
Column #120: You Can’t Touch That: Non-contact Access Control

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 61

Column #120 April 2005 by Jon Williams:

You Can’t Touch That: Non-contact Access
Control

Today I had a bit of a headache and was feeling cramped in my office so I decided to escape
to the treadmill for a half-hour or so in the complex's private gym. To keep it private,
members gain access by waving a security card in front of a small plate adjacent to the front
door – if the card is a match, cha-ching, the door unlocks and you're in.

Okay, what's going on with the card? You've probably seen them, they're everywhere. The
cards in question contain technology called RFID: Radio Frequency Identification. Even if
you haven't heard of RFID, you may have unknowingly been exposed to it. RFID tags can be
as small and nearly as thin as a postage stamp, and are often used to track package movement
in retail stores (big companies like Wal-Mart, Target, and others are adopting the technology).
Drug companies are even putting RFID tags into their packaging to the prevent piracy of
expensive medicines. RFID is big news, and now you can get in on it too.

Column #120: You Can’t Touch That: Non-contact Access Control

Page 62 • The Nuts and Volts of BASIC Stamps (Volume 6)

There are two essential components in an RFID system: a transceiver (reader) and a
transponder (tag). If it were only that simple.... Tags can be active (contain their own power
source) or be passive (create parasitic power from the reader's RF field). Further, tags can be
read-only or read-write. Zoiks. Let's just keep things simple, shall we?

Parallax worked with world-famous hardware hacker and engineer-extraordinaire, Joe Grand
(owner of Grand Idea Studio), to create a low-cost RFID reader that would be simple to use in
hobbyist and professional projects. The result is a fully integrated reader PCB that contains
the required circuitry and matched antenna to work with passive, read-only RFID tags. Note
that the reader is specifically designed for tags that contain low-frequency (125 kHz) RFID
components from EM Microelectronic. Parallax carries a couple tag types (disc and ISO
card) that are manufactured by Sokymat and that meet the requirements of the reader. Figure
120.1 shows a few sample tags from Sokymat that I played with; you can clearly see the disc
(far left) and ISO card (far right) tags.

Figure 120.1: Various Sokymat RFID Tags sold by Parallax

Column #120: You Can’t Touch That: Non-contact Access Control

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 63

Is It Magic?

Okay, how does it work? It's not magic; in fact it's not terribly complicated. When power (5
VDC) is applied to the reader a green LED will indicate that it's ready to function. By pulling
the ENABLE pin low, the reader becomes active (LED changes to red) and the antenna
broadcasts a modulated signal. If a tag is within range (up to four inches with the Parallax
reader), it will harvest the RF energy with its own antenna and modulate its unique
identification code in a manner that can be detected by the reader. A microcontroller on the
reader tests the bits from the RFID tag to make sure the information is valid, and then the tag
number is converted to an ASCII stream to be transmitted on the SOUT pin at 2400 baud.

Keep in mind that when the antenna is active (red LED), the device is broadcasting and
consuming about 200 mA from the power supply. If you're going to do a project that involves
batteries, you may want to add a physical button to activate the reader only when a card is
actually present, or use a timeout with SERIN (BS2 family only) to disable the reader
periodically and reduce the load on the power supply.

Since RFID is so common in controlled-access and security systems, let's go that direction.
And just for fun, let's build a super-simple, single-tag access control device with a BS1. Can
we do it? Absolutely. In fact, the code is so simple we can look at the whole thing in one
shot:

Main:
 LOW Enable
 SERIN RX, T2400, ($0A, "0F0184F20B")
 HIGH Enable

Access_Granted:
 HIGH Latch
 PAUSE 2000
 LOW Latch
 GOTO Main

We start by activating the reader (ENABLE pin is pulled low) and then simply waiting the for
a specific tag string. And let me correct something I left out: the tag ID string is preceded by
a linefeed character ($0A) and followed by a carriage return ($0D). We'll see why this is
useful a bit later.

Column #120: You Can’t Touch That: Non-contact Access Control

Page 64 • The Nuts and Volts of BASIC Stamps (Volume 6)

Figure 120.2: RFID to BASIC Stamp Connection

Column #120: You Can’t Touch That: Non-contact Access Control

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 65

In this program, SERIN does all the work. We construct the SERIN line to wait for the
linefeed character, then the specific characters in the valid RFID tag string. Once that shows
up the program drops to the point called Access_Granted where we activate an output that
will do what we need it to do. We could, for example, disable an electric door lock that gives
us – and just us – access to something special. After a brief delay the lock-control output is
enabled and we go back to the top.

The logical question is, "Where did you get the tag ID string?" From the tag, of course. I just
mentioned that the (ASCII) tag string is preceded by a linefeed and followed by a carriage
return. We can put this to use by connecting the reader to a terminal program. Note that we
need to go through an RS-232 line driver (e.g., MAX232, DS275, etc.) as the serial output is
at TTL levels. Figure 120.3 shows the connections and Figure 120.4 shows the output when
using a manually-opened terminal from the BASIC Stamp IDE (note that the baud rate is set
to 2400). In most cases we'll use a BASIC Stamp to work with the reader, but be aware that
you can also connect directly to a custom PC application using a simple interface as shown.

Figure 120.3: RFID to Serial Port Connectivity

Column #120: You Can’t Touch That: Non-contact Access Control

Page 66 • The Nuts and Volts of BASIC Stamps (Volume 6)

Figure 120.4: RFID Debug Output

By the way, if you happen to have the new Parallax Serial LCD module, you can use it as a
terminal – and you don't need a level-shifter. Simply set the LCD Mode switches for 2400
baud (1 = Up, 2 = Down) and connect the RFID reader's SOUT pin to the LCD's RX pin.
And don't worry if it's not convenient for you to connect the RFID reader to a terminal or
LCD – we can always use a BASIC Stamp module to read and display an unknown tag string.

Column #120: You Can’t Touch That: Non-contact Access Control

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 67

Open Sesame

Most security systems will have more than one legal user, so let's update the program to work
with multiple tags. To be honest with you, I had to go back to the BS1 manual on several
occasions for this program because the BS1 – while very cool – is not quite as convenient as
its big brother the BS2. It's very inexpensive though (especially with OEM parts), and is
worth considering for a low-cost access control system.

After we've recorded our tag IDs we can put them into a simple EEPROM-based table for
storage. Here's what my table looks like:

Tags:
 EEPROM ("0F0184F20B")
 EEPROM ("0F01D9D263")
 EEPROM ("04129C1B43")
 EEPROM ("0000000000")
 EEPROM ("0000000000")

Remember that your table will be different as the RFID tag strings are unique. By using the
Memory Map feature of the BASIC Stamp Editor IDE I found I had room for five tags. Since
I only had three to work with I padded the table for the unused positions. A program constant
will prevent us from searching past the known tag strings.

The next step is to setup our control outputs. For this security program we will turn off the
reader and lock the door.

Reset:
 HIGH Enable
 LOW Latch

After basic setup we drop into the heart of the program where the reader is activated and we
wait on a tag ID string. Now you'll see what I was just talking about with the BS1 not being
quite as convenient as the BS2 – there is no STR modifier with the BS1 and its memory
cannot be treated like an array; everything must be done one byte at a time.

Main:
 LOW Enable
 SERIN RX, T2400, ($0A),
 tag0, tag1, tag2, tag3, tag4,
 tag5, tag6, tag7, tag8, tag9
 HIGH Enable

Column #120: You Can’t Touch That: Non-contact Access Control

Page 68 • The Nuts and Volts of BASIC Stamps (Volume 6)

Note that the SERIN line is really long, but needs to be on one line to make sure that all 11
bytes (header plus 10) received are in fact received properly. For publication, I've split the
line, but you'll find it all together in the downloadable version of the code.

With the tag ID stored in the BS1's RAM, we can compare it to our table entries to determine
whether the tag presented is a match or not. Admittedly, this looks a little hairy, but it's really
not that bad. To keep things concise, I'm only showing the first and last bytes, but the same
code is required for all ten elements of the RFID tag string.

Check_List:
 FOR tagNum = 0 TO LastTag
 pntr = tagNum * 10 + 0
 READ pntr, char
 IF char <> tag0 THEN Bad_Char

 ' removed for clarity

 pntr = tagNum * 10 + 9
 READ pntr, char
 IF char <> tag9 THEN Bad_Char
 GOTO Tag_Found
Bad_Char:
 NEXT

As you can see, comparing each byte of the RFID string against a table entry requires three
steps that are placed in a loop: 1) We create a pointer to the corresponding position of the
table entry, 2) We read the character from the table, and then 3) We compare the two bytes. If
they don't match the program jumps to the label called Bad_Char and we'll either move to the
next table entry, or if at the end of the table we'll fall through the loop.

Let's say we do have a match. When that occurs we will jump to the label called Tag_Found
and execute the door-opening code:

Tag_Found:
 DEBUG "Entry: ", #tagNum, CR
 HIGH Latch
 SOUND Spkr, (114, 165)
 LOW Latch
 GOTO Main

Column #120: You Can’t Touch That: Non-contact Access Control

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 69

The latch is activated (to allow entry) and then a beep is played through piezo speaker of
amplifier circuit to alert the user. The beep stops after about two seconds and the door
relocks. With that we go back to the top of the program.

When the tag presented does not match any of our table entries a one-second groan is played
through the speaker:

Bad_Tag:
 DEBUG "Unknown Tag", CR
 SOUND Spkr, (25, 80)
 PAUSE 1000
 GOTO Main

And that's that. As I told you, it's really very simple – the trickiest part about this program is
working around the behaviors of the BS1; but even that wasn't so bad. Okay, let's port this
baby to the BS2.

Starting back at the tags table, we're going to add names to each tag. In our demo program
we'll just send these to the Debug Terminal window, but we could just as easily put them on
an LCD if we ever decide to add one to the project.

Tag1 DATA "0F0184F20B"
Tag2 DATA "0F01D9D263"
Tag3 DATA "04129C1B43"

Name0 DATA "Unauthorized", CR, 0
Name1 DATA "George W. Bush", CR, 0
Name2 DATA "Dick Cheney", CR, 0
Name3 DATA "Condoleeza Rice", CR, 0

Note that the name strings are zero-terminated so that we're not restricted to a specific length.
We'll get to the printing routine later.

Did you read last month's column? If not, why not?! Okay, I'll put my bruised ego aside and
just point out that we're going to take advantage of the lessons on conditional compilation in
this program. When I stated above that we would port the program to the BS2, I meant the
BS2 family; the entire BS2 family.

The first thing to consider is the RAM required to read the RFID tag string: 10 bytes. This is
usually temporary in nature and it would really be nice if we didn't have to use our variable
space to handle it. Well, if we use the BS2p or BS2pe we don't have to; we can use the

Column #120: You Can’t Touch That: Non-contact Access Control

Page 70 • The Nuts and Volts of BASIC Stamps (Volume 6)

Scratchpad as a serial buffer. The first thing we have to do, though, is setup the program so
that the compiler can detect a BS2p or BS2pe and create a symbol to that effect.

#DEFINE __No_SPRAM = ($STAMP < BS2P)

With this definition the symbol called __No_SPRAM will be set to True if we're not using a
BS2p or BS2pe – hence are forced to define a buffer in our variable RAM space. Let's get to
that:

#IF __No_SPRAM #THEN
 buf VAR Byte(10)
#ELSE
 chkChar VAR Byte
#ENDIF

Remember that conditional compilation is just that: conditional, and it means that what
actually gets compiled and downloaded will change based on the BASIC Stamp module we're
using. In the code above, the array called buf is only created when using a BS2, BS2e, or
BS2sx. When using a BS2p or BS2pe, we create a variable called chkChar.

And now to the core of the program. What you'll realize is that no matter which BS2-family
module we use, receiving the RFID tag string in this program is much easier here than with
the BS1. The only question is where those bytes will be stored, and that is determined by the
module in use.

Main:
 LOW Enable
 #IF __No_SPRAM #THEN
 SERIN RX, T2400, [WAIT($0A), STR buf\10
 #ELSE
 SERIN RX, T2400, [WAIT($0A), SPSTR 10]
 #ENDIF
 HIGH Enable

When we're using a BS2, BS2e, or BS2sx the tag string is stored in our variable buffer,
otherwise it gets stuffed into the first 10 bytes of the Scratchpad. But see how much easier
this is? The STR and SPSTR modifiers are huge timesavers here.

With the tag string in RAM, we can compare it against the table, and again, it's much easier
with the BS2-family.

Column #120: You Can’t Touch That: Non-contact Access Control

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 71

Check_List:
 FOR tagNum = 1 TO LastTag
 FOR idx = 0 TO 9
 READ (tagNum - 1 * 10 + idx), char
 #IF __No_SPRAM #THEN
 IF (char <> buf(idx)) THEN Bad_Char
 #ELSE
 GET idx, chkChar
 IF (char <> chkChar) THEN Bad_Char
 #ENDIF
 NEXT
 GOTO Tag_Found

Bad_Char:
 NEXT

As with the BS1, a loop is used to work through the known tag strings. What we're able to do
here, however, is use a second loop to test each byte of the received string. The inner loop
reads the appropriate byte from the current tag data and compares it against the corresponding
tag byte from the reader. Our conditional symbol sets up the code to make the comparison
against a byte in the variable array or against a byte from the Scratchpad. Note that the
Scratchpad cannot be treated like an array so we are forced to use GET to access the
appropriate byte.

Okay, moving on to a good tag we will do the same as before: sound the beeper (with
FREQOUT) and disable the security lock. Remember that FREQOUT is one of those
instructions that differs from one BASIC Stamp model to another, so conditional compilation
constants are used to keep the timing (two seconds) and tone (880 Hz) the same, no matter
which module we use.

Tag_Found:
 GOSUB Show_Name
 HIGH Latch
 FREQOUT Spkr, 2000 */ TmAdj, 880 */ FrAdj
 LOW Latch
 GOTO Main

We've also added the ability to display the name of the person who is assigned to the valid
tag. A simple loop will send the characters in the name to a display – we'll keep it easy and
use the Debug Terminal.

Column #120: You Can’t Touch That: Non-contact Access Control

Page 72 • The Nuts and Volts of BASIC Stamps (Volume 6)

Show_Name:
 DEBUG DEC tagNum, ": "
 LOOKUP tagNum,
 [Name0, Name1, Name2, Name3], idx
 DO
 READ idx, char
 IF (char = 0) THEN EXIT
 DEBUG char
 idx = idx + 1
 LOOP
 RETURN

The result of the tag search (in the variable tagNum) will be from one to the number of known
tags if the tag string is valid – if not, the search will result in zero. The Show_Name routine
uses the result of the tag search to LOOKUP the first character of the corresponding name.
After that, each character is printed in a loop until the zero terminator is encountered. We
could very easily change the DEBUG line to SEROUT for a serial LCD, or to LCDOUT if
we're using a BS2p or BS2pe and have a parallel LCD connected as required.

Well, that's it. That was pretty simple, wasn't it? I think so, and I'm having a lot of fun with
the RFID reader. Be sure to check out the web resources listed, there's lots of interesting
information on RFID technology, and Joe Grand's web site has some really cool stuff (if
you're into hardware hacking, you'll love his books).

Until next time ... Happy Stamping!

Web Resources

www.parallax.com
www.grandideastudio.com
www.rfidjournal.com
www.emmicroelectronic.com
www.sokymat.com

Column #120: You Can’t Touch That: Non-contact Access Control

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 73

' ===
'
' File....... RFID_Reader.BS1
' Purpose.... RFID Tag Reader
' Author..... Jon Williams, Parallax
' E-mail..... jwilliams@parallax.com
' Started....
' Updated.... 07 FEB 2005
'
' {$STAMP BS1}
' {$PBASIC 1.0}
'
' ===

' -----[Program Description]---
'
' Reads and displays RFID tag strings.

' -----[Revision History]--

' -----[I/O Definitions]---

SYMBOL Enable = 0 ' low = reader on
SYMBOL RX = 1 ' serial from reader

' -----[Constants]---

' -----[Variables]---

' -----[EEPROM Data]---

' -----[Initialization]--

' -----[Program Code]--

Main:
 LOW Enable

 ' wait for header ($0A), then accept 10 RFID bytes

 SERIN RX, T2400, ($0A),B0,B1,B2,B3,B4,B5,B6,B7,B8,B9
 HIGH Enable

Column #120: You Can’t Touch That: Non-contact Access Control

Page 74 • The Nuts and Volts of BASIC Stamps (Volume 6)

Show_Tag:
 DEBUG "Tag ID: ", #@B0,#@B1,#@B2,#@B3,#@B4,#@B5,#@B6,#@B7,#@B8,#@B9
 DEBUG CR
 PAUSE 1000 ' time to remove tag
 GOTO Main

' -----[Subroutines]---

Column #120: You Can’t Touch That: Non-contact Access Control

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 75

' ===
'
' File....... RFID_Single.BS1
' Purpose.... Single-tag RFID Tag Reader
' Author..... Jon Williams, Parallax
' E-mail..... jwilliams@parallax.com
' Started....
' Updated.... 07 FEB 2005
'
' {$STAMP BS1}
' {$PBASIC 1.0}
'
' ===

' -----[Program Description]---
'
' Looks for a specific RFID tag and when found, opens an electric lock

' -----[Revision History]--

' -----[I/O Definitions]---

SYMBOL Enable = 0 ' low = reader on
SYMBOL RX = 1 ' serial from reader
SYMBOL Latch = 2 ' lock/latch control

' -----[Constants]---

' -----[Variables]---

' -----[EEPROM Data]---

' -----[Initialization]--

Reset:
 HIGH Enable ' turn of RFID reader
 LOW Latch ' lock the door!

' -----[Program Code]--

Main:
 LOW Enable ' activate the reader
 SERIN RX, T2400, ($0A, "0F0184F20B") ' wait for header & tag

Column #120: You Can’t Touch That: Non-contact Access Control

Page 76 • The Nuts and Volts of BASIC Stamps (Volume 6)

 HIGH Enable ' deactivate reader

Access_Granted:
 HIGH Latch ' open the lock
 PAUSE 2000 ' -- for two seconds
 LOW Latch ' relock
 GOTO Main

' -----[Subroutines]---

Column #120: You Can’t Touch That: Non-contact Access Control

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 77

' ===
'
' File....... RFID.BS1
' Purpose.... RFID Tag Reader / Simple Security System
' Author..... Jon Williams, Parallax
' E-mail..... jwilliams@parallax.com
' Started....
' Updated.... 07 FEB 2005
'
' {$STAMP BS1}
' {$PBASIC 1.0}
'
' ===

' -----[Program Description]---
'
' Reads tags from a Parallax RFID reader and compares to known tags (stored
' in EEPROM table). If tag is found, the program will disable a lock.

' -----[Revision History]--

' -----[I/O Definitions]---

SYMBOL Enable = 0 ' low = reader on
SYMBOL RX = 1 ' serial from reader
SYMBOL Latch = 2 ' lock/latch control
SYMBOL Spkr = 3 ' speaker output

' -----[Constants]---

SYMBOL LastTag = 2 ' 3 tags; 0 to 2

' -----[Variables]---

SYMBOL tag0 = B0 ' RFID bytes buffer
SYMBOL tag1 = B1
SYMBOL tag2 = B2
SYMBOL tag3 = B3
SYMBOL tag4 = B4
SYMBOL tag5 = B5
SYMBOL tag6 = B6
SYMBOL tag7 = B7
SYMBOL tag8 = B8
SYMBOL tag9 = B9

SYMBOL tagNum = B10 ' from EEPROM table

Column #120: You Can’t Touch That: Non-contact Access Control

Page 78 • The Nuts and Volts of BASIC Stamps (Volume 6)

SYMBOL pntr = B11 ' pointer to char in table
SYMBOL char = B12 ' character from table

' -----[EEPROM Data]---

Tags:
 EEPROM ("0F0184F20B") ' valid tags
 EEPROM ("0F01D9D263")
 EEPROM ("04129C1B43")
 EEPROM ("0000000000") ' space for other tags
 EEPROM ("0000000000")
 EEPROM ("0000000000")

' -----[Initialization]--

Reset:
 HIGH Enable ' turn of RFID reader
 LOW Latch ' lock the door!

' -----[Program Code]--

Main:
 LOW Enable

 ' wait for header, then accept 10 RFID bytes

 SERIN RX, T2400, ($0A),tag0,tag1,tag2,tag3,tag4,tag5,tag6,tag7,tag8,tag9
 HIGH Enable

Check_List:
 FOR tagNum = 0 TO LastTag ' scan through known tags
 pntr = tagNum * 10 + 0 : READ pntr, char ' read char from DB
 IF char <> tag0 THEN Bad_Char ' compare with tag data
 pntr = tagNum * 10 + 1 : READ pntr, char
 IF char <> tag1 THEN Bad_Char
 pntr = tagNum * 10 + 2 : READ pntr, char
 IF char <> tag2 THEN Bad_Char
 pntr = tagNum * 10 + 3 : READ pntr, char
 IF char <> tag3 THEN Bad_Char
 pntr = tagNum * 10 + 4 : READ pntr, char
 IF char <> tag4 THEN Bad_Char
 pntr = tagNum * 10 + 5 : READ pntr, char
 IF char <> tag5 THEN Bad_Char
 pntr = tagNum * 10 + 6 : READ pntr, char
 IF char <> tag6 THEN Bad_Char
 pntr = tagNum * 10 + 7 : READ pntr, char
 IF char <> tag7 THEN Bad_Char
 pntr = tagNum * 10 + 8 : READ pntr, char

Column #120: You Can’t Touch That: Non-contact Access Control

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 79

 IF char <> tag8 THEN Bad_Char
 pntr = tagNum * 10 + 9 : READ pntr, char
 IF char <> tag9 THEN Bad_Char
 GOTO Tag_Found ' all match -- good tag
Bad_Char:
 NEXT

Bad_Tag:
 DEBUG "Unknown Tag", CR
 SOUND Spkr, (25, 80) ' groan
 PAUSE 1000
 GOTO Main

Tag_Found:
 DEBUG "Entry ", #tagNum, CR
 HIGH Latch ' remove latch
 SOUND Spkr, (114, 165) ' beep
 LOW Latch ' restore latch
 GOTO Main

 END

' -----[Subroutines]---

Column #120: You Can’t Touch That: Non-contact Access Control

Page 80 • The Nuts and Volts of BASIC Stamps (Volume 6)

' ===
'
' File....... RFID.BS2
' Purpose.... RFID Tag Reader / Simple Security System
' Author..... Jon Williams, Parallax
' E-mail..... jwilliams@parallax.com
' Started....
' Updated.... 07 FEB 2005
'
' {$STAMP BS2e}
' {$PBASIC 2.5}
'
' ===

' -----[Program Description]---
'
' Reads and displays RFID tag strings.

' -----[Revision History]--

' -----[I/O Definitions]---

Enable PIN 0 ' low = reader on
RX PIN 1 ' serial from reader

' -----[Constants]---

#SELECT $STAMP
 #CASE BS2, BS2E, BS2PE
 T2400 CON 396
 #CASE BS2SX, BS2P
 T2400 CON 1021
#ENDSELECT

' -----[Variables]---

buf VAR Byte(10) ' RFID bytes buffer

' -----[EEPROM Data]---

' -----[Initialization]--

' -----[Program Code]--

Column #120: You Can’t Touch That: Non-contact Access Control

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 81

Main:
 LOW Enable ' activate the reader
 SERIN RX, T2400, [WAIT($0A), STR buf\10] ' wait for hdr + ID
 HIGH Enable ' deactivate reader

Show_Tag:
 DEBUG "Tag ID: ", STR buf\10, CR ' display ID
 PAUSE 1000 ' time to remove tag
 GOTO Main

' -----[Subroutines]---

Column #120: You Can’t Touch That: Non-contact Access Control

Page 82 • The Nuts and Volts of BASIC Stamps (Volume 6)

' ===
'
' File....... RFID.BS2
' Purpose.... RFID Tag Reader / Simple Security System
' Author..... Jon Williams, Parallax
' E-mail..... jwilliams@parallax.com
' Started....
' Updated.... 07 FEB 2005
'
' {$STAMP BS2}
' {$PBASIC 2.5}
'
' ===

' -----[Program Description]---
'
' Reads tags from a Parallax RFID reader and compares to known tags (stored
' in EEPROM table). If tag is found, the program will disable a lock.

' -----[Revision History]--

' -----[I/O Definitions]---

Enable PIN 0 ' low = reader on
RX PIN 1 ' serial from reader
Latch PIN 2 ' lock/latch control
Spkr PIN 3 ' speaker output

' -----[Constants]---

#SELECT $STAMP
 #CASE BS2, BS2E
 T2400 CON 396 ' reader baud rate
 TmAdj CON $100 ' x 1.0 (time adjust)
 FrAdj CON $100 ' x 1.0 (freq adjust)
 #CASE BS2SX
 T2400 CON 1021
 TmAdj CON $280 ' x 2.5
 FrAdj CON $066 ' x 0.4
 #CASE BS2P
 T2400 CON 1021
 TmAdj CON $3C5 ' x 3.77
 FrAdj CON $044 ' x 0.265
 #CASE BS2PE
 T2400 CON 396
 TmAdj CON $100 ' x 1.0
 FrAdj CON $0AA ' x 0.665

Column #120: You Can’t Touch That: Non-contact Access Control

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 83

#ENDSELECT

LastTag CON 3 ' three known tags

#DEFINE __No_SPRAM = ($STAMP < BS2P) ' does module have SPRAM?

' -----[Variables]---

#IF __No_SPRAM #THEN
 buf VAR Byte(10) ' RFID bytes buffer
#ELSE
 chkChar VAR Byte ' character to test
#ENDIF

tagNum VAR Nib ' from EEPROM table
idx VAR Byte ' tag byte index
char VAR Byte ' character from table

' -----[EEPROM Data]---

Tag1 DATA "0F0184F20B" ' valid tags
Tag2 DATA "0F01D9D263"
Tag3 DATA "04129C1B43"

Name0 DATA "Unauthorized", CR, 0
Name1 DATA "George W. Bush", CR, 0
Name2 DATA "Dick Cheney", CR, 0
Name3 DATA "Condoleeza Rice", CR, 0

' -----[Initialization]--

Reset:
 HIGH Enable ' turn of RFID reader
 LOW Latch ' lock the door!

' -----[Program Code]--

Main:
 LOW Enable ' activate the reader
 #IF __No_SPRAM #THEN
 SERIN RX, T2400, [WAIT($0A), STR buf\10] ' wait for hdr + ID
 #ELSE
 SERIN RX, T2400, [WAIT($0A), SPSTR 10]
 #ENDIF
 HIGH Enable ' deactivate reader

Column #120: You Can’t Touch That: Non-contact Access Control

Page 84 • The Nuts and Volts of BASIC Stamps (Volume 6)

Check_List:
 FOR tagNum = 1 TO LastTag ' scan through known tags
 FOR idx = 0 TO 9 ' scan bytes in tag
 READ (tagNum - 1 * 10 + idx), char ' get tag data from table
 #IF __No_SPRAM #THEN
 IF (char <> buf(idx)) THEN Bad_Char ' compare tag to table
 #ELSE
 GET idx, chkChar ' read char from SPRAM
 IF (char <> chkChar) THEN Bad_Char ' compare to table
 #ENDIF
 NEXT
 GOTO Tag_Found ' all bytes match!

Bad_Char: ' try next tag
 NEXT

Bad_Tag:
 tagNum = 0
 GOSUB Show_Name ' print message
 FREQOUT Spkr, 1000 */ TmAdj, 115 */ FrAdj ' groan
 PAUSE 1000
 GOTO Main

Tag_Found:
 GOSUB Show_Name ' print name
 HIGH Latch ' remove latch
 FREQOUT Spkr, 2000 */ TmAdj, 880 */ FrAdj ' beep
 LOW Latch ' restore latch
 GOTO Main

 END

' -----[Subroutines]---

' Prints name associated with RFID tag

Show_Name:
 DEBUG DEC tagNum, ": "
 LOOKUP tagNum,
 [Name0, Name1, Name2, Name3], idx ' point to first character
 DO
 READ idx, char ' read character from name
 IF (char = 0) THEN EXIT ' if 0, we're done
 DEBUG char ' otherwise print it
 idx = idx + 1 ' point to next character
 LOOP
 RETURN

