
2/12/2018 PiJuice/Software at master · PiSupply/PiJuice · GitHub

https://github.com/PiSupply/PiJuice/tree/master/Software 1/18

..

BatteryIcons add more PNGs 9 months ago

Install Bump version to 1.2 7 days ago

Source Add version file 10 hours ago

Test Created a main changelog 18 days ago

README.md Added API reference 4 days ago

 README.md

PiJuice Software

Software installation

Automated process

At the command line simply type:

sudo apt-get install pijuice-gui

PiJuice depends on other libraries to be present, the package is designed to raise them and let apt-get resolve them.

If you wish to install just the light version of PiJuice with no GUI:

sudo apt-get install pijuice-base

This is particularly indicated for Raspbian Lite or an headless installation.

Manual process

Copy either of the deb packages to the pi home and install it.

For example for the full version with GUI:

sudo dpkg -i ./pijuice-gui_1.1-1_all.deb

For the light version:

sudo dpkg -i ./pijuice-base_1.1-1_all.deb

Should the installation complain about missing dependencies you need to sort them first and try with the installation once
again.

You will need to reboot at this point so that the system tray app is refreshed.

To remove PiJuice you'll need to run:

sudo dpkg -r pijuice

Build DEB-package manually

./pckg-pijuice.sh

or for the light version without GUI:

https://github.com/PiSupply/PiJuice
https://github.com/PiSupply/PiJuice/tree/master/Software/BatteryIcons
https://github.com/PiSupply/PiJuice/commit/c8a4254b25b4882262bcb102ca46b6f54d76ce5e
https://github.com/PiSupply/PiJuice/tree/master/Software/Install
https://github.com/PiSupply/PiJuice/commit/8baa82eb7f497cfbd3ab46690a3e8e3068a505c4
https://github.com/PiSupply/PiJuice/tree/master/Software/Source
https://github.com/PiSupply/PiJuice/commit/c85ad4c28f093a503356069807c5e6cfc512c0f6
https://github.com/PiSupply/PiJuice/tree/master/Software/Test
https://github.com/PiSupply/PiJuice/commit/8643f590623061e7e799fd8db4943dcc77a725ca
https://github.com/PiSupply/PiJuice/blob/master/Software/README.md
https://github.com/PiSupply/PiJuice/commit/35940f03221edfc399128bc14664cdb02c4a20ef
https://github.com/PiSupply/PiJuice/tree/master/Software#pijuice-software
https://github.com/PiSupply/PiJuice/tree/master/Software#software-installation
https://github.com/PiSupply/PiJuice/tree/master/Software#automated-process
https://github.com/PiSupply/PiJuice/tree/master/Software#manual-process
https://github.com/PiSupply/PiJuice/tree/master/Software#build-deb-package-manually

2/12/2018 PiJuice/Software at master · PiSupply/PiJuice · GitHub

https://github.com/PiSupply/PiJuice/tree/master/Software 2/18

./pckg-pijuice.sh --light

Note: You will need python-stdeb, dh-systemd and debhelper in order to be able to build.

GUI Menus

We have also taken a LOT of screenshots of all the different menu options etc to show you the full software. So lets get stuck
in:

We have compiled the source code into a .deb Debian package file so it is super easy to install. Once installation is complete
the software appears in the system menu under Menu -> Preferences -> PiJuice Settings as you can see in the above image.

System Tray

Once you load the software, you will see the PiJuice icon appear in the system tray, as above. This icon shows you the status
of the PiJuice - charging from Pi, charging from PiJuice, running on battery as you have in a normal laptop computer.
Additionally you can hover over it to tell you the charge level of the battery.

Note that it is not possible to detect battery not present when powered through on board USB micro, so it might show 0% only.

https://github.com/PiSupply/PiJuice/tree/master/Software#gui-menus
https://github.com/PiSupply/PiJuice/tree/master/Software#system-tray
https://user-images.githubusercontent.com/16068311/35343402-7a362126-0122-11e8-9961-0b7013453f3f.png
https://user-images.githubusercontent.com/16068311/33845725-43e1d0e6-de9c-11e7-921e-64c9cceb2c96.png
https://raw.githubusercontent.com/PiSupply/PiJuice/master/Software/Source/data/images/bat-90.png
https://raw.githubusercontent.com/PiSupply/PiJuice/master/Software/Source/data/images/bat-50.png
https://raw.githubusercontent.com/PiSupply/PiJuice/master/Software/Source/data/images/bat-0.png
https://raw.githubusercontent.com/PiSupply/PiJuice/master/Software/Source/data/images/bat-in-90.png
https://raw.githubusercontent.com/PiSupply/PiJuice/master/Software/Source/data/images/bat-in-50.png
https://raw.githubusercontent.com/PiSupply/PiJuice/master/Software/Source/data/images/bat-in-0.png
https://raw.githubusercontent.com/PiSupply/PiJuice/master/Software/Source/data/images/bat-rpi-90.png
https://raw.githubusercontent.com/PiSupply/PiJuice/master/Software/Source/data/images/bat-rpi-50.png
https://raw.githubusercontent.com/PiSupply/PiJuice/master/Software/Source/data/images/bat-rpi-0.png

2/12/2018 PiJuice/Software at master · PiSupply/PiJuice · GitHub

https://github.com/PiSupply/PiJuice/tree/master/Software 3/18

You can also right click on this icon to load the configuration menu, instead of having to go to the menu as in the previous
image.

PiJuice Settings

Main software menu, with no battery attached

This picture is how the PiJuice Settings software looks when it loads up. This also shows some basic information about the
battery charge, battery voltage, and where it is charging from....here is it showing 0% and a low voltage on the battery -
because there is no battery installed! You can also see that it is charging from the Pi GPIO (meaning it is plugged in to the
Pis microUSB) and it also shows the rail voltages and current draw over the GPIO pins. Below that is the PiJuice microUSB
and as you can see in this screenshot that is not currently plugged in. There is a fault checker, a system switch state and also
a link to a HAT config menu (more on that later! - see PiJuice HAT Configuration Menu screenshot).

Main software menu, with battery attached

https://github.com/PiSupply/PiJuice/tree/master/Software#pijuice-settings
https://github.com/PiSupply/PiJuice/tree/master/Software#main-software-menu-with-no-battery-attached
https://github.com/PiSupply/PiJuice/tree/master/Software#main-software-menu-with-battery-attached
https://raw.githubusercontent.com/PiSupply/PiJuice/master/Software/Source/data/images/no-bat-in-0.png
https://raw.githubusercontent.com/PiSupply/PiJuice/master/Software/Source/data/images/no-bat-rpi-0.png
https://raw.githubusercontent.com/PiSupply/PiJuice/master/Software/Source/data/images/connection-error.png
https://user-images.githubusercontent.com/16068311/35161233-7cfa5fce-fd37-11e7-83ec-72a8043ee0c0.png

2/12/2018 PiJuice/Software at master · PiSupply/PiJuice · GitHub

https://github.com/PiSupply/PiJuice/tree/master/Software 4/18

This screenshot shows the same menu as in the previous screenshot, the only difference being there is now a battery
installed in the PiJuice.

Wakeup Alarm Menu

In this screenshot we have moved over to the Wakeup alarm tab of the config menu and as you can see this is an area where
you can set schedules for the Pi to automatically wake up. This is useful for remote monitoring applications.

This feature will only work if you are either plugged in to the PiJuice microUSB / running on battery. If the battery is low and
you are plugged in via the Raspberry Pis GPIO the only way to enable this feature is by soldering the optional "spring pin"
that comes with the PiJuice HAT.

System Task Menu

https://github.com/PiSupply/PiJuice/tree/master/Software#wakeup-alarm-menu
https://github.com/PiSupply/PiJuice/tree/master/Software#system-task-menu
https://user-images.githubusercontent.com/16068311/35161234-7d125174-fd37-11e7-9383-e2e80044258d.png
https://user-images.githubusercontent.com/16068311/35161225-7bd18140-fd37-11e7-8889-e6715023b334.png

2/12/2018 PiJuice/Software at master · PiSupply/PiJuice · GitHub

https://github.com/PiSupply/PiJuice/tree/master/Software 5/18

Here we have the system task menu tab. This enables you to set the external watchdog timer - useful for remote
applications where you can't come and do a hard-reset yourself if the Pi crashes or hangs. The PiJuice essentially monitors
for a "heart beat" from the software - if it does not sense it after a defined period of time it automatically resets the
Raspberry Pi. You can also set here wakeup on charge levels, minimum battery levels and voltages.

The watchdog timer has a configurable time-out. It defines the time after which it will power cycle if it doesn't receive a
heartbeat signal. The time step is in minutes so the minimum time-out period is one minute and the maximum is 65535
minutes. The number can be any whole number between one and 65535. If you set the time to zero the watchdog timer will
be disabled.

System Events Menu

This is the system events menu tab. It allows you to trigger events for certain scenarios such as low charge, low voltage and
more. Each paramater has a couple of preset options to choose from, and also you can select options from the "user scripts"
tab which allows you to trigger your own custom scripts when certain system events occur for maximum flexibility.

User Scripts menu

https://github.com/PiSupply/PiJuice/tree/master/Software#system-events-menu
https://github.com/PiSupply/PiJuice/tree/master/Software#user-scripts-menu
https://user-images.githubusercontent.com/16068311/35161236-7d4e6f56-fd37-11e7-9209-7943e88a76d5.png
https://user-images.githubusercontent.com/16068311/35161235-7d31d544-fd37-11e7-92b4-dc0ccab55c56.png

2/12/2018 PiJuice/Software at master · PiSupply/PiJuice · GitHub

https://github.com/PiSupply/PiJuice/tree/master/Software 6/18

This is the user scripts menu tab as we mentioned in the above screenshot description where you can add paths to custom
scripts that you can trigger on events.

User scripts can be assigned to user functions called by system task when configured event arise. This should be non-
blocking callback function that implements customized system functions or event logging.

User functions are 4 digit binary coded and have 15 combinations, code 0 is USER_EVENT meant that it will not be processed
by system task, but left to user and python API to manage it. We thought that it should be a rare case that all 15
combinations would be needed on the GUI so we only provided 8. However if someone needs more scripts they can be
manually added by editing config json file: /var/lib/pijuice/pijuice_config.JSON as explained in the JSON file Section

PiJuice Configuration

PiJuice HAT General Config Menu

https://github.com/PiSupply/PiJuice/tree/master/Software#pijuice-configuration
https://github.com/PiSupply/PiJuice/tree/master/Software#pijuice-hat-general-config-menu
https://user-images.githubusercontent.com/16068311/35161237-7d653b8c-fd37-11e7-9a1e-be8b71e27a27.png
https://github.com/PiSupply/PiJuice/blob/master/Software/README.md#adding-user_func-from-9-to-15

2/12/2018 PiJuice/Software at master · PiSupply/PiJuice · GitHub

https://github.com/PiSupply/PiJuice/tree/master/Software 7/18

In the first config menu screenshot, we mentioned a button in the image that said "Configure HAT" - if you were to click on
that button it would bring you to this PiJuice HAT general configuration menu. It allows you to configure a lot of hardware
settings on the PiJuice HAT itself (as opposed to the previous menus which were actually configuring the software -
hopefully that is not too confusing!)

This is the general tab, which allows you to select whether you have installed the spring pin / run pin and also the I2C
addresses of the HAT and the RTC as well as changing the write protect on the eeprom and changing the actual physical I2C
address of the eeprom. These eeprom features can be very useful if you want to stack another HAT on top of the PiJuice but
still have that other HAT auto-configure itself.

Inputs precedence: Selects what power input will have precedence for charging and supplying VSYS output when both
are present, HAT USB Micro Input, GPIO 5V Input. 5V_GPIO selected by default.
GPIO Input Enabled: Enables/disables powering HAT from 5V GPIO Input. Enabled by default.
USB Micro current limit: Selects maximum current that HAT can take from USB Micro connected power source. 2.5A
selected by default.
USB Micro IN DPM: Selects minimum voltage at USB Micro power input for Dynamic Power Management Loop. 4.2V
set by default.
No battery turn on: If enabled pijuice will automatically power on 5V rail and trigger wake-up as soon as power appears
at USB Micro Input and there is no battery. Disabled by default.
Power regulator mode: Selects power regulator mode. POWER_SOURCE_DETECTION by default.

Note: Using the "Reset to default configuration" will restore the board to its default settings and for a short while the GUI will
report "COMMUNICATION_ERROR"

PiJuice HAT Config Buttons Menu

https://github.com/PiSupply/PiJuice/tree/master/Software#pijuice-hat-config-buttons-menu
https://user-images.githubusercontent.com/16068311/35161230-7caa54d4-fd37-11e7-88cb-a76b2891af4d.png

2/12/2018 PiJuice/Software at master · PiSupply/PiJuice · GitHub

https://github.com/PiSupply/PiJuice/tree/master/Software 8/18

Next we have the buttons menu - this configures the actions of the buttons on the PiJuice HAT (there are three surface
mount buttons, one of which also has a 2 pin 2.54mm header so you can break out a button on a cable to the edge of a case
or wherever you fancy).

There are a number of preset behaviours for the buttons - startup/shutdown etc and this menu also ties in to the "User
Scripts" menu shown above meaning you can actually trigger your own custom scripts and events based on the press of one
of these buttons very easily.

You can even trigger different events for a press, release, single press, double press and two lengths of long press - you can
even configure the length of time these long presses would take before triggering the event. As you can see the first button
is already configured for system power functionality and we would highly recommend that at least one of the buttons is
configured to these settings or you may have issues turning your PiJuice on and off :-)

Button events:

PRESS. Triggered immediately after button is pressed
RELEASE: Triggered immediately after button is released
SINGLE PRESS: Triggered if button is released in time less than configurable timeout after button press.
DOUBLE PRESS: Triggered if button is double pressed in time less than configurable timeout.
LONG PRESS 1: Triggered if button is hold pressed hold for configurable time period 1.
LONG PRESS 2: Triggered if button is hold pressed hold for configurable time period 2.

Button events can be configured to trigger predefined or user functions.

Hardware functions

POWER ON: This function will wake-up system. 5V regulator (5V GPIO rail) will be turned on if was off.
POWER OFF: 5V regulator (5V GPIO rail) turns off.
RESET: If run pin is installed then reset is triggered by run signal activation. If run pin is not installed rest is done by
power circle at 5V GPIO rail if power source is not present.

https://github.com/PiSupply/PiJuice/tree/master/Software#button-events
https://github.com/PiSupply/PiJuice/tree/master/Software#hardware-functions
https://user-images.githubusercontent.com/16068311/35161227-7c2194be-fd37-11e7-90ee-521a7d65813f.png

2/12/2018 PiJuice/Software at master · PiSupply/PiJuice · GitHub

https://github.com/PiSupply/PiJuice/tree/master/Software 9/18

PiJuice HAT Config LEDs Menu

Perhaps our favourite options menu is the LEDs menu - as with the buttons we have made these super versatile. They can
have standard functions as displayed above, they can have preset functions or you can define custom ways for them to
behave.

Each LED can be assigned to predefined predefined function or configured for user software control as User LED.

CHARGE STATUS. LED is configured to signal current charge level of battery. For level <= 15% red with configurable
brightness. For level > 15% and level <=50% mix of red and green with configurable brightness. For level > 50% green
with configurable brightness. When battery is charging blinking blue with configurable brightness is added to current
charge level color. For full buttery state blue component is steady on.
USER LED. When LED is configured as User LED it can be directly controlled with User software via command interface.
Initial PiJuice power on User LED state is defined with R, G, and B brightness level parameters.

PiJuice HAT Config Battery Menu

https://github.com/PiSupply/PiJuice/tree/master/Software#pijuice-hat-config-leds-menu
https://github.com/PiSupply/PiJuice/tree/master/Software#pijuice-hat-config-battery-menu
https://user-images.githubusercontent.com/16068311/35161232-7cdfe4aa-fd37-11e7-9249-f02f89ea2587.png

2/12/2018 PiJuice/Software at master · PiSupply/PiJuice · GitHub

https://github.com/PiSupply/PiJuice/tree/master/Software 10/18

The battery menu is a very important one. It basically allows you to set charge profiles for the PiJuice charge chip in order to
correctly and efficiently charge the battery, correctly monitor the charge percentages and more. We have got a number of
built in presets such as the ones that will come with the PiJuice by default (the BP7X) and all of the other ones we will supply.
But as promised, there is also the ability to add your own custom charge profiles and even your own battery temperature
sensor in order to increase the safety and efficiency of charging your batteries.

As previously mentioned, some of these are even hard coded into the firmware on the PiJuice which enables you to actually
select profiles using the PiJuices on board DIP switch.

More information on the default profiles and how to created additional ones can be found in the Hardware Section

PiJuice HAT Config IO Menu

https://github.com/PiSupply/PiJuice/tree/master/Software#pijuice-hat-config-io-menu
https://user-images.githubusercontent.com/16068311/35161226-7c026f30-fd37-11e7-897a-a470e06a4c8b.png
https://github.com/PiSupply/PiJuice/tree/master/Hardware#battery-profiles

2/12/2018 PiJuice/Software at master · PiSupply/PiJuice · GitHub

https://github.com/PiSupply/PiJuice/tree/master/Software 11/18

This Tab provides configuration of two pins IO port provided from HAC microcontroller at P3 Header. Modes selection box
provides to program IO pin to one of predefined modes:

NOT_USED: Set IO pin in neutral configuration (passive input).
ANALOG_IN: Set IO pin in analog to digital converter mode. In this mode Value can be read with status function
GetIoAnalogInput(). Pull has no effect in this mode.
DIGITAL_IN: Set IO pin in digital input mode. Pull in this mode cen be set to NO_PULL, PULLDOWN or PULLUP. Use
status function SetIoDigitalOutput() to read input value dynamically.
DIGITAL_OUT_PUSHPULL: Set IO pin in digital output mode with push-pull driver topology. Pull in this mode should be
set to NO_PULL. Initial value can be set to 0 or 1. Use status function SetIoDigitalOutput() to control output value
dynamically.
DIGITAL_IO_OPEN_DRAIN: Set IO pin in digital output mode with open-drain driver topology. Pull in this mode can be
set to NO_PULL, PULLDOWN or PULLUP. Initial value can be set to 0 or 1. Use status function SetIoDigitalOutput() to
control output value dynamically.
PWM_OUT_PUSHPULL: Set IO pin to PWM output mode with push-pull driver topology. Pull in this mode should be set
to NO_PULL. Period [us] box sets period in microseconds in range [2, 131072] with 2us resolution. Set initial duty_circle
in range [0, 100]. Use status function SetIoPWM() to control duty circle dynamically.
PWM_OUT_OPEN_DRAIN: Set IO pin to PWM output mode with open-drain driver topology. Pull in this mode can be
set to NO_PULL, PULLDOWN or PULLUP. Period [us] box sets period in microseconds in range [2, 131072] with 2us
resolution. Set initial duty_circle in range [0, 100]. Use status function SetIoPWM() to control duty circle dynamically.

Click Apply button to save new settings.

PiJuice HAT Config Firmware Menu

https://github.com/PiSupply/PiJuice/tree/master/Software#pijuice-hat-config-firmware-menu
https://user-images.githubusercontent.com/16068311/35161231-7cc2820c-fd37-11e7-875b-b80b18c3a6ab.png

2/12/2018 PiJuice/Software at master · PiSupply/PiJuice · GitHub

https://github.com/PiSupply/PiJuice/tree/master/Software 12/18

Last but very much not least is the firmware menu. This allows you to update the firmware on the PiJuice MCU chip as and
when necessary meaning we can actively improve the firmware and any updates or improvements we make in the future can
be retrospectively applied to all PiJuice HATs!

Note that the PiJuice package you installed comes with a default firmware located at the path below:

/usr/share/pijuice/data/firmware/

the filename would look like PiJuice-V1.1-2018_01_15.elf.binary

If you want to use the GUI to update the firmware to a more recent version you will have to override this file with the new
one that you can download from our Firmware section.

Remember though that the firmware we provide in the software package you've obtained from either APT or Github is
generally the only one you should ever use for that specific version of Software release, therefore only update the firmware if
the GUI reports that the firmware is not up to date or if we instruct you to do so.

During the update the window may become unresponsive. Wait until the update is finished before you continue with
anything else.

JSON configuration file

Changes made on tabs "System Task", "System Events" and "User Scripts" on the main windows will be saved on a JSON file.

/var/lib/pijuice/pijuice_config.JSON

here is an example of a configuration.

{
 "system_events": {
 "low_battery_voltage": {
 "function": "SYS_FUNC_HALT",
 "enabled": true

https://github.com/PiSupply/PiJuice/tree/master/Software#json-configuration-file
https://user-images.githubusercontent.com/16068311/35274166-0879d4a0-0033-11e8-8d49-628c27d727f8.png
https://github.com/PiSupply/PiJuice/tree/master/Firmware

2/12/2018 PiJuice/Software at master · PiSupply/PiJuice · GitHub

https://github.com/PiSupply/PiJuice/tree/master/Software 13/18

 },
 "low_charge": {
 "function": "NO_FUNC",
 "enabled": true
 },
 "button_power_off": {
 "function": "USER_FUNC1",
 "enabled": true
 },
 "forced_power_off": {
 "function": "USER_FUNC2",
 "enabled": true
 },
 "no_power": {
 "function": "SYS_FUNC_HALT_POW_OFF",
 "enabled": true
 },
 "forced_sys_power_off": {
 "function": "USER_FUNC3",
 "enabled": true
 },
 "watchdog_reset": {
 "function": "USER_EVENT",
 "enabled": true
 }
 },
 "user_functions": {
 "USER_FUNC8": "",
 "USER_FUNC1": "/home/pi/user-script.sh",
 "USER_FUNC2": "",
 "USER_FUNC3": "",
 "USER_FUNC4": "",
 "USER_FUNC5": "",
 "USER_FUNC6": "",
 "USER_FUNC7": ""
 },
 "system_task": {
 "watchdog": {
 "enabled": true,
 "period": "60"
 },
 "min_bat_voltage": {
 "threshold": "1",
 "enabled": true
 },
 "min_charge": {
 "threshold": "1",
 "enabled": true
 },
 "enabled": true,
 "wakeup_on_charge": {
 "enabled": true,
 "trigger_level": "1"
 }
 }
}

For the light version of PiJuice changes can be done directly on the JSON file. Here is a list of accepted values for the various
fields above.

system_events:
low_battery_voltage low_charge no_power:

enabled: true, false
function:

NO_FUNC

2/12/2018 PiJuice/Software at master · PiSupply/PiJuice · GitHub

https://github.com/PiSupply/PiJuice/tree/master/Software 14/18

SYS_FUNC_HALT
SYS_FUNC_HALT_POW_OFF
SYS_FUNC_HALT_POW_OFF
SYS_FUNC_REBOOT
USER_EVENT
USER_FUNC1 .. USER_FUNC15

button_power_off, forced_power_off, forced_sys_power_off, watchdog_reset
enabled: true, false
function:

NO_FUNC
USER_EVENT
USER_FUNC1 .. USER_FUNC15

system_task:
enabled: true, false
watchdog

enabled: true, false
period (minutes): 1..65535

min_bat_voltage
enabled: true, false
threshold (%): 0..100

min_charge
enabled: true, false
threshold (%): 0..100

wakeup_on_charge
enabled: true, false
trigger_level (Volts): 0..10

user_functions:
absolute path to user defined script

Adding USER_FUNC from 9 to 15

The user functions section of the JSON file looks like the following. To add USER_FUNC from 9 to 15 simply append them to
the existing ones.

 "user_functions": {
 "USER_FUNC1": "",
 "USER_FUNC2": "",
 "USER_FUNC3": "",
 "USER_FUNC4": "",
 "USER_FUNC5": "",
 "USER_FUNC6": "",
 "USER_FUNC7": "",
 "USER_FUNC8": "",
 "USER_FUNC9": "",
 ...
 "USER_FUNC15": ""
 },

I2C Command API

PiJuice HAT provides control, status and configuration of supported features through I2C Command API. Read/write
commands are based on I2C block read/write transfers where messages carrying data are exchanged with Master. Message

https://github.com/PiSupply/PiJuice/tree/master/Software#adding-user_func-from-9-to-15
https://github.com/PiSupply/PiJuice/tree/master/Software#i2c-command-api

2/12/2018 PiJuice/Software at master · PiSupply/PiJuice · GitHub

https://github.com/PiSupply/PiJuice/tree/master/Software 15/18

starts with one byte command code, followed by data payload and with checksum byte at the end of message. Checksum is
8-bit XOR calculated over all data payload bytes.

Command Abstraction Layer

In order to facilitate communication with PiJuice HAT using I2C Command API there is abstraction layer hat encapsulates
commands into more intuitive interface to configure, control and retrieve status of PiJuice features. This layer is
implemented as python script module pijuice.py. Different types of interface function are encapsulated in next set of classes:

PiJuiceInterface. Functions for low level message exchange end error checking through I2C bus.
PiJuiceStatus Functions for dynamically controlling and reading status of PiJuice features.
PiJuiceRtcAlarm Functions for setting-up real time clock and wake-up alarm.
PiJuicePower Power management functions.
PiJuiceConfig Functions for static configuration that mostly involves non-volatile data that saves in EEPROM. All the
function classes are encapsulated in top level object PiJuice(bus, address), where bus presents I2C bus identifier and
address presents PiJuice HAT I2C slave address. Usage example:

from pijuice import PiJuice # Import pijuice module
pijuice = PiJuice(1, 0x14) # Instantiate PiJuice interface object
print pijuice.status.GetStatus() # Read PiJuice staus.

Commands are encapsulated with two type of functions, Setters that writes configuration and control data to PiJuice and
Getters that reads status or current configuration/control data. Every function returns object of dictionary type containing
communication error status:

{
'error':error_status
}

Where error_staus value can be NO_ERROR in case data are exchanged with no communication errors or value that
describers error in cases where communication fails. In case of Getter functions additions additional data object is returned
in case of successful data read with value that presents returned data:

{
'error':error_status,
'data':data
}

PiJuiceStatus functions

GetStatus()

Gets basic PiJuice status information about power inputs, battery and events. Returns: 'data':{ 'isFault':is_fault,
'isButton':is_button, 'battery':battery_status, 'powerInput':power_input_status, 'powerInput5vIo':5v_power_input_status }
Where:

is_fault is True if there faults or fault events waiting to be read or False if there is no faults and no fault events.
is_button is True if there are button events, False if not.
battery_status is string constant that describes current battery status, one of four: 'NORMAL', 'CHARGING_FROM_IN',
'CHARGING_FROM_5V_IO', 'NOT_PRESENT'.
power_input_status is string constant that describes current status of USB Micro power input, one of four:
'NOT_PRESENT', 'BAD', 'WEAK', 'PRESENT'.
5v_power_input_status: is string constant that describes current status of 5V GPIO power input, one of four:
'NOT_PRESENT', 'BAD', 'WEAK', 'PRESENT'. Example:

https://github.com/PiSupply/PiJuice/tree/master/Software#command-abstraction-layer
https://github.com/PiSupply/PiJuice/tree/master/Software#pijuicestatus-functions

2/12/2018 PiJuice/Software at master · PiSupply/PiJuice · GitHub

https://github.com/PiSupply/PiJuice/tree/master/Software 16/18

print pijuice.status.GetStatus()

Returns: {'data': {'battery': 'CHARGING_FROM_5V_IO', 'powerInput5vIo': 'PRESENT', 'isFault': False, 'isButton':
False, 'powerInput': 'NOT_PRESENT'}, 'error': 'NO_ERROR'}

GetChargeLevel()

Gets current charge level percentage. Returns: 'data':charge_level Where charge_level is percentage of charge, [0 - 100]%.
Example:

print pijuice.status.GetChargeLevel()

Returns: {'data': 57, 'error': 'NO_ERROR'}

GetButtonEvents() Gets events generated by PiJuice buttons presses. Returns: 'data': { 'SW1':event, 'SW2':event, 'SW3':event }
where event is detected event name for corresponding button and can be one of: 'PRESS', 'RELEASE', 'SINGLE_PRESS',
'DOUBLE_PRESS', 'LONG_PRESS1', 'LONG_PRESS2' if event is generated or 'NO_EVENT' if event is absent. Example:

print pijuice.status.GetButtonEvents()

Returns: {'data': {'SW1': 'NO_EVENT', 'SW3': ' SINGLE_PRESS', 'SW2': 'NO_EVENT'}, 'error': 'NO_ERROR'}

AcceptButtonEvent(button) Clears generated button event. Arguments: button: button designator, one of: 'SW1', 'SW2',
'SW3'. Example:

print pijuice.status. AcceptButtonEvent ('SW2')

SetLedState(led, rgb) Sets red, green and blue brightness levels for LED configured as “User LED”. Arguments: led: LED
designator, one of: 'D1', 'D2'. rgb:[r, g, b] - array of brightness levels of LED components, where r, g and b, are in range [0 –
255]. Example:

print pijuice.status.SetLedState(‘D2’, [127, 0, 200])

GetLedState(led) Gets current brightness levels for LED configured as “User LED”. Arguments: led: LED designator, one of:
'D1', 'D2'. Returns: 'data':[r, g, b] where [r, g, b] is array of brightness levels of LED components, where r, g and b, are in range
[0 – 255]. Example:

print pijuice.status.GetLedState('D1')

Returns: {'data': [127, 0, 200], 'error': 'NO_ERROR'}

SetLedBlink(led, count, rgb1, period1, rgb2, period2) Plays blink pattern on LED configured as “User LED”. Arguments: led:
LED designator, one of: 'D1', 'D2'. count: number of blinks for count in range [1 - 254], blink indefinite number of times for
count = 255. rgb1: [r, g, b] is array of brightness levels of LED components in first period of blink, where r, g and b, are in
range [0 – 255]. period1: duration of first blink period in range [10 – 2550] miliseconds. rgb2: [r, g, b] is array of brightness
levels of LED components in second period of blink, where r, g and b, are in range [0 – 255]. Period2: duration of second
blink period in range [10 – 2550] miliseconds. Example:

pijuice.status.SetLedBlink('D2', 10, [0,200,100], 1000, [100, 0, 0], 500)

GetLedBlink(led) Gets current settings of blink pattern for LED configured as “User LED”. Arguments: led: LED designator,
one of: 'D1', 'D2'. Returns: 'data': { 'count':count, 'rgb1':rgb1, 'period1':period1, 'rgb2':rgb2, 'period2':period2 } Example:

2/12/2018 PiJuice/Software at master · PiSupply/PiJuice · GitHub

https://github.com/PiSupply/PiJuice/tree/master/Software 17/18

print pijuice.status.GetLedBlink('D2')

Returns: {'data': {'count': 10, 'period2': 500, 'rgb2': [100, 0, 0], 'rgb1': [0, 200, 100], 'period1': 1000},
'error': 'NO_ERROR'}

GetIoDigitalInput(pin) Gets state at IO pin configured as digital input. Arguments: pin: IO pin designator, 1 for IO1, 2 for
IO2. Returns: 'data':input_state Where input_state is 0 for low input state, 1 for high. Example:

print pijuice.status.GetIoDigitalInput(1)

Returns: {'data': 0, 'error': 'NO_ERROR'}

SetIoDigitalOutput(pin, value) Sets state at IO pin configured as digital output. Arguments: pin: IO pin designator, 1 for IO1,
2 for IO2. value: output state to set, 0 for low output state, 1 for high. Example:

print pijuice.status.SetIoDigitalOutput(1, 1)

GetIoDigitalOutput(pin) Gets current output state at IO pin configured as digital output. Arguments: pin: IO pin designator,
1 for IO1, 2 for IO2. Returns: 'data':output_state Where output_state is 0 for low output state, 1 for high. Example:

print pijuice.status.GetIoDigitalOutput(1)

Returns: {'data': 1, 'error': 'NO_ERROR'}

GetIoAnalogInput(pin) Gets voltage in millivolts at IO pin configured as analog input. Arguments: pin: IO pin designator, 1
for IO1, 2 for IO2. Returns: 'data':analog_value where analog_value is voltage in millivolts measured at analog input. Example:

print pijuice.status.GetIoAnalogInput(1)

Returns: {'data': 2222, 'error': 'NO_ERROR'}

SetIoPWM(pin, dutyCircle) Sets PWM duty circle at IO pin configured as PWM output. Arguments: pin: IO pin designator, 1
for IO1, 2 for IO2. dutyCircle: pulse width as percentage of period, [0 - 100]% Example:

print pijuice.status.SetIoPWM(2, 35.6)

GetIoPWM(pin) Gets current PWM duty circle at IO pin configured as PWM output. Arguments: pin: IO pin designator, 1 for
IO1, 2 for IO2. Returns: 'data':duty_circle where duty_circle is pulse width as percentage of period. Example:

print pijuice.status.GetIoPWM(2)

Returns: {'data': 35.59984130375072, 'error': 'NO_ERROR'}

PiJuicePower Functions

SetSystemPowerSwitch(state) Sets state of System switch. Arguments: ' state':state where state is desired current limit in
milliampere (two options available, 500 and 2100), or switch off if 0. Example:

print pijuice.power.SetSystemPowerSwitch(500)

GetSystemPowerSwitch() Gets current state of System switch. Returns: 'data': state where state is current limit in milliampere
or 0 if switch is off. Example:

https://github.com/PiSupply/PiJuice/tree/master/Software#pijuicepower-functions

2/12/2018 PiJuice/Software at master · PiSupply/PiJuice · GitHub

https://github.com/PiSupply/PiJuice/tree/master/Software 18/18

print pijuice.power.GetSystemPowerSwitch()

Returns: {'data': 500, 'error': 'NO_ERROR'}

