Chapter 5: Debugging and Datalogging · Page 223

ServoLeft PIN 13 ' Left servo connected to P13
ServoRight PIN 12 ' Right servo connected to P12

qtiPwrLeft PIN 10 ' Left QTI on/off pin P10
qtiSigLeft PIN 9 ' Left QTI signal pin P9

qtiPwrRight PIN 7 ' Right QTI on/off pin P7
qtiSigRight PIN 8 ' Right QTI signal pin P8

DummyPin PIN 6 ' I/O pin for pulse-decay P6

LedSpeaker PIN 5 ' LED & speaker connected to P5

IrLedLS PIN 2 ' Left IR LED connected to P2
IrSenseLS PIN 1 ' Left IR detector to P1

IrLedLF PIN 4 ' Left IR LED connected to P4
IrSenseLF PIN 11 ' Left IR detector to P11

IrLedRF PIN 15 ' Right IR LED connected to P15
IrSenseRF PIN 14 ' Right IR detector to P14

IrLedRS PIN 3 ' Right IR LED connected to P3
IrSenseRS PIN 0 ' Right IR detector to P0

' -----[Constants]--

' SumoBot maneuvers

Forward CON 0 ' Forward
Backward CON 1 ' Backward
RotateLeft CON 2 ' RotateLeft
RotateRight CON 3 ' RotateRight
PivotLeft CON 4 ' Pivot to the left
PivotRight CON 5 ' Pivot to the right
CurveLeft CON 6 ' Curve to the left
CurveRight CON 7 ' Curve to the right

' Servo pulse width rotations

FS_CCW CON 850 ' Full speed counterclockwise
FS_CW CON 650 ' Full speed clockwise
NO_ROT CON 750 ' No rotation
LS_CCW CON 770 ' Low speed counterclockwise
LS_CW CON 730 ' Low speed clockwise

' IR object detectors

IrFreq CON 38500 ' IR LED frequency

#IF DEBUG_MODE = 1 #THEN

Page 224· Applied Robotics with the SumoBot

 ' State constants.
 ATL CON 0 ' Avoid_Tawara_Left
 ATR CON 1 ' Avoid_Tawara_Right
 GF CON 2 ' Go-Forward
 TFLO CON 3 ' Track_Front_Left_Object
 TFRO CON 4 ' Track_Front_Right_Object
 TSLO CON 5 ' Track_Side_Left_Object
 TSRO CON 6 ' Track_Side_Right_Object
 SP CON 7 ' Search_Pattern
#ENDIF

' -----[Variables]--

temp VAR Word ' Temporary variable
multi VAR Word ' Multipurpose variable
counter VAR Byte ' Loop counting variable.

maneuver VAR Nib ' SumoBot travel maneuver

sensors VAR Byte ' Sensor flags byte

qtiLF VAR sensors.BIT5 ' Stores snapshot of QtiSigLeft
qtiRF VAR sensors.BIT4 ' Stores snapshot of QtiSigRight

irLS VAR sensors.BIT3 ' State of Left Side IR
irLF VAR sensors.BIT2 ' State of Left Front IR
irRF VAR sensors.BIT1 ' State of Right Front IR
irRS VAR sensors.BIT0 ' State of Right Side IR

#IF DEBUG_MODE = 1 #THEN
 state VAR Nib ' State machine value
#ENDIF

' -----[EEPROM Data]--

RunStatus DATA 0 ' Run status EEPROM byte
QtiThresh DATA Word 0 ' Word for QTI threshold time

' -----[Initialization]---

GOSUB Reset ' Wait for Reset press/release
GOSUB Start_Delay ' 5 Second delay
GOSUB Calibrate_Qtis ' Determine b/w threshold

#IF DEBUG_MODE = 1 #THEN
 DEBUG CLS, ' Display table heading
 "Sensors State Maneuver", CR,
 "-------- -------- --------", CR
#ENDIF

GOSUB Look_About ' Was Goto Look_About

Chapter 5: Debugging and Datalogging · Page 225

' -----[Main Routine]---

DO

 IF qtiLF = 1 THEN ' Left qti sees line?
 GOSUB Avoid_Tawara_Left ' State = avoid left tawara
 ELSEIF qtiRF = 1 THEN ' Right qti sees line?
 GOSUB Avoid_Tawara_Right ' State = avoid right tawara
 ELSEIF irLF = 1 AND irRF = 1 THEN ' Both? Lunge forward
 GOSUB Go_Forward ' State = Go forward
 ELSEIF irLF = 1 THEN ' Just left?
 GOSUB Track_Front_Left_Object ' State = Track front left obj.
 ELSEIF irRF = 1 THEN ' Just right?
 GOSUB Track_Front_Right_Object ' State = Track front right obj.
 ELSEIF irLS = 1 THEN ' Left side?
 GOSUB Track_Side_Left_Object ' State = track side left obj.
 ELSEIF irRS = 1 THEN ' Right side?
 GOSUB Track_Side_Right_Object ' State = track side right obj.
 ELSE ' Nothing sensed?
 GOSUB Search_Pattern ' State = Search pattern
 ENDIF

LOOP

' -----[Subroutine - Reset]---

Reset:

 READ RunStatus, temp ' Byte @RunStatus -> temp
 temp = temp + 1 ' Increment temp
 WRITE RunStatus, temp ' Store new value for next time

 IF (temp.BIT0 = 1) THEN ' Examine temp.BIT0
 DEBUG CLS, "Press/release Reset", CR, ' 1 -> end, 0 -> keep going
 "button..."
 END
 ELSE
 DEBUG CR, "Program running..."
 ENDIF

 RETURN

' -----[Subroutine - Start_Delay]---

Start_Delay:

 FOR counter = 1 TO 5 ' 5 beeps, 1/second
 PAUSE 900
 FREQOUT LedSpeaker, 100, 3000
 NEXT

Page 226· Applied Robotics with the SumoBot

 RETURN

' -----[Subroutine - Calibrate_Qtis]--

Calibrate_Qtis:

 HIGH qtiPwrLeft ' Turn left QTI on
 HIGH qtiSigLeft ' Discharge capacitor
 PAUSE 1

 RCTIME qtiSigLeft, 1, temp ' Measure charge time

 LOW qtiPwrLeft ' Turn left QTI off
 multi = temp ' Free temp for another RCTIME

 HIGH qtiPwrRight ' Turn right QTI on
 HIGH qtiSigRight ' Discharge capacitor
 PAUSE 1
 RCTIME qtiSigRight, 1, temp ' Measure charge time

 multi = (multi + temp) / 2 ' Calculate average

 multi = multi / 4 ' Take 1/4 average

 IF multi > 220 THEN ' Account for code overhead
 multi = multi - 220
 ELSE
 multi = 0
 ENDIF

 WRITE QtiThresh, Word multi ' Threshold to EEPROM

 RETURN

' -----[Subroutine - Servos_And_Sensors]------------------------------------

Servos_And_Sensors:

 #IF DEBUG_MODE = 1 #THEN
 GOSUB Display_All ' Call Display_All subroutine
 #ENDIF

 GOSUB Pulse_Servos ' Call Pulse_Servos subroutine

 ' Call sensor subroutine(s).

 sensors = 0 ' Clear previous sensor values

 GOSUB Read_Object_Detectors ' Call Read_Object_Detectors
 GOSUB Read_Line_Sensors ' Look for lines

Chapter 5: Debugging and Datalogging · Page 227

 RETURN

' -----[Subroutine - Pulse_Servos]--

Pulse_Servos:

 ' Pulse to left servo
 LOOKUP maneuver, [FS_CCW, FS_CW, FS_CW, FS_CCW,
 NO_ROT, FS_CCW, LS_CCW, FS_CCW], temp
 PULSOUT ServoLeft, temp

 ' Pulse to right servo
 LOOKUP maneuver, [FS_CW, FS_CCW, FS_CW, FS_CCW,
 FS_CW, NO_ROT, FS_CW, LS_CW], temp
 PULSOUT ServoRight, temp

 ' Pause between pulses (remove when using IR object detectors + QTIs).
 ' PAUSE 20

 RETURN

' -----[Subroutine - Read_Object_Detectors]---------------------------------

Read_Object_Detectors:

 FREQOUT IrLedRS, 1, IrFreq ' Right side IR LED headlight
 irRS = ~IrSenseRS ' Save right side IR receiver

 FREQOUT IrLedRF, 1, IrFreq ' Repeat for right-front
 irRF = ~IrSenseRF

 FREQOUT IrLedLF, 1, IrFreq ' Repeat for left-front
 irLF = ~IrSenseLF

 FREQOUT IrLedLS, 1, IrFreq ' Repeat for left side
 irLS = ~IrSenseLS

 RETURN

' -----[Subroutine - Read_Line_Sensors]-------------------------------------

Read_Line_Sensors:

 HIGH qtiPwrLeft ' Turn on QTIs
 HIGH qtiPwrRight
 HIGH qtiSigLeft ' Push signal voltages to 5 V
 HIGH qtiSigRight
 PAUSE 1 ' Wait 1 ms for capacitors

 READ QtiThresh, Word temp ' Get threshold time

Page 228· Applied Robotics with the SumoBot

 INPUT qtiSigLeft ' Start the decays
 INPUT qtiSigRight

 PULSOUT DummyPin, temp ' Wait threshold time

 qtiLF = ~qtiSigLeft ' Snapshot of QTI signal states
 qtiRF = ~qtiSigRight

 LOW qtiPwrLeft ' Turn off QTIS
 LOW qtiPwrRight

 RETURN

' -----[Subroutine - Avoid_Tawara_Left]-------------------------------------

Avoid_Tawara_Left:

 #IF DEBUG_MODE = 1 #THEN state = ATL #ENDIF

 FOR counter = 1 TO 15 ' Back up
 maneuver = Backward
 GOSUB Servos_And_Sensors
 NEXT
 FOR counter = 1 TO 15 ' Turn right
 maneuver = RotateRight
 GOSUB Servos_And_Sensors
 NEXT

 RETURN

' -----[Subroutine - Avoid_Tawara_Right]------------------------------------

Avoid_Tawara_Right:

 #IF DEBUG_MODE = 1 #THEN state = ATR #ENDIF

 FOR counter = 1 TO 15 ' Back up
 maneuver = Backward
 GOSUB Servos_And_Sensors
 NEXT
 FOR counter = 1 TO 15 ' Turn left
 maneuver = RotateLeft
 GOSUB Servos_And_Sensors
 NEXT

 RETURN

' -----[Subroutine - Go_Forward]--

Go_Forward:

Chapter 5: Debugging and Datalogging · Page 229

 #IF DEBUG_MODE = 1 #THEN state = GF #ENDIF

 maneuver = Forward ' 1 forward pulse
 GOSUB Servos_And_Sensors

 RETURN

' -----[Subroutine - Track_Front_Left_Object]-------------------------------

Track_Front_Left_Object:

 #IF DEBUG_MODE = 1 #THEN state = TFLO #ENDIF

 counter = 0
 DO UNTIL (irLF = 1 AND irRF = 1) OR counter > 15
 maneuver = CurveLeft ' Curve left 15
 GOSUB Servos_And_Sensors
 counter = counter + 1
 LOOP
 DO UNTIL (irLF = 1 AND irRF = 1) OR counter > 30
 maneuver = RotateLeft ' Rotate left 30
 GOSUB Servos_And_Sensors
 counter = counter + 1
 LOOP

 RETURN

' -----[Subroutine - Track_Front_Right_Object]------------------------------

Track_Front_Right_Object:

 #IF DEBUG_MODE = 1 #THEN state = TFRO #ENDIF

 counter = 0
 DO UNTIL (irLF = 1 AND irRF = 1) OR counter > 15
 maneuver = CurveRight ' Curve right 15
 GOSUB Servos_And_Sensors
 counter = counter + 1
 LOOP
 DO UNTIL (irLF = 1 AND irRF = 1) OR counter > 30
 maneuver = RotateRight ' Rotate right 30
 GOSUB Servos_And_Sensors
 counter = counter + 1
 LOOP

 RETURN

' -----[Subroutine - Track_Side_Left_Object]--------------------------------

Track_Side_Left_Object:

Page 230· Applied Robotics with the SumoBot

 #IF DEBUG_MODE = 1 #THEN state = TSLO #ENDIF

 DO UNTIL irRF = 1 OR irLF = 1 ' Rotate left
 maneuver = RotateLeft
 GOSUB Servos_And_Sensors
 LOOP

 RETURN

' -----[Subroutine - Track_Side_Right_Object]-------------------------------

Track_Side_Right_Object:

 #IF DEBUG_MODE = 1 #THEN state = TSRO #ENDIF

 DO UNTIL irRF = 1 OR irLF = 1 ' Rotate right
 maneuver = RotateRight
 GOSUB Servos_And_Sensors
 LOOP

 RETURN

' -----[Subroutine - Search_Pattern]--

Search_Pattern:

 #IF DEBUG_MODE = 1 #THEN state = SP #ENDIF

 FOR counter = 1 TO 35 ' and watch all sensors
 maneuver = Forward ' Forward
 GOSUB Servos_And_Sensors
 IF sensors <> 0 THEN GOTO Next_State
 NEXT

 Look_About:

 #IF DEBUG_MODE = 1 #THEN state = SP #ENDIF

 FOR counter = 1 TO 12 ' Look right
 maneuver = RotateRight
 GOSUB Servos_And_Sensors
 IF sensors <> 0 THEN GOTO Next_State
 NEXT
 FOR counter = 1 TO 24 ' Look left
 maneuver = RotateLeft
 GOSUB Servos_And_Sensors
 IF sensors <> 0 THEN GOTO Next_State
 NEXT
 FOR counter = 1 TO 12 ' Re-align to forward
 maneuver = RotateRight

Chapter 5: Debugging and Datalogging · Page 231

 GOSUB Servos_And_Sensors
 IF sensors <> 0 THEN GOTO Next_State
 NEXT

 Next_State: ' Exit point of search pattern

 RETURN

' -----[Subroutine - Display_All]---

#IF DEBUG_MODE = 1 #THEN

 Display_All:

 DEBUG BIN8 sensors, ' Display sensors byte as bits
 CRSRX, 10 ' Cursor to column 10

 SELECT state ' Display state
 CASE ATL
 DEBUG "ATL"
 CASE ATR
 DEBUG "ATR"
 CASE GF
 DEBUG "GF"
 CASE TFLO
 DEBUG "TFLO"
 CASE TFRO
 DEBUG "TFRO"
 CASE TSLO
 DEBUG "TSLO"
 CASE TSRO
 DEBUG "TSRO"
 CASE SP
 DEBUG "SP"
 ENDSELECT

 DEBUG CRSRX, 20 ' Cursor to column 20

 SELECT maneuver ' Display maneuver
 CASE Forward
 DEBUG "Fwd"
 CASE Backward
 DEBUG "Bkwd"
 CASE RotateLeft
 DEBUG "RotLft"
 CASE RotateRight
 DEBUG "RotRt"
 CASE CurveLeft
 DEBUG "CrvLft"
 CASE CurveRight
 DEBUG "CrvRt"

Page 232· Applied Robotics with the SumoBot

 ENDSELECT

 DEBUG CR ' Carriage return for next line

 PAUSE 200 ' Pause 0.2 seconds for reading.

 RETURN

#ENDIF

Your Turn

The bulk of the commands that are added to the program when DEBUG_MODE is set to 1
are DEBUG commands with strings of characters. The strings of characters take up a
considerable amounts of memory. You can compare how much program memory is
consumed by the diagnostic code as follows:

√ Set DEBUG_MODE = 0.
√ Click the BASIC Stamp Editor's Run menu, and select Memory map.

The Memory Map you see should resemble Figure 5-3. Notice on the left that the blue
program codes are taking up less than half the BASIC Stamp's EEPROM.

Figure 5-3 Memory Map - DEBUG_MODE = 0

√ Close the Memory Map.
√ Set DEBUG_MODE = 1

Blue program
code take less
than half the

EEPROM

EEPROM
window
control

Chapter 5: Debugging and Datalogging · Page 233

√ Click Run -> Memory map again and compare how much EEPROM is used by
the code that was added for debugging.

ACTIVITY #4: DATALOGGING A COMPETITION ROUND
Displaying values in slow motion while the SumoBot is sitting still won't necessarily
expose or solve problems the SumoBot has when it's up against another SumoBot in the
competition ring. It's also not convenient to try to have a round while the SumoBot is
tethered to the serial cable. Even if it was convenient, the serial communication of all
those characters to the PC takes so much time that it would reduce the servos to twitching
between each message.

This activity introduces a solution to the tether problem. The solution works like this:
Save all the information the previous activity's example program displayed in EEPROM
during the round. After the round is over, connect the SumoBot to the PC again, and
have it display all the SumoBot's sensor readings, navigation states and maneuvers.

Logging and Reporting Routines

Another #DEFINE can be added to select the various datalogging features. In the next
example program, the DATALOG_MODE symbol can be set equal to 0 (no logging), 1 (log
round), or 2 (display logged round).

' -----[Compiler Definitions]---

#DEFINE DEBUG_MODE = 1 ' 0 -> wrestle
 ' 1 -> display
#DEFINE DATALOG_MODE = 1 ' 0 -> No log
 ' 1 -> log round
 ' 2 -> display log

Since the same constants and variables that were used for debugging will be used for
datalogging, the conditions of the compiler directives for these constants have to be
updated. For example, the condition for the #IF...#THEN directive below used to be
DEBUG_MODE = 1. Now, it's DEBUG_MODE = 1 OR DATALOG_MODE > 0. Why greater
than zero? When DATALOG_MODE is set to 0, the datalogging features are not needed.
However, when it's set to 1 or 2, the datalogging features should be compiled, and this
includes the extra constants and variables used in the previous activity's debugging
program.

Page 234· Applied Robotics with the SumoBot

#IF DEBUG_MODE = 1 OR DATALOG_MODE > 0 #THEN
 ' State constants.
 ATL CON 0 ' Avoid_Tawara_Left
 ATR CON 1 ' Avoid_Tawara_Right
 GF CON 2 ' Go-Forward
 .
 .
 .
#ENDIF

A constant named MaxBytes is declared to make it convenient to set the number of bytes
that can be used for storing data logged during a round. In this example, MaxBytes is
$150. The $ makes a number hexadecimal. A hexadecimal value is used because the
Memory Map uses hexadecimal values. This makes it convenient to view the Memory
Map and decide how much memory you have available for datalogging. $10 (decimal-
16) is subtracted from MaxBytes because the DATA directives that set aside EEPROM for
storing records will begin at EEPROM address $10.

#IF DATALOG_MODE > 0 #THEN

 ' Datalogging constants

 MaxBytes CON $150 - $10 ' Maximum number of bytes stored

#ENDIF

Recall from Chapter 2, Activity #1 that converting from hexadecimal to decimal involves
multiplying the rightmost digit by 160 = 1, the next digit by 161 = 16, then next digit by
162=256, and the next by 163 = 4096, and so on. Add up all the products, and you'll have
the decimal equivalent. For example, the decimal equivalent of $150, is: (1 × 256) + (5 ×
16) + (0 × 1) = decimal 336.

It's more convenient to declare MaxBytes in terms of hexadecimal values because that's
the way the EEPROM map displays all its addresses. Figure 5-4 shows the EEPROM
map for the next example program compiled with DATALOG_MODE = 2. The highest
EEPROM value not occupied by PBASIC program tokens is $257. Since records will be
stored as word values, each record will take up 2 bytes, and MaxBytes should be even.
Therefore, MaxBytes could be declared as $256 - $10. This would use up all the
available EEPROM.

Chapter 5: Debugging and Datalogging · Page 235

Figure 5-4
Memory Map

The highest
EEPROM
address not
occupied by
PBASIC
program code is
$257.

An extra variable is necessary to keep track of which EEPROM byte gets the next record.
This logIndex variable is used with the WRITE command for saving the records to
EEPROM and with READ command to retrieve them.

#IF DATALOG_MODE > 0 #THEN
 logIndex VAR Word ' Stores EEPROM index
#ENDIF

DATA directives should always be used to set aside EEPROM space that you will be
reading from and writing to. The DATA directive has to be slightly different depending
on whether the DATALOG_MODE is 1 or 2. If it's 1, new values will be recorded, and it
helps to make sure there aren't any values from a previous round still being stored.
Especially if you stop the round early, it will be easier to discern after which record you
stopped the match, because the rest will be 0. That's the purpose of the first LogData
directive. It sets all the EEPROM bytes from $10 to MaxBytes ($150) to 0.

#IF DATALOG_MODE = 1 #THEN
 LogData DATA @$10, 0 (MaxBytes) ' EEPROM data recording space
#ENDIF

#IF DATALOG_MODE = 2 #THEN
 LogData DATA @$10, (MaxBytes) ' EEPROM playback space
#ENDIF

The LogData DATA directive that is declared when DATALOG_MODE = 2 does not have a
0 before (MaxBytes). With this change, instead of writing zeros to all those EEPROM
addresses, the program just reserves the space as undefined data. This is important

Page 236· Applied Robotics with the SumoBot

because we do not want to overwrite all the recorded records from the round the
SumoBot just finished before they get displayed.

DATALOG_MODE = 2 is for playing back the recorded values from EEPROM. This
playback will use all the features that DEBUG_MODE = 1 used in the previous activity's
example program. This #IF statement used to just have the DEBUG_MODE = 1 condition.
Now, it also has the DATALOG_MODE = 2 condition. The OR operator makes it so that
either or both of the conditions can be true for the DEBUG command to get compiled.

#IF DEBUG_MODE = 1 OR DATALOG_MODE = 2 #THEN
 DEBUG CLS,
 "Sensors State Maneuver", CR, ' Display table heading
 "-------- -------- --------", CR
#ENDIF

When the program is run as DATALOG_MODE = 1, word values are stored in EEPROM
with the WRITE command. Figure 5-5 shows a map of each word. Each word value has
the sensors variable copied to its .HIGHBYTE. Two nibbles are also copied to its
.LOWBYTE. NIB1 gets the value of the state variable, and NIB0 gets the value of the
maneuver variable.

Figure 5-5
Datalogged Word
Variable

Two nibbles and a
byte are copied to
different parts of a
word variable before
it is copied to an
EEPROM address.

When DEBUG_MODE is 1, the sensors, state, and maneuver variables are all stored to
EEPROM between each servo pulse. The best way to do this is by copying them to
different parts of a word variable, and then storing that word variable in EEPROM with a
WRITE command. As with the DEBUG_MODE = 1 code, the best place for the
DATALOG_MODE = 1 code is also at the beginning of the Servos_And_Sensors
subroutine.

Chapter 5: Debugging and Datalogging · Page 237

' -----[Subroutine - Servos_And_Sensors]------------------------------------

Servos_And_Sensors:

 #IF DEBUG_MODE = 1 #THEN
 GOSUB Display_All ' Call Display_All subroutine
 #ENDIF

 #IF DATALOG_MODE = 1 #THEN
 temp.HIGHBYTE = sensors ' Copy values to parts of temp
 temp.NIB1 = state
 temp.NIB0 = maneuver
 WRITE LogData + LogIndex, Word temp ' Store record in EEPROM
 logIndex = logIndex + 2 ' Word values -> index + 2
 IF logIndex >= (LogData + MaxBytes) THEN END
 #ENDIF
 .
 .
 .

The last conditional compiler directive in the initialization section sends the program to a
label named Playback_Round if DATALOG_MODE = 2.

#IF DATALOG_MODE = 2 #THEN
 GOTO Playback_Round ' Alternate main routine
#ENDIF

GOSUB Look_About ' Was Goto Look_About

The Playback_Round label comes after the DO...LOOP in the Main Routine. It's kind
of like an alternate main routine when DATALOG_MODE = 2. It contains a FOR...NEXT
loop that takes the logIndex variable from 0 to MaxBytes in steps of 2. Each time
through the loop, the READ LogData + logIndex, Word temp command copies the
word at the EEPROM address LogData + logIndex into the temp variable. The
.HIGHBYTE of the temp variable is then copied to the sensors variable. temp.NIB1 is
copied to the state variable, and temp.NIB0 is copied to the maneuver variable. Once
those three variables contain the values from a given record, the Display_All
subroutine is called, and a new line of values appears in the Debug Terminal before the
FOR...NEXT loop does its next iteration.

' -----[Main Routine]---

DO
 .
 .
 .
LOOP

Page 238· Applied Robotics with the SumoBot

#IF DATALOG_MODE = 2 #THEN

 Playback_Round:

 FOR logIndex = 0 TO MaxBytes STEP 2 ' Loop gets all records

 READ LogData + logIndex, Word temp ' Get record
 sensors = temp.HIGHBYTE '
 state = temp.NIB1
 maneuver = temp.NIB0
 GOSUB Display_All

 NEXT

 END

#ENDIF

The same state variable that was updated by the navigation subroutines for the
previous example program also has to be updated when DATALOG_MODE = 1. This
ensures that correct state values are written to EEPROM.

' -----[Subroutine - Avoid_Tawara_Left]-------------------------------------

Avoid_Tawara_Left:

 #IF DEBUG_MODE = 1 OR DATALOG_MODE = 1 #THEN state = ATL #ENDIF
 .
 .
 .
' -----[Subroutine - Avoid_Tawara_Right]------------------------------------

Avoid_Tawara_Right:

 #IF DEBUG_MODE = 1 OR DATALOG_MODE = 1 #THEN state = ATR #ENDIF
 .
 .
 .
' -----[Subroutine - Go_Forward]--

Go_Forward:

 #IF DEBUG_MODE = 1 OR DATALOG_MODE = 1 #THEN state = GF #ENDIF
 .
 .
 .

Chapter 5: Debugging and Datalogging · Page 239

To display all the datalogged values when DATALOG_MODE = 2, the same Display_All
subroutine from the previous activity's example program is used. So, its conditional
compiler directive has to be adjusted as well.

' -----[Subroutine - Display_All]---

#IF DEBUG_MODE = 1 OR DATALOG_MODE = 2 #THEN
 .
 .
 .

Example Program: SumoWrestlerWithDataLogMode.bs2
This example program can be used to both record and play back the EEPROM values
recorded by a match. You can use it to see what the SumoBot saw and understand what
decisions it made during a round. It will be especially useful for both tuning the sensors
and making adjustments to your competition code. Any time the SumoBot makes a move
that causes it to lose a round, you can use this program to understand how it happened
and correct the problem.

The program has the same debugging functionality as the previous activity's example
program. It's best to start by leading the SumoBot around with your hand so that you can
have a good guess which sensors detect your hand and which maneuvers it should make.
When you use two SumoBots make sure that both are logging data. Reason being, the
WRITE commands between pulses extend the low time long enough that it slows down
the servos slightly. If both are logging data, the playing field is still even.

Did you skip ahead to get here? If you skipped any thing in Chapter 3 or 4, go back
and do it now.

The programs that follow are dependent upon the sensor circuits built, tested and calibrated
in the previous activities in Chapter 3 and 4.

√ Enter and save SumoWrestlerWithDataLogMode.bs2
√ To log a match, start by setting DEBUG_MODE = 0 and DATALOG_MODE = 1.
√ Download the program to the SumoBot and disconnect the serial cable.
√ Place it on the competition ring, and press and release the Reset button.
√ Place your hand in front of various object detectors as you make mental notes of

how it responds.

Page 240· Applied Robotics with the SumoBot

√ The SumoBot will log data as it competes for just under 10 seconds, then it
stops.

√ After the SumoBot stops, connect it to the serial cable.
√ Change DATALOG_MODE = 1 to DATALOG_MODE = 2.
√ Run the program and leave the SumoBot connected to the serial cable.
√ Press/release the Reset button. After the speaker beeps 5 times, it will display

the logged data to the Debug Terminal in the same format as the previous
activity.

√ Compare what the Debug Terminal shows to the different sensor conditions the
SumoBot must have seen as you lead it around with your hand.

√ Start practicing this with both your SumoBots set to log data (DATALOG_MODE =
1). It will be important to watch them closely, and then examine their data to
determine the factors that contribute to victories or losses. You can then adjust
the sensors and/or the program to improve its performance.

As you expand and modify your program, the accuracy of DATALOG_MODE recording and
playback may have to be checked. One way to do this is by setting the DEBUG_MODE and
DATALOG_MODE values to 1. You can then view the data before it is recorded. Then, set
DEBUG_MODE to 0 and DATALOG_MODE to 2 for playback, and compare the two. As with
the previous activity, it will help to have the 3-position power switch set to 1 and a
controlled set of objects and tawara lines.

' -----[Title]--
' Applied Robotics with the SumoBot - SumoWrestlerWithDataLogMode.bs2
' SumoWrestler.bs2 modified so that each state is contained by a
' subroutine.

' {$STAMP BS2} ' Target = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

' -----[Compiler Definitions]---

#DEFINE DEBUG_MODE = 0 ' 0 -> wrestle
 ' 1 -> display
#DEFINE DATALOG_MODE = 1 ' 0 -> No log
 ' 1 -> log round
 ' 2 -> display log

' -----[I/O Definitions]---

ServoLeft PIN 13 ' Left servo connected to P13
ServoRight PIN 12 ' Right servo connected to P12

Chapter 5: Debugging and Datalogging · Page 241

qtiPwrLeft PIN 10 ' Left QTI on/off pin P10
qtiSigLeft PIN 9 ' Left QTI signal pin P9

qtiPwrRight PIN 7 ' Right QTI on/off pin P7
qtiSigRight PIN 8 ' Right QTI signal pin P8

DummyPin PIN 6 ' I/O pin for pulse-decay P6

LedSpeaker PIN 5 ' LED & speaker connected to P5

IrLedLS PIN 2 ' Left IR LED connected to P2
IrSenseLS PIN 1 ' Left IR detector to P1

IrLedLF PIN 4 ' Left IR LED connected to P4
IrSenseLF PIN 11 ' Left IR detector to P11

IrLedRF PIN 15 ' Right IR LED connected to P15
IrSenseRF PIN 14 ' Right IR detector to P14

IrLedRS PIN 3 ' Right IR LED connected to P3
IrSenseRS PIN 0 ' Right IR detector to P0

' -----[Constants]--

' SumoBot maneuvers

Forward CON 0 ' Forward
Backward CON 1 ' Backward
RotateLeft CON 2 ' RotateLeft
RotateRight CON 3 ' RotateRight
PivotLeft CON 4 ' Pivot to the left
PivotRight CON 5 ' Pivot to the right
CurveLeft CON 6 ' Curve to the left
CurveRight CON 7 ' Curve to the right

' Servo pulse width rotations

FS_CCW CON 850 ' Full speed counterclockwise
FS_CW CON 650 ' Full speed clockwise
NO_ROT CON 750 ' No rotation
LS_CCW CON 770 ' Low speed counterclockwise
LS_CW CON 730 ' Low speed clockwise

' IR object detectors

IrFreq CON 38500 ' IR LED frequency

#IF DEBUG_MODE = 1 OR DATALOG_MODE > 0 #THEN
 ' State constants.
 ATL CON 0 ' Avoid_Tawara_Left
 ATR CON 1 ' Avoid_Tawara_Right

Page 242· Applied Robotics with the SumoBot

 GF CON 2 ' Go-Forward
 TFLO CON 3 ' Track_Front_Left_Object
 TFRO CON 4 ' Track_Front_Right_Object
 TSLO CON 5 ' Track_Side_Left_Object
 TSRO CON 6 ' Track_Side_Right_Object
 SP CON 7 ' Search_Pattern
#ENDIF

#IF DATALOG_MODE > 0 #THEN

 ' Datalogging constants

 MaxBytes CON $150 - $10 ' Maximum number of bytes stored

#ENDIF

' -----[Variables]--

temp VAR Word ' Temporary variable
multi VAR Word ' Multipurpose variable
counter VAR Byte ' Loop counting variable.

maneuver VAR Nib ' SumoBot travel maneuver

sensors VAR Byte ' Sensor flags byte

qtiLF VAR sensors.BIT5 ' Stores snapshot of QtiSigLeft
qtiRF VAR sensors.BIT4 ' Stores snapshot of QtiSigRight

irLS VAR sensors.BIT3 ' State of Left Side IR
irLF VAR sensors.BIT2 ' State of Left Front IR
irRF VAR sensors.BIT1 ' State of Right Front IR
irRS VAR sensors.BIT0 ' State of Right Side IR

state VAR Nib ' State machine value

#IF DATALOG_MODE > 0 #THEN
 logIndex VAR Word ' Stores EEPROM index
#ENDIF

' -----[EEPROM Data]--

RunStatus DATA 0 ' Run status EEPROM byte
QtiThresh DATA Word 0 ' Word for QTI threshold time

#IF DATALOG_MODE = 1 #THEN
 LogData DATA @$10, 0 (MaxBytes) ' EEPROM data recording space
#ENDIF

#IF DATALOG_MODE = 2 #THEN
 LogData DATA @$10, (MaxBytes) ' EEPROM playback space

Chapter 5: Debugging and Datalogging · Page 243

#ENDIF

' -----[Initialization]---

GOSUB Reset ' Wait for Reset press/release
GOSUB Start_Delay ' 5 Second delay
GOSUB Calibrate_Qtis ' Determine b/w threshold

#IF DEBUG_MODE = 1 OR DATALOG_MODE = 2 #THEN
 DEBUG CLS,
 "Sensors State Maneuver", CR, ' Display table heading
 "-------- -------- --------", CR
#ENDIF

#IF DATALOG_MODE = 2 #THEN
 GOTO Playback_Round ' Alternate main routine
#ENDIF

GOSUB Look_About ' Was Goto Look_About

' -----[Main Routine]---

DO

 IF qtiLF = 1 THEN ' Left qti sees line?
 GOSUB Avoid_Tawara_Left ' State = avoid left tawara
 ELSEIF qtiRF = 1 THEN ' Right qti sees line?
 GOSUB Avoid_Tawara_Right ' State = avoid right tawara
 ELSEIF irLF = 1 AND irRF = 1 THEN ' Both? Lunge forward
 GOSUB Go_Forward ' State = Go forward
 ELSEIF irLF = 1 THEN ' Just left?
 GOSUB Track_Front_Left_Object ' State = Track front left obj.
 ELSEIF irRF = 1 THEN ' Just right?
 GOSUB Track_Front_Right_Object ' State = Track front right obj.
 ELSEIF irLS = 1 THEN ' Left side?
 GOSUB Track_Side_Left_Object ' State = track side left obj.
 ELSEIF irRS = 1 THEN ' Right side?
 GOSUB Track_Side_Right_Object ' State = track side right obj.
 ELSE ' Nothing sensed?
 GOSUB Search_Pattern ' State = Search pattern
 ENDIF

LOOP

#IF DATALOG_MODE = 2 #THEN

 Playback_Round:

 FOR logIndex = 0 TO MaxBytes STEP 2 ' Loop gets all records

 READ LogData + logIndex, Word temp ' Get record

Page 244· Applied Robotics with the SumoBot

 sensors = temp.HIGHBYTE '
 state = temp.NIB1
 maneuver = temp.NIB0
 GOSUB Display_All

 NEXT

 END

#ENDIF

' -----[Subroutine - Reset]---

Reset:

 READ RunStatus, temp ' Byte @RunStatus -> temp
 temp = temp + 1 ' Increment temp
 WRITE RunStatus, temp ' Store new value for next time

 IF (temp.BIT0 = 1) THEN ' Examine temp.BIT0
 DEBUG CLS, "Press/release Reset", CR, ' 1 -> end, 0 -> keep going
 "button..."
 END
 ELSE
 DEBUG CR, "Program running..."
 ENDIF

 RETURN

' -----[Subroutine - Start_Delay]---

Start_Delay:

 FOR counter = 1 TO 5 ' 5 beeps, 1/second
 PAUSE 900
 FREQOUT LedSpeaker, 100, 3000
 NEXT

 RETURN

' -----[Subroutine - Calibrate_Qtis]--

Calibrate_Qtis:

 HIGH qtiPwrLeft ' Turn left QTI on
 HIGH qtiSigLeft ' Discharge capacitor
 PAUSE 1

 RCTIME qtiSigLeft, 1, temp ' Measure charge time

 LOW qtiPwrLeft ' Turn left QTI off

Chapter 5: Debugging and Datalogging · Page 245

 multi = temp ' Free temp for another RCTIME

 HIGH qtiPwrRight ' Turn right QTI on
 HIGH qtiSigRight ' Discharge capacitor
 PAUSE 1
 RCTIME qtiSigRight, 1, temp ' Measure charge time

 multi = (multi + temp) / 2 ' Calculate average

 multi = multi / 4 ' Take 1/4 average

 IF multi > 220 THEN ' Account for code overhead
 multi = multi - 220
 ELSE
 multi = 0
 ENDIF

 WRITE QtiThresh, Word multi ' Threshold to EEPROM

 RETURN

' -----[Subroutine - Servos_And_Sensors]------------------------------------

Servos_And_Sensors:

 #IF DEBUG_MODE = 1 #THEN
 GOSUB Display_All ' Call Display_All subroutine
 #ENDIF

 #IF DATALOG_MODE = 1 #THEN
 temp.HIGHBYTE = sensors ' Copy values to parts of temp
 temp.NIB1 = state
 temp.NIB0 = maneuver
 WRITE LogData + LogIndex, Word temp ' Store record in EEPROM
 logIndex = logIndex + 2 ' Word values -> index + 2
 IF logIndex >= (LogData + MaxBytes) THEN END
 #ENDIF

 GOSUB Pulse_Servos ' Call Pulse_Servos subroutine

 ' Call sensor subroutine(s).

 sensors = 0 ' Clear previous sensor values

 GOSUB Read_Object_Detectors ' Call Read_Object_Detectors
 GOSUB Read_Line_Sensors ' Look for lines

 RETURN

' -----[Subroutine - Pulse_Servos]--

Page 246· Applied Robotics with the SumoBot

Pulse_Servos:

 ' Pulse to left servo
 LOOKUP maneuver, [FS_CCW, FS_CW, FS_CW, FS_CCW,
 NO_ROT, FS_CCW, LS_CCW, FS_CCW], temp
 PULSOUT ServoLeft, temp

 ' Pulse to right servo
 LOOKUP maneuver, [FS_CW, FS_CCW, FS_CW, FS_CCW,
 FS_CW, NO_ROT, FS_CW, LS_CW], temp
 PULSOUT ServoRight, temp

 ' Pause between pulses (remove when using IR object detectors + QTIs).
 ' PAUSE 20

 RETURN

' -----[Subroutine - Read_Object_Detectors]---------------------------------

Read_Object_Detectors:

 FREQOUT IrLedRS, 1, IrFreq ' Right side IR LED headlight
 irRS = ~IrSenseRS ' Save right side IR receiver

 FREQOUT IrLedRF, 1, IrFreq ' Repeat for right-front
 irRF = ~IrSenseRF

 FREQOUT IrLedLF, 1, IrFreq ' Repeat for left-front
 irLF = ~IrSenseLF

 FREQOUT IrLedLS, 1, IrFreq ' Repeat for left side
 irLS = ~IrSenseLS

 RETURN

' -----[Subroutine - Read_Line_Sensors]-------------------------------------

Read_Line_Sensors:

 HIGH qtiPwrLeft ' Turn on QTIs
 HIGH qtiPwrRight
 HIGH qtiSigLeft ' Push signal voltages to 5 V
 HIGH qtiSigRight
 PAUSE 1 ' Wait 1 ms for capacitors

 READ QtiThresh, Word temp ' Get threshold time

 INPUT qtiSigLeft ' Start the decays
 INPUT qtiSigRight

 PULSOUT DummyPin, temp ' Wait threshold time

Chapter 5: Debugging and Datalogging · Page 247

 qtiLF = ~qtiSigLeft ' Snapshot of QTI signal states
 qtiRF = ~qtiSigRight

 LOW qtiPwrLeft ' Turn off QTIS
 LOW qtiPwrRight

 RETURN

' -----[Subroutine - Avoid_Tawara_Left]-------------------------------------

Avoid_Tawara_Left:

 #IF DEBUG_MODE = 1 OR DATALOG_MODE = 1 #THEN state = ATL #ENDIF

 FOR counter = 1 TO 15 ' Back up
 maneuver = Backward
 GOSUB Servos_And_Sensors
 NEXT
 FOR counter = 1 TO 15 ' Turn right
 maneuver = RotateRight
 GOSUB Servos_And_Sensors
 NEXT

 RETURN

' -----[Subroutine - Avoid_Tawara_Right]------------------------------------

Avoid_Tawara_Right:

 #IF DEBUG_MODE = 1 OR DATALOG_MODE = 1 #THEN state = ATR #ENDIF

 FOR counter = 1 TO 15 ' Back up
 maneuver = Backward
 GOSUB Servos_And_Sensors
 NEXT
 FOR counter = 1 TO 15 ' Turn left
 maneuver = RotateLeft
 GOSUB Servos_And_Sensors
 NEXT

 RETURN

' -----[Subroutine - Go_Forward]--

Go_Forward:

 #IF DEBUG_MODE = 1 OR DATALOG_MODE = 1 #THEN state = GF #ENDIF

 maneuver = Forward ' 1 forward pulse
 GOSUB Servos_And_Sensors

Page 248· Applied Robotics with the SumoBot

 RETURN

' -----[Subroutine - Track_Front_Left_Object]-------------------------------

Track_Front_Left_Object:

 #IF DEBUG_MODE = 1 OR DATALOG_MODE = 1 #THEN state = TFLO #ENDIF

 counter = 0
 DO UNTIL (irLF = 1 AND irRF = 1) OR counter > 15
 maneuver = CurveLeft ' Curve left 15
 GOSUB Servos_And_Sensors
 counter = counter + 1
 LOOP
 DO UNTIL (irLF = 1 AND irRF = 1) OR counter > 30
 maneuver = RotateLeft ' Rotate left 30
 GOSUB Servos_And_Sensors
 counter = counter + 1
 LOOP

 RETURN

' -----[Subroutine - Track_Front_Right_Object]------------------------------

Track_Front_Right_Object:

 #IF DEBUG_MODE = 1 OR DATALOG_MODE = 1 #THEN state = TFRO #ENDIF

 counter = 0
 DO UNTIL (irLF = 1 AND irRF = 1) OR counter > 15
 maneuver = CurveRight ' Curve right 15
 GOSUB Servos_And_Sensors
 counter = counter + 1
 LOOP
 DO UNTIL (irLF = 1 AND irRF = 1) OR counter > 30
 maneuver = RotateRight ' Rotate right 30
 GOSUB Servos_And_Sensors
 counter = counter + 1
 LOOP

 RETURN

' -----[Subroutine - Track_Side_Left_Object]--------------------------------

Track_Side_Left_Object:

 #IF DEBUG_MODE = 1 OR DATALOG_MODE = 1 #THEN state = TSLO #ENDIF

 DO UNTIL irRF = 1 OR irLF = 1 ' Rotate left
 maneuver = RotateLeft

Chapter 5: Debugging and Datalogging · Page 249

 GOSUB Servos_And_Sensors
 LOOP

 RETURN

' -----[Subroutine - Track_Side_Right_Object]-------------------------------

Track_Side_Right_Object:

 #IF DEBUG_MODE = 1 OR DATALOG_MODE = 1 #THEN state = TSRO #ENDIF

 DO UNTIL irRF = 1 OR irLF = 1 ' Rotate right
 maneuver = RotateRight
 GOSUB Servos_And_Sensors
 LOOP

 RETURN

' -----[Subroutine - Search_Pattern]--

Search_Pattern:

 #IF DEBUG_MODE = 1 OR DATALOG_MODE = 1 #THEN state = SP #ENDIF

 FOR counter = 1 TO 35 ' and watch all sensors
 maneuver = Forward ' Forward
 GOSUB Servos_And_Sensors
 IF sensors <> 0 THEN GOTO Next_State
 NEXT

 Look_About:

 #IF DEBUG_MODE = 1 OR DATALOG_MODE =1 #THEN state = SP #ENDIF

 FOR counter = 1 TO 12 ' Look right
 maneuver = RotateRight
 GOSUB Servos_And_Sensors
 IF sensors <> 0 THEN GOTO Next_State
 NEXT
 FOR counter = 1 TO 24 ' Look left
 maneuver = RotateLeft
 GOSUB Servos_And_Sensors
 IF sensors <> 0 THEN GOTO Next_State
 NEXT
 FOR counter = 1 TO 12 ' Re-align to forward
 maneuver = RotateRight
 GOSUB Servos_And_Sensors
 IF sensors <> 0 THEN GOTO Next_State
 NEXT

 Next_State: ' Exit point of search pattern

Page 250· Applied Robotics with the SumoBot

 RETURN

' -----[Subroutine - Display_All]---

#IF DEBUG_MODE = 1 OR DATALOG_MODE = 2 #THEN

 Display_All:

 DEBUG BIN8 sensors, ' Display sensors byte as bits
 CRSRX, 10 ' Cursor to column 10

 SELECT state ' Display state
 CASE ATL
 DEBUG "ATL"
 CASE ATR
 DEBUG "ATR"
 CASE GF
 DEBUG "GF"
 CASE TFLO
 DEBUG "TFLO"
 CASE TFRO
 DEBUG "TFRO"
 CASE TSLO
 DEBUG "TSLO"
 CASE TSRO
 DEBUG "TSRO"
 CASE SP
 DEBUG "SP"
 ENDSELECT

 DEBUG CRSRX, 20 ' Cursor to column 20

 SELECT maneuver ' Display maneuver
 CASE Forward
 DEBUG "Fwd"
 CASE Backward
 DEBUG "Bkwd"
 CASE RotateLeft
 DEBUG "RotLft"
 CASE RotateRight
 DEBUG "RotRt"
 CASE CurveLeft
 DEBUG "CrvLft"
 CASE CurveRight
 DEBUG "CrvRt"
 ENDSELECT

 DEBUG CR ' Carriage return for next line

 #IF DEBUG_MODE = 1 #THEN

Chapter 5: Debugging and Datalogging · Page 251

 PAUSE 200 ' Pause 0.2 seconds for reading
 #ELSE
 PAUSE 50
 #ENDIF

 RETURN

#ENDIF

Your Turn - Customizing Your SumoBot
The possibilities are endless for increasing your SumoBot's abilities. In personal robotics
club competitions, SumoBots have been sighted with extensive modifications. One
winning competitor used only the SumoBot printed circuit board and made a custom
chassis, plow, and motors and sensors. When adding or substituting sensors, it's a good
idea to use the same procedure this book used for sensors:

(1) Write a small functional program to test the sensors.
(2) Modify the program so that the sensor code is in a subroutine that controls a bit

in the sensors variable. Your subroutine may also need to decide what value
constitutes a 1 or 0 based on a measurement being above or below a threshold.
The subroutine should also make use of the temp and counter variables whenever
possible.

(3) Integrate the Subroutine into your competition code. This may involve
modifying the conditions for various navigation states, or even adding new
navigation states.

(4) Test the SumoBot's performance against another SumoBot in the competition
ring.

(5) Modify SumoWrestlerWithDataLogMode.bs2 so that it logs and displays any
new navigation states, and use the program for trouble-shooting and refining the
SumoBot's performance.

There are lots of sensors that may be useful to your customized SumoBot robot. The
Ping))) Ultrasonic (distance) Sensor (#28015) and the Memsic 2125 Dual Axis
Accelerometer (#28017) are two examples of the many sensors available at
www.parallax.com. Each sensor page has documentation and example programs.
Another example of a sensor idea is a custom contact sensor that can tell your SumoBot's
BASIC Stamp whether its competitor's plow is above or below its plow. You can then
experiment with writing code for navigation states that take evasive maneuvers.

Page 252· Applied Robotics with the SumoBot

Displaying the sensors variable can help for quick trouble-shooting between rounds.
The LCD Terminal AppMod (#29121) is designed to be attached directly to the SumoBot
board’s AppMod Header for this purpose, but you will have to move some of your other
sensors around to accommodate it. Another option is the Parallax Serial LCD (#27976),
which only takes one I/O pin, and lots less code to control, and it can be used in place of
the status LED and pushbutton.

Local robotics club competitions can be interesting, both to watch and to compete in.
The SumoBots in these competitions will come in many different shapes, sizes, and
strengths. It's best to consider your first time in a competition a reconnaissance
experience. You will likely discover that some of these competitors have advantages that
your practice SumoBot competitor never had. Watch each victory and loss carefully, not
just with your SumoBot, but all the others too. It's crucial information so that you can
customize your SumoBot for victory in future competitions.

Chapter 5: Debugging and Datalogging · Page 253

SUMMARY
This chapter introduced three techniques to help find the cause(s) of SumoBot problem
behaviors: (1) LED signals, (2) debugging routines, and (3) datalogging a sumo round.
Conditional compiler directives were applied to all these techniques, so that you can
change one or two values at the beginning of the program to either include or exclude
your conditional LED/debugging/datalogging code from the program.

Questions

1. What are the five steps in the Scientific Method?
2. How can one line of code signal the occurrence of an event with an LED?
3. What are the advantages of turning and leaving the LED on when an event

occurs?
4. What is branching?
5. What is conditional compiling?
6. What are some examples of things you can use #DEFINE to do?
7. What's the difference between SELECT...CASE and #SELECT...#CASE?
8. Is it possible to put constant declarations and DATA directives in conditional

compiler directives, or just PBASIC commands?
9. Which two bits of the sensors variable are available if you want to add sensors?
10. What key features are missing that might prevent you from finding a bug while

the SumoBot is connected to the serial cable displaying information on the
Debug Terminal?

11. What are some examples of changes that had to be made to the conditional
compiler directives in SumoWrestlerWithPlayback.bs2?

12. What's the purpose of the Playback_Round routine, and under what
circumstances does that code get executed?

13. What role does the temp variable play in logging data?
14. How does the temp variable store more than one value in the program

SumoWrestlerWithDatalogMode.bs2?

Exercises

1. Add LED events to the Track_Front_Left_Object subroutine that signal the
start and end of each of its maneuvers.

2. Write conditional compiler directives to add IR interference testing to
SumoWrestlerWithDebugMode.bs2.

3. Calculate how many records you can store with addresses $10 to $24F.

Page 254· Applied Robotics with the SumoBot

4. Modify SumoWrestlerWithDebugMode.bs2 so that it displays numbers next to
each record.

Projects

1. Determine the average number of samples per second the
SumoWrestlerWithDatalogMode.bs2 takes. If you have not already done so,
modify the program so that it displays numbers next to each record. Use a
stopwatch to identify certain events, then look for them by calculating the
approximate record number that should hold the event.

2. Integrate the mode selection techniques introduced in Chapter 2, Activity #5 into
SumoWrestlerWithDebugMode.bs2. When you are done, you should be able to
use the pushbutton to select between the functions that used to be selected by
#DEFINE DEBUG_MODE.

Appendix A: System Requirements and Parts Listing · Page 255

Appendix A: System Requirements and Parts
Listing

System and Software Requirements

• PC running Windows® 2000/XP or higher operating system.
• Available serial port OR USB port with USB-to serial adapter (#800-00030)
• BASIC Stamp Editor for Windows v2.0 or higher
• Optional: BASIC Stamp source code for the experiments in this book, available

for free download from www.parallax.com on the Applied Robotics with the
SumoBot page (#27403).

The BASIC Stamp Editor is included on the Parallax CD in your kit. You may check for
the latest versions at www.parallax.com under the Downloads menu.

Hardware Requirements

The Applied Robotics with the SumoBot text was written to accompany, and is included
with, the SumoBot Robot Competition Kit (#27402). This kit’s contents are listed in
Table A-1. If you already have two individual SumoBot kits and you would like to try
the experiments in this text, you would need to separately purchase the items in Table
A-2. In either case, you will also need some common household items listed on
page 257.

Page 256· Applied Robotics with the SumoBot

Table A-1: SumoBot Robot Competition Kit (#27402)
Parts and quantities subject to change without notice

Part # Description Quantity
27000 Parallax CD-ROM 1
27400 SumoBot Manual 1
27403 Applied Robotics with the SumoBot text 1
27404 SumoBot Competition Ring poster 1
150-02210 220 Ω resistors ¼ W 5% 6
150-04710 470 Ω resistors ¼ W 5% 8
150-01030 10 kΩ resistors ¼ W 5% 2
350-00003 LED-Infrared 10
350-00006 LED-Red 2
350-00014 IR Receiver 10
350-90000 LED Standoff 10
350-90001 LED Light Shield 10
400-00001 Pushbutton 2
555-27400 SumoBot printed circuit board 2
555-27401 QTI Line Sensor 4
700-00002 Machine screw, 4-40, 3/8” panhead 24
700-00003 4-40 nuts 24
700-00015 Nylon Washer #4 4
700-00016 Flat head screw, 4-40, 3/8” 4
700-00028 Screw, panhead, Phillips, 4-40, ¼” 8
700-00064 Parallax screwdriver 1
710-00002 Screw, panhead, Phillips, 4-40, 1” 4
713-00001 Standoff, Alum, ¼ round, 5/8”, 4-40 8
713-00002 Standoff, 1.25”, 4/40, F to F 4
720-27403 SumoBot Chassis 2
720-27404 SumoBot Front Scoop 2
721-00001 Wheel, plastic, 2.58” diameter 4
721-00001 Rubber Band Tire for Wheel 8
753-00001 Battery holder, 4 cell AA, leads 2
800-00003 Serial cable 1
800-00016 Jumper wires, 3” (bag of 10) 3
805-00001 Servo extension cable 4
900-00001 Piezospeaker 2
900-00008 Parallax Continuous Rotation Servo 4

Appendix A: System Requirements and Parts Listing · Page 257

Table A-2: For SumoBot Robots purchased separately
Parts and quantities subject to change without notice

Part# Description Quantity
27400 SumoBot Robot Kit 2
27403 Applied Robotics with the SumoBot text 1
27404 SumoBot Competition Ring poster 1
150-02210 220 Ω resistors ¼ W 5% 4
150-04710 470 Ω resistors ¼ W 5% 6
150-01030 10 kΩ resistors ¼ W 5% 2
350-00003 LED-Infrared 4
350-00014 IR Receiver 4
350-90000 LED Standoff 4
350-90001 LED Light Shield 4
400-00001 Pushbutton 2

Additional Items

You will also need several common tools and household items that are not included in
your kit:

• Clear non-shiny cellophane tape
• Needle-nose pliers
• Small pulley, such as those used for screen doors
• Fishing line
• Disposable foam cup
• Small weights (nails, nuts, washers, etc)
• Gram scale, such as a diet or postal scale
• Black felt-tip marker, such as a Sharpie® marker

Page 258· Applied Robotics with the SumoBot

Index

 - # -

#. See conditional compile directives

 - $ -

$. See hexadecimal, See compiler
directives

 - . -

.BIT operator, 49

.HIGHBYTE, 236

.LOWBYTE, 236

.NIB, 237

 - @ -

@Address operator, 46

 - ~ -

~. See invert bits operator

 - A -

acceleration, 24
Accelerometer, 251

 - B -

British Engineering
units, 23

 - C -

cgs units, 23
coefficient of friction, 28, 31
coefficients of friction, 29
comment-out, 94
compiler directives, 212, 213
compile-time, 44
conditional compile directives

#DEFINE, 212

#IF...#ENDIF, 213

#SELECT...#CASE, 213

CRSRXY, 131

 - D -

DATA, 41
DATA directive

@Address operator, 46

datalogging, 233
DEBUG, 131

CRSRXY, 131

debugging, 216
DEBUGIN, 51
DO UNTIL...LOOP, 52
dyne, 23

 - E -

EEPROM, 12, 41, 44
EEPROM addresses, 42
EEPROM vs. RAM, 47
electrical continuity, 88

 - F -

Find/Replace, 128
flag bits, 129
flowcharts, 175
force, iii, 7, 22, 23, 24, 25, 26, 27, 28,

31, 33
free body diagram, 27
frequency sweep, 92
friction, 7

friction force, 31
friction forces, 26
frictional force diagram, 29

 - G -

gram, 23
gravity, 24
Guarantee, 2

 - H -

hardware requirements, 255
additional household items, 257

hexadecimal, 234
hexadecimal conversion, 45, 234
hybrid state machine diagram, 175

 - I -

IF...ELSEIF...ELSE...ENDIF, 143
input register, 61
invert bits operator, 117
IR interference, 85
IR LED, 78
IR object detection circuits, 79
IR Object Detection circuits, side-

mounted, 119
IR object detection troubleshooting, 82
IR object detector range, 89
IR object detectors, 78
IR receiver frequency response, 91

 - K -

kilogram, 23
kinetic friction, 26
kinetic objects, 27
kit contents. See Appendix A

 - L -

LCD, 252

LED circuit, 59
LOOKUP, 61, 144, 148

 - M -

mass, 23
mechanical advantage, 8
Memory Map, 45, 232
modified state machine diagram, 173
mu, 28

 - N -

Newton, 23
Newton's second law of motion, 23
Newton's Third Law, 28
normal force, 26, 31

 - P -

PBASIC commands
DATA directives, 41

DEBUG, 131

DEBUGIN, 51

DO UNTIL...LOOP, 52

IF...ELSEIF...ELSE...ENDIF, 143

LOOKUP, 61, 144, 148

PULSOUT, 145

RCTIME, 97

READ, 42

SELECT...CASE, 66

WRITE, 42

piezospeaker circuit, 59
pliers, 89
plow adjustment, 8
plow adjustments, 9
pound, 23

programs
CompilerDirectives.bs2, 214

Forward100Pulses.bs2, 11

ForwardLowTimeTest.bs2, 18

FrontAndSideIrNavigation.bs2, 166

FrontIrNavigation.bs2, 159

IrInterferenceSniffer.bs2, 86

LookupExample.bs2, 149

PushbuttonLed.bs2, 172

PushbuttonMode.bs2, 67

QtiPulseDecayTrick.bs2, 114

QtiPulseTrickLeft.bs2, 111

QtiSelfCalibrate.bs2, 104

ResetAndStartMode.bs2, 71

ResetButtonCounter.bs2, 48

SearchPatternAndAvoidTawara.bs2, 178

SensorsWithTempVariables.bs2, 135

ServoControlExample.bs2, 146

ServoControlWithLookup.bs2, 152

SumoWrestler.bs2, 194

SumoWrestlerWithDataLogMode.bs2,
239

SumoWrestlerWithDebugMode.bs2, 222

SymbolNamesVsAddressContents.bs2,
44

TestAllSensors.bs2, 124

TestFrequencyResponse.bs2, 92

TestFrontIrObjectDetectors.bs2, 82

TestFrontQtiLineSensors.bs2, 100

TestLedSpeaker.bs2, 60

TestPushButton.bs2, 63

TestResetButton.bs2, 57

TestSideIrObjectDetectors.bs2, 120

TestSumoWrestler.bs2, 186

ThreeVariablesManyJobs.bs2, 53

pulley, 34
Pulse-Decay Trick, 108
Pulse-Decay Trick timing graph, 110
PULSOUT, 145
pushbutton circuit, 61
pushbutton program mode selection, 65

 - Q -

QRD1114, 97
QTI Circuit, 108
QTI line sensors, 95

schematics, 96

testing, 95

QTIs self calibrating, 102

 - R -

RAM, 47
RC-decay graph, 99
RCTIME, 97
READ, 42
Receive windowpane, 51
requency response, 92
Reset button program control, 55
reset state, 170
RPM calculation for servos, 22
run-time, 44

 - S -

scale, 35

Scientific Method, 208
SELECT...CASE, 66
self calibrating QTI sensors, 102
sensor flags, 143
servo connections, 13
servo control, 145
servo rotational velocity graph, 146
servo RPM calculation, 21
servo slow-down, 16, 21
sigma, 27
slug, 23
software requirements, 255
state machine, 170

reset state, 170

state machine diagram, hybrid, 175
state machine diagram, modified, 173
state machine.diagram, 171
static friction, 26
static objects, 27
SumoBot Competition Ring poster, 9
Symbol names, 41
System International (SI), 23

 - T -

temporary variables, 51, 132
tilt detection, 102
Transmit windowpane, 50

 - U -

Ultrasonic Sensor, 251
unit conversions, 24
Units of Force, Mass, and Acceleration,

23

 - V -

variables, temporary, 51, 132
vectors, 26

 - W -

weight, 22, 24
WRITE, 42

 - Μ -

µ, 28

