Required Hardware

- A MOT1100 Accelerometer Phidget
- A VINT Hub
- · A 3-wire Phidget cable
- · A USB cable
- · A computer

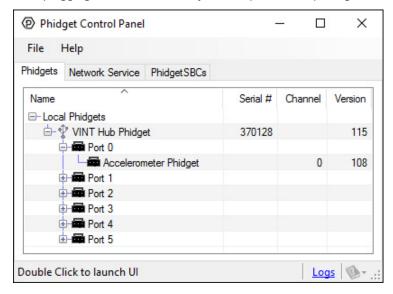
Connecting the Pieces

- 1. Connect the MOT1100 to the VINT Hub using the Phidget cable.
- 2. Connect the VINT Hub to your computer with a USB cable.

Testing Using Windows

Phidget Control Panel

In order to demonstrate the functionality of the MOT1100, the Phidget Control Panel running on a Windows machine will be used.

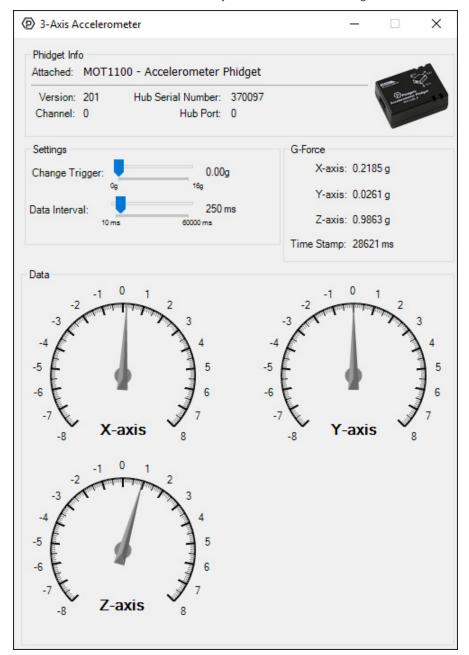

The Phidget Control Panel is available for use on both macOS and Windows machines. If you would like to follow along, first take a look at the getting started guide for your operating system:

- · Getting started with Windows
- Getting started with macOS

Linux users can follow the getting started with Linux guide and continue reading here for more information about the MOT1100.

First Look

After plugging the MOT1100 into your computer and opening the Phidget Control Panel, you will see something like this:


The Phidget Control Panel will list all connected Phidgets and associated objects, as well as the following information:

- Serial number: allows you to differentiate between similar Phidgets.
- Channel: allows you to differentiate between similar objects on a Phidget.
- Version number: corresponds to the firmware version your Phidget is running. If your Phidget is listed in red, your firmware is
 out of date. Update the firmware by double-clicking the entry.

The Phidget Control Panel can also be used to test your device. Double-clicking on an object will open an example.

Accelerometer

Double-click on the Accelerometer object "Accelerometer Phidget" in order to run the example:

General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

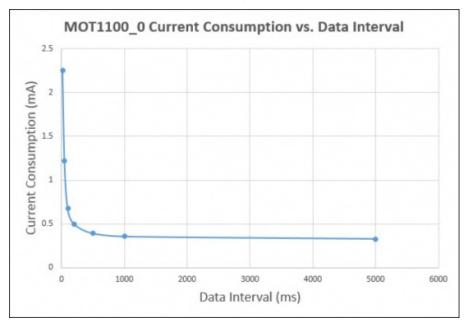
- Modify the change trigger and/or data interval value by dragging the sliders. For more information on these settings, see the data interval/change trigger page.
- The measured values reported in g-force can be seen via labels as well as graphical dials. Try tilting the MOT1100 in different directions to see the labels and graphics change.
- An extremely accurate timestamp is also reported with the g-force values.

Testing Using Mac OS X

- 1. Go to the Quick Downloads section on the Mac OS X page.
- 2. Download and run the Phidget OS X Installer
- 3. Click on System Preferences >> Phidgets (under Other) to activate the Preference Pane
- 4. Make sure your device is properly attached
- 5. Double click on your device's objects in the listing to open them. The Preference Pane and examples will function very similarly to the ones described above in the Windows section.

Testing Using Linux

For a general step-by-step guide on getting Phidgets running on Linux, see the Linux page.


Using a Remote OS

We recommend testing your Phidget on a desktop OS before moving on to remote OS. Once you've tested your Phidget, you can go to the PhidgetSBC, or iOS pages to learn how to proceed.

Technical Details

Current Consumption

The current consumption of this device depends on what the data interval is set to.

Further Reading

For more information on how to use an accelerometer, have a look at the Accelerometer Primer.

What to do Next

- · Software Overview Find your preferred programming language here to learn how to write your own code with Phidgets!
- General Phidget Programming Read this general guide to the various aspects of programming with Phidgets. Learn how to log data into a spreadsheet, use Phidgets over the network, and much more.
- Phidget22 API The API is a universal library of all functions and definitions for programming with Phidgets. Just select your language and device and it'll give you a complete list of all properties, methods, events, and enumerations that are at your disposal.