

AN ECOSYSTEM BUILT FOR INDUSTRY 4.0

To make **robotics accessible**, we created **Ned**, your **new partner for Education and Research**. Its **Ecosystem** allows you to reproduce and test many uses oriented towards **industry 4.0**.

VISION SET

Use **image recognition** to interact with objects according to their **shape** and **color**.

Experience Vision with Blockly, or use Python and OpenCV to create your own image processing and artificial intelligence pipelines.

NED

Reproduce **advanced industrial processes** using its 6 axes.

Based on **open-source technologies**, Ned integrates a **Raspberry Pi 4** making it reactive and versatile.

Its aluminum structure gives it high robustness and repeatability, ideal for all your robotics

CONVEYOR BELT

Easily prototype **production lines**. Two versions of the Conveyor Belt are available to fit your projects:

The **Standard Set** consists of the Conveyor Belt, an **infrared sensor** and the **control box** for an autonomous use.

The **Education Set** includes these same elements as well as a **slope**, an **end-stopper**, **Vision landmarks** and **6 manipulable objects** of different shapes and colors.

PROGRAMMING & PROTOCOLS

Ned was designed to **democratize robotics.** In this context, it allows to **learn**:

BLOCKLY

Similar to **Scratch**, it is a library that allows you to **program visually by interacting with blocks**. It allows to control Ned intuitively **without any programming knowledge**.

ROS

Ned is based on **ROS (Robot Operating System)**. It is an operating system designed for robotics offering **standardized functions** to use with different languages such as **Python** and **C++**.

PYTHON

Python is a **powerful** and **versatile multi-platform** programming language. It can be used in robotics, image processing, cloud computing, Big Data...

MODBUS

A **Modbus/TCP server** is integrated into Ned. This **communication protocol**, which is essential in many **industrial** settings, can be studied to connect different devices in a master-slave relationship.

MATLAB

With Ned - MATLAB integration, it is possible to analyze the difference between theoretical and actual **trajectory curves**. Matlab thus provides a better understanding of **system control** concepts.

NIRYO STUDIO

Discover **Niryo Studio**, our **free desktop application**.

Create your programs easily by assembling **blocks**. **Easy** and **intuitive**.

Available on:

INDUSTRIAL USES REPRODUCTION

Ned aims to **support the teaching of collaborative robotics** and allows to **learn** different programming languages by reproducing many robotic uses in a concrete way.

RESEARCH & DEVELOPMENT

Ned can be integrated in a **research & development** logic to carry out the different activities that can be related to it such as **monitoring** and **prototyping**.

ACCESSORIES

Ned comes with the **Custom Gripper** which allows you to manipulate many objects.

Need to manipulate other objects?

Its jaws are **interchangeable** and can be **3D printed**. Also, other **accessories** are available to give life to all your robotic projects.

TECHNICAL SPECIFICATIONS

NED

Degrees Of Freedom (DOF)

Weight 6.5 kg

Maximum payload 300 gr

Reach 440 mm Repeatability 0.5 mm

Power supply DC 11.1 Volts / 6A
Communication Ethernet 1 Gb/s

WIFI 2.4 GHz & 5 GHz - Range 802.11n (~31 dBm, <80dBm)

Bluetooth 5.0 BLE USB

Interface / Programming Windows / MacOS / Linux (desktop application) & APIs

Power consumption ~ 60 W

Materials Aluminum, PLA (3D printing)

Ports 1 Ethernet + 2 USB 3.0 + 2 USB 2.0

Hardware Raspberry Pi 4

3 x NiryoSteppers 2 x Dynamixel XL – 430 1 x Dynamixel XL – 320

Collision detection sensor Magnetic sensor (on motor)

VISION SET

Model ELP-USBFHD06H-L21

Sensor Sony IMX322 Lens size 2.1 mm Pixel size 12.8×11.6 mm

Image area 2000(H)x1121(V) approx. 2.24 M pixels

Formats YUV, H264 & MJPEG

Control methods Niryo Studio / API Python / TCP IP

SN ratio 42 dB Dynamic range 86 dB

Sensitivity 5.0 V / lux-sec@550nm

Mini illumination 0. 01 lux

Ajustable parameters Brightness, contrast, saturation, hue, sharpness, gamma, gain, white balance,

backlight contrast, exposure

CONVEYOR BELT

Effective Delivering Distance 700 mm

Dimensions 712 mm × 225 mm × 60 mm

NiryoStepper

Direction of movement Bidirectional

Maximum speed 38 mm/s (reduced in autonomous mode)

Maximum payload 2 kg

Drive mode Nirv

Control methods Niryo One Studio / Niryo Studio / Python API / Niryo Modbus / Arduino

EDUCATIONAL RESOURCES

To guide you in **learning robotics**, we provide a set of resources available online, free of charge:

- Detailed documentations,
- Tutorials.
- Applications examples...

These educational resources allow you to learn or practice **programming** (Blockly, Python, ROS), **simulation**, **image processing**, and many other uses.

www.niryo.com