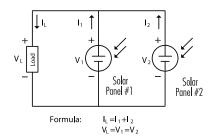

Stock Code	Description	Ampere (mA)	Voltage (V)	Size (mm)
SC10036	Monocrystalline Solar Cell	100 mA	3.6V	60 x 60 mm
SC10050	Monocrystalline Solar Cell	100 mA	5.0V	75 x 60 mm
SC10072	Monocrystalline Solar Cell	100 mA	7.2V	90 x 70 mm
SC20036	Monocrystalline Solar Cell	200 mA	3.6V	85 x 85 mm
SC20050	Monocrystalline Solar Cell	200 mA	5.0V	120 x 70 mm
SC20072	Monocrystalline Solar Cell	200 mA	7.2V	140 x 90 mm

Helpful Tips 🞉

Calculating Watts

Power [Watt] = Voltage [Volt] x Current [Ampere]


Series Wiring

If your application needs a higher voltage supply source, you can wire multiple solar panels in series. You can wire the positive terminal of solar panel #1 to the load, and connecting the negative terminal of solar panel #1 to the positive terminal of solar panel #2. In this wiring, the total voltage delivered to the load will be doubled and the rated current supply will remain the same.

Wiring Multiple Solar Panels

Parallel Wiring

If your application needs more power, you can wire multiple solar panels in parallel. By connecting the positive terminal of solar panel #1 to the postive terminal of solar panel #2, and connecting the negative terminal of solar panel #1 to the negative terminal of solar panel #1 to the negative terminal of solar panel #2, the maximum current that can be delivered to the load will be doubled. The rated voltage will remain the same.