
Accelerometer - Tilt, Graphics and Video Games · Page 1

Accelerometer - Tilt, Graphics and Video Games

The accelerometer is featured in lots of HIDs. HID is short for Human Interface Device,
and it includes computer mice, keyboards, and more generally, anything that makes it
possible for humans to interact with microprocessors. With limited space on PDAs like
the one in Figure 1, tilt control eliminates the need for extra buttons. Tilt control is also a
popular feature in certain game controllers.

Figure 1
Tilt Controlled
Game on a PDA

The circuit in products like these is similar to the one introduced in Accelerometer -
Getting Started. If you haven’t already built and tested the circuit and tried the examples
in Activity #1 of Accelerometer - Getting Started, do it first before continuing here.

Where can I find Accelerometer - Getting Stared?

√ Go to the www.parallax.com home page, and enter 28017 into the search field.

√ This will take you to the Memsic 2125 Dual-axis Accelerometer page.

√ Follow the Stamps in Class Memsic Tutorial (.pdf) link.

This chapter has four activities that demonstrate the various facets of using tilt to control
a display. Here are summaries of each activity:

• Activity #1: PBASIC Graphic Character Display – introduces some Debug Terminal

cursor control and coordinate plotting basics.

The draft material in this Chapter is part of a forthcoming Stamps in Class text by Andy Lindsay.
(c) 2005 by Parallax Inc - all rights reserved. Last revised on 4/24/05.
To post feedback or suggestions, go to http://forums.parallax.com/forums/default.aspx?f=6&m=57588.
Software for BASIC Stamp® Modules and applications are available for free download from www.parallax.com.

www.parallax.com
http://www.parallax.com/dl/docs/prod/compshop/SICMemsicTut.pdf
http://www.parallax.com/detail.asp?product_id=28017
http://forums.parallax.com/forums/default.aspx?f=6&m=57588
www.parallax.com

Page 2 · Smart Sensors and Applications

• Activity #2: Background Store and Refresh with EEPROM – Each time your game

character moves, whatever it was covering up on the screen has to be re-drawn. This
activity demonstrates how you can move your character and refresh the background
with the help of the BASIC Stamp’s EEPROM.

• Activity #3: Tilt the Bubble Graph – With a moving asterisk on a graph, this first
application demonstrates how the hot air pocket inside the MX2125 moves when you
tilt it. At the same time, it puts the accelerometer fundamentals to work along with
the techniques from Activity #2.

• Activity #4: Game Control Example – You are now ready to use tilt to start
controlling your game character. The background characters can be used to make
decisions about whether your game character is in or out of bounds. Have fun
customizing and expanding this tilt controlled video game.

ACTIVITY #1: PBASIC GRAPHIC CHARACTER DISPLAY
This activity introduces some programming techniques you will use to graphically
display coordinates with the Debug Terminal. Certain elements of the techniques
introduced in this and the next activity are commonly used with liquid crystal and other
small displays as well as in certain digital video technologies like MPEG.

The CRSRXY and Other Control Characters

The DEBUG command's CRSRXY control character can be used to place the cursor at a
location on the Debug Terminal's receive windowpane. For example, DEBUG CRSRXY,
7, 3, "*" places the asterisk character seven spaces to the right and three characters
down. Instead of using constants like 7 and 3, you can use variables to make the
placement of the cursor adjustable. Let’s say you have two variables, x and y, the values
these variables store can control the placement of the asterisk in the command DEBUG
CRSRXY, x, y, "*".

The next example program also makes use of the CLRDN control character. The command
DEBUG CLRDN causes all the lines below the cursor’s current location to be erased.

More Control Characters

You can find out more about control characters by looking up the DEBUG command, either
in the PBASIC Syntax Guide or the BASIC Stamp Manual. You can get to the PBASIC
Syntax guide through your BASIC Stamp Editor (v2.0 or newer). Just click Help and select
Index. The BASIC Stamp Manual is available for free download from www.parallax.com →
Downloads → Documentation.

www.parallax.com
http://www.parallax.com/html_pages/downloads/basicstamps/documentation_basic_stamp.asp

Accelerometer - Tilt, Graphics and Video Games · Page 3

Example Program – CrsrxyPlot.bs2

With this program, you can type pairs of digits into the Transmit Windowpane (see
Figure 2) to position asterisks on the receive windowpane. Simply click the transmit
windowpane and start typing. The first digit you type is the number of spaces to the right
to place the cursor, and the second number is the number of carriage returns downward.
Before typing a new pair of digits, press the space bar once.

Figure 2 - Debug Terminal Transmit and Receive Windowpanes

√ Enter, save, and run CrsrxyPlot.bs2
√ Follow the prompts and type digits into the Debug Terminal's transmit windowpane

to place asterisks on the plot.
√ Try the sequence 11, 22, 33, 43, 53, 63, 73, 84, 95. Do the asterisks in your Debug

Terminal match the pattern in the example?
√ Try predicting the sequences for various shapes, like a square, triangle, and circle.
√ Enter the sequences to test your predictions.
√ Correct the sequences as needed.

' Accelerometer Projects
' CrsrxyPlot.bs2

'{$STAMP BS2}
'{$PBASIC 2.5}

x VAR Word

Transmit
Windowpane

Receive
Windowpane

Page 4 · Smart Sensors and Applications

y VAR Word
temp VAR Byte

DEBUG CLS,
"0123456789X", CR,
"1 ", CR,
"2 ", CR,
"3 ", CR,
"4 ", CR,
"5 ", CR,
"Y ", CR, CR

DO

 DEBUG "Type X coordinate: "
 DEBUGIN DEC1 x
 DEBUG CR, "Type Y coordinate: "
 DEBUGIN DEC1 y

 DEBUG CRSRXY, x, y, "*"

 DEBUG CRSRXY, 0, 10, "Press any key..."
 DEBUGIN temp
 DEBUG CRSRXY, 0, 8, CLRDN

LOOP

Your Turn – Keeping Characters in the Plot Area

If you type the digit 8 in response to the prompt "Type Y coordinate: ", it will
overwrite your text. Similar problems occur if you type 0 for either the X or Y
coordinates. The asterisk is plotted over the text that shows which row and column
CRSRXY is plotting. One way to fix this is with the MAX and MIN operators. Simply add
the statement y = y MAX 5 MIN 1. The DEBUGIN command’s DEC1 operator solves this
problem for the maximum X coordinate, since it is limited to a value from 0 to 9. So, all
you’ll need to clamp the X value is x = x MIN 1.

√ Try entering out of bounds values for the Y coordinate (0 and 6 to 9) and 0 for the X

coordinate.
√ Observe the effects on the display’s background.
√ Modify CrsrxyPlot.bs2 as shown here and try it again

 DEBUG CR, "Type Y coordinate: "
 DEBUGIN DEC1 y

 Y = y MAX 5 MIN 1 ' <--- Add

Accelerometer - Tilt, Graphics and Video Games · Page 5

 X = x MIN 1 ' <--- Add

 DEBUG CRSRXY, x, y, "*"

Scale and Offset

Scale and offset were introduced in both What's a Microcontroller and Robotics with the
Boe-Bot. In What's a Microcontroller, they were used to adjust servo position based on
input, and in Robotics with the Boe-Bot, they were used to calibrate light sensors. Here is
scale and offset again, this time for positioning characters on a display.

Take a look at the example in Figure 3. When you type in -3-3 into the Debug
Terminal’s transmit windowpane, it doesn’t automatically appear at the (-3, -3) position
on the graph. The asterisk actually needs to be placed 0 spaces over and 6 carriage
returns down. Here is a second example. When you type-in 2,2, CRSRXY actually needs
to place the cursor at 10 spaces over and one carriage return down.

Figure 3
Entering and
Displaying Coordinates

For values ranging from -3 to 3, the X value has to be multiplied by 2 and added to 6 for
CRSRXY to place the asterisk the right number of spaces over. That’s a scale of 2, and an
offset of 6. Here is a PBASIC statement to make the conversion from X coordinate to
number of spaces.

 x = (x * 2) + 6

Page 6 · Smart Sensors and Applications

The Y value has to be multiplied by -1, then added to 3. That’s a scale of -1 and an offset
of 3. Here is a PBASIC statement to make the conversion from Y coordinate to number
of carriage returns.

 y = 3 - y

√ Try substituting X and Y coordinates in the right side of each of these equations, do
the math, and verify that each equation yields the right number of spaces and carriage
returns.

Example Program – PlotXYGraph.bs2

√ Enter and run PlotXYGraph.bs2.
√ Try entering the sequence of values: -3-3 -2-2 -1-1 00 11 22 33 and verify that it

matches the Debug Terminal example.
√ Try some other sequences and/or drawing shapes by their coordinates.

' Accelerometer Projects
' PlotXYGraph.bs2

'{$STAMP BS2}
'{$PBASIC 2.5}

x VAR Word
y VAR Word
temp VAR Byte

DEBUG CLS,
" 3| ", CR,
" 2| ", CR,
" 1| ", CR,
"------+------", CR,
"-3-2-1| 1 2 3", CR,
" -2| ", CR,
" -3| ", CR, CR

DO

 DEBUG "Type X coordinate: "
 DEBUGIN SDEC1 x
 DEBUG CR, "Type Y coordinate: "
 DEBUGIN SDEC1 y

 x = (x * 2) + 6
 y = 3 - y

 DEBUG CRSRXY, x, y, "*"

Accelerometer - Tilt, Graphics and Video Games · Page 7

 DEBUG CRSRXY, 0, 10, "Press any Key..."
 DEBUGIN temp
 DEBUG CRSRXY, 0, 8, CLRDN

LOOP

Your Turn – More Keeping Characters in the Plot Area

You can also use IF…THEN statements to handle values that are out of bounds. Here is an
example of how you can modify PlotXyGraph.bs2 with IF…THEN. Instead of clipping the
value, the program just waits until a correct value is entered.

√ Modify PlotXYGraph.bs2 as shown here, and then run it. Verify that this program

does not allow you to enter characters outside the range of -3 to 3.

 x = (x * 2) + 6
 y = 3 - y

 IF (x > 12) OR (y > 6) THEN ' <--- Add/modify from here...
 DEBUG CRSRXY, 0, 8, CLRDN, '
 "Enter values from -3 to 3.", CR, '
 "Try again" '
 '
 ELSE '
 '
 DEBUG CRSRXY, x, y, "*" '
 '
 ENDIF ' <--- to here

 DEBUG CRSRXY, 0, 10, "Press any Key..."
 DEBUGIN temp

Page 8 · Smart Sensors and Applications

What negative numbers?

The conditions for the IF...THEN statement in your modified version of PlotXYGraph.bs2
are (x > 12) OR (y > 6). This covers positive numbers that are larger than 12 or 6, but
it also covers all negative numbers. That's because the BASIC Stamp uses a system called
twos complement to store negative numbers. In twos complement, the unsigned version of
any negative value is larger than any positive value. For example, -1 is 65535, -2 is 65534,
and so on, down to -32768, which is actually 32768. Signed positive values only range from
1 to 32767.

Twos complement is the most common form of negative number storage in both
microcontrollers and computers. The reason twos complement is so popular is because its
rules are very simple at the binary computing level. If you don't already know the rules for
twos complement, try this program, and see if you can figure them out:

' Accelerometer Projects
' TwosComplementExample.bs2

' {$STAMP BS2}
' {$PBASIC 2.5}

counter VAR Word

DEBUG "Signed Unsigned Binary ", CR,
 "------ -------- ----------------", CR

FOR counter = - 8 TO -1
 DEBUG SDEC counter, " ",
 DEC counter, " ",
 BIN16 counter, CR
 PAUSE 100
NEXT

FOR counter = 0 TO 8
 DEBUG " ", SDEC counter,
 " ", DEC counter,
 " ", BIN16 counter, CR
 PAUSE 100
NEXT

END

When writing IF...THEN statements that examine negative values for the BASIC Stamp,
always keep three things in mind:

 1) The BASIC Stamp makes unsigned IF...THEN comparisons.
 2) Negative values are always larger than positive values.
 3) You can always recognize a negative number by testing if its Bit15 is one.
 For example, IF counter.bit15 = 1 THEN...

Accelerometer - Tilt, Graphics and Video Games · Page 9

Algebra to Determine Scale and Offset

The XY plot displayed in the Debug Terminal in this activity is called the Cartesian
coordinate system. Named after 17th century mathematician René Descartes, this system
is the basis for graphing techniques used in many mathematical pursuits. Shown in
Figure 4, the Cartesian coordinate system’s is most commonly displayed with (0, 0) in the
center of the graph. Its values get larger going upward (y-axis) and to the right (x-axis).
Most displays behave differently, with coordinate 0, 0 starting at the top-left. While the
x-axis increases toward the right, the y-axis increases downward.

 Cartesian Display

Figure 4
Cartesian vs.
Display
Coordinates

You can use a standard algebra technique, solving two equations in two unknowns, to
figure out the statements you will need to transform Cartesian coordinates into debug
terminal coordinates. This next example shows how it was done for the statements that
converted x and y from Cartesian to display coordinates in PlotXYGraph.bs2.

By adding a couple of DEBUG commands, you can display the before and after versions of
the X-value you entered.

 DEBUG "Type X coordinate: "
 DEBUGIN SDEC1 x
 DEBUG CR, "Type Y coordinate: "
 DEBUGIN SDEC1 y

 DEBUG CRSRXY, 0, 12, "x before: ", SDEC1 x ' <--- Add

 x = (x * 2) + 6
 y = 3 - y

 DEBUG CRSRXY, 0, 14, "x after: ", SDEC1 x ' <--- Add

Page 10 · Smart Sensors and Applications

 DEBUG CRSRXY, x, y, "*"

√ Save PlotXyGraph.bs2 under another name, like PlotXyGraphBeforeAfter.bs2.
√ Add the two DEBUG commands that display the "before" and "after" values of x.
√ Add two more DEBUG commands to display the “before” and “after” values of y.
√ Enter the coordinates (3,1) and (-2,-2) into the Debug Terminal's transmit

windowpane. See Figure 5.
√ Record the after values in the table.

Table: 1 Values Before and After
Coordinate before After

(3, 1) 3
(-2, 2) -2

Figure 5
Test Coordinates

When designing a display to show Cartesian coordinates, it helps to take a couple of
before and after values like the one's in Table 1. You can then use them to solve for scale
(K) and offset (C) using two equations with two unknowns.

 Xafter = (K×Xbefore) + C

Accelerometer - Tilt, Graphics and Video Games · Page 11

The usual steps for two equations in two unknowns are:

(1) Substitute your two before and after data points into separate copies of the equation.

C-2)(K 2
C3)(K12

+×=
+×=

(2) If needed, multiply one of the two equations by a term that causes the number of one

of the unknowns in the top and bottom equations to be equal.

 Not needed, because the coefficient of C in both equations is 1.

(3) Subtract one equation from the other to make one of the unknowns zero.

 []
5K10

C-2)(K 2
C3)(K12

×=

+×=−
+×=

(4) Solve for the unknown that did not subtract to zero.

2K
5

10K

5K10

=

=

×=

(5) Substitute the value you solved in step 4 into one of the original two equations.

 12 = (2×3) + C

(6) Solve for the second unknown.

 12 = (2×3) + C
 12 = 6 + C
 C = 12-6

Page 12 · Smart Sensors and Applications

 C = 6

(7) Incorporate solved unknowns into your equation.

 Xafter = (K×Xbefore) + C

 () 6X2X
6 C and 2 K

beforeafter +×=
==

Your Turn – Y-Axis Calculations

√ Modify your program so that it displays the Y-Axis before and after values.
√ Fill in the table for the Y-axis values:

Table: Y Values Before and After
Coordinate before After

(3, 1) 1
(-2, 2) 2

√ Repeat steps 1-7 for the Y-Axis equation. The correct answer is yafter = (-1 × ybefore) +

3.

ACTIVITY #2: BACKGROUND STORE AND REFRESH WITH EEPROM
In a video game, when your game character isn’t on the screen, all that’s visible is the
background. As soon as your game character enters the screen, it blocks out part of the
background. When the character moves, two things have to happen: (1) the game
character has to be re-drawn at the new location, and (2) the background that the game
character was blocking out has to be re-drawn. If step 2 never happened in your program,
your screen would fill up with copies of your game character.

Televisions and CRT computer monitors refresh every pixel many times per second. The
refresh rate on televisions is around 30 Hz, and a few of the more common refresh rates
on CRTs are 60, 70, and 72 Hz. Other devices like certain LCD and LED displays hold
the image automatically, or sometimes with the help of another microcontroller. All the
program or microcontroller that controls these devices has to do is tell them what to
display or change. This is also how video compression on your computer works. In

Accelerometer - Tilt, Graphics and Video Games · Page 13

order to reduce the file size, some compressed video files store the changes to the image
instead of all the pixels in a given image frame.

When used with displays that do not need to be refreshed (like the Debug Terminal or an
LCD), the BASIC Stamp’s can store an image of a game or graph background in its
EEPROM. When a game character moves and is redrawn at a different location, the
BASIC Stamp can just redraw the background characters at the game characters old
location. All you have to do is save the old coordinates of the game character before it
moved and then use those coordinates to retrieve the background characters from
EEPROM. Depending on how large the display is, this can save a considerable amount
of time that the BASIC Stamp might need to perform other tasks.

This activity introduces three elements to game characters and backgrounds:

 (1) Storing and displaying the background from EEPROM
 (2) Tracking a character’s old and new coordinates
 (3) Redrawing the old coordinates from EEPROM.

Background Display from EEPROM

This display doesn’t have to be made with a single DEBUG command, especially if it needs
to be maintained as a background with characters traveling over it in the foreground.
Instead, it’s better to store the characters in EEPROM and then display them individually
with a FOR…NEXT loop that uses READ and DEBUG commands to display individual
characters. Figure 6 is a display generated with this technique.

Figure 6
Background
from DATA

Page 14 · Smart Sensors and Applications

You can use the DATA directive to store a background in EEPROM. Notice how this
DATA directive stores 100 characters (0 to 99). Notice also that each row is 14 characters
wide when you add the CR control character. It makes programming much easier if each
row is the same width. Otherwise, finding the character you want become s a more
complex problem.

 DATA CLS, ' 0
 " 3| ", CR, ' 14
 " 2| ", CR, ' 28
 " 1| ", CR, ' 42
 "------+------", CR, ' 56
 "-3-2-1| 1 2 3", CR, ' 70
 " -2| ", CR, ' 84
 " -3| ", CR, CR ' 98 + 1 = 99

You can then use a FOR…NEXT loop to retrieve and display each character stored in
EEPROM. The net effect is the same as a long DEBUG command.

FOR index = 0 TO 99
 READ index, character
 DEBUG character
NEXT

Example Program – EepromBackgroundDisplay.bs2

√ Enter, save, and run the program.
√ Verify that the display is the same as PlotXyGraph.bs2.

' Accelerometer Projects ' Program
' EepromBackgroundDisplay.bs2

'{$STAMP BS2} ' Stamp & PBASIC Directives
'{$PBASIC 2.5}

index VAR Byte ' Variables
character VAR Byte

DATA CLS, ' 0 ' Store background in EEPROM
" 3| ", CR, ' 14
" 2| ", CR, ' 28
" 1| ", CR, ' 42
"------+------", CR, ' 56
"-3-2-1| 1 2 3", CR, ' 70
" -2| ", CR, ' 84
" -3| ", CR, CR ' 98 + 1 = 99

FOR index = 0 TO 99 ' Retrieve and display background

Accelerometer - Tilt, Graphics and Video Games · Page 15

 READ index, character
 DEBUG character
NEXT

END

Your Turn – Viewing the EEPROM Characters

√ In the BASIC Stamp Editor, click Run and select Memory Map.
√ Click the Display Ascii box in the lower left corner of the Memory Map window.
√ The digits, dashes, and vertical bars should appear exactly as shown in Figure 7.
√ Instead of 14 characters per row, the EEPROM map shows 16. Verify that you have

a total of 100 (0 to 99) characters stored for display purposes in EEPROM.

Figure 7 - Display Characters Stored in EEPROM

Tracking a Character’s Old and New Coordinates

Let’s say you want to track the previous X and Y coordinates in PlotXYGaph.bs2 from
Activity #1. It takes two steps:

(1) Declare a couple variables for storing the old values, xOld and yOld for example.

x VAR Word
y VAR Word

Page 16 · Smart Sensors and Applications

xOld VAR Nib ' <--- Add
yOld VAR Nib ' <--- Add

temp VAR Byte

(2) Before loading new values into the x and y variables, store the current value of x

into xOld and the current value of y into yOld.

DO

 xOld = x ' <--- Add
 yOld = y ' <--- Add

 DEBUG "Type X coordinate: "

Why are x and y words while xOld and yOld are nibbles?

When working with signed values, word variables store both the value and the sign.

At the particular place that xOld and yOld are used in the program, they are only storing
values that range from 0 to 12, so all we need are nibble variables.

Here’s a third step you can use to test and verify that it works:

(3) Before loading new values into the x and y variables, store the current value of x
into xOld and the current value of y into yOld. Keep in mind that both values will
be in terms of Debug Terminal coordinates. Also keep in mind that the first time
through, the old coordinates will be (0, 0) since all variables initialize to zero in
PBASIC.

 DEBUG CRSRXY, x, y, "*"

 DEBUG CRSRXY, 0, 10, ' <--- Add
 "Current entry: (",
 DEC x, ",", DEC y, ")"
 DEBUG CRSRXY, 0, 11, ' <--- Add
 "Previous entry: (",
 DEC xOld, ",", DEC yOld, ")"
 DEBUG CRSRXY, 0, 12, "Press any Key..." ' <--- Modify

 DEBUGIN temp

√ Start with PlotXYGraph.bs2, save it under a new name, and try the modifications just
discussed.

Accelerometer - Tilt, Graphics and Video Games · Page 17

Re-Drawing the Background

The net effect we want for game control is to make the asterisk disappear from its old
location and appears in its new location whenever it moves. To make it appear at its new
location, simply use a DEBUG command to display the asterisk at its current coordinates.
To make the asterisk disappear from its old coordinates, the background character that
was there has to be looked up in EEPROM and then displayed with DEBUG. Notice that
six ordered pairs were entered into the Debug Terminal shown in Figure 8, but there is
only one asterisk, and it corresponds with the last pair that was entered.

Figure 8
Display with
Background
Refresh

Here is a routine you can add to PlotXYGraph.bs2 to accomplish this:

 DEBUG CRSRXY, x, y, "*"

 index = (14 * yOld) + xOld + 1 ' <--- Add
 READ index, character ' <--- Add
 DEBUG CRSRXY, xOld, yOld, character ' <--- Add

The index variable selects the correct character from EEPROM. The x value is the
number of spaces over and the y value is the number of carriage returns down. To get to
the correct address of a character on the third row, your program has to add all the
characters in the first two rows. Since each row has 14 characters, yOld has to be
multiplied by 14 before it can be added to xOld. The extra 1 is added to skip the CLS at
address 0.

Page 18 · Smart Sensors and Applications

Regardless of whether it's a computer display, the liquid crystal display on your cell
phone, or your BASIC Stamp application's display, the same technique applies. The
processor remembers two different images, the one in the background, and the one in the
foreground. As the foreground object moves, it is displayed in a different location and
the area that the foreground object used to occupy is re-drawn.

The most important thing to keep in mind about this programming technique is that it
saves the processor lots of time. It only has to get one character from EEPROM and send
it to the debug terminal. Compared to 99 characters, that's a significant time savings, and
the BASIC Stamp can be doing other things with that time, such as monitoring other
sensors, controlling servos, etc.

Example Program – EeprogrmBackgroundRefresh.bs2

This is a modified version of PlotXYGraph.bs2 with the background display, coordinate
storage, and background redraw techniques introduced in this activity.

√ Enter save and run EepromBackgroundRefresh.bs2.
√ Test and verify that the asterisk disappears form its old location and appears at the

new location you entered.

' -----[Title]---
' Accelerometer Projects ' Program info
' EepromBackgroundRefresh.bs2

'{$STAMP BS2} ' Stamp/PBASIC directives
'{$PBASIC 2.5}

' -----[Variables]---

x VAR Word ' Store current position
y VAR Word

xOld VAR Nib ' Store previous position
yOld VAR Nib

temp VAR Byte ' Dummy variable for DEBUGIN

index VAR Byte ' READ index/character storage
character VAR Byte

' -----[EEPROM Data]---

DATA CLS, ' Display background
" 3| ", CR, ' 14

Accelerometer - Tilt, Graphics and Video Games · Page 19

" 2| ", CR, ' 28
" 1| ", CR, ' 42
"------+------", CR, ' 56
"-3-2-1| 1 2 3", CR, ' 70
" -2| ", CR, ' 84
" -3| ", CR, CR ' 98 + 1 = 99

' -----[Initialization]--

FOR index = 0 TO 99 ' Display background
 READ index, character
 DEBUG character
NEXT

' -----[Main Routine]--

DO

 xOld = x ' Store previous coordinates
 yOld = y

 DEBUG "Type X coordinate: " ' Get new coordinates
 DEBUGIN SDEC1 x
 DEBUG CR, "Type Y coordinate: "
 DEBUGIN SDEC1 y

 x = (x * 2) + 6 ' Cartesian to DEBUG values
 y = 3 - y

 DEBUG CRSRXY, x, y, "*" ' Display asterisk

 index = (14 * yOld) + xOld + 1 ' Redisplay background
 READ index, character
 DEBUG CRSRXY, xOld, yOld, character

 DEBUG CRSRXY, 0, 10, "Press any Key..." ' Wait for user
 DEBUGIN temp
 DEBUG CRSRXY, 0, 8, CLRDN ' Clear old info

LOOP

Your Turn - Redrawing the Background without Extra Variables

Keeping track of the old location of the foreground character isn’t always necessary.
Think about it this way: in EepromBackgroundRefresh.bs2 the x and y variables store the
old values until you enter new values. By simply rearranging the order that the x and y
variables are displayed in, you can eliminate the need for xOld and yOld.

Page 20 · Smart Sensors and Applications

Next is a replacement main routine you can try in EepromBakcgroundRefresh.bs2. As
soon as you press the space bar, your old asterisk disappears. The new asterisk reappears
when you type the second of the two coordinates. As you will see in the next activity,
this technique works really well when the refresh rate is several times per second with tilt
control.

√ Save EepromBakcgroundRefresh.bs2 as EepromBackgroundRefreshYourTurn.bs2.
√ Comment the xOld and yOld variable declarations.
√ Replace the Main Routine in EepromBackgroundRefresh.bs2 with this one.
√ Test it and examine the change in the program’s behavior.

' -----[Main Routine]---

DO

 index = (14 * y) + x + 1 ' Redisplay background
 READ index, character
 DEBUG CRSRXY, x, y, character

 DEBUG CRSRXY, 0, 8, ' Get new coordinates
 "Type X coordinate: "
 DEBUGIN SDEC1 x
 DEBUG CR, "Type Y coordinate: "
 DEBUGIN SDEC1 y

 x = (x * 2) + 6 ' Cartesian to DEBUG values
 y = 3 - y

 DEBUG CRSRXY, x, y, "*" ' Display asterisk

 DEBUG CRSRXY, 0, 10, "Press any Key..." ' Wait for user
 DEBUGIN temp
 DEBUG CRSRXY, 0, 8, CLRDN ' Clear old info

LOOP

Animation and Redrawing the Background

Here is an example of something you can do if you use individual characters, but it won't
work if you try to redraw the entire display with a DEBUG command.

√ Save EepromBackgroundRefresh.bs2 as ExampleAnimation.bs2
√ Replace the main routine in the program with the one shown here.
√ Run it and observe the effect.

Accelerometer - Tilt, Graphics and Video Games · Page 21

DO
 FOR y = 0 TO 6
 FOR temp = 1 TO 2
 FOR x = 0 TO 12
 IF (temp.BIT0 = 1) THEN
 DEBUG CRSRXY, x, y, "*"
 ELSE
 index = (14 * yOld) + xOld + 1
 READ index, character
 DEBUG CRSRXY, xOld, yOld, character
 xOld = x
 yOld = y
 ENDIF
 PAUSE 50
 NEXT
 NEXT
 NEXT
LOOP

ACTIVITY #3: TILT THE BUBBLE GRAPH
This activity combines the graphics concepts introduced in Activity #1 and #2 with the
accelerometer tilt measurement techniques introduced in Chapter 1. The result is an
asterisk bubble that demonstrates the movement of the heated gas pocket inside the
MX2125’s chamber. Figure 9 shows what the Debug Terminal in this activity displays
when the accelerometer is tilted up and to the left.

Figure 9 - Accelerometer Hot Gas Location

Asterisk Indicates
Hot Gas Location

Page 22 · Smart Sensors and Applications

Figure 10 shows a legend for the different ways you can tilt the board on its axes along
with each tilt’s effect on the location of the hot gas pocket.

Level

Tilt
Right

Tilt
Left

Tilt
Down

Tilt
Up

Tilt

Hot Gas Center

(0, 0)

(-3, 0)

(3, 0)

(0, -3)

(0, 3)

Figure 10

Accelerometer - Tilt, Graphics and Video Games · Page 23

Tilt Control of Asterisk Display

BubbleGraph.bs2 updates the position of the hottest spot inside the accelerometer
chamber about 8 times per second (8 Hz). After displaying the (background) XY axes to
the debug terminal, it repeats the same steps over and over again.

• Display the background character and pause for the blink-effect.
• Get the X-axis tilt from the accelerometer
• Adjust the value so that it fits on the plot’s X-axis.
• Get the Y-axis tilt from the accelerometer
• Adjust the value so that it fits on the plot’s Y-axis.
• Display the asterisk and pause again for the blink-effect.

Each of these steps is discussed in more detail in the section that follows the example
program.

Example Program – BubbleGraph.bs2

√ Enter and run BubbleGraph.bs2.
√ Hold your board as shown in the Tilt Asterisk Display figure.
√ Practice controlling the asterisk by tilting the board.
√ Aside from holding you board horizontally and tilting it, try holding it vertically and

rotating it in a circle. The asterisk should travel in a circular arc around the graph as
you do so.

' -----[Title]--
' Accelerometer Projects ' Program info
' BubbleGraph.bs2

'{$STAMP BS2} ' Stamp/PBASIC directives
'{$PBASIC 2.5}

' -----[EEPROM Data]--
' Store background to EEPROM ' Address of last char on row
DATA CLS, ' 0
" 5^Y ", CR, ' 22
" 4| ", CR, ' 44
" 3| ", CR, ' 66
" 2| ", CR, ' 88
" 1| X", CR, ' 110
"----------+--------->", CR, ' 132
"-5-4-3-2-1| 1 2 3 4 5", CR, ' 154
" -2| ", CR, ' 176
" -3| ", CR, ' 198

Page 24 · Smart Sensors and Applications

" -4| ", CR, ' 220
" -5| ", CR ' 242

' -----[Variables]--
x VAR Word ' Store current position
y VAR Word

index VAR Word ' READ index/character storage
char VAR Byte

' -----[Initialization]---
FOR index = 0 TO 242 ' Read & display background
 READ index, char
 DEBUG char
NEXT

' -----[Main Routine]---
DO ' Begin main routine

 ' Replace asterisk with background character.
 index = (22 * y) + x + 1 ' Coordinates -> EEPROM address
 READ index, char ' Get background character
 DEBUG CRSRXY, x, y, char ' Display background character
 PAUSE 50 ' Pause for blink effect

 ' Get X-axis tilt & scale to graph.
 PULSIN 6, 1, x ' Get X-axis tilt
 x = x MIN 1875 MAX 3125 ' Keep inside X-axis domain
 x = x – 1875 ' Offset to zero
 x = x * 2 / 125 ' Scale

 ' Get Y-axis tilt & scale to graph.
 PULSIN 7, 1, y ' Get Y-Axis tilt
 y = y MIN 1875 MAX 3125 ' Keep in Y-Axis range
 y = y – 1875 ' Offset to zero
 y = y / 125 ' Scale
 y = 10 – y ' Offset Cartesian -> Debug

 ' Display asterisk at new cursor position.
 DEBUG CRSRXY, x, y, "*" ' Display asterisk
 PAUSE 50 ' Pause again for blink effect

LOOP ' Repeat main routine

How BubbleGraph.bs2 Works

The first thing the main routine does is displays the background character at the current
cursor position. With a 50 ms pause, it completes the “off” portion of a blinking asterisk.
While the programs in Activity #2 had 14 characters per row, this larger plot has 22
characters per row. This value has to be multiplied by the y display coordinate, then

Accelerometer - Tilt, Graphics and Video Games · Page 25

added to the x display coordinate, plus one for the CLS at EEPROM address zero. The
result stored in the index variable is the EEPROM address of the correct background
character.

' Replace asterisk with background character.
index = (22 * y) + x + 1
READ index, char
DEBUG CRSRXY, x, y, char
PAUSE 50

The PULSIN command measures the X-axis measurement pulse the accelerometer sends
to P6 and stores it in the x variable. MIN and MAX values are applied to x so that it doesn’t
cause the program to try to place the asterisk outside the plot area. Then, by subtracting
1875 from x causes the variable to range from 0 to 1250. Multiplying by 2 then dividing
by 125 results in values ranging from 0 to 20, the number of characters across the X-axis
on the plot.

' Get X-axis tilt & scale to graph.
PULSIN 6, 1, x
x = x MIN 1875 MAX 3125
x = x – 1875
x = x * 2 / 125

The PULSIN command measures the Y-axis measurement pulse the accelerometer sends
to P7 and stores it in the y variable, and the MIN and MAX values are again applied to
prevent the asterisk from wondering off the plot area. While the plot area is 20 spaces
wide, it’s only 10 spaces tall. This time, a measurement that ranges from 1875 to 3125
has to be mapped to a range of 10 to 0 (not 0 to 10). Dividing y by 125 gives a scale of
10, but we want the largest value to map to 0 carriage returns (Y = + 5) on the Debug
terminal while the smallest value maps to 10 carriage returns down (Y = -5). That’s what
y = 10 – y does. When + 10 is substituted for y on the right side of the equal sign, the
result on the left is 0. When 0 is substituted for y on the right side of the equal sign, the
result on the left is 0. It works right for 1 through 9 too; give it a try.

' Get Y-axis tilt & scale to graph.
PULSIN 7, 1, y
y = y MIN 1875 MAX 3125
y = y – 1875
y = y / 125
y = 10 – y

Page 26 · Smart Sensors and Applications

The last steps before repeating the loop in the main routine is to display the new asterisk
at its new x and y coordinates, then pause for another 50 ms to complete the “on” portion
of the blinking asterisk.

' Display asterisk at new cursor position.
DEBUG CRSRXY, x, y, "*"
PAUSE 50

Your Turn – A Larger Bubble

Displaying and erasing the group of asterisks shown in Figure 11 can be done, but
compared to a single character, it’s a little tricky. The program has to ensure that none of
the asterisks will be displayed outside the plot area. It also has to ensure that all of the
asterisks will be overwritten with the correct characters from EEPROM.

Figure 11
Group of Asterisks
with Background
Refresh

Here is one example of how to modify BubbleGraph.bs2 so that it displays.

√ Save BubbleGraph.bs2 as BubbleGraphYourTurn.bs2.
√ Add this variable declaration to the program’s Variables section:

temp VAR Byte

√ Replace the “Replace asterisk with background character” routine with this:

' Replace asterisk with background character (modified).

Accelerometer - Tilt, Graphics and Video Games · Page 27

FOR temp = (x MIN 1 – 1) TO (x MAX 19 + 1)
 index = (22 * y) + temp + 1
 READ index, char
 DEBUG CRSRXY, temp, y, char
NEXT

FOR temp = (y MIN 1 – 1) TO (y MAX 9 + 1)
 index = (22 * temp) + x + 1
 READ index, char
 DEBUG CRSRXY, x, temp, char
NEXT
PAUSE 50

√ Replace the “ Display asterisk at new cursor position” routine with this:

' Display asterisk at new cursor position (modified).
DEBUG CRSRXY, x, y, "*",
 CRSRXY, x MAX 19 + 1, y, "*",
 CRSRXY, x, y MAX 9 + 1, "*",
 CRSRXY, x MIN 1 - 1, y, "*",
 CRSRXY, x, y MIN 1 - 1, "*"
PAUSE 50

√ Run the program and try it. Test to make sure problems do not occur as one of the
outermost asterisks is forced off the plot area.

MIN and Negative Numbers

A twos complement "gotcha" to avoid is subtracting 1 from 0 and then setting the MIN value
afterwards. Remember from Activity #1 that twos complement system stores the signed
value -1 as 65535. That’s why the MIN value was set to 1 before subtracting 1. The result
is then a correct minimum of 0. The same technique was used for setting the MAX values
even though there really isn’t a problem with y + 1 MAX 10.

ACTIVITY #4: GAME CONTROL
Here are the rules of this Activity's tilt controlled game example, shown in Figure 12.
Tilt your board to control the asterisk. If you get through the maze and place the asterisk
on any of the "WIN" characters, the "YOU WIN" screen will display. If you bump into
any of the pound signs "#" before you get to the end of the maze, the "YOU LOSE"
screen is displayed. As you navigate the maze, try to move your asterisk game character
through the dollar signs "$" to get more points.

Page 28 · Smart Sensors and Applications

Figure 12 - Obstacle Course Game

Converting BubbleGraph.bs2 into TiltObstacleGame.bs2

TiltObstacleGame.bs2 is inarguably a hopped-up version of BubbleGraph.bs2. Here is a
list of the main changes and additions:

Accelerometer - Tilt, Graphics and Video Games · Page 29

• Change the graph into a maze.
• Add two backgrounds for win and lose to the EEPROM data.
• Give each background a Symbol name.
• Write a game player code block that detects which background character the game

character is in front of and uses that information to enforce the rules of the game.

Try the game first, then we’ll take a closer look at how it works.

Example Program – TiltObstacleGame.bs2

√ Enter, and save TiltObstacleGame.bs2.
√ Before you run the program, make sure your board is level. Also, make sure you are

holding it the same way you did in Activity 3, with the breadboard is closest to you,
and the serial cable is furthest away.

√ If you want to refresh the “$” characters, click your BASIC Stamp Editor’s Run
button. If you want to just practice navigating and not worry about points, press and
release the Reset button on your board.

' -----[Title]--
' Accelerometer Projects ' Program info
' TiltObstacleGame.bs2

'{$STAMP BS2} ' Stamp/PBASIC directives
'{$PBASIC 2.5}

' -----[EEPROM Data]--
' Store background to EEPROM ' 3 backgrounds used in game

Maze DATA @0, HOME, ' Maze background
"#####################", CR,
"###### $ ########", CR,
"## ### ###", CR,
"# ########### ###", CR,
"#$ # ####", CR,
"##### # $ #####WIN", CR,
"# ## ## $ #", CR,
"# $ ########### # #", CR,
"# ##$## # #", CR,
"# ######## #", CR,
"#####################", CR

YouLose DATA @243, HOME, ' YouLose background
"#####################", CR,
"#####################", CR,

Page 30 · Smart Sensors and Applications

"### ####### ####", CR,
"### ####### ####", CR,
"#####################", CR,
"########## ##########", CR,
"#####################", CR,
"### ####", CR,
"### YOU LOSE ####", CR,
"### ####", CR,
"#####################", CR

YouWin DATA @486, HOME, ' YouWin background
" ########### ", CR,
" ################# ", CR,
"##### ##### #####", CR,
"#### ### ####", CR,
"# ### ##### ### #", CR,
"# ############### #", CR,
"## ########### ##", CR,
"## ##", CR,
" #### YOU WIN #### ", CR,
" #### #### ", CR,
" ######### ", CR

' -----[Variables]--
x VAR Word ' x & y tilts & graph coordinates
y VAR Word

index VAR Word ' EEPROM address and character
char VAR Byte

symbol VAR Word ' Symbol address for EEPROM DATA
points VAR Byte ' Points during game

' -----[Initialization]---
x = 10 ' Start game character in middle
y = 5

DEBUG CLS ' Clear screen

' Display maze.
symbol = Maze ' Set Symbol to Maze EEPROM DATA

FOR index = 0 TO 242 ' Display maze
 READ index + symbol, char
 DEBUG char
NEXT

' -----[Main Routine]---
DO

 ' Display background at cursor position.

Accelerometer - Tilt, Graphics and Video Games · Page 31

 index = (22 * y) + x + 1 ' Coordinates -> EEPROM address
 READ index + symbol, char ' Get background character
 DEBUG CRSRXY, x, y, char ' Display background character
 PAUSE 50 ' Pause for blink effect

 ' Get X-axis tilt & scale to graph.
 PULSIN 6, 1, x ' Get X-axis tilt
 x = x MIN 1875 MAX 3125 ' Keep inside X-axis domain
 x = x - 1875 ' Offset to zero
 x = x * 2 / 125 ' Scale

 ' Get Y-axis tilt & scale to graph.
 PULSIN 7, 1, y ' Get Y-Axis tilt
 y = y MIN 1875 MAX 3125 ' Keep in Y-Axis range
 y = y - 1875 ' Offset to zero
 y = y / 125 ' Scale
 y = 10 - y ' Offset Cartesian -> Debug

 ' Display asterisk at new position.
 DEBUG CRSRXY, x, y, "*" ' Display asterisk
 PAUSE 50 ' Pause again for blink effect

 ' Display score
 DEBUG CRSRXY, 0, 11, ' Display points
 "Score: ", DEC3 points

 ' Did you move the asterisk over a $, W, I, N, or #?
 SELECT char ' Check background character
 CASE "$" ' If "$"
 points = points + 10 ' Add points
 WRITE index, "%" ' Write "%" over "$"
 CASE "#" ' If "#", set Symbol to YouLose
 symbol = YouLose
 CASE "W", "I", "N" ' If W,I,orN, Symbol -> YouWin
 symbol = YouWin
 ENDSELECT

 ' This routine gets skipped while symbol is still = Maze. If symbol
 ' was changed to YouWin or YouLose, display new background and end game.
 IF (symbol = YouWin) OR (symbol = YouLose) THEN
 FOR index = 0 TO 242 ' 242 characters
 READ index + symbol, char ' Get character
 DEBUG char ' Display character
 NEXT ' Next iteration of loop
 END ' End game
 ENDIF ' End symbol-if code block

LOOP ' Repeat main loop

Page 32 · Smart Sensors and Applications

How it Works – From BubbleGraph.bs2 to TiltObstacleGame.bs2

Two of the DATA directive’s optional features were used here. Each of the three
backgrounds was given a Symbol name, Maze, YouWin, and YouLose. These Symbol
names make it easy for the program to select which background to display. The optional
@Address operator was also used to set each directive’s beginning EEPROM address. In
BubbleGraph.bs2’s background, the first character is CLS to clear the screen. The
problem with CLS in these DATA directives is that it erases the entire Debug Terminal,
including the score, which is displayed below the background. By substituting HOME for
CLS, the entire backgrounds can be drawn and redrawn without erasing the score.

Maze DATA @0, HOME,
"#####################", CR,
"###### $ ########", CR,
 ·
 ·
 ·
YouLose DATA @243, HOME,
"#####################", CR,
"#####################", CR,
 ·
 ·
 ·
YouWin DATA @486, HOME,
" ########### ", CR,
" ################# ", CR,
 ·
 ·
 ·

Verifying Symbol Values

You can also try commands like DEBUG DEC YouWin to verify that YouWin stores the
value 486.

Two variables are added, symbol to keep track of which background to retrieve
characters from, and points to keep track of the player’s score.

symbol VAR Word
points VAR Byte

The initial values of x and y have to start in the middle of the obstacle course. Since all
variables initialize to zero in PBASIC, and that would cause the game character to start in
the top-left corner, instead of in the middle.

Accelerometer - Tilt, Graphics and Video Games · Page 33

x = 10
y = 5

The symbol variable is set to Maze before executing the FOR…NEXT loop that displays the
background. Since all variables are initialized to zero in PBASIC, this happens anyhow.
However, if you were to insert a DATA directive before the Maze background, it would be
crucial to have this statement.

' Display maze.
symbol = Maze

The code block that follows the variable initialization is the background display. Look
carefully at the READ command. It has been changed from READ index, char to READ
index + symbol, char. Since the symbol variable was set to store Maze, all the
characters in the first background will be displayed. If symbol stored YouLose, all the
characters in the second background would be displayed. If it stored YouWin, all the
characters in the third background would be displayed. Since either "You Lose" or "You
Win" will have to be displayed, this routine will be used again later in the program.

FOR index = 0 TO 242
 READ index + symbol, char
 DEBUG char
NEXT

Three routines have to be added to the DO...LOOP in the main routine. The first simply
displays the player’s score:

 ' Display score
 DEBUG CRSRXY, 0, 11, ' Display points
 "Score: ", DEC3 points

The second routine is crucial; it’s a SELECT…CASE statement that enforces the rules of the
game. The SELECT...CASE statement looks at the character in the background at the
asterisk’s current location. If the asterisk is over a space " ", the SELECT…CASE
statement doesn’t need to change anything, so the main routine’s DO...LOOP just keeps
on repeating itself, checking the accelerometer measurements and updating the asterisk’s
location. If the asterisk is moved over a "$", the program has to add 10 to the points
variable, and write a "%" character over the "$" in EEPROM. This prevents the program
from adding 10 points several times per second while the asterisk is held over the "$".
If the asterisk is moved over a "#", the YouLose symbol is stored in the symbol variable.

Page 34 · Smart Sensors and Applications

If the asterisk moves over any one of the "W" "I" or "N" letters, YouWin is stored in the
symbol variable.

 ' Did you move the asterisk over a $, W, I, N, or #?
 SELECT char ' Check background character
 CASE "$" ' If "$"
 points = points + 10 ' Add points
 WRITE index, "%" ' Write "%" over "$"
 CASE "#" ' If "#", set Symbol to YouLose
 symbol = YouLose
 CASE "W", "I", "N" ' If W,I,orN, Symbol -> YouWin
 symbol = YouWin
 ENDSELECT

As you’re navigating your asterisk over " ", "$", or "%", this next routine gets skipped
because symbol still stores Maze. The SELECT…CASE statement only changes that when
the asterisk was moved over "#", "W", "I", or "N". Whenever the SELECT…CASE
statement changes symbol to either YouWin or YouLose, this routine displays the
corresponding background, then ends the game.

 ' This routine gets skipped while symbol is still = Maze. If symbol
 ' was changed to YouWin or YouLose, display new background and end game.
 IF (symbol = YouWin) OR (symbol = YouLose) THEN
 FOR index = 0 TO 242 ' 242 characters
 READ index + symbol, char ' Get character
 DEBUG char ' Display character
 NEXT ' Next iteration of loop
 END ' End game
 ENDIF ' End symbol-if code block

Your Turn – Modifications and Bug Fixes

The game doesn't refresh the "$" symbols when you re-run it with the Board of
Education's RESET button. It only works when you click the Run button on the BASIC
Stamp Editor. That's because the DATA directive only writes to the EEPROM when the
program is downloaded. If the program is restarted with the RESET button, the BASIC
Stamp Editor doesn't get the chance to store the spaces, dollar signs, etc, so the percent
signs that were written to EEPROM are still there. To fix the problem, all you have to do
is check each character that gets read from EEPROM during the initialization. If that
character turns bout to be a "%", use the WRITE command to change it back to a "$".

√ Save TiltObstacleGame.bs2 as TiltObstacleGameYourTurn.bs2
√ Modify the FOR...NEXT loop in the initialization that displays the maze like this:

Accelerometer - Tilt, Graphics and Video Games · Page 35

FOR index = 0 TO 242 ' Display maze
 READ index + symbol, char
 IF(char = "%") THEN ' <--- Add
 char = "$" ' <--- Add
 WRITE index + symbol, char ' <--- Add
 ENDIF ' <--- Add
 DEBUG char
NEXT

√ Verify that both the BASIC Stamp Editor's Run button and the Board of Education's
Reset button both behave the same after this modification.

If the player rapidly changes the board's tilt, it is possible to jump over the "#" walls.
There are two ways to fix this, one would be to add jumping animation and call it a
"feature". Another way to fix it would be to only allow the asterisk to move by 1
character in either the X or Y directions. To fix this, the program will need to keep track
of the previous position. This is a job for the xOld and yOld variables introduced in
Activity #2.

√ Add these variable declarations to the Variables section in

TiltObstacleGameYourTurn.bs2:

x VAR Word ' x & y tilts & coordinates
y VAR Word

xOld VAR Word ' <--- Add
yOld VAR Word ' <--- Add

√ Add initialization statements for xOld and yOld.

x = 10 ' Start game char in middle
xOld = 10 ' <--- Add
y = 5
yOld = 5 ' <--- Add

√ Modify the main routine so that it x can only be greater than or less than xOld by an
increment or decrement of 1. Repeat for y and yOld.

y = 10 - y ' Offset Cartesian -> Debug

IF (x > xOld) THEN x = xOld MAX 19 + 1 ' <--- Add
IF (x < xOld) THEN x = xOld MIN 1 - 1 ' <--- Add

IF (y > yOld) THEN y = yOld MAX 9 + 1 ' <--- Add
IF (y < yOld) THEN y = yOld MIN 1 - 1 ' <--- Add

Page 36 · Smart Sensors and Applications

' Display asterisk at new position.
DEBUG CRSRXY, x, y, "*" ' Display asterisk
PAUSE 50 ' Pause again for blink
effect

xOld = x ' <--- Add
yOld = y ' <--- Add

' Display score

√ Run and test your modified program and verify that the asterisk can no longer skip

"#" walls.

Accelerometer - Tilt, Graphics and Video Games · Page 37

SUMMARY
Activity #1 introduced control characters, techniques for keeping characters inside a
display’s boundaries, and algebra for mapping coordinates to a display. Control character
examples included CRSRXY and CLRDN. Display boundary examples included the MIN and
MAX operators and an IF…THEN technique. Mapping techniques included simple PBASIC
equations to change the values of X and Y-coordinates from Cartesian to their Debug
Terminal equivalents.

Activity #2 introduced a means of storing, displaying and refreshing a background
character display image from EEPROM. This is a useful ingredient for many product
displays, and will also come in handy for tilt display and games. An entire display
background can be printed with a FOR…NEXT loop. A READ command in the loop depends
on the FOR…NEXT loop’s index variable to address the next character in the sequence.
After the READ command loads the next character in the variable, the DEBUG command
can be used to send the character to the Debug Terminal. For erasing the tracks left by a
character moving over the background, the character’s previous position can be stored in
one or more variables. The previous position information is then used along with the
READ command to look up the character that should replace the moving character after it
has moved to its next position.

Activity #3 demonstrated how the accelerometer measurements from Chapter 1 can be
combined with cursor positioning and character recall techniques from Activity #1 in this
chapter to create a tilt controlled display. Simple PULSIN measurements were used to
measure the accelerometer’s X and Y axis tilt. The tilt values were then scaled, offset,
and displayed in the Debug Terminal as an asterisk over a Cartesian plane. The asterisk's
position indicated the position of the hottest pocked of gas inside the MX2125’s chamber,
and as it moved, the background at its previous position was redrawn.

Activity #4 introduced tilt mode game control. The rules of simple games can be
implemented with SELECT...CASE statements that use the character in the background at
the location of the game character to decide what action to take next. Multiple
backgrounds can be incorporated into a game by making use of the DATA directive's
optional @Address operator and Symbol name. Since the Symbol name is actually the
EEPROM address at the beginning of a given DATA directive, your program can access
elements in different backgrounds by adding the value of Symbol make to the READ
command's Address argument.

Page 38 · Smart Sensors and Applications

Questions

1. What does HID stand for?
2. What two arguments do you need along with DEBUG CRSRXY to place the cursor

at a location in the Debug Terminal?
3. What control character clears the any printed characters that come after the

cursor in the Debug Terminal?
4. Where is the Debug Terminal’s transmit windowpane in relation to its receive

windowpane?
5. What formatter stores a single digit that you type into the Debug Terminal’s

transmit windowpane in the X variable?
6. What operator can you use to make sure the value a variable stores does not

exceed a maximum value?
7. Are there other coding techniques you can use other operators to prevent the

value a variable stores from exceeding a maximum or minimum value?
8. What statements did CrsrXYPlot.bs2 use to convert Cartesian coordinates to

Debug Terminal CRSRXY coordinates?
9. If the BASIC Stamp sends a negative value to the Debug Terminal, what can you

say about the unsigned value of that number?
10. How does scale affect mapping Cartesian coordinates to the Debug Terminal?
11. What are the refresh rates of common CRT computer monitors?
12. Name two types of displays that do not need have all their pixels repeatedly

refreshed by the BASIC Stamp?
13. What kind of routine do you need to display all the background characters stored

in a DATA directive?
14. Why is it important to know how many background characters are in each row?
15. Why are word variables better for storing signed values?
16. What is the key to redrawing the background with the same variables used to

store a character’s current position?
17. When you tilt the accelerometer to the left, which way does the asterisk bubble

travel?
18. If the coordinates of the asterisk moved from (0, 0) to (0, 3), which direction did

you tilt it?
19. If the coordinates of the asterisk started at (-5,0), and ended at (5, 0), what do

you think happened to the accelerometer?
20. If the coordinates of the asterisk started at (3, -3) and ended at (-3, 3) what tilt

did the accelerometer start in, and what tilt did it end in?
21. Which axis was the fulcrum if the accelerometer started at (2, 2) and ended at (-

2, 2)?

Accelerometer - Tilt, Graphics and Video Games · Page 39

22. Here are four unusual coordinates for a single motion: (0, 5), (-5, 0), (0, -5), (5,
0). What motion can you perform on the accelerometer to cause it to report this
sequence of coordinates?

23. If the accelerometer’s readings travel from (0, 5) to (0, -5), then back again
repeatedly, what two motion sequences are likely?

24. What's the beginning address of the YouLose background?
25. What's the value of YouWin?
26. In TiltObstacleGame.bs2, why were the control characters at the beginning of

each background changed from CLS to HOME?
27. What command can you use to check the value of a DATA directive's Symbol

name?
28. What's the difference between displaying the 23rd character in the YouLose

EEPROM DATA and the 23rd character in YouWin?
29. If you change the Maze DATA directive's @Address operator from 0 to 10, what

will you have to do to the other DATA directives in the program?
30. If you change the YouWin DATA directive's optional @Address operator from

486 to 500, what else in the program will you have to change?
31. In TiltObstacleGame.bs2, what kind of code block enforces the rules of the

game?
32. What variable has to change for the game to end?
33. What command changes the "%" values back to "$" values in EEPROM?
34. How can you prevent the asterisk from skipping over the "#" wall?

Exercises

1. Write a DEBUG command that places the cursor five spaces over, seven space
down, and then prints the message “* this is the coordinate (5, 7) in
the Debug Terminal”.

2. Write a DEBUG command that displays a Cartesian coordinate system from -2 to 2
on the X and Y axes.

3. Calculate the scale and offset for you will need for a coordinate system that goes
from -2 to 2 on both the X and Y axes.

4. Write a DEBUG command that displays a Cartesian coordinates from -5 to 5 on
the X and Y axes.

5. Calculate the scale and offset you will need for a coordinate system that goes
from -5 to 5 on both the X and Y axes.

6. Write a routine that draws a line of + characters that extends from (1, 1) to (5, 5)
in Cartesian coordinates.

Page 40 · Smart Sensors and Applications

7. Write a routine that draws a rectangle with asterisks. This routine should be 15
asterisks wide and 5 asterisks high.

8. Write a routine that makes a shape such as a rectangle, triangle or circle, then
causes it to disappear one asterisk at a time.

9. If your background is 5 characters wide by 3 characters high, predict the
minimum size variable you can use to set the address for your read command
and explain your choice. Will you have any room for additional characters such
as CLS?

10. Modify the background for a coordinate system from -3 to 3 on both the X and Y
axes.

11. Modify the background display initialization for a coordinate system from -3 to 3
on both the X and Y axes.

12. Modify the scale and offset calculations for a -3 to 3 coordinate system.
13. Modify the scale and offset calculations so that the asterisk travels the same

direction you tip the board instead of the opposite direction. When you tip the
board left, the asterisk should go left, etc.

14. Modify the code block that adds to your score so that it gives you 100 points per
"$". Explain what else needs to be modified for the program to work properly.

15. Explain how to modify the program so that you can choose between three
different mazes.

16. Explain what will happen to the program if you remove the @Address operators
from the DATA directives.

17. Write a segment of code that remembers the highest score.

Projects

1. Modify CrsrXYPlot.bs2 so that it redraws the background before it plots the
asterisk. The net effect should be that only one asterisk is visible at any given
time. A better way of doing this is introduced in the next activity.

2. Modify PlotXYGraph.bs2 so that it displays the coordinates of the most recently
placed asterisk to the right of the plot area.

3. Modify PlotXYGraph.bs2 so that it plots a line of asterisks from (-3, -3) to (3, 3).
4. repeats the line plot.
5. Modify PlotXYGraph.bs2 so that it plots a line of asterisks from from (3,-3) to (-

3,3), then erases it, then repeats the line plot.
6. Modify PlotXYGraph.bs2 so that it works on a plot from -4 to 4 on both the X

and Y axes.
7. Modify PlotXYGraph.bs2 so that it works on a plot from -2 to 2 on the Y axis in

increments of 0.5 and from -4 to 4 on the X axis.

Accelerometer - Tilt, Graphics and Video Games · Page 41

8. Write a program that allows you to move an asterisk around the Cartesian plane
with the R, L, U, and D keys. Only one asterisk should appear on the plot at any
given time.

9. Write a drawing program that allows you to select characters and draw them over
the Cartesian plane. By pressing the enter key twice, the drawing disappears one
character at a time.

10. Instead of a coordinate system from -5 to 5 on both axes, modify
BubbleGraph.bs2 so that it functions on a coordinate system from -4 to 4.

11. Modify BubbleGraph.bs2 so that it allows you to hold your Board of Education
(or BASIC Stamp Homework Board) so that you can read the writing on the
board. The way the bubble behaves should be the same as it did in the original
program.

12. Modify BubbleGraph.bs2 so that the cursor moves in the direction you tilt the
board and test it.

13. Add a pushbutton circuit to the game, and modify the program so that you can
use the pushbutton to toggle between different mazes.

14. Modify the program so that the "$" character earns you 10 points, and the "#"
characters deduct 10 points. The game should start you with 20 points. If your
score becomes negative, display "You Lose".

15. Create a 4 X 16 character version of this game. That's 4 characters high by 16
characters wide.

16. Rearrange the program so that the main routine calls subroutines for everything
except executive decision making. That means subroutines have to handle
accelerometer, measurements, cursor placement, and display updates.

17. Modify the game so that it displays a character in the direction you are traveling.
Use "v", "<", ">", and "^". Add a pushbutton circuit that shoots an asterisk that
makes a "#" disappear when it hits it.

