
www.nexusrobot.com Robot Kits manual

 NEXUS ROBOT
 Looking to the future

Robot Kits User’s Manual

Nexus Automation Limited
ADDR: 2/F,Chengxi Building. 819 S358 Road. Shatou,

 Changan, Dongguan, Guangdong, China

Robot Kits User’s Manual
Tel: +86-769-85301107

www.nexusrobot.com Robot Kits manual

Nexus Robot
A. Attention!! Please read this manual carefully before applying power on the

device.

B. Attention!! Do not use this device for military or medical purpose as they are
not designed to.

C. Attention!! Do not use over-voltage power supply ! ensure stable power
supply. if there is high-voltage pulse, may cause the micro-control module
permanent damage ！

D. Attention!! This product is not waterproof feature, please keep or use it in a
dry environment ! Don't piled the weight on top of it .

www.nexusrobot.com Robot Kits manual

 I

 Arduino ...1
 Introduction..1

 Hardware ...1
 Specification ..1
 Arduino Board Pinout ..2
 Arduino 328 Features...2

 Memory function ..3
 Input and Output PinMode..3
 Communication...3

 Configuration ...3
 Servo Power Select Jumper ..3
 Motor Control Pin Jumper ..4
 Wireless Select Jumper ...4

 Arduino IO Expansion Board ..4
 Features ...4

 Software...5
 Before you start..5

 Applying Power ..5
 Getting Started ..5

 Language Reference...9
 Programming structure...9

 Re-write Arduino bootloader...10
 FT232RL BitBang Mode AVR-Writer..10

 Modify the Diecimila..10
 Downloading...11
 Installing ...11
 Setting ...12
 Testing and confirming ...13

 Adjust PWM frequencies...13
 Simple Examples in Arduino 328...15

 LED control ...15
 Button module..16
 Interrrupt control..17
 Digital Read Serial...18
 Analog Read Serial ..19
 Servo Motor Theory...19
 Motor Control ..21
 Serial Port...22

 External device modules ...23
 Dual Ultrasonic Sensor (DUS)...23

 Introduction...23
 Specification ...24
 Dimension and Pin definition ...24
 RS485 Bus ..25

www.nexusrobot.com Robot Kits manual

 II

 Communication Protocols...27
 Sensor Connection ..29
 Sensor Networking..29

 APC220 Module ..30
 Parameters...30
 Kit list..30
 This module used to connect PC port. ..30

 Pin Change Interrupt..31
 PinChangeInt Library...31

 PID Control ..33
 What Is PID..33
 The Library ..33

 Servo control Theory ...34
 The PWM signal ..35

 Motorwheel ..36
 Motorwheel Class Reference ...36

 Class Motor Reference..37
 Class GearedMotor ...43
 Class MotorWheel ..45

 R2WD ..49
 R2WD Class Reference ..49
 Public functions ..49
 Private parameters...62
 R2WD_test..68
 2WD platform with 3 SONAR ...71

 Omni3WD..74
 Omni3WD Class Reference..75
 Public functions ..76
 Private parameters...84
 Omni3WD_test ...86
 Omni3WD platform with 3 SONARS ..89
 Omni3WD platform with 6 SONARS ..93

 Omni4WD..97
 Omni4WD Class Reference..98
 Public functions ..98
 Private parameters...109
 Omni4WD_test ...112
 4WD platform with 4 SONAR ...115

 Servo Motor ...118
 Servo_3WD platform with 3 SONAR ..122

www.nexusrobot.com Robot Kits manual

 1

 Arduino
 Introduction

Arduino Controller is an All-in-One microcontroller especially designed for robotics application. Benefit

from Arduino open source platform, it is supported by thousands of open source codes, and can be easily

expanded with most Arduino Shields.Arduino can sense the environment by receiving input from a

variety of sensors and can affect its surroundings by controlling lights, motors, and other actuators. The

microcontroller on the board is programmed using the Arduino programming language (based on Wiring)

and the Arduino development environment (based on Processing). Arduino projects can be stand-alone

or they can communicate with software running on a computer (e.g. Flash, Processing, MaxMSP).

 Hardware
 Specification

 Atmega 168/328

 14 Channels Digital I/O

 6 PWM Channels (Pin11,Pin10,Pin9,Pin6,Pin5,Pin3)

 8 Channels 10-bit Analog I/O

 USB interface

 Auto sensing/switching power input

 ICSP header for direct program download

 Serial Interface TTL Level

 Support AREF

 Support Male and Female Pin Header

 Integrated sockets for APC220 RF Module

 Five IIC Interface Pin Sets

 Two way Motor Drive with 2A maximum current

 7 key inputs

 DC Supply：USB Powered or External 7V~12V DC

 DC Output：5V /3.3V DC and External Power Output

 Dimension：90x80mm

www.nexusrobot.com Robot Kits manual

 2

 Arduino Board Pinout

The picture above shows all of the I/O lines and Connectors on the controller, which includes:

 One Regulated Motor Power Input Terminal (6v to12v)

 One Unregulated Servo Power Input Terminal (you supply regulated 4v to 7.2v)

 One Servo input power selection jumper

 One Serial Interface Module Header for APC220 Module

 Two DC Motor Terminals – Handles motor current draw up to 2A, each terminal

 One IIC/TWI Port – SDA, SCL, 5V, GND

 One Analog Port with 8 analog inputs – one input is tied internally to the supply voltage

 One General Purpose I/O Port with 13 I/O lines – 4,5,6,7 can be used to control motors

 One Reset Button

 Jumper bank to Enable/Disable Motor Control

 Arduino 328 Features

The Arduino Uno is a microcontroller board based on the ATmega328 (datasheet). It has 14 digital

input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz crystal oscillator,

a USB connection, a power jack, an ICSP header, and a reset button. It contains everything needed to

support the microcontroller; simply connect it to a computer with a USB cable or power it with a AC-to-DC

adapter or battery to get started.

www.nexusrobot.com Robot Kits manual

 3

 Memory function

The ATmega328 has 32 KB (with 0.5 KB used for the bootloader). It also has 2 KB of SRAM and 1 KB of

EEPROM (which can be read and written with the EEPROM library).

 Input and Output PinMode

Each of the 14 digital pins on the Duemilanove can be used as an input or output, using pinMode(),

digitalWrite(), and digitalRead() functions. They operate at 5 volts. Each pin can provide or receive a

maximum of 40 mA and has an internal pull-up resistor (disconnected by default) of 20-50 kOhms. In

addition, some pins have specialized functions:

Serial: 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial data. These pins are

connected to the corresponding pins of the FTDI USB-to-TTL Serial chip.

External Interrupts: 2 and 3. These pins can be configured to trigger an interrupt on a low value, a rising

or falling edge, or a change in value. See the attachInterrupt() function for details.

PWM: 3, 5, 6, 9, 10, and 11. Provide 8-bit PWM output with the analogWrite() function.

SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). These pins support SPI communication using the SPI

library.

LED: 13. There is a built-in LED connected to digital pin 13. When the pin is HIGH value, the LED is on,

when the pin is LOW, it's off.

 Communication

The Arduino Uno has a number of facilities for communicating with a computer, another Arduino, or other

microcontrollers. The ATmega328 provides UART TTL (5V) serial communication, which is available on

digital pins 0 (RX) and 1 (TX). An ATmega8U2 on the board channels this serial communication over

USB and appears as a virtual com port to software on the computer. The '8U2 firmware uses the

standard USB COM drivers, and no external driver is needed. However, on Windows, a .inf file is

required. The Arduino software includes a serial monitor which allows simple textual data to be sent to

and from the Arduino board. The RX and TX LEDs on the board will flash when data is being transmitted

via the USB-to-serial chip and USB connection to the computer (but not for serial communication on pins

0 and 1).

 Configuration

 Servo Power Select Jumper

As most servo draw more current than the USB power source can supply. A separate servo power

terminal is provided to power the servo individually which can be Enable/Disable by the Servo Power

Select Jumper.

www.nexusrobot.com Robot Kits manual

 4

When the Servo Power Select Jumper is applied, the servo is powered by internal 5V.

When the Servo Power Select Jumper is not applied, the servo is powered by external power source.

 Motor Control Pin Jumper

Applying the Motor Control Pin Jumpers will allocate Pin 4,5,6,7 for motor control.

Removing the jumpers will release the above Pins.

 Wireless Select Jumper

Applying the Wireless Select Jumper will allow the controller communicate via its wireless module such

as APC220. If no wireless module is plugged, this jumper does not make any difference.

Removing the jumper will disable wireless module and allows the sketch to be uploaded.

 Arduino IO Expansion Board

To support RS485 interface or drive 4 motors, IO Expansion Board is available.

This Arduino compatible I/O EXpansion Sheild is intelligently designed to facilitate an easy connection

between an Arduino board (e.g. Arduino Duemilanove) and other devices such as sensors and RS485

devcices. In essence, it expands an Arduino controller's Digital I/O and Analogue Input Pins with Power

and GND. It is compatible with Arduino Mega and is a perfect companion of Arduino Dumilanove

(Atmega168 and Atmega 328).

 Features

1. Supporting XBee (Xbee Pro)/Bluetooth Bee;

2. An unique RS485 output, supporting a RS485 device;

3. Separate PWM Pins, which are compatible with standard servo Connector;

www.nexusrobot.com Robot Kits manual

 5

4. Supporting Bluetooth module, APC220 module;

5. Auto Switch between external and onboard power supply;

6. Supporting SD card (read&write - our SD card module is needed);

7. Supporting IIC/I2C/TWI connection

See: http://www.nexusrobot.com/product.php?id_product=51

 Software
The open-source Arduino environment makes it easy to write code and upload it to the i/o board. It runs

on Windows, Mac OS X, and Linux. The environment is written in Java and based on Processing, avr-gcc,

and other open source software.

 Before you start
Before you start there are somethings you will to attention.

 Applying Power

This is one of the most important steps in getting the controller up and communicating with your host

controller. You must make sure that you apply power to the Power Terminal using the correct polarity.

Reverse Polarity will damage the controller. We are not responsible for such damage, nor do we

warranty against such damage. Make sure you take time to apply power correctly. Otherwise, it could get

costly for you!

Power from USB: Simply plug USB cable, and the controller is able to work. Please notice that the USB

can only supply 500 mA current. It should be able to meet the most requirements for LED lit application.

However it is not enough to power DC motors or servo.

Power from Motor Power Input: Simply connect the ground wire from your supply to the screw terminal

labeled “GND”, and then connect the positive wire from your supply to the screw terminal labeled “VIN".

NOTE: Maximum supply voltage cannot exceed 14V DC.

 Getting Started

This document explains how to connect your Arduino board to the computer and upload your first sketch.

1 | Get an Arduino board and USB cable

In this tutorial, we assume you're using an Arduino Uno, Arduino Duemilanove, Nano, or Diecimila. If you

have another board, read the corresponding page in this getting started guide.

You also need a standard USB cable (A plug to B plug): the kind you would connect to a USB printer, for

example. (For the Arduino Nano, you'll need an A to Mini-B cable instead.)

www.nexusrobot.com Robot Kits manual

 6

2 | Download the Arduino environment

Get the latest version from the download page.

When the download finishes, unzip the downloaded file. Make sure to preserve the folder structure.

Double-click the folder to open it. There should be a few files and sub-folders inside.

3 | Connect the board

The Arduino Uno, Mega, Duemilanove and Arduino Nano automatically draw power from either the USB

connection to the computer or an external power supply. If you're using an Arduino Diecimila, you'll need

to make sure that the board is configured to draw power from the USB connection. The power source is

selected with a jumper, a small piece of plastic that fits onto two of the three pins between the USB and

power jacks. Check that it's on the two pins closest to the USB port.

Connect the Arduino board to your computer using the USB cable. The green power LED (labelled PWR)

should go on.

4 | Install the drivers

Installing drivers for the Arduino Uno with Windows7, Vista, or XP:

 Plug in your board and wait for Windows to begin it's driver installation process. After a few

moments, the process will fail, despite its best efforts

 Click on the Start Menu, and open up the Control Panel.

 While in the Control Panel, navigate to System and Security. Next, click on System. Once the

 System window is up, open the Device Manager.

 Look under Ports (COM & LPT). You should see an open port named "Arduino UNO (COMxx)"

 Right click on the "Arduino UNO (COmxx)" port and choose the "Update Driver Software" option.

 Next, choose the "Browse my computer for Driver software" option.

 Finally, navigate to and select the Uno's driver file, named "ArduinoUNO.inf", located in the

"Drivers" folder of the Arduino Software download (not the "FTDI USB Drivers" sub-directory).

Windows will finish up the driver installation from there.

www.nexusrobot.com Robot Kits manual

 7

See also: step-by-step screenshots for installing the Uno under Windows XP.

Installing drivers for the Arduino Duemilanove, Nano, or Diecimila with Windows7, Vista, or XP:

When you connect the board, Windows should initiate the driver installation process (if you haven't used

the computer with an Arduino board before).

On Windows Vista, the driver should be automatically downloaded and installed. (Really, it works!)

On Windows XP, the Add New Hardware wizard will open:

When asked Can Windows connect to Windows Update to search for software? select No, not this time.

Click next.

Select Install from a list or specified location (Advanced) and click next.

Make sure that Search for the best driver in these locations is checked; uncheck Search removable

media; check Include this location in the search and browse to the drivers/FTDI USB Drivers directory of

the Arduino distribution. (The latest version of the drivers can be found on the FTDI website.) Click next.

The wizard will search for the driver and then tell you that a "USB Serial Converter" was found. Click

finish.

The new hardware wizard will appear again. Go through the same steps and select the same options and

location to search. This time, a "USB Serial Port" will be found.

You can check that the drivers have been installed by opening the Windows Device Mananger (in the

Hardware tab of System control panel). Look for a "USB Serial Port" in the Ports section; that's the

Arduino board.

5 | Launch the Arduino application

Double-click the Arduino application.

6 | Open the blink example

Open the LED blink example sketch: File > Examples > 1.Basics > Blink.

www.nexusrobot.com Robot Kits manual

 8

7 | Select your board

You'll need to select the entry in the Tools > Board menu that corresponds to your Arduino.

For Duemilanove Arduino boards with an ATmega328 (check the text on the chip on the board), select

Arduino Duemilanove or Nano w/ ATmega328. Previously, Arduino boards came with an ATmega168;

for those, select Arduino Diecimila, Duemilanove, or Nano w/ ATmega168. (Details of the board menu

entries are available on the environment page.)

8 | Select your serial port

Select the serial device of the Arduino board from the Tools | Serial Port menu. This is likely to be COM3

or higher (COM1 and COM2 are usually reserved for hardware serial ports). To find out, you can

disconnect your Arduino board and re-open the menu; the entry that disappears should be the Arduino

board. Reconnect the board and select that serial port.

9 | Upload the program

Now, simply click the "Upload" button in the environment. Wait a few seconds - you should see the RX

and TX leds on the board flashing. If the upload is successful, the message "Done uploading." will appear

www.nexusrobot.com Robot Kits manual

 9

in the status bar. (Note: If you have an Arduino Mini, NG, or other board, you'll need to physically present

the reset button on the board immediately before pressing the upload button.)

A few seconds after the upload finishes, you should see the pin 13 (L) LED on the board start to blink (in

orange). If it does, congratulations! You've gotten Arduino up-and-running.

If you have problems, please see the troubleshooting suggestions.

You might also want to look at:

 the examples for using various sensors and actuators

 the reference for the Arduino language

The text of the Arduino getting started guide is licensed under a Creative Commons

Attribution-ShareAlike 3.0 License. Code samples in the guide are released into the public domain.

See: http://arduino.cc/en/Guide/Windows

 Language Reference

Arduino programs can be divided in three main parts: structure, values (variables and constants), and

functions.If you want to understand more, please See: http://www.arduino.cc/en/Reference/HomePage

 Programming structure
This section describes the two important structures in the basic Arduino: setup () and loop ().They are

indispensable.

The setup() function is called when a sketch starts. Use it to initialize variables, pin modes, start using

libraries, etc. The setup function will only run once, after each power up or reset of the Arduino board.

After creating a setup() function, which initializes and sets the initial values, the loop() function does

precisely what its name suggests, and loops consecutively, allowing your program to change and

respond. Use it to actively control the Arduino board.

Sample code

 int buttonPin = 3;

// setup initializes serial and the button pin

void setup()

{

 beginSerial(9600);

 pinMode(buttonPin, INPUT);

}

// loop checks the button pin each time,

// and will send serial if it is pressed

void loop()

www.nexusrobot.com Robot Kits manual

 10

{

 if (digitalRead(buttonPin) == HIGH)

 serialWrite('H');

 else

 serialWrite('L');

 delay(1000);

}

 Re-write Arduino bootloader
If you couldn't load the bootloader via the Arduino IDE with the parallel programmer from the Arduino

website. Then you can used the following method to Re-write the bootloader on your chip.

 FT232RL BitBang Mode AVR-Writer

FT232RL is an USB-Serial bridge on an Arduino Dicimila/NG/Duemilanove PCB. It has the function to

manipulate each signal pin directly. It's called BitBang Mode.

If we use "avrdude-serjtag" we can burn the bootloader by Diecimila itself.

This section describe the method on Windows-XP.

Attention!!!

If you want use "avrdude-serjtag" on Linux or Mac OS, you must remake (patch, reconfigure and

recompile) it.

There are useful projects. avrdude by FT245R/FT232R(Linux) and BitBang Mode AVR-Writer on

Mac (Translated to English by Google.) These projects made a way to BitBang Mode AVR-Writer on

Linux and Mac !!!

Of course, if you use Windows in Vmware on your Linux or Mac OS, you can run

"avrdude-serjtag(windows version)".

 Modify the Diecimila

There are four pads written as X3 near FT232RL on a Diecimila PCB. (These pads are connected to the

control pins of FT232RL.).Remove the solder of these pads and insert a pin-header. And soldering

it.Connect the pins of X3 and the pins of ICSP by wires. Please see the photograph below. (click to

enlarge)

www.nexusrobot.com Robot Kits manual

 11

 Downloading

To downloading the "avrdude-serjtag" FTDI BitBang AVR-Writer from the internet.

configure-file for avrdude-serjtag

avrdude.conf (Update: included chip-parameter of ATmega328P and 88P)

avrdude-GUI-1.0.5.zip mirror site

avrdude-GUI-1.0.5.zip original site

(http://yuki-lab.jp/hw/avrdude-GUI/index.html)avrdude-GUI-1.0.5.zip mirror site

avrdude-GUI (yuki-lab.jp Version) require Microsoft .NET Framework 2.0. When .NET Framework 2.0 is

not installed. Download it from here (Microsoft .NET Framework 2.0 download page) and install it.

 Installing

avrdude-serjtag

Exract serjtag-***.zip.

Copy "avrdude-serjtag" folder into the "C:\Program Files" folder.

 Delete "src" folder in the "avrdude-serjtag" folder.

www.nexusrobot.com Robot Kits manual

 12

avrdude.conf

Copy(overwrite) "avrdude.conf" into the "C:\Program Files\avrdude-serjtag\binary" folder.

This modified "avrdude.conf" has setting-scripts of "FTDI BitBang AVR-Writer" for Diecimila below.

#arduino diecimila

Programmer

 id="diecimila";

 desc = "FT232R Synchronous BitBang";

 type = ft245r;

 miso = 3; # CTS X3(1)

 sck = 5; # DSR X3(2)

 mosi = 6; # DCD X3(3)

 reset = 7; # RI X3(4)

;

avrdude-GUI (yuki-lab.jp Version)

Extract avrdude-GUI-1.0.5.zip.

Copy "avrdude-GUI-1.0.5" folder into "C:\Program Files" folder.

avrdude-GUI (yuki-lab.jp Version) require Microsoft .NET Framework 2.0.

When .NET Framework 2.0 is not installed. Download it from here and install it.

 Setting

Open the "C:\Program Files\avrdude-GUI-1.0.5" folder. And double click the "avrdude-GUI.exe" to run

it."avrdude-GUI" settings is as below from ① to ⑧.

www.nexusrobot.com Robot Kits manual

 13

If your chip isn’t the same ,Some of the blank’s setting is different .change it base on the following chips :

 Testing and confirming

- Disconnect a USB cable from Diecimila.

- Remove the wires of ICSP and X3.

- Connect a USB cable to Diecimila.

- Push the reset button of Diecimila.

- Start Arduino-IDE.

- Upload sample sketch “Blink”.

- And it will be run

See: http://www.roboticfan.com/article/html/797.shtml

 or http://www.geocities.jp/arduino_diecimila/bootloader/index_en.html

 Adjust PWM frequencies
The ATmega328P has three timers known as Timer 0, Timer 1, and Timer 2. Each timer has two output

compare registers that control the PWM width for the timer's two outputs: when the timer reaches the

compare register value, the corresponding output is toggled. The two outputs for each timer will normally

have the same frequency, but can have different duty cycles (depending on the respective output

compare register).

By macegr in this forum post

http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1235060559/12

Pins 5 and 6: controlled by timer 0

Setting Divisor Frequency

0x01 1 62500

www.nexusrobot.com Robot Kits manual

 14

0x02 8 7812.5

0x03 64 976.5625

0x04 256 244.140625

0x05 1024 61.03515625

TCCR0B = TCCR0B & 0b11111000 | <setting>;

Pins 9 and 10: controlled by timer 1

Setting Divisor Frequency

0x01 1 31250

0x02 8 3906.25

0x03 64 488.28125

0x04 256 122.0703125

0x05 1024 30.517578125

TCCR1B = TCCR1B & 0b11111000 | <setting>;

Pins 11 and 3: controlled by timer 2

Setting Divisor Frequency

0x01 1 31250

0x02 8 3906.25

0x03 32 976.5625

0x04 64 488.28125

0x05 128 244.140625

0x06 256 122.0703125

0x07 1024 30.517578125

TCCR2B = TCCR2B & 0b11111000 | <setting>;

All frequencies are in Hz and assume a 16000000 Hz system clock.

From koyaanisqatsi in this forum post

http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1235060559/12

If you change TCCR0B, it affects millis() and delay(). They will count time faster or slower than normal if

you change the TCCR0B settings. Below is the adjustment factor to maintain consistent behavior of

these functions:

Default: delay(1000) or 1000 millis() ~ 1 second

0x01: delay(64000) or 64000 millis() ~ 1 second

0x02: delay(8000) or 8000 millis() ~ 1 second

0x03: is the default

0x04: delay(250) or 250 millis() ~ 1 second

www.nexusrobot.com Robot Kits manual

 15

0x05: delay(62) or 62 millis() ~ 1 second

(Or 63 if you need to round up. The number is actually 62.5)

Also, the default settings for the other timers are:

TCCR1B: 0x03

TCCR2B: 0x04

There may be other side effects from changing TCCR0B. For example my project would not properly

run with TCCR0B set to 0x02 or 0x01. But it worked fine at 0x03 and higher.

 Simple Examples in Arduino 328
These examples are designed to demonstrate how to use the modules with the Arduino. The Arduino's

hardware serial port is not used to connect to our modules, which keeps it available to the USB port. That

allows downloading new programs without having to continually disconnect/reconnect things. Most of

these examples use the LCD03 display module to show the results, but it is also possible to display the

results on the PC, as demonstrated in the CMPS03 example. All the modules which use the I2C bus

have 1k8 pull-up resistors to 5v. You only need one set of resistors, located near the Arduino, regardless

of however many I2C devices you have connected to it.

 LED control

Most Arduino boards already have an LED attached to pin 13 on the board itself. If you run this example

with no hardware attached, you could see LED blinks.This example shows the simplest thing you can do

with an Arduino to see physical output: it blinks an LED.

Sample code

/*

 Blink

 Turns on an LED on for one second, then off for one second, repeatedly.

 This example code is in the public domain.

 */

void setup() {

 // initialize the digital pin as an output.Pin 13 has an LED connected on most Arduino boards:

 pinMode(13, OUTPUT);

}

void loop() {

 digitalWrite(13, HIGH); // set the LED on

 delay(1000); // wait for a second

 digitalWrite(13, LOW); // set the LED off

 delay(1000); // wait for a second

}

www.nexusrobot.com Robot Kits manual

 16

Led control

 Button module

The controller has 7 build-in buttons S1-S7. S1-S5 use analog input, S6, S7 use digital input.

To enable S6 and S7, please apply the jumpers indicated in the red circle. S6 uses Digital Pin2, S7 uses

Digital Pin3. Once these enable jumpers have been applied, Pin 2 and 3 will be occupied.

Sample code

int ledPin = 13;

int key_s6 = 2;

int val=0;

void setup()

{

 pinMode(ledPin, OUTPUT); // Set Pin13 to output mode

 pinMode(key_s6, INPUT); // Set Pin12 to output mode

}

void loop()

{

 if(digitalRead(key_s6)==0) //

 {

 while(!digitalRead(key_s6));

 val++;

 }

 if(val==1) {

digitalWrite(ledPin, HIGH); //

 }

 if(val==2)

 {

 val=0;

www.nexusrobot.com Robot Kits manual

 17

 digitalWrite(ledPin, LOW); // Set a low value to the ledPin

 }

}

 Arduino button

 Interrrupt control
Description

Specifies a function to call when an external interrupt occurs. Replaces any previous function that was

attached to the interrupt. Most Arduino boards have two external interrupts: numbers 0 (on digital pin 2)

and 1 (on digital pin 3). The Arduino Mega has an additional four: numbers 2 (pin 21), 3 (pin 20), 4 (pin

19), and 5 (pin 18).

Sample code

int pin = 13;

volatile int state = LOW;

void setup()

{

 pinMode(pin, OUTPUT);

 attachInterrupt(0, blink, CHANGE);

}

void loop()

{

 digitalWrite(pin, state);

}

void blink()

{

 state = !state;

}

www.nexusrobot.com Robot Kits manual

 18

 Digital Read Serial
Fall Detector Example
This example shows you how to monitor the state of a Fall detector by establishing serial communication

between your Arduino and your computer over USB.

Sample code

const int PIN = 12; //set pin 12 as the signal pin

void setup()

{

 Serial.begin(9600);

 pinMode(PIN,INPUT); //set mode

}

void loop()

{

 bool val = 0;

 val = digitalRead(PIN); //read pin 12

 Serial.println(val); //display the value

 delay(500);

}

 Chooce the serial port

 Open the serial Monitor

www.nexusrobot.com Robot Kits manual

 19

 Select the display Baud Rate

 Analog Read Serial
Sharp 2D12 Example

This example shows you how to read analog input, which from the physical world using a Sharp 2D12. A

Sharp 2D12 is a simple mechanical device that provides a varying amount of resistance when its shaft is

turned. By passing voltage through a Sharp 2D12 and into an analog input on your Arduino, it is possible

to measure the amount of resistance produced by a Sharp 2D12 (or pot for short) as an analog value. In

this example you will monitor the state of your Sharp 2D12 after establishing serial communication

between your Arduino and your computer.

Sample code

const int GP2Y0A21 = 0; //set analog pin 0 as the signal pin

void setup()

{

 Serial.begin(9600);

}

void loop()

{

 int val = 0;

 val = ((10485/(analogRead(ISRpin[0])+5))-4); //read the data from signal pin

 Serial.println(val,DEC); // display

 delay(500);

}

 Servo Motor Theory

Servo motors have three wires: power, ground, and signal. The power wire is typically red, and should be

connected to the 5V pin on the Arduino board. The ground wire is typically black or brown and should be

connected to a ground pin on the Arduino board. The signal pin is typically yellow, orange or white and

should be connected to a digital pin on the Arduino board. Note servos draw considerable power, so if

www.nexusrobot.com Robot Kits manual

 20

you need to drive more than one or two, you'll probably need to power them from a separate supply (i.e.

not the +5V pin on your Arduino). Be sure to connect the grounds of the Arduino and external power

supply together. As mentioned earlier, most servos expect a pulse width between 1-2 ms, however, a

range of 0.5 ms to 2.5 ms (500-2500μs) may be required, depending on your servo. Experiment as

necessary.

 Hi-Tec Servo Motors have three wires coming out of them.

·Red - Power (4.8v-6v)

·Black (Ground)

·Yellow (Signal)

The power & ground wires are hooked directly up to whatever battery or power supply you are using to

power the servos. The Signal wire will be hooked up to the microcontroller used to control the servo, in

our case the PIC. A noticeable first impression, the servo only requires 1 pin from the pic.

The PWM Signal

The signal that we need to create inorder to control the servos is called a Pulse With Modulation signal or

PWM for short. The general requirements are:

Frequency: 50Hz

Up-time: 0.9mS->2.1mS

Down-time: 19.1mS-17.9mS

At first glance these definitions & numbers might make little or no sense. So lets look at a simple PWM

wave at 50Hz.

So a PWM wave is just a signal that changes between 0 volts & 5 volts (digital logic 0 and 1). We see that

the wave is symmetrical; uptime is 10mS & downtime is 10mS which when added together give us the

period (10mS + 10mS)

See: http://www.pyroelectro.com/tutorials/servo_motor/index.html

www.nexusrobot.com Robot Kits manual

 21

 Motor Control
Hardware Setting

Connect four motor wires to Motor Terminal. And apply power through motor power terminal.

The PWM DC motor control is implemented by manipulating two digital IO pins and two PWM pins. As

illustrated in the diagram above, Pin 4,7 are motor direction control pins, Pin 5,6 are motor speed control

pins.

Pin Allocation

PWM Control Mode

"PLL Mode"

Pin Function

Digital 4 Motor 1 Enable control

Digital 5 Motor 1 Direction control

Digital 6 Motor 2 Direction control

Digital 7 Motor 2 Enable control

Sample code

 int E1= 6; //the pin to control mator’s speed

 int M1= 7; //the pin to control direction

void setup()

{

 pinMode(M1,OUTPUT); //M2 direction control

 pinMode(E1,OUTPUT); //E2 PWM speed control

"PWM Mode"

Pin Function

Digital 4 Motor 1 Direction control

Digital 5 Motor 1 PWM control

Digital 6 Motor 2 PWM control

Digital 7 Motor 2 Direction control

www.nexusrobot.com Robot Kits manual

 22

 analogWrite(E1,100);

 TCCR2B = TCCR2B & 0b11111000 | 0x01;

//set the timer1 as the work intrrupt timer

 // to use the timer will defualt at the function of setup;

}

void loop() { }

The Motor sample to link wries

 Serial Port

This example shows you how to monitor the state of a switch by establishing serial communication

between your Arduino and your computer over USB.

Sample code

/*

 DigitalReadSerial . Reads a digital input on pin 0, prints the result to the serial monitor

 Use the example of gp2y0A21.to see how the Serial work.

 */

const int GP2Y0A21 = 0; //set analog pin 0 as the signal pin

int incomingByte = 0; // for incoming serial data

void setup()

{

 Serial.begin(9600); // opens serial port, sets data rate to 9600 bps

}

www.nexusrobot.com Robot Kits manual

 23

void loop()

{

 incomingByte = ((10485/(analogRead(ISRpin[0])+5))-4); //read the data from signal pin

 Serial.println(incomingByte,DEC); // display

 delay(500);

}

 External device modules
 Dual Ultrasonic Sensor (DUS)

 Introduction

DUS is based on RS485 interface. It allows a number of sensors working together. Up to 32 units may be

connected together in a RS485 network.

The ultrasonic sensor allows you to determine the exact distance of an obstacle in the sonar field of view.

The cleverness of your robot will depend on a sensitive sensor similar to the one bats use to know their

position and track prey. With advanced programming, you can design compensators in order to perfectly

control your motors according to the obstacle's distance.

www.nexusrobot.com Robot Kits manual

 24

 Specification

 Power: +5V

 Current: <20mA

 Working temperature: -10℃～+70℃

 Detecting range: 4cm-300cm

 Resolution: 1cm

 Frequency: 40KHz

 Interface: RS485

 Units: Range reported in cm

 Temperature sensor: 12 bits reading from serial port

 Size: 34mm × 51 mm

 Weight: 30g

 Dimension and Pin definition

RS485 Interface：Two connectors, + ： +5V DC Power +5V, - ： GND Ground , A ： A RS485 A(+) ,

B ： B RS485 B(-), ISP Pin：For factory firmware uploading

Communication LED：As the device is powered up, this LED will flash four times which indicates that the

sensor is working properly. This LED will also flash when it is communicating with other devices. Jumper

A：Not in use Jumper B：When the sensor is working under a network, only the Jumper B for the first

Device and the last Device need to be bridged.

www.nexusrobot.com Robot Kits manual

 25

 RS485 Bus

 Introduction to RS485

RS485 are serial communication methods for computers and devices.

RS485 bus advances in simpler cabling,longer transmitting distance and higher dependability.

RS485 is the most versatile communication standard in the standard series defined by the EIA, as it

performs well on all four points.

 Differential signals with RS485

Longer distances and higher bit rates

As we know noise is easily picked up and limits both the maximum distance and communication speed.

With RS485 on the contrary there is no such thing as a common zero as a signal reference. Several volts

difference in the ground level of the RS485 transmitter and receiver does not cause any problems.

Noise in straight and twisted pair cables

In the picture above, noise is generated by magnetic fields from the environment. The picture shows the

magnetic field lines and the noise current in the RS485 data lines that is the result of that magnetic field.

In the straight cable, all noise current is flowing in the same direction, practically generating a looping

current just like in an ordinary transformer. When the cable is twisted, we see that in some parts of the

signal lines the direction of the noise current is the oposite from the current in other parts of the cable.

Because of this, the resulting noise current is many factors lower than with an ordinary straight cable.

Shielding—which is a common method to prevent noise in RS232 lines—tries to keep hostile magnetic

fields away from the signal lines. Twisted pairs in RS485 communication however adds immunity which

is a much better way to fight noise. The magnetic fields are allowed to pass, but do no harm. If high noise

immunity is needed, often a combination of twisting and shielding is used as for example in STP,

shielded twisted pair and FTP, foiled twisted pair networking cables. Differential signals and twisting

allows RS485 to communicate over much longer. With RS485 communication distances of 1200 m are

possible.

Differential signal lines also allow higher bit rates than possible with non-differential connections.

Currently RS485 drivers are produced that can achieve a bit rate of 35 mbps.

www.nexusrobot.com Robot Kits manual

 26

 Network topology with RS485

RS485 is the only of the interfaces capable of internetworking multiple transmitters and receivers in the

same network. When using the default RS485 receivers with an input resistance of 12 kΩ it is possible to

connect 32 devices to the network. Currently available high-resistance RS485 inputs allow this number to

be expanded to 256. RS485 repeaters are also available which make it possible to increase the number

of nodes to several thousands, spanning multiple kilometers. And that with an interface which does not

require intelligent network hardware

RS485 network topology

In the picture above, the general network topology of RS485 is shown. N nodes are connected in a

multipoint RS485 network. For higher speeds and longer lines, the termination resistances are necessary

on both ends of the line to eliminate reflections. Use 100 Ω resistors on both ends. The RS485 network

must be designed as one line with multiple drops, not as a star. Although total cable length maybe shorter

in a star configuration, adequate termination is not possible anymore and signal quality may degrade

significantly.

 RS485 functionality

Default, all the senders on the RS485 bus are in tri-state with high impedance. In most higher level

protocols, one of the nodes is defined as a master which sends queries or commands over the RS485

bus. All other nodes receive these data. Depending of the information in the sent data, zero or more

nodes on the line respond to the master. In this situation, bandwidth can be used for almost 100%. There

are other implementations of RS485 networks where every node can start a data session on its own. This

is comparable with the way ethernet networks function. Because there is a chance of data collosion with

this implementation, theory tells us that in this case only 37% of the bandwidth will be effectively used.

With such an implementation of a RS485 network it is necessary that there is error detection

implemented in the higher level protocol to detect the data corruption and resend the information at a

later time.

There is no need for the senders to explicity turn the RS485 driver on or off. RS485 drivers automatically

return to their high impedance tri-state within a few microseconds after the data has been sent. Therefore

it is not needed to have delays between the data packets on the RS485 bus.

See: http://www.lammertbies.nl/comm/info/RS-485.html#intr

www.nexusrobot.com Robot Kits manual

 27

 Communication Protocols

The device is fixed at 19200 bps Baud Rate,8/N/1.

Set Device Address

Command:

Return Value：

Header Address Length Cmd Flag SUM

55 Aa ADD 1 55 S SUM

PS: All connected SONAR will be changed to the given address. The new address must be between

0x11 and 0x30. If the address is set successfully, the flag will be set to 0x01 in the return data. If

unsuccessful, there is no return data. (The default address for the sensor is 0x11)

Example:

Command:

0x55 0xaa 0x11 0x01 0x55 0x12 0x79 (Set Address to 0x12)

Return:

0x55 0xaa 0x12 0x01 0x55 0x01 0x69 (Address set successfully)

Trigger measurement

Command:

Header Address Length Cmd SUM

55 aa AD 0 01 SUM

Return Value：

None

PS: Trigger one measure. The distance data will be available after 30ms. This command do not return

any data. The distance data is stored in the buffer, and the Read Distance command can be applied to

get this distance data.

Example:

Command:

0x55 0xaa 0x00 0x01 0x00

Return:

None

Header Address Length Cmd Set Address SUM

55 Aa AB 1 55 ADD SUM

www.nexusrobot.com Robot Kits manual

 28

Read Distance

Command:

Header Address Length Cmd High Byte Low Byte SUM

55 aa ADD 2 02 H L SUM

PS: The command will return the measured distance value. The value consists of two bytes. If the

measurement is out of range or unsuccessful, the return data will be “0xFF(H) 0xFF(L)”.

Example:

Command:

0x55 0xaa 0x11 0x00 0x02 0x12(SUM)

Return:

0x55 0xaa 0x11 0x02 0x02 0x01 0x0A 0x11 (Distance is 266 cm)

0x55 0xaa 0x11 0x02 0x02 0xFF 0xFF 0x1F (Out of Range)

Read temperature

Command:

Header Address Length Cmd SUM

55 aa ADD 0 03 SUM

Header Address Length Cmd High Byte Low Byte SUM

55 aa ADD 2 03 H L SUM

PS: The command will return the temperature reading. The return temperature reading is using Celsius

scale. If the temperature is above 0 Celsius, the first four bits of High will be all 0. If the temperature is

below 0 Celsius, the first four bits of High will be all 1. The last 4 bits of High together with the Low bits

stands for 12bits temperature. The resolution is 0.1. When the reading is invalid, it returns 0xFF 0xFF

Example:

Command:

0x55 0xaa 0x11 0x00 0x03 0x13(SUM)

Return:

0x55 0xaa 0x11 0x02 0x03 0xF0 0x0A 0x11 (+1 Celsius Degree)

0x55 0xaa 0x11 0x02 0x03 0x00 0x0A 0x20 (-1 Celsius Degree)

0x55 0xaa 0x11 0x02 0x03 0xFF 0xFF 0x20 (Out of Range)

Header Address Length Cmd SUM

55 aa ADD 0 02 SUM

www.nexusrobot.com Robot Kits manual

 29

Simple code:

#include <SONAR.h> //used the library of SONAR

// The sonar whose address is 0x11 was named S11, and it was setted as the type of SONAR

SONAR s11=SONAR(0x11);

//SONAR s12(0x12);

void setup() {

 SONAR::init(); //set up some parameters

 delay(100); //100 millissecond

 s11.setAddr(0x11); //set address for S11with 0x11 .

}

//Ttrigger sonar and display the data.

void loop() {

 s11.trigger(); //Send the trigger command to trigger S11

 //s12.trigger();

 delay(SONAR::duration); //60 millissecond.

Serial.println(s11.getDist(),DEC); //Display the distance S11 received.

s11.showDat(); //Display the data S11 received

 //Serial.println(s12.getDist(),DEC);

 Serial.println(s11.getTemp(),DEC); //Display the temperature S11 received

 //Serial.println(s12.getTemp(),DEC);

 delay(500);

}

 Sensor Connection

As the sensor uses RS485 interface which can not be connected directly to the MCU, a MAX485 chip will

bridge the TTL interface to RS485.

For PC users, either a USB-RS485 or RS232-RS485 converter will bridge the gap.

 Sensor Networking

Up to 32 units are able to join a RS485 network. Simply serially connect the sensors uses twisted pair

cables.

www.nexusrobot.com Robot Kits manual

 30

 APC220 Module

 Parameters

Transmission Distance : 800m to 1200m
Arduino Wireless Transmission APC220 PC Kits-1 based on APC220

 Kit list

1. one APC220 Wireless Transmission module

2. one APC220 USB adaptation shield

3. one antenna

 This module used to connect PC port.

How to use the RF module to control Arduino wirelessly? Its principle is similar to a remote control, which

has 4 buttons for RF wireless remote control. However, on occasions of data transmission, such a

solution becomes less suitable, for example when you want to send PC the data that Arduino

collected from light sensors. It is technically known as the wireless data transmission. At present, there

are many solutions for wireless data transmission. A very simple way is connecting with the Arduino

using APC220 to send data via serical port. Although the data transmission speed may slow (limited by

the serial port baud rate) ,it is a simple and pratical way.No wonder that many netizens recommended the

inclusion of such Arduino module support.

Manufacturers do not give any datasheet or material to us. Fortunately, some can be found on the

network. Meanwhile learn by researching. First , USB adapter from manufacturer seems not to match

APC220 because the number of pins is different. Maybe because it has to be compatible with other

different products, or at least it is not specially designed for the APC220. USB adapter used CP2102

chip. Download the appropriate drivers in Silicon Laboratories, To downloaded the file

cp210x_vcp_win2k_xp_s2k3.zip, unzipped to get an exe file, then instal the driver step by step following

the prompts.

After driver installation is complete, insert USB adapter into the PC's USB interface, Windows will be

prompted to find new hardware, then finsh installation and configuration accordingly:

See: http://www.emartee.com/product/41854/Arduino-Wireless-Transmission-APC220-PC-Kits-1

www.nexusrobot.com Robot Kits manual

 31

 Pin Change Interrupt
 PinChangeInt Library

This library was inspired by and derived from the PcInt example by "johnboiles", and written by a

"jbrisbin" (it seems).

While the PCInt example shows with generality how Pin Change interrupts can be done under Arduino, it

is an 'example' effort that sacrifices performance for clarity of implementation.

The PinChangeInt effort runs in the other direction, with clarity sacrificed for the highest performance. To

that end, this implementation can handle a 4.5KHz input signal (with a 1 KHz timer running as well) on an

8 MHzATMega328, with significant code in both the timer and pin change interrupt handlers.

Usage

The PinChangeInt library exposes two functions to to the user and provides macros that make it drop-in

compatible with the PcInt code.

To attach an interrupt use

PCintPort::attachInterrupt(pin, userFunc, mode)

or

PCattachInterrupt(pin,userFunc,mode)

To detach an interrupt use

PCintPort::detachInterrupt(pin)

or

PCdetachInterrupt(pin)

 See: http://arduino.cc/playground/Main/PinChangeInt

 The Code

PinChangeIntConfig.h

 See: http://arduino.cc/playground/Main/PinChangeInt
PinChangeInt.h

See : http://arduino.cc/playground/Main/PinChangeInt
PinChangeInt Example

This code counts the number of times pin 15 (aka Analog 1) changes state and prints the count when it

recives a p on the serial port.

1. /*

2. Copyright 2011 Lex.V.Talionis at gmail

3. This program is free software: you can redistribute it and/or modify it under the terms of the GNU

General Public License as published by the Free Software Foundation, either version 3 of the

License, or (at your option) any later version.

4. */

5. #include <PinChangeInt.h>

6. #include <PinChangeIntConfig.h>

www.nexusrobot.com Robot Kits manual

 32

7.

8. #define PIN 15 // the pin we are interested in

9. byte burp=0; // a counter to see how many times the pin has changed

10. byte cmd=0; // a place to put our serial data

11. void setup() {

12. Serial.begin(9600);

13. Serial.print("PinChangeInt test on pin ");

14. Serial.print(PIN);

15. Serial.println();

16. pinMode(PIN, INPUT); //set the pin to input

17. digitalWrite(PIN, HIGH); //use the internal pullup resistor

18. PCintPort::attachInterrupt(PIN, burpcount,RISING); // attach a PinChange Interrupt to our pin on

the rising edge

19. // (RISING, FALLING and CHANGE all work with this library)

20. // and execute the function burpcount when that pin changes

21. }

22. void loop() {

23. cmd=Serial.read();

24. if (cmd=='p')

25. {

26. Serial.print("burpcount:\t");

27. Serial.println(burp, DEC);

28. }

29. cmd=0;

30. }

31. void burpcount()

32. {

33. burp++;

34. }

See: http://arduino.cc/playground/Main/PinChangeIntExample

www.nexusrobot.com Robot Kits manual

 33

 PID Control
 What Is PID

From Wikipedia: "A PID controller calculates an 'error' value as the difference between a measured [Input]

and a desired setpoint. The controller attempts to minimize the error by adjusting [an Output]."

So, you tell the PID what to measure (the "Input",) Where you want that measurement to be (the

"Setpoint",) and the variable to adjust that can make that happen (the "Output".) The PID then adjusts the

output trying to make the input equal the setpoint.

For reference, in a car, the Input, Setpoint, and Output would be the speed, desired speed, and gas pedal

angle respectively.

Tuning Parameters

The black magic of PID comes in when we talk about HOW it adjusts the Output to drive the Input

towards Setpoint. There are 3 Tuning Parameters (or "Tunings"): Kp, Ki & Kd. Adjusting these values will

change the way the output is adjusted. Fast? Slow? God-awful? All of these can be achieved depending

on the values of Kp, Ki, and Kd.

So what are the "right" tuning values to use? There isn't one right answer. The values that work for one

application may not work for another, just as the driving style that works for a truck may not work for a

race car. With each new application you will need to try Several Tuning values until you find a set that

gives you what you want.

 The Library

Using The PID Library has two benefits in my mind

1. There are many ways to write the PID algorithm. A lot of time was spent making the algorithm in this

library as solid as any found in industry. If you want read more about this, check out this detailed

explanation.

2. When using the library all the PID code is self-contained. This makes your code easier to understand.

It also lets you do more complex stuff, like say having 8 PIDs in the same program.

See: http://www.arduino.cc/playground/Code/PIDLibrary

See: http://brettbeauregard.com/blog/2011/04/improving-the-beginners-pid-introduction/

Sample code

/**

 * PID Basic Example Reading analog input 0 to control analog PWM output 3

**/

#include <PID_v1.h>

double Setpoint, Input, Output; //Define Variables we'll be connecting to

PID myPID(&Input, &Output, &Setpoint,2,5,1, DIRECT); //Specify the links and initial tuning parameters

void setup() {

www.nexusrobot.com Robot Kits manual

 34

 Input = analogRead(0); //initialize the variables we're linked to

 Setpoint = 100;

 myPID.SetMode(AUTOMATIC); //turn the PID on

}

void loop() {

 Input = analogRead(0);

 myPID.Compute();

 analogWrite(3,Output);

}

See: http://www.arduino.cc/playground/Code/PIDLibrary

 Servo control Theory
RC servos are comprised of a DC motor mechanically linked to a potentiometer. Pulse-width modulation

(PWM) signals sent to the servo are translated into position commands by electronics inside the servo.

When the servo is commanded to rotate, the DC motor is powered until the potentiometer reaches the

value corresponding to the commanded position.

Figure 1 shows The servo motor’s signal wires, there are two bigs and four smalls.following ,we will to

understand how the motor works. we can use these wires to control the motor make servo control.
How to link the Servo motor’s signal wires: The two wires Sticked together used for drive motor: power:

the red one, marked by “+” should be connected to the positive wire from your supply to the screw

terminal labeled “VIN" on the Arduino board. NOTE: Maximum supply voltage cannot exceed 14V

DC.Ground:The black one. marked by “-” should be connected to a ground pin on the Arduino board.

Aother four wires Sticked together is used for encoder: the power: marked by “+” should be connected to

the 5V pin on the Arduino board . the Ground : marked by ”-” should be connected to a ground pin on the

Arduino board. The signal pins: Pin A marked “A”, should be connected to a digital pin which one you

defined on the Arduino board . It used for input command to motor. Pin B:marked “B”. should be

connected to a digital pin which one you defined on the Arduino board . It used for output the signal of the

motor runs.
Pin PWM Mode
Pin name Function

Digital 4 M1 Motor 1 Direction control
Digital 5 E1 Motor 1 PWM control (speed control)
Digital 6 M2 Motor 2 PWM control (speed control)
Digital 7 E2 Motor 2 Direction control
The PWM DC motor control is implemented by manipulating two digital IO pins and two PWM pins. As

illustrated in the diagram above, Pin 4,7 are motor direction control pins, Pin 5,6 are motor speed control

pins.Then you can used it to set the motor works as you want.

www.nexusrobot.com Robot Kits manual

 35

 The PWM signal
In a nutshell, PWM is a way of digitally encoding analog signal levels. Through the use of high-resolution

counters, the duty cycle of a square wave is modulated to encode a specific analog signal level. The

PWM signal is still digital because, at any given instant of time, the full DC supply is either fully on or fully

off. The voltage or current source is supplied to the analog load by means of a repeating series of on and

off pulses. The on-time is the time during which the DC supply is applied to the load, and the off-time is

the period during which that supply is switched off. Given a sufficient bandwidth, any analog value can be

encoded with PWM.

Figure 2 shows three different PWM signals. Figure 1a shows a PWM output at a 10% duty cycle. That is,

the signal is on for 10% of the period and off the other 90%. Figures 1b and 1c show PWM outputs at

50% and 90% duty cycles, respectively. These three PWM outputs encode three different analog signal

values, at 10%, 50%, and 90% of the full strength. If, for example, the supply is 9V and the duty cycle is

10%, a 0.9V analog signal results.

Figure 2. PWM signals of varying duty cycles

 motor’s encoder wires
See: http://www.netrino.com/Embedded-Systems/How-To/PWM-Pulse-Width-Modulation

www.nexusrobot.com Robot Kits manual

 36

 Motorwheel
This page describes how to control the built-in Motorwheel.

 Motorwheel Class Reference

This document describes how to use the Motor library to control Motors. On the Introduction, you will

know how to controls the motor’s PWM, direction and speed .

This motorwheel library version 1.1,compatible with maple.

Contents:

Struct ISRVars

Class Motor

 Class GearedMotor

 Class MotorWheel

struct ISRVars Reference

This section gives a full listing of the capabilities of a struct ISRVars

struct ISRVars

Define a struct named of IRSVars.In the struct ,there are 7 values.

 Values:

void (*ISRfunc)()

 A pointer function

volatile long pulses

 The pulse which got from the interrupt pin, will be used to confirm the direction

volatile unsigned long pulseStartMicros

 Save the time when the start pulse

volatile unsigned long pulseEndMicros

 Save the time when the end pulse

volatile unsigned int speedPPS

 Save the speed of the pulse(pulse per second)

volatile bool currDirection

 Save the current direction

unsigned char pinIRQB

 The IRQB pin

www.nexusrobot.com Robot Kits manual

 37

 Class Motor Reference

This section gives a full listing of the capabilities of a Motor.

Class Motor : public PID

Interface for visit of peripherals . Inherit from the Public PID.

 Public functions

Motor(unsigned char _pinPWM,unsigned char _pinDir,

 unsigned char _pinIRQ,unsigned char _pinIRQB,

 struct ISRVars* _isr)

Construct a new Motor instance.

In your sketch. This will create a Motor object called Motor. You can then use any of its methods; for

instance, to control a motor attached to pins, you could write

Parameters:

unsigned char _pinPWM

The motor PWM control pin

unsigned char _pinDir

 The motor direction control pin

unsigned char _pinIRQ

 The interrupt pin A

unsigned char _pinIRQB

 The interrupt pin B

struct ISRVars* _isr

 The Structure IRSVars’s member

See: irqISR(y,x)

void setupInterrupt()

 Setup a attach interrupt

unsigned char getPinPWM() const

Get the motor’s PWM control pin number

Return: PWM control pin

unsigned char getPinDir() const

 Get the motor’s direction control pin number

www.nexusrobot.com Robot Kits manual

 38

Return: Direction pin

unsigned char getPinIRQ() const

 Get the IRQ Pin number

Return: IRQ pin

unsigned char getPinIRQB() const

 Get the IRQB Pin number

 Return: IRQB pin

unsigned int runPWM(unsigned int PWM,bool dir,bool saveDir=true);

Set the PWM and direction for Motors .then return the PWM.

Parameters:

unsigned int PWM

The PWM set for the Motor

Bool dir

The direction set for the Motor

Bool saveDir

A flag to confirm if the direction will be reset

 Return: PWM

unsigned int getPWM() const

 Get the motor’s current pwm

 Return: Speed PWM

unsigned int advancePWM(unsigned int PWM)

 Set the pwm when the motor run advance

Parameters:
unsigned int PWM

The PWM set for Motor

 Return: runPWM(PWM,DIR_ADVANCE)

 See: Motor:: runPWM()

unsigned int backoffPWM(unsigned int PWM);

 Set the pwm when the motor backoff

This will lie within the range specified at Motor::runPWM()

www.nexusrobot.com Robot Kits manual

 39

Parameters:
unsigned int PWM

The PWM set for Motor

 See: Motor:: runPWM()

bool setDesiredDir(bool dir)

 The desired direction set for the motor

This will lie within the range specified at Motor::getDesiredDir()

Parameters:
Bool dir

The direction set for Motor

 See: Motor::getDesiredDir()

bool getDesiredDir() const

 Get the desired direction

 Return: Desired Direction

bool reverseDesiredDir()

 Get the reverse desired direction

 Return: Desired Direction

bool setCurrDir()

Set a current direction on the basis of the digitalRead(pinIRQB)

Return:
Current Direction If getPinIRQB() was defined

false otherwise

bool getCurrDir() const

Get the current direction

 Return: Current Direction

unsigned int getSpeedRPM() const

Get the speed of the motor (round per minute)

This will lie within the range specified at SPEEDPPS2SPEEDRPM().

 See: SPEEDPPS2SPEEDRPM().

www.nexusrobot.com Robot Kits manual

 40

unsigned int setSpeedRPM(int speedRPM,bool dir)

Set the speed and direction for the motor

This will lie within the range specified at Motor::PIDSetSpeedRPMDesired() , Motor::setDesiredDir(),

Motor::getSpeedRPM()

Parameters:

int speedRPM

The speed set for Motor

Bool dir

The direction set for Motor

See:

Motor:: PIDSetSpeedRPMDesired()

Motor::setDesiredDir()

Motor::getSpeedRPM()

void simpleRegulate()

Regulate the speed of the Motor on the basis of the direction

bool PIDSetup(float kc=KC,float taui=TAUI,float taud=TAUD,unsigned int sampleTime=1000)

Setup the.The class PID use these datas to regulate the speed of Motors

Parameters:

float kc

Proportional term

float taui

Integral term

float taud

Derivative term

unsigned int sampleTime

The time the PID work last

 Return: Bool ture

bool PIDGetStatus() const

Get the current PID state,to sure wether the PID works

 Return: The value of the pidCtrl

bool PIDEnable(float kc=KC,float taui=TAUI,float taud=TAUD,unsigned int sampleTime=1000)

Enable the PID ,make it works

www.nexusrobot.com Robot Kits manual

 41

This will lie within the range specified at PID::PIDSetup()

Parameters:

Float kc

Proportional term

Float taui

Integral term

Float taud

Derivative term

Unsigded int sampletime

The time the PID work last

 Return: pidCtrl equal ture

 See: pidCtrl equal ture

bool PIDDisable()

Disable the PID,release it

 Return: PID::PIDSetup()

bool PIDReset()

Reset the state of PID

This will lie within the range specified at PID::Reset()

Return:
False if the PIDGetStatus() return false

Ture ortherwise

 See: PID::Reset()

bool PIDRegulate(bool doRegulate=true)

Regulate the PID ,in order to adjust the speed of the Motor.

This will lie within the range specified at PID::Compute().

parameters
Bool doRegulate

A bool value

Return: False if the PIDGetStatus() return false,Ture ortherwise

 See: PID::Reset()

unsigned int PIDSetSpeedRPMDesired(unsigned int speedRPM)

www.nexusrobot.com Robot Kits manual

 42

According to the User’s demands ,use the class PID to set the speed of Motor.

This will lie within the range specified at PID::PIDGetSpeedRPMDesired()

parameters
Unsigned int speedRPM

The speed User want to set

 See: PID::PIDGetSpeedRPMDesired()

unsigned int PIDGetSpeedRPMDesired() const

Get the desired speed

Return: speedRPMDesired

void debugger() const

Debug to sure if the result is right

int getSpeedPPS() const

 Get the pulse rate (pulse per second)

Return: speedPPS

long getCurrPulse() const

Get the current Pulse

Return: Pulses

long setCurrPulse(long _pulse)

Set pulse

This will lie within the range specified at Motor::getCurrPulse()

parameters
Long _pulse

The value want to set

 See: Motor::getCurrPulse()

long resetCurrPulse()

Reset the current Pulse

This will lie within the range specified at Motor::SetCurrPulse()

 See: Motor::SetCurrPulse()

Struct ISRVars * isr

www.nexusrobot.com Robot Kits manual

 43

Define a Pointer named isr, as the member of the struct ISRVars

 Private members

unsigned char pinPWM

 The PWM pin.

unsigned char pinDir

 The diretion pin

unsigned char pinIRQ

 The IRQ pin

unsigned char pinIRQB

 The IRQB pin

bool desiredDirection

The desired direction

unsigned int speedPWM

 Save the current PWM

int speedRPMInput

 Save the Motor’s current speed.it will be used in class PID

int speedRPMOutput

 Save the speed of the Motor output.

int speedRPMDesired

 Save the speed the user want to set

bool pidCtrl

 The class PID work’s mode

Motor()

 Construct a new Motor instance.

After this the class Motor’s explain is over

 Class GearedMotor

Interface for visit of peripherals and it’s Inherit from the Public Motor.

 Public functions

GearedMotor(unsigned char _pinPWM,unsigned char _pinDir,

www.nexusrobot.com Robot Kits manual

 44

 unsigned char _pinIRQ,unsigned char _pinIRQB,

 struct ISRVars* _isr,

 unsigned int _ratio=REDUCTION_RATIO);

Construct a new GearedMotor instance.

In your sketch. This will create a GearedMotor object called GearedMotor. You can then use any of its

methods; for instance, to control a Gearedmotor attached to pins, you could write

parameters

Unsigned char _pinPWM

The PWM control pin

unsigned char _pinDir

The direction control pin

unsigned char _pinIRQ

The IRQ pin

unsigned char _pinIRQB

The IRQB pin

struct ISRVars* _isr

A point of the struct IRSVars’s member

unsigned int _ratio

A variable equal 60

float getGearedSpeedRPM() const

 Get the Geared speed (round per second)

This will lie within the range specified at Motor::getSpeedRPM(),to understand this ,you will to

understand (float)Motor::getSpeedRPM()/_ratio

 See: Motor::getSpeedRPM()

float setGearedSpeedRPM (float gearedSpeedRPM,bool dir)

 Set the GearedSpeed

This will lie within the range specified at Motor::setSpeedRPM ()

parameters

float gearedSpeedRPM

The value want to set

bool dir

The Motor’s direction

www.nexusrobot.com Robot Kits manual

 45

 Return: gearedSpeedRPM

 See: Motor::setSpeedRPM ()

unsigned int getRatio() const

 Get the ratio the car run at

 Return: _ ratio

unsigned int setRatio(unsigned int ratio=REDUCTION_RATIO)

Set the Ratio the car run at

This will lie within the range specified at Motor::getRatio()

parameters
unsigned int ratio

The value want to set

 See: Motor::getRatio()

 Private Parameters

 unsigned int _ratio

 To save a value

 Class MotorWheel

Interface for visit of peripherals and it’s Inherit from the Public Motor.

 Public functions

 MotorWheel(unsigned char _pinPWM,unsigned char _pinDir,

 unsigned char _pinIRQ,unsigned char _pinIRQB,

 struct ISRVars* _isr,

 unsigned int ratio=REDUCTION_RATIO,unsigned int cirMM=CIRMM)

Construct a new MotorWheel instance.

in your sketch. This will create a MotorWheel object called MotorWheel. You can then use any of its

methods; for instance, to control a MotorWheel attached to pins, you could write

parameters

Unsigned char _pinPWM

The PWM control pin

unsigned char _pinDir

The direction control pin

www.nexusrobot.com Robot Kits manual

 46

unsigned char _pinIRQ

The IRQ pin

unsigned char _pinIRQB

The IRQB pin

struct ISRVars* _isr

A point of the struct IRSVars’s member

unsigned int _ratio

A variable equal 60

unsigned int cirMM

A variable equal 314 mm

unsigned int getCirMM() const

 Get the Circumference of the wheel

 Return: _cirMM

unsigned int setCirMM(unsigned int cirMM=CIRMM);

 Set the Circumference of the wheel

This will lie within the range specified at MotorWheel::getCirMM();

parameters
unsigned int cirMM

The value want to set

 See: MotorWheel::getCirMM()

unsigned int getSpeedCMPM() const

 Get the speed(centimeter per minute)

This will lie within the range specified at GearedMotor::getGearedSpeedRPM().

See: GearedMotor::getGearedSpeedRPM()

unsigned int setSpeedCMPM(unsigned int cm,bool dir)

 Set the speed for motor

This will lie within the range specified at GearedMotor::setGearedSpeedRPM().

Then you will see MotorWheel::getspeedCMPM()

See:
GearedMotor::setGearedSpeedRPM()

MotorWheel::getspeedCMPM()

www.nexusrobot.com Robot Kits manual

 47

unsigned int getSpeedMMPS() const

 Get the speed (millimeter per second)

This will lie within the range specified at MotorWheel::getspeedCMPM().

See: MotorWheel::getspeedCMPM()

unsigned int setSpeedMMPS(unsigned int mm,bool dir)

Set the speed .

This will lie within the range specified at MotorWheel::setspeedCMPM() and

MotorWheel::getspeedCMPM().

See:
MotorWheel::setspeedCMPM()

MotorWheel::getspeedCMPM()

For example:

#include <PinChangeInt.h>

#include <PinChangeIntConfig.h>

#include <PID_Beta6.h>

#include <MotorWheel.h>

#ifndef MICROS_PER_SEC

#define MICROS_PER_SEC 1000000

#endif

irqISR(irq1,isr1); //This will create a MotorWheel object called Wheel1

MotorWheel wheel1(9,8,6,7,&irq1); // Motor PWM:Pin9, DIR:Pin8, Encoder A:Pin6, B:Pin7

void setup() {

 TCCR1B=TCCR1B&0xf8|0x01; // Pin9,Pin10 PWM 31250Hz, Silent PWM

 wheel1.setSpeedMMPS(100,DIR_ADVANCE); //Set the pwm speed 100 direction

 wheel1.PIDEnable(KC,TAUI,TAUD,10); // used whewl1 to call the PIDEnable

 Serial.begin(19200);

}

void loop() {

 wheel1.PIDRegulate(); //regulate the PID

 if(millis()%500==0) {

 Serial.print("speedRPM> ");

www.nexusrobot.com Robot Kits manual

 48

 Serial.println(wheel1.getSpeedRPM(),DEC); //display the speed of the MotorWheel

 Serial.print("MMPS --> ");

 Serial.println(wheel1.getSpeedMMPS(),DEC); //display the speed of the motor

 //wheel1.debugger();

 }

}

www.nexusrobot.com Robot Kits manual

 49

 R2WD

This page describes how to control the built-in R2WD. It does not describe how the R2WD work on your

board. For more information on that, please refer to R2WD Class Reference.

*2 mobile wheel drive

*Aluminum alloy body

*Includes ultrasonic sensors and Bumper sensors

*Optional IR sensors and Fall detect sensors

*Still spare mounts for sensors

*DC motors with encoders

*Microcontroller and IO expansion board

*Programmable with c,c++

*Based on Arduino microcontroller

 RB004-2WD mobile robot kit

This robot kit provides an economical introduction to the world of robotics.It has 2 drive wheels and a

freewheel.It includes a serials of sensors making it aware of the environment:Sonar sensors to detect the

obstructions,IR distance measure sensors used as a fall-arrest detector,bumper sensors to make it turn

around while run into something in its way.It is based on Arduino microcontroller.Its aluminium alloy body

is firm enough to be mounted with extension equipments.

 R2WD Class Reference

This documents describes a car with two Motors. On the Introduction, you will know how to use the

R2WD library to control the Motors,then to control the car

#include<MotorWheel.h>

Include the header file MotorWheel.h

This section gives a full listing of the capabilities of R2WD

Class R2WD

Interface for visit of peripherals

 Public functions

R2WD(MotorWheel*wheelLeft, MotorWheel*wheelRight,

unsigned int wheelspanMM=WHEELSPAN)

Construct a new R2WD instance. RB015_Tracked Mobile Tank Robot Kit

www.nexusrobot.com Robot Kits manual

 50

In your sketch. This will create a R2WD object called R2WD. You can then use any of its methods; for

instance, to control a R2WD attached to pins, you could write

Parameters:

MotorWheel*wheelLeft

A point named wheelLeft as the object of MotorWheel,left wheel

MotorWheel*wheelRight

A point named wheelRight as the object of MotorWhee,right wheel

unsigned int wheelspanMM=WHEELSPAN

The two wheels’ span

unsigned int getWheelspanMM() const

 Get the wheel span (millimeter)

Return : Wheel span

unsigned int setWheelspanMM(unsigned int wheelspan)

 Set the wheel span

This will lie within the range specified at R2WD::getWheelspanMM()

Parameters:
Unsigned int wheelspan

The value want to set

see : R2WD::getWheelspanMM()

unsigned char switchMotors()

 Switch the motor to control

This will lie within the range specified at R2WD::getSwitchMotorsStat()

see : R2WD::getSwitchMotorsStat()

unsigned char switchMotorsReset()

 Reset the switch about motor’s control

This will lie within the range specified at R2WD::getSwitchMotorsStat()

see : R2WD::getSwitchMotorsStat()

unsigned int setCarStop()

 Set the car stop

This will lie within the range specified at R2WD::setCarStat() and R2WD::setMotorAll()

www.nexusrobot.com Robot Kits manual

 51

see :
R2WD::setCarStat()

R2WD::setMotorAll()

unsigned int setCarAdvance(unsigned int speedMMPS=0)

 Set car move advance

This will lie within the range specified at R2WD::setCarStat() and

R2WD::setcaradvanceBase()

Parameters:
unsigned int speedMMPS

The speed of the car moves , initialize it

see :
 R2WD::setCarStat()

 R2WD::setadvanceBase()

unsigned int setCarBackoff(unsigned int speedMMPS=0)

 Set car move backoff

This will lie within the range specified at R2WD::setCarStat() and

R2WD::setcarbackoffBase()

Parameters:
unsigned int speedMMPS

The speed of the car moves , initialize it

see :
 R2WD::setCarStat()

 R2WD::setcarbackoffBase()

unsigned int setCarRotateLeft(unsigned int speedMMPS)

 Set car move as rotate Left

This will lie within the range specified at R2WD::setCarStat() and

R2WD::setMotorAllBackoff()

Parameters:
unsigned int speedMMPS

The speed of the car moves , initialize it

see :
 R2WD::setCarStat()

 R2WD::setMotorAllBackoff()

unsigned int setCarRotateRight(unsigned int speedMMPS)

Set car moves rotate right

www.nexusrobot.com Robot Kits manual

 52

This will lie within the range specified at R2WD::setCarStat() and

R2WD::setMotorAllAdvance ()

Parameters:
unsigned int speedMMPS

The speed of the car moves , initialize it

see :
 R2WD::setCarStat()

 R2WD::setMotorAllAdvance()

unsigned int setCarUpperLeft(unsigned int speedMMPS,unsigned int radiusMM)

Set car moves upper left

This will lie within the range specified at R2WD::setCarStat() and R2WD::setCarArcBace()

Parameters:

unsigned int speedMMPS

The speed of the car moves , initialize it

unsigned int radiusMM

The radius the car moves Locus

see :
 R2WD::setCarStat()

 R2WD::setCarArcBace()

unsigned int setCarLowerLeft(unsigned int speedMMPS,unsigned int radiusMM)

 Set car moves Lower left

This will lie within the range specified at R2WD::setCarStat() and R2WD::setCarArcBace()

Parameters:

unsigned int speedMMPS

The speed of the car moves , initialize it

unsigned int radiusMM

The radius the car moves Locus

see :
 R2WD::setCarStat()

 R2WD::setCarArcBace()

unsigned int setCarUpperRight(unsigned int speedMMPS,unsigned int radiusMM)

 Set car moves Upper right

This will lie within the range specified at R2WD::setCarStat() and R2WD::setCarArcBace()

Parameters:
unsigned int speedMMPS

The speed of the car moves , initialize it

www.nexusrobot.com Robot Kits manual

 53

unsigned int radiusMM

The radius of the car moves Locus

see :
 R2WD::setCarStat()

 R2WD::setCarArcBace()

unsigned int setCarLowerRight(unsigned int speedMMPS,unsigned int radiusMM)

 Set car moves Lower right

This will lie within the range specified at R2WD::setCarStat() and R2WD::setCarArcBace()

Parameters:

unsigned int speedMMPS

The speed of the car moves , initialize it

unsigned int radiusMM

The radius of the car moves Locus

see :
 R2WD::setCarStat()

 R2WD::setCarArcBace()

unsigned int setCarAdvanceDistance(unsigned int speedMMPS,unsigned long distance);

Set the distance the car move advance

This will lie within the range specified at R2WD::setCarAdvance() and 2WD::setCarStrightdistance()

Parameters:

unsigned int speedMMPS

The speed ofthe car moves , initialize it

unsigned long distance

The distance want the car move

see :
 R2WD::setCarAdvance()

R2WD::setCarStrightdistance()

unsigned int setCarBackoffDistance(unsigned int speedMMPS,unsigned long distance);

To set the distance of the car move backoff

This will lie within the range specified at R2WD::setCarBackoff() and R2WD::setCarStrightdistance()

Parameters:

unsigned int speedMMPS

The speed of the car moves , initialize it

unsigned long distance

The distance want the car move

www.nexusrobot.com Robot Kits manual

 54

see :
 R2WD::setCarBackoff()

R2WD::setCarStrightdistance()

unsigned int setCarRotateLeftAngle(unsigned int speedMMPS,float radian);

Set the angle when the car moves as rotate left

This will lie within the range specified at R2WD::setCarRotateLeft()and R2WD::setCarRotateAngle()

Parameters:

unsigned int speedMMPS

The speed ofthe car moves , initialize it

float radian

The radian when the car move as rotate left

see :
 R2WD::setCarRotateLeft()

R2WD::setCarRotateAngle()

unsigned int setCarRotateRightAngle(unsigned int speedMMPS=0,float radian=0);

Set the angle when the car moves rotate right

This will lie within the range specified at R2WD::setCarRotateRight()and R2WD::setCarRotateAngle()

Parameters:

unsigned int speedMMPS =0

The speed ofthe car moves , initialize it

float radian =0

The radian when the car move as rotate right, initialize it with 0

see :
 R2WD::setCarRotateRight()

R2WD::setCarRotateAngle()

unsigned int setCarUpperLeftTime(unsigned int speedMMPS=0,unsigned int

radiusMM=WHEELSPAN,unsigned long duration=5000,unsigned int uptime=500);

Set period of time for the car moves upper left

This will lie within the range specified at R2WD::setCarUpperLeft()and R2WD::setCarArcTime ()

Parameters:

unsigned int speedMMPS =0

The speed of the car moves , initialize it

unsigned int radiusMM=WHEELSPAN

The radiusMM of the car move as upper left, initialize it

unsigned long duration=5000

www.nexusrobot.com Robot Kits manual

 55

The time of the car last , initialize it

unsigned int uptime=500

The time the car used to stop

see :
 R2WD::setCarUpperLeft()

R2WD::setCarArcTime ()

unsigned int setCarLowerLeftTime(unsigned int speedMMPS=0,unsigned int

radiusMM=WHEELSPAN,unsigned long duration=5000,unsigned int uptime=500);

Set period of time for the car moves Lower left

This will lie within the range specified at R2WD::setCarLowerLeft()and R2WD::setCarArcTime ()

Parameters:

unsigned int speedMMPS =0

The speed ofthe car moves , initialize it

unsigned int radiusMM=WHEELSPAN

The radiusMM when the car move as upper left, initialize it

unsigned long duration=5000

The time the car last , initialize it

unsigned int uptime=500

The time the car used to stop

see :
 R2WD::setCarLowerLeft()

R2WD::setCarArcTime ()

unsigned int setCarUpperRightTime(unsigned int speedMMPS=0,unsigned int

radiusMM=WHEELSPAN,unsigned long duration=5000,unsigned int uptime=500);

Set period of time for the car moves upper right

This will lie within the range specified at R2WD::setCarUpperRight()and R2WD::setCarArcTime ()

Parameters:

unsigned int speedMMPS =0

The speed ofthe car moves , initialize it

unsigned int radiusMM=WHEELSPAN

The radiusMM when the car move as upper left, initialize it

unsigned long duration=5000

The time the car last , initialize it

unsigned int uptime=500

www.nexusrobot.com Robot Kits manual

 56

The time the car used to stop

see :
 R2WD::setCarUpperRight()

R2WD::setCarArcTime ()

unsigned int setCarLowerRightTime(unsigned int speedMMPS=0,unsigned int

radiusMM=WHEELSPAN,unsigned long duration=5000,unsigned int uptime=500);

Set period of time for the car moves Lower Right

This will lie within the range specified at R2WD::setCarLowerRight()and R2WD::setCarArcTime ()

Parameters:

unsigned int speedMMPS =0

The speed for the car to moves ,initialize it

unsigned int radiusMM=WHEELSPAN

The radiusMM when the car move as upper left, initialize it

unsigned long duration=5000

The time the car last , initialize it

unsigned int uptime=500

The time the car used to stop

see :
 R2WD::setCarLowerRight()

R2WD::setCarArcTime ()

unsigned int setCarUpperLeftAngle(unsigned int speedMMPS=0,unsigned int

radiusMM=WHEELSPAN,float radian=0,unsigned int uptime=500);

Set the angle when the car moves as Upper left

This will lie within the range specified at R2WD::setCarUpperLeft()and R2WD::setCarArcAngle()

Parameters:

unsigned int speedMMPS

The speed for the car to moves

Unsigned int radian

The radian when the car move upper left

see :
 R2WD::setCarUpperLeft()

R2WD::setCarArcAngle()

unsigned int setCarLowerLeftAngle(unsigned int speedMMPS=0,unsigned int

radiusMM=WHEELSPAN,float radian=0,unsigned int uptime=500);

www.nexusrobot.com Robot Kits manual

 57

Set the angle when the car moves Upper left

This will lie within the range specified at R2WD::setCarLowerLeft()and R2WD::setCarArcAngle()

Parameters:

unsigned int speedMMPS

The speed for the car to moves

Unsigned int radian

The radian when the car moves lower left

see :
 R2WD::setCarLowerLeft()

R2WD::setCarArcAngle()

unsigned int setCarUpperRightAngle(unsigned int speedMMPS=0,unsigned int

radiusMM=WHEELSPAN,float radian=0,unsigned int uptime=500);

Set the angle when the car moves Upper right

This will lie within the range specified at R2WD::setCarUpperRight() and R2WD::setCarArcAngle()

Parameters:

unsigned int speedMMPS

The speed for the car to moves

Unsigned int radian

The radian when the car make upper right moves

see :
 R2WD::setCarUpperRight()

R2WD::setCarArcAngle()

unsigned int setCarLowerRightAngle(unsigned int speedMMPS=0,unsigned int

radiusMM=WHEELSPAN,float radian=0,unsigned int uptime=500);

Set the angle when the car moves Upper Right

This will lie within the range specified at R2WD::setCarLowerRight()and R2WD::setCarArcAngle()

Parameters:

unsigned int speedMMPS

The speed for the car to moves

Unsigned int radian

The radian when the car make lower Right moves

see :
 R2WD::setCarLowerRight()

R2WD::setCarArcAngle()

unsigned int wheelLeftSetSpeedMMPS(unsigned int speedMMPS=0,bool dir=DIR_ADVANCE);

www.nexusrobot.com Robot Kits manual

 58

Set the speed for Left wheel

This will lie within the range specified at MotorWheel::setSpeedMMPS ()

Parameters:

unsigned int speedMMPS

The speed for the car to moves

bool dir=DIR_ADVANCE

The direction for the left wheel

see : MotorWheel::setSpeedMMPS ()

unsigned int wheelLeftGetSpeedMMPS() const;

 Get the speed of the left wheel

This will lie within the range specified at MotorWheel::getSpeedMMPS ()

see : MotorWheel::getSpeedMMPS ()

unsigned int wheelRightSetSpeedMMPS(unsigned int speedMMPS=0,bool dir=DIR_ADVANCE);

Set the speed for right wheel

This will lie within the range specified at MotorWheel::setSpeedMMPS ()

Parameters:

unsigned int speedMMPS

The speed for the car to moves

bool dir=DIR_ADVANCE

The direction for the right wheel

see : MotorWheel::setSpeedMMPS ()

unsigned int wheelRightGetSpeedMMPS() const;

 Get the speed of the right wheel

This will lie within the range specified at MotorWheel::getSpeedMMPS ()

see : MotorWheel::getSpeedMMPS ()

bool PIDEnable(float kc=KC,float taui=TAUI,float taud=TAUD,unsigned int interval=1000);

Call the PID,make it work for the car

This will lie within the range specified at MotorWheel::PIDEnable()

Parameters:
Float kc

Proportional term,initialize it

www.nexusrobot.com Robot Kits manual

 59

Float taui

Integral term

Float taud

Derivative term

Unsigded int interval

The time the PID work last

see : MotorWheel::PIDEnable()

bool PIDRegulate()

 Regulate the PID ,in order to adjust the speed of the Motor.

This will lie within the range specified at MotorWheel:: PIDRegulate()

see : MotorWheel:: PIDRegulate()

void delayMS(unsigned long ms=100, bool debug=false)

 Last time for the car work as the same action

 In the function,every 10 milliseconds,it will call the function PIDRegulate once

Parameters:

unsigned long ms=100

The time the action last

bool debug=false

A flag

unsigned int getCarSpeedMMPS() const

 Get the car’s speed

This will lie within the range specified at R2WD:: wheelLeftGetSpeedMMPS() and

R2WD::wheelRightGetSpeedMMPS()

see :
R2WD:: wheelLeftGetSpeedMMPS()

R2WD:: wheelRightGetSpeedMMPS()

unsigned int setCarSpeedMMPS(unsigned int speedMMPS=0,unsigned int ms=1000);

 Set the car’s speed, when the car’s state was one of the following :

 STAT_ADVANCE

 STAT_BACKOFF

www.nexusrobot.com Robot Kits manual

 60

 STAT_ROTATELEFT

 STAT_ROTATERIGHT

This will lie within the range specified at R2WD::GetCarSpeedMMPS()

Parameters:

unsigned int speedMMPS=0

The speed for the car to moves ,initialize it

unsigned int ms=1000

The time the car’s speed changed from 0 to speedMMPS used

see : R2WD::getCarSpeedMMPS()

unsigned int setCarSpeedMMPSArc(unsigned int speedMMPS=0,unsigned int

radiusMM=WHEELSPAN,unsigned int ms=1000)

 Set the car’s speed, when the car’s state was one of the following :

STAT_UPPERLEFT

 STAT_LOWERLEFT

 STAT_LOWERRIGHT

 STAT_UPPERRIGHT

This will lie within the range specified at R2WD::getCarSpeedMMPS()

Parameters:

unsigned int speedMMPS=0

The speed for the car to moves ,initialize it

unsigned int radiusMM=WHEELSPAN

The radius the car moves

unsigned int ms=1000

The time the car’s speed changed from 0 to speedMMPS used

see : R2WD::getCarSpeedMMPS()

unsigned int setCarSlow2Stop(unsigned int ms=1000)

 Stop the car slowly

This will lie within the range specified at R2WD::setCarSpeedMMPS() or

R2WD::setCarSpeedMMPSArc()

Parameters:
unsigned int ms=1000

The time stop the car used,initialize it

see : R2WD::getCarSpeedMMPS()

www.nexusrobot.com Robot Kits manual

 61

void debugger(bool wheelLeftDebug=true,bool wheelRightDebug=true) const;

 Debug the all wheel’s speed

Car _state enum

Used to configure the behavior of a car.

Note that not all car can be configured in every state.

Variables:

STAT_UNKNOWN

 The state of the car unknown

 STAT_STOP

 The car’s state is stop

 STAT_ADVANCE

 The car’s state is moves advance

 STAT_BACKOFF

 The car’s state is get backoff

 STAT_ROTATELEFT

 The car’s state is moves rotateleft

 STAT_ROTATERIGHT

 The car’s state is moves rotateright

 STAT_UPPERLEFT

 The car’s state is moves upperleft

 STAT_LOWERLEFT

 The car’s state is moves lowerleft

 STAT_LOWERRIGHT

 The car’s state is moves lowerright

 STAT_UPPERRIGHT

 The car’s state is moves uppperright

unsigned char getCarStat() const

 Get the car current state

return : The car’s state

www.nexusrobot.com Robot Kits manual

 62

Motor _state enum

Used to configure the behavior of a motor.

Note that not all motors can be configured in every state.

Variables:

MOTORS_FB

The switchmotorstat is FB

 MOTORS_BF

The switchmotorstat is BF

unsigned char getSwitchMotorsStat() const

 Get the state of the Motor

return : The motor’s state

unsigned int getRadiusMM() const

 Get the radius the car moves

If the car state was rotateleft or rotateright.

This will lie within the range specified at R2WD::getWheelspanMM

return : radius

 Private parameters

MotorWheel* _wheelLeft

 A point named wheelLeft as the object of MotorWheel

MotorWheel* _wheelRight

 A point named wheelRight as the object of MotorWheel

unsigned int _wheelspanMM

 Save a data of the span, will set to the wheel

unsigned char _carStat

 Save the state of the car

unsigned char setCarStat(unsigned char stat)

 Set the Car’s state

Parameters: unsigned char stat

www.nexusrobot.com Robot Kits manual

 63

the state want to set

return :
Carstate if the stat in the range of the want

STAT_UNKNOWN otherwise

unsigned char _switchMotorsStat

 Save the state of the Motor,prepare for switch motors

unsigned char setSwitchMotorsStat(unsigned char switchMotorsStat)

 Set the Motors’ state

This will lie within the range specified at R2WD::getSwitchMotorsStat()

Parameters: unsigned char switchMotorsStat

The state want to set

See: R2WD::getSwitchMotorsStat()

unsigned int _radiusMM

 Save the data of the radius

unsigned int setRadiusMM(unsigned int radiusMM)

 Set the radius for the car moves

This will lie within the range specified at R2WD::getRadiusMM()

Parameters: unsigned int radiusMM

The radius want to set

See: R2WD::getSwitchMotorsStat()

R2WD()

Construct a new R2DW instance.

unsigned int setMotorAll(unsigned int speedMMPS=0,bool dir=DIR_ADVANCE)

 Set all motors as the same speed and direction

This will lie within the range specified at R2WD:: wheelLeftSetSpeedMMPS()and

R2WD::wheelRightSetSpeedMMPS()

Parameters:
unsigned int speedMMPS=0

The speed set the motors run,initialize it

www.nexusrobot.com Robot Kits manual

 64

bool dir=DIR_ADVANCE

The direction set the motors run,initialize it

See:
R2WD:: wheelLeftSetSpeedMMPS()

R2WD:: wheelRightSetSpeedMMPS()

unsigned int setMotorAllStop()

 Set all Motors stop

This will lie within the range specified at R2WD::setMotorAll()

See: R2WD::setMotorAll()

unsigned int setMotorAllAdvance(unsigned int speedMMPS=0)

Set all motors run advance

This will lie within the range specified at R2WD::setMotorAll()

Parameters:
unsigned int speedMMPS=0

The speed set the motors run,initialize it

See: R2WD::setMotorAll()

unsigned int setMotorAllBackoff(unsigned int speedMMPS=0)

Set all motors run backoff

This will lie within the range specified at R2WD::setMotorAll()

Parameters:
unsigned int speedMMPS=0

The speed set the motors run,initialize it

See: R2WD::setMotorAll()

unsigned int setCarAdvanceBase(unsigned int speedMMPSL=0,unsigned int speedMMPSR=0)

 Set car moves advance

This will lie within the range specified at R2WD:: wheelLeftSetSpeedMMPS() and

 R2WD::wheelRightSetSpeedMMPS() and R2WD::getCarSpeedMMPS()

Parameters:

unsigned int speedMMPSL=0

The speed set to the left motor

unsigned int speedMMPSR=0

The speed set to the right motor

www.nexusrobot.com Robot Kits manual

 65

See:

R2WD:: wheelLeftSetSpeedMMPS()

R2WD:: wheelRightSetSpeedMMPS()

R2WD::getCarSpeedMMPS()

unsigned int setCarBackoffBase(unsigned int speedMMPSL=0,unsigned int speedMMPSR=0)

 Set car moves backoff

This will lie within the range specified at R2WD:: wheelLeftSetSpeedMMPS() and

 R2WD::wheelRightSetSpeedMMPS() and R2WD::getCarSpeedMMPS()

Parameters:

unsigned int speedMMPSL=0

The speed set to the left motor

unsigned int speedMMPSR=0

The speed set to the right motor

See:

R2WD:: wheelLeftSetSpeedMMPS()

R2WD:: wheelRightSetSpeedMMPS()

R2WD::getCarSpeedMMPS()

unsigned int setCarRotateAngle(unsigned int speedMMPS=0,float radian=0)

 Set the angle when the car moves rotate

This will lie within the range specified at R2WD::getWheelspanMM()

Parameters:

unsigned int speedMMPS=0

The speed set to the motors,initialize it

float radian=0

The radian set to the car moves,initialize it

Return: timeMS,the time the car moves

See: R2WD::getWheelspanMM()

unsigned int setCarStraightDistance(unsigned int speedMMPS=0,unsigned long distance=0);

 Set the straight distance the car moves

Parameters:

unsigned int speedMMPS=0

The speed set the motors at,initialize it

unsigned long distance=0

The distance set the car moves,initialize it

www.nexusrobot.com Robot Kits manual

 66

Return: timeMS,the time the car moves

unsigned int setCarArcBase(unsigned int speedMMPS=0,unsigned int radiusMM=WHEELSPAN)

 Set the Arc the car moves

 The car have arc is on the basis of the two wheel have diffrent speed or direction

This will lie within the range specified at R2WD::setCarBackoffBase() and

R2WD::setCarAdvanceBase()

Parameters:

unsigned int speedMMPS=0

The speed set the motors run at,initialize it

int radiusMM=WHEELSPAN

The radius set the car moves ,initialize it

Return: timeMS,the time the car moves

unsigned int setCarArcTime(unsigned int speedMMPS=0,unsigned int radiusMM=WHEELSPAN,

 unsigned long duration=5000,unsigned int uptime=500)

 Set the time the car moves as Arc

Parameters:

unsigned int speedMMPS=0

The speed set the car moves

unsigned int radiusMM=WHEELSPAN

The radius the car moves

unsigned long duration=5000

The time the car last

unsigned int uptime=500

The time the car used to stop

Return: The time the car used to moves and stop

unsigned int setCarArcAngle(unsigned int speedMMPS=0,unsigned int radiusMM=WHEELSPAN,

 float radian=0,unsigned int uptime=500)

 Set the Arc angle the car moves

Parameters:

unsigned int speedMMPS=0

The speed set the car moves

unsigned int radiusMM=WHEELSPAN

www.nexusrobot.com Robot Kits manual

 67

The radius the car moves

float radian=0

The radian the car moves

unsigned int uptime=500

The time the car used to stop

Return: The time the car used to moves and stop

void demoActions(unsigned int speedMMPS=100,unsigned int duration=5000,unsigned int

uptime=500,bool debug=false)

 A function for the car demo action

void R2WD::demoActions(unsigned int speedMMPS,unsigned int duration,unsigned int uptime,bool

debug) {

 unsigned int (R2WD::*carAction[])(unsigned int speedMMPS)={

 &R2WD::setCarAdvance, // set car to moves advance

 &R2WD::setCarBackoff, //set car to moves back off

 &R2WD::setCarRotateLeft, //set car to moves as rotate left

 &R2WD::setCarRotateRight, ////set car to moves as rotate right

 };

 unsigned int (R2WD::*carAction2[])(unsigned int speedMMPS,unsigned int radiusMM)={

 &R2WD::setCarUpperLeft, //set the car moves as upper left

 &R2WD::setCarLowerLeft, //set the car moves as Lower left

 &R2WD::setCarUpperRight, //set the car moves as upper right

 &R2WD::setCarLowerRight, //set the car moves as lower right

 };

 for(int i=0;i<8;++i) { //the demo have 8 actions

 if(i<4) { //the first four action

 (this->*carAction[i])(0);

 setCarSpeedMMPS(speedMMPS,uptime); // speedMMPS=100 set the car’s speed is

100

 } else { //the last four action

 (this->*carAction2[i-4])(0,500);

www.nexusrobot.com Robot Kits manual

 68

 setCarSpeedMMPSArc(speedMMPS,getRadiusMM(),uptime);

 }

 delayMS(duration,debug); //duration=5000 the car moves this action willl last 5000

milliseconds

 setCarSlow2Stop(uptime); //uptime=500 set the car stop in 500 milliseconds

 }

}

 R2WD_test

Here’s an example ,we use it to test a car with two wheels.after this ,you will More thorough

understanding of the library

Simple code:

#include <MotorWheel.h>

#include <R2WD.h>

#include <PID_Beta6.h>

#include <PinChangeInt.h>

#include <PinChangeIntConfig.h> // Include the header files

/*

 Wheel1 ||-----|| Wheel2

 */

irqISR(irq1,isr1); // Intterrupt function.on the basis of the pulse ,work for wheel1

MotorWheel wheel1(9,8,4,5,&irq1,REDUCTION_RATIO,int(144*PI));

 //This will create a MotorWheel object called Wheel1

 //Motor PWM:Pin9, DIR:Pin8, Encoder A:Pin4, B:Pin5

irqISR(irq2,isr2);

www.nexusrobot.com Robot Kits manual

 69

MotorWheel wheel2(10,11,6,7,&irq2,REDUCTION_RATIO,int(144*PI));

R2WD _2WD(&wheel1,&wheel2,WHEELSPAN);

// This will create a R2WD object called R2WD. You

// can then use any of its methods; for instance, to

// control a R2WD attached to pins, you could write

void setup() {

 //TCCR0B=TCCR0B&0xf8|0x01; // warning!! it will change millis()

 TCCR1B=TCCR1B&0xf8|0x01; // Pin9,Pin10 PWM 31250Hz

 //TCCR2B=TCCR2B&0xf8|0x01; // Pin3,Pin11 PWM 31250Hz

 _2WD.PIDEnable(0.26,0.01,0,10); // Enable PID

}

void loop() {

 _2WD.demoActions(100,5000); // Call the demoActions from the Class R2WD

 /*

 _2WD.setCarAdvance(0);

 _2WD.setCarSpeedMMPS(100,500);

 _2WD.delayMS(5000);

 _2WD.setCarSlow2Stop(500);

 _2WD.setCarBackoff(0);

 _2WD.setCarSpeedMMPS(100,500);

 _2WD.delayMS(5000);

 _2WD.setCarSlow2Stop(500);

 */

}

www.nexusrobot.com Robot Kits manual

 70

 Sample Wiring Diagram for RB004 2WD V2.0

www.nexusrobot.com Robot Kits manual

 71

 2WD platform with 3 SONAR

Look the above figure of simple Wiring Diagram for RB004 2WD V2.0. this code is matched for it

RB004_2WD_PID_3SONAR_3IR code

#include <MotorWheel.h>

#include <Omni3WD.h>

#include <Omni4WD.h>

#include <R2WD.h>

#include <PID_Beta6.h>

#include <PinChangeInt.h>

#include <PinChangeIntConfig.h>

#include <SONAR.h> // Include the header files

/**/

// SONAR

SONAR sonar11(0x11),sonar12(0x12),sonar13(0x13); // Software initialization

//SONAR is be defined in <SONAR.h> as a class

unsigned short distBuf[3]; // Used to save the data of the 3 sonars return;

void sonarsUpdate() {

 static unsigned char sonarCurr=1; // A variable save data used to flag the sonar’s state

 if(sonarCurr==3) sonarCurr=1;

 else ++sonarCurr;

 if(sonarCurr==1) { // The conditions is ture?

 distBuf[1]=sonar12.getDist(); // Get the value of distance from sonar12

 sonar12.trigger(); // Trigger sonar12

 } else if(sonarCurr==2) {

 distBuf[2]=sonar13.getDist(); // Get the value of distance from sonar13

 sonar13.trigger(); // Trigger sonar13

 } else {

 distBuf[0]=sonar11.getDist(); // Ger the value of distance from sonar11

 sonar11.trigger(); // Trigger sonar11

 }

}

/***/

// Infrared Sensor

www.nexusrobot.com Robot Kits manual

 72

unsigned char irL0_pin=0; // Set Analog pin 0 as the left Infrared Sensor signal pin

unsigned char irC0_pin=1;

unsigned char irR0_pin=2; // Set Analog pin 2 as the right Infrared Sensor signal pin

int ir_distance(unsigned char ir) {

 int val=analogRead(ir); // Read the data from the Infrared Sensors

 return (6762/(val-9))-4; // Change the data

}

/***/

// bumper

unsigned char bumperL_pin=12; // Set pin 12 as the left Bumper’s Sensor signal pin

unsigned char bumperC_pin=3; // Set pin 3 as the front Bumper’s Sensor signal pin

unsigned char bumperR_pin=2; // Set pin 2 as the right Bumper’s Sensor signal pin

/ ***/

irqISR(irq1,isr1); // Intterrupt function.on the basis of the pulse, work for wheel1

MotorWheel wheel1(9,8,4,5,&irq1,REDUCTION_RATIO,int(144*PI));

 //This will create a MotorWheel object called Wheel1

 //Motor PWM:Pin9, DIR:Pin8, Encoder A:Pin4, B:Pin5

irqISR(irq2,isr2);

MotorWheel wheel2(10,11,6,7,&irq2,REDUCTION_RATIO,int(144*PI));

R2WD _2WD(&wheel1,&wheel2,WHEELSPAN);

unsigned int speedMMPS=80;

void setup() {

 //TCCR0B=TCCR0B&0xf8|0x01; // warning!! it will change millis()

 TCCR1B=TCCR1B&0xf8|0x01; // Pin9,Pin10 PWM 31250Hz

 //TCCR2B=TCCR2B&0xf8|0x01; // Pin3,Pin11 PWM 31250Hz

 SONAR::init(13); // Pin13 as RW Control

 _2WD.PIDEnable(0.26,0.02,0,10); // Enable PID

}

www.nexusrobot.com Robot Kits manual

 73

/*

void loop() {

 _2WD.demoActions(80,5000); //Call the demoActions from the class 2WD

}

 */

void loop() {

 boolean bumperL=!digitalRead(bumperL_pin); // a flag to sure if the Left have someting

 boolean bumperC=!digitalRead(bumperC_pin);

 boolean bumperR=!digitalRead(bumperR_pin);

 int irL0=ir_distance(irL0_pin); // A variable to save the data of the left Infrared Sensor return

 int irC0=ir_distance(irC0_pin);

 int irR0=ir_distance(irR0_pin);

 static unsigned long currMillis=0;

 if(millis()-currMillis>SONAR::duration) { //every 60ms call sonarUpdate() once

 currMillis=millis();

 sonarsUpdate();

 }

 if(bumperL || bumperC || bumperR) { // If the car hit something

 _2WD.setCarBackoff(speedMMPS); // Set car backoff at the speed of speedMMPS

 _2WD.delayMS(300); // last 300 ms

 if(bumperL || bumperC) _2WD.setCarRotateRight(speedMMPS); // // back off and turn right

 else _2WD.setCarRotateLeft(speedMMPS); // back off and turn left

 _2WD.delayMS(300);

 } else if(0<irL0 && irL0<30 || 0<irC0 && irC0<40 || 0<distBuf[0] && distBuf[0]<30 || 0<distBuf[1]

&& distBuf[1]<40) { // If any of these conditions was ture?

 _2WD.setCarRotateRight(speedMMPS); // Set car rotateright

 } else if(0<irR0 && irR0<30 || 0<distBuf[2] && distBuf[2]<30) {

 _2WD.setCarRotateLeft(speedMMPS);

 } else { // The is nothing around the car

 _2WD.setCarAdvance(speedMMPS); // Set car move advance at the speed of speedPPMS

 }

 _2WD.PIDRegulate(); // PID regulate the speed

}

www.nexusrobot.com Robot Kits manual

 74

Omni Wheel

Robots employing omni wheel are capable of

moving in any direction by changing velocity and

direction of each wheel without changing its

orientation.As there are small rollers around the

circumference of omni wheels which are

perpendicular to the rolling direction making

them capable of sliding laterally.

 Omni wheel

 Mecanum wheel
Mecanum wheel is a conventional wheel with a

series of rollers attached to its circumference.these

rollers have an axis of ratation at 45° to the plane of

wheel. A mecanum wheel robot usually is

four-wheeled.,the vehicle is stable and can be made

to move in any direction and turn by varying the

speed and direction of each wheel.Moving all four

wheels in the same direction causes forward or

backward movement,running the wheels on one

side in the opposite direction to those on the orther

side causes rotation of the vehicle,and running the

wheels on one diagonal in the opposite direction to

Mecanum wheel those on the other diagonal cause sideways

movement.Combined motiond motion is also possible.

 Omni3WD

This page describes how to control the built-in Omni3WD. It does not describe how the Omni3WD work

on your board. For more information on that, Please refer to Omni3WD Class Reference.

*3WD 100mm Mecanum wheel

*Aluminum alloy body

*Includes ultrasonic sensors and fall detect sensors

*Optional IR sensors

*With microcontroller and IO expansion board

*DC motors with encoder

*Adequate space for custom components

*Programmable with C,C++

*Based on Arduino microcontroller

RB006_3WD omni wheel mobile kit

www.nexusrobot.com Robot Kits manual

 75

*3WD 100mm Mecanum wheel

*3 plate levels

*Aluminum alloy body

*Includes ultrasonic sensors and optional IR

*DC motors with encoder

*With microcontroller and IO expansion board

*Programmable with C,C++

*Based on Arduino microcontroller

RB013_3WD omni wheel mobile kit

*Includes ultrasonic sensors and optional IR

*3WD 100mm Mecanum wheel

 *Compact size

 *Aluminum alloy body

*DC motors with encoder

*Programmable with C,C++

*Based on Arduino microcontroller

RB003_3WD omni wheel mobile kit

This is a 3 wheels drive mobile robot utilizing omni wheels. It’s capable of moving in any directions by

changing the velocity and direction of each wheel without changing its orientation. It includes

microcontroller, IO expansion board ,DC motor with encoder, ultrasonic sensors and optional IR. With

pre-drilled screw holes it can be easily extended.

 Omni3WD Class Reference

This document describes a car with three Motors. On the Introduction, you will know how to use the

Omni3WD library to control the Motors,then to control the car

#include<MotorWheel.h>

Include the header file MotorWheel.h

This section gives a full listing of the capabilities of Omni3WD

Class Omni3WD

Interface for visit of peripherals

www.nexusrobot.com Robot Kits manual

 76

 Public functions

Omni3WD (MotorWheel* wheelBack,MotorWheel* wheelRight,MotorWheel* wheelLeft)

Construct a new Omni3WD instance.

in your sketch. This will create a Omni3WD object called Omni3WD. You can then use any of its methods;

for instance, to control a Omni3WD attached to pins, you could write

Parameters:

MotorWheel* wheelBack

A point named wheelBack as the object of MotorWheel,back wheel

MotorWheel*wheelLeft

A point named wheelLeft as the object of MotorWheel,left wheel

MotorWheel*wheelRight

A point named wheelRight as the object of MotorWhee,right wheel

unsigned char switchMotorsLeft()

 Rotate left to choose the motors

This will lie within the range specified at Omni3WD::getSwitchMotorsStat()

See: Omni3WD::getSwitchMotorsStat()

unsigned char switchMotorsRight()

 Rotate right to choose the motors

This will lie within the range specified at Omni3WD::getSwitchMotorsStat()

See: Omni3WD::getSwitchMotorsStat()

unsigned char switchMotorsReset()

 Reset the rotate direction to choose the motor

This will lie within the range specified at Omni3WD::getSwitchMotorsStat()

See: Omni3WD::getSwitchMotorsStat()

unsigned int setMotorAll(unsigned int speedMMPS=0,bool dir=DIR_ADVANCE)

 Set all the motors’ speed and direction

This will lie within the range specified at Omni3WD::wheelBackSetSpeedMMPS() and

Omni3WD::wheelRightSetSpeedMMPS() and Omni3WD::wheelLeftSetSpeedMMPS()

Parameters: unsigned int speedMMPS=0

www.nexusrobot.com Robot Kits manual

 77

The speed for the motor to run,initialize it.

bool dir=DIR_ADVANCE

The direction for the motor to run

See:

Omni3WD::wheelBackSetSpeedMMPS()

Omni3WD::wheelRightSetSpeedMMPS()

Omni3WD::wheelLeftSetSpeedMMPS()

unsigned int setMotorAllStop()

 Stop all Motors

This will lie within the range specified at Omni3WD::setMotorAll()

See: Omni3WD::setMotorAll()

unsigned int setMotorAllAdvance(unsigned int speedMMPS=0)

 Set all the motors run forward

This will lie within the range specified at Omni3WD::setMotorAll()

Parameters:
unsigned int speedMMPS=0

The speed for the motor to run,initialize it.

See: Omni3WD::setMotorAll()

unsigned int setMotorAllBackoff(unsigned int speedMMPS=0)

 Set all the motors run Reverse

This will lie within the range specified at Omni3WD::setMotorAll()

Parameters:
unsigned int speedMMPS=0

The speed for the motor to run,initialize it.

See: Omni3WD::setMotorAll()

unsigned int setCarStop()

 Stop the car

This will lie within the range specified at Omni3WD::setMotorAll() and Omni3WD::setCarstat()

See:
Omni3WD::setMotorAll()

Omni3WD::setCarstat()

unsigned int setCarAdvance(unsigned int speedMMPS=0)

www.nexusrobot.com Robot Kits manual

 78

 Set the car moves forward

 Because the car have three wheels ,so the car moves forward ,the wheels will have different state.

This will lie within the range specified at Omni3WD::setCarstat() and

 Omni3WD::wheelBackSetSpeedMMPS() and Omni3WD::wheelRightSetSpeedMMPS() and

Omni3WD::wheelLeftSetSpeedMMPS()

Parameters:
unsigned int speedMMPS=0

The speed for the car moves,initialize it.

See:

Omni3WD::setCarstat()

Omni3WD::wheelBackSetSpeedMMPS()

Omni3WD::wheelRightSetSpeedMMPS()

Omni3WD::wheelLeftSetSpeedMMPS()

unsigned int setCarBackoff(unsigned int speedMMPS=0)

 Set the car moves Reverse

This will lie within the range specified at Omni3WD::setCarstat() and

 Omni3WD::wheelBackSetSpeedMMPS() and Omni3WD::wheelRightSetSpeedMMPS() and

 Omni3WD::wheelLeftSetSpeedMMPS()

Parameters:
unsigned int speedMMPS=0

The speed for the car moves,initialize it.

See:

Omni3WD::setCarstat()

Omni3WD::wheelBackSetSpeedMMPS()

Omni3WD::wheelRightSetSpeedMMPS()

Omni3WD::wheelLeftSetSpeedMMPS()

unsigned int setCarLeft(unsigned int speedMMPS=0)

 Set the car turn Left

This will lie within the range specified at Omni3WD::setCarstat() and

 Omni3WD::wheelBackSetSpeedMMPS() and Omni3WD::wheelRightSetSpeedMMPS() and

 Omni3WD::wheelLeftSetSpeedMMPS()

Parameters:
unsigned int speedMMPS=0

The speed for the car moves,initialize it.

See: Omni3WD::setCarstat()

www.nexusrobot.com Robot Kits manual

 79

Omni3WD::wheelBackSetSpeedMMPS()

Omni3WD::wheelRightSetSpeedMMPS()

Omni3WD::wheelLeftSetSpeedMMPS()

unsigned int setCarRight(unsigned int speedMMPS=0)

 Set the car turn right

This will lie within the range specified at Omni3WD::setCarstat() and

 Omni3WD::wheelBackSetSpeedMMPS() and Omni3WD::wheelRightSetSpeedMMPS() and

Omni3WD::wheelLeftSetSpeedMMPS()

Parameters:
unsigned int speedMMPS=0

The speed for the car moves,initialize it.

See:

Omni3WD::setCarstat()

Omni3WD::wheelBackSetSpeedMMPS()

Omni3WD::wheelRightSetSpeedMMPS()

Omni3WD::wheelLeftSetSpeedMMPS()

unsigned int setCarRotateLeft(unsigned int speedMMPS=0)

 Set the car for rotate left

This will lie within the range specified at Omni3WD::setCarstat() and Omni3WD::setMotorAllBackoff()

Parameters:
unsigned int speedMMPS=0

The speed for the car moves,initialize it.

See:
Omni3WD::setCarstat()

Omni3WD::setMotorAllBackoff()

unsigned int setCarRotateRight(unsigned int speedMMPS=0)

Set the car for rotate right

This will lie within the range specified at Omni3WD::setCarstat() and

Omni3WD::setMotorAllAdvance()

Parameters:
unsigned int speedMMPS=0

The speed for the car moves,initialize it.

See:
Omni3WD::setCarstat()

Omni3WD::setMotorAllAdvance()

www.nexusrobot.com Robot Kits manual

 80

unsigned int getCarSpeedMMPS() const

 Get the car’s speed

return: The car’s speed

unsigned int setCarSpeedMMPS(unsigned int speedMMPS=0,unsigned int ms=1000)

 The car’s speed be set

This will lie within the range specified at Omni3WD::getCarSpeedMMPS()

Parameters:

unsigned int speedMMPS=0

The speed for the car moves,initialize it.

unsigned int ms=1000

The time the to moves the car at this speed

See: Omni3WD::getCarSpeedMMPS()

unsigned int setCarSlow2Stop(unsigned int ms=1000)

 Set the car stop in 1000 milliseconds

This will lie within the range specified at Omni3WD::setCarSpeedMMPS()

Parameters:
unsigned int ms=1000

The time to stop the car,initialize it

See: Omni3WD::getCarSpeedMMPS()

unsigned int wheelBackSetSpeedMMPS(unsigned int speedMMPS=0,bool dir=DIR_ADVANCE)

 Set the speed for the back wheel

This will lie within the range specified at MotorWheel::setSpeedMMPS()

Parameters:

unsigned int speedMMPS=0

The speed for the wheel to run,initialize it

bool dir=DIR_ADVANCE

The direction for the wheel to run

See: MotorWheel::setSpeedMMPS()

unsigned int wheelBackGetSpeedMMPS() const

 Get the speed of the back wheel

This will lie within the range specified at MotorWheel::getSpeedMMPS()

www.nexusrobot.com Robot Kits manual

 81

See: MotorWheel::getSpeedMMPS()

unsigned int wheelRightSetSpeedMMPS(unsigned int speedMMPS=0,bool dir=DIR_ADVANCE)

 Set the speed for the right wheel

This will lie within the range specified at MotorWheel::setSpeedMMPS()

Parameters:

unsigned int speedMMPS=0

The speed for the wheel to run,initialize it

bool dir=DIR_ADVANCE

The direction for the wheel to run

See: MotorWheel::setSpeedMMPS()

unsigned int wheelRightGetSpeedMMPS() const

Get the speed of the right wheel

This will lie within the range specified at MotorWheel::getSpeedMMPS()

See: MotorWheel::getSpeedMMPS()

unsigned int wheelLeftSetSpeedMMPS(unsigned int speedMMPS=0,bool dir=DIR_ADVANCE);

 Set the speed for the left wheel

This will lie within the range specified at MotorWheel::setSpeedMMPS()

Parameters:

unsigned int speedMMPS=0

The speed for the wheel to run,initialize it

bool dir=DIR_ADVANCE

The direction for the wheel to run

See: MotorWheel::setSpeedMMPS()

unsigned int wheelLeftGetSpeedMMPS() const

Get the speed of the left wheel

This will lie within the range specified at MotorWheel::getSpeedMMPS()

See: MotorWheel::getSpeedMMPS()

bool PIDEnable(float kc=KC,float taui=TAUI,float taud=TAUD,unsigned int interval=1000)

 Call the PID,make it work for the car

This will lie within the range specified at MotorWheel::PIDEnable()

www.nexusrobot.com Robot Kits manual

 82

Parameters:

Float kc

Proportional term,initialize it

Float taui

Integral term

Float taud

Derivative term

Unsigded int interval

The time the PID work last

see : MotorWheel::PIDEnable()

bool PIDRegulate()

 Regulate the PID ,in order to adjust the speed of the Motor.

This will lie within the range specified at MotorWheel:: PIDRegulate()

see : MotorWheel:: PIDRegulate()

void delayMS(unsigned int ms=100, bool debug=false)

 The time used for the car work as the same action

 In the function,every 10 milliseconds,it will call the function PIDRegulate once time

Parameters:

unsigned long ms=100

The time the action last

bool debug=false

A flag

void debugger(bool wheelBackDebug=true,bool wheelRightDebug=true,bool wheelLeftDebug=true)

const

 Debug the speed of the wheel

Car _state enum

Used to configure the behavior of a car.

Note that not all car can be configured in every state.

Variables:

STAT_UNKNOWN

 The state of the car unknown

www.nexusrobot.com Robot Kits manual

 83

 STAT_STOP

 The car’s state is stop

 STAT_ADVANCE

 The car’s state is moves forward

 STAT_BACKOFF

 The car’s state is get backoff

 STAT_ROTATELEFT

 The car’s state is moves rotate left

 STAT_ROTATERIGHT

 The car’s state is moves rotate right

 STAT_RIGHT

 The car’s state is turn right

 STAT_LEFT

 The car’s state is turn left

unsigned char getCarStat() const

 Get the state of the car

return : The car’s state

Motor _state enum

Used to configure the behavior of a motor.

Note that not all motors can be configured in every state.

Variables:

MOTORS_BRL

The switchmotorstat is back-right-left

MOTORS_LBR

The switchmotorstat is left-back-right

MOTORS_RLB

The switchmotorstat is right-left-back

unsigned char getSwitchMotorsStat() const

 Get the state of the Motor

return : The motor’s state

www.nexusrobot.com Robot Kits manual

 84

 Private parameters

 MotorWheel* _wheelBack

A point named wheelBack as the object of MotorWheel

 MotorWheel* _wheelRight

A point named wheelright as the object of MotorWheel

 MotorWheel* _wheelLeft

A point named wheelLeft as the object of MotorWheel

unsigned char _carStat

 To save the car’s state

unsigned char setCarStat(unsigned char stat)

 Set the state of the car

Parameters: unsigned char stat

The state want to set

return :
Carstate if the stat in the range of the want

STAT_UNKNOWN otherwise

unsigned char _switchMotorsStat

 Switch the motors’ state

unsigned char setSwitchMotorsStat(unsigned char switchMotorsStat)

 Set the Motors’ state

This will lie within the range specified at Omni3WD::getSwitchMotorsStat()

Parameters: unsigned char switchMotorsStat

The state want to set

See: Omni3WD::getSwitchMotorsStat()

Omni3WD()

Construct a new R2DW instance.

void demoActions(unsigned int speedMMPS=100,unsigned int duration=5000,

 unsigned int uptime=500,bool debug=false)

 A demo function for three wheels car to show

www.nexusrobot.com Robot Kits manual

 85

void Omni3WD::demoActions(unsigned int speedMMPS,unsigned int duration,unsigned int uptime,bool

debug) {

 unsigned int (Omni3WD::*carAction[])(unsigned int speedMMPS)={

 &Omni3WD::setCarAdvance, //set car moves forward

 &Omni3WD::setCarBackoff, //set car moves Reverse

 &Omni3WD::setCarLeft, //set car turn left

 &Omni3WD::setCarRight, //set car turn right

 &Omni3WD::setCarRotateLeft,//set car rotate left

 &Omni3WD::setCarRotateRight //set car rotate right

 };

 for(int i=0;i<6;++i) { //there are six base actions

 (this->*carAction[i])(0); //choose one of the six actions

 setCarSpeedMMPS(speedMMPS,uptime); // set the speed for the car in this action

 delayMS(duration,debug); // The time used for the car moves at this

speed in this action

 setCarSlow2Stop(uptime); //set the car stop slowly in uptime

 }

 setCarStop(); //set car stop

 delayMS(duration,debug); //delay(duration) every 10 milliseconds

call the PIDRegulate once time

 switchMotorsLeft(); //rotate left to change the wheel to work

}

www.nexusrobot.com Robot Kits manual

 86

 Omni3WD_test

Here’s an example ,we use it to test a car with three wheels.after this ,you will More thorough

understanding of the library

Simple code:

#include <MotorWheel.h>

#include <Omni3WD.h>

#include <Omni4WD.h>

#include <PID_Beta6.h>

#include <PinChangeInt.h>

#include <PinChangeIntConfig.h> // Include the header files

/*

 Wheel3 // \\ Wheel2

 ==

 Wheel1

 */

irqISR(irq1,isr1); // Intterrupt function.on the basis of the pulse ,work for wheel1

MotorWheel wheel1(9,8,6,7,&irq1); //This will create a MotorWheel object called Wheel1

//Motor PWM:Pin9, DIR:Pin8, Encoder A:Pin6, B:Pin7

irqISR(irq2,isr2);

MotorWheel wheel2(10,11,12,13,&irq2);

irqISR(irq3,isr3);

MotorWheel wheel3(3,2,4,5,&irq3);

//MotorWheel wheel3(5,4,2,3,&irq3);

// why not this?? Because the pin 5,pin 6 control by timer 0

Omni3WD Omni(&wheel1,&wheel2,&wheel3);

// This will create a Omni3WD object called Omni3WD.

//You can then use any of its methods; for instance,

www.nexusrobot.com Robot Kits manual

 87

// to control a Omni3WD attached to pins, you could write

void setup() {

 TCCR1B=TCCR1B&0xf8|0x01; // Timer1.Pin9,Pin10 PWM 31250Hz

 TCCR2B=TCCR2B&0xf8|0x01; // Timer2 .Pin3,Pin11 PWM 31250Hz

 Omni.PIDEnable(0.26,0.02,0,10); // Enable PID

}

void loop() {

 Omni.demoActions(100,5000,1000,false);

//Call the demoActions speedMMPS=100 duration=5000 uptime =1000.

/*

 Omni.setCarLeft(0);

 Omni.setCarSpeedMMPS(300,1000);

 Omni.delayMS(10000,true);

 Omni.setCarSlow2Stop(1000);

 Omni.setCarRight(0);

 Omni.setCarSpeedMMPS(100,1000);

 Omni.delayMS(10000,true);

 Omni.setCarSlow2Stop(1000);

 Omni.setCarLeft(100);

 for(int i=0;i<1000;++i) {

 Omni.PIDRegulate();

 delay(10);

 }

 Omni.setCarRight(100);

 for(int i=0;i<1000;++i) {

 Omni.PIDRegulate();

 delay(10);

 }

 */

}

www.nexusrobot.com Robot Kits manual

 88

Diagram for Omni3WD_V1.0

www.nexusrobot.com Robot Kits manual

 89

 Omni3WD platform with 3 SONARS

Look the above figure of simple Wiring Diagram for Omni3WD_V1.0. Tis code is matched for it

Diagram_Omni3WD_V1.0 code

/**/

/*

 Power Switch

 Sonar0x11

 / \

 / \

 / \

 M3 / \ M2

 INT0 / \INT1

 / \

 / \

 / \

 \ /

 \ /

 \ /

 \ /

 Sonar0x12 \ / Sonar0x13

 \ /

 \ /

 M1

 */

#include <fuzzy_table.h>

#include <PID_Beta6.h>

#include <PinChangeIntConfig.h>

#include <MotorWheel.h>

#include <Omni3WD.h>

#include <SONAR.h> // Include the header files

/**/

// SONAR

www.nexusrobot.com Robot Kits manual

 90

SONAR sonar11(0x11),sonar12(0x12),sonar13(0x13); // Software initialization

//SONAR is be defined in <SONAR.h> as a class

unsigned short distBuf[3]; // Used to save the data of the 3 sonars return;

void sonarsUpdate() { //the function to

 static unsigned char sonarCurr=1; // A variable save a data used to flag the current of sonar

 if(sonarCurr==3) sonarCurr=1;

 else ++sonarCurr;

 if(sonarCurr==1) { // The conditions is ture?

 distBuf[1]=sonar12.getDist(); // Get the value of distance from sonar12

 sonar12.trigger(); // Trigger sonar12

 } else if(sonarCurr==2) {

 distBuf[2]=sonar13.getDist(); // Ger the value of distance from sonar13

 sonar13.trigger(); // Trigger sonar13

 } else {

 distBuf[0]=sonar11.getDist(); // Ger the value of distance from sonar11

 sonar11.trigger(); // Trigger sonar11

 }

}

/***/

/***/

// Motors

irqISR(irq1,isr1);

MotorWheel wheel1(9,8,6,7,&irq1); // Pin9:PWM, Pin8:DIR, Pin6:PhaseA, Pin7:PhaseB

irqISR(irq2,isr2);

MotorWheel wheel2(10,11,14,15,&irq2); // Pin10:PWM, Pin11:DIR, Pin14:PhaseA, Pin15:PhaseB

irqISR(irq3,isr3);

MotorWheel wheel3(3,2,4,5,&irq3); // Pin3:PWM, Pin2:DIR, Pin4:PhaseA, Pin5:PhaseB

Omni3WD Omni(&wheel1,&wheel2,&wheel3);

// This will create a Omni3WD object called Omni. then You

// can use any of its methods; for instance, to

// control a Omni3WD attached to pins, you could write

/**/

www.nexusrobot.com Robot Kits manual

 91

/**/

// demo

unsigned long currMillis=0;

void demoWithSensors(unsigned int speedMMPS,unsigned int distance) {

 if(millis()-currMillis>SONAR::duration) { // every 60ms call sonarUpdate once

 currMillis=millis();

 sonarsUpdate();

 }

 if(distBuf[1]<distance) { // If the left side have something

 if(Omni.getCarStat()!=Omni3WD::STAT_RIGHT) Omni.setCarSlow2Stop(500);

 Omni.setCarRight(speedMMPS); // Set car turn right

 } else if(distBuf[2]<distance) { // If the right have something

 if(Omni.getCarStat()!=Omni3WD::STAT_LEFT) Omni.setCarSlow2Stop(500);

 Omni.setCarLeft(speedMMPS); // Set car turn left

 } else if(distBuf[0]<distance) { // If the front have something

 if(Omni.getCarStat()!=Omni3WD::STAT_ROTATERIGHT) Omni.setCarSlow2Stop(500);

 Omni.setCarRotateRight(speedMMPS); // Set car rotateright

 } else { // There is nothing around the car

 if(Omni.getCarStat()!=Omni3WD::STAT_ADVANCE) Omni.setCarSlow2Stop(500);

 Omni.setCarAdvance(speedMMPS); // Set car moves advance

 }

 Omni.PIDRegulate(); //PID regulate

}

/***/

// setup()

void setup() {

 TCCR1B=TCCR1B&0xf8|0x01; // Pin9,Pin10 PWM 31250Hz

 TCCR2B=TCCR2B&0xf8|0x01; // Pin3,Pin11 PWM 31250Hz

 SONAR::init(13); // Initial sonars

 Omni.PIDEnable(0.26,0.02,0,10); // Enable PID

 }

/**/

// loop()

void loop() {

 demoWithSensors(80,30); // call the demo actions

}

www.nexusrobot.com Robot Kits manual

 92

Diagram_Omni3WD_V3.3

www.nexusrobot.com Robot Kits manual

 93

 Omni3WD platform with 6 SONARS

Look the above figure of simple Wiring Diagram for Omni3WD_V3.3. Tis code is matched for it

Diagram_Omni3WD_V3.3 code

/**/

/*

 Power Switch

 Sonar0x11

 / \

 / \

 Sonar0x16 / \ Sonar0x12

 M3,IR03 / \ M2,IR02

 / \

 / \

 / \

 / \

 \ /

 \ /

 \ /

 \ /

 Sonar0x15 \ / Sonar0x13

 \ /

 \ /

 Sonar0x14

 M1,IR01

 */

#include <fuzzy_table.h>

#include <PID_Beta6.h>

#include <PinChangeInt.h>

#include <PinChangeIntConfig.h>

#include <MotorWheel.h>

#include <Omni3WD.h>

#include <SONAR.h> // Include the header files

/**/

// SONAR

www.nexusrobot.com Robot Kits manual

 94

SONAR sonar11(0x11),sonar12(0x12),sonar13(0x13),sonar14(0x14),sonar15(0x15),sonar16(0x16);

// Software initialization

//SONAR is be defined in <SONAR.h> as a class

unsigned short distBuf[6]; // Used to save the data of the 6 sonars return;

void sonarsUpdate() {

 static unsigned char sonarCurr=1; // A variable save a data used to flag the current of sonar

 if(sonarCurr==3) sonarCurr=1;

 else ++sonarCurr;

 if(sonarCurr==1) { // The conditions is ture?

 distBuf[1]=sonar12.getDist(); // Get the value of distance from sonar12

 distBuf[4]=sonar15.getDist();

 sonar11.trigger(); // Trigger sonar11

 sonar14.trigger();

 } else if(sonarCurr==2) {

 distBuf[2]=sonar13.getDist();

 distBuf[5]=sonar16.getDist();

 sonar12.trigger();

 sonar15.trigger();

 } else {

 distBuf[0]=sonar11.getDist();

 distBuf[3]=sonar14.getDist();

 sonar13.trigger();

 sonar16.trigger();

 }

}

/***/

/***/

unsigned char IRpin[]={16,17,18}; // Pin16, Pin17, Pin18

bool IRs[3]={false,false,false};

void initIRs() { // Initial the Pin mode

 pinMode(IRpin[0],INPUT);

 pinMode(IRpin[1],INPUT);

 pinMode(IRpin[2],INPUT);

}

www.nexusrobot.com Robot Kits manual

 95

void checkIRs() { // Read the Anti-drop Sonars

 for(int i=0;i<3;++i) {

 IRs[i]=digitalRead(IRpin[i]); // Save datas

 Serial.print(IRs[i]); // display the datas

 }

 Serial.println("");

}

/**/

/***/

// Wheels

irqISR(irq1,isr1);

MotorWheel wheel1(9,8,6,7,&irq1); // Pin9:PWM, Pin8:DIR, Pin6:PhaseA, Pin7:PhaseB

irqISR(irq2,isr2);

MotorWheel wheel2(10,11,14,15,&irq2); // Pin10:PWM, Pin11:DIR, Pin14:PhaseA, Pin15:PhaseB

irqISR(irq3,isr3);

MotorWheel wheel3(3,2,4,5,&irq3); // Pin3:PWM, Pin2:DIR, Pin4:PhaseA, Pin5:PhaseB

//MotorWheel wheel3(5,4,2,3,&irq3);

Omni3WD Omni(&wheel1,&wheel2,&wheel3);

// This will create a Omni3WD object called Omni. then You

// can use any of its methods; for instance, to

// control a Omni3WD attached to pins, you could write

/**/

/**/

// demo

unsigned long currMillis=0;

void demoWithSensors(unsigned int speedMMPS,unsigned int distance,unsigned int ms) {

 if(millis()-currMillis>SONAR::duration) { // Every 60 ms call the SonarsUpdate() once time

 currMillis=millis();

 sonarsUpdate();

 }

 checkIRs(); // check the Anti-drop sonars

www.nexusrobot.com Robot Kits manual

 96

 if(IRs[1] || IRs[2]) { // The Anti-drop return a High Value

 Omni.setCarBackoff(speedMMPS); // get car back

 Omni.delayMS(ms); // delay “ms” ,every 10 ms call the PIDregulate() once time.

 if(IRs[1]) {

 Omni.setCarRotateLeft(speedMMPS);

 } else Omni.setCarRotateRight(speedMMPS);

 Omni.delayMS(ms);

 } else if(distBuf[1]<distance || distBuf[2]<distance) { // the right side have something

 Omni.setCarLeft(speedMMPS);

 } else if(distBuf[4]<distance || distBuf[5]<distance) { // Left side have something

 Omni.setCarRight(speedMMPS);

 } else if(distBuf[0]<distance || distBuf[3]<distance || IRs[0]) {

 Omni.setCarRotateRight(speedMMPS);

 } else {

 Omni.setCarAdvance(speedMMPS);

 }

 Omni.PIDRegulate();

 if(millis()%100==0) Omni.debugger();

}

/***/

// setup()

void setup() {

 TCCR1B=TCCR1B&0xf8|0x01; // Pin9,Pin10 PWM 31250Hz

 TCCR2B=TCCR2B&0xf8|0x01; // Pin3,Pin11 PWM 31250Hz

 SONAR::init(13); // Pin13 as RW Control

 initIRs();

 Omni.PIDEnable(0.26,0.02,0,10); //Enable PID

 }

/**/

// loop()

void loop() {

 demoWithSensors(80,20,300); //Call the demo function

}

www.nexusrobot.com Robot Kits manual

 97

 Omni4WD

This page describes how to control the built-in Omni4WD. It does not describe how the Omni4WD work

on your board. For more information on that, Please refer to Omni4WD Class Reference.

*4WD 100mm Mecanum wheel

* Includes ultrasonic sensors and optional IR

*Suspension structure to ensure roadholding of

 each single wheel

*DC motors with encoders

*Microcontroller and IO expansion board

*Programmable with c,c++

RB011_4WD Mecanum wheel mobile kit *Based on Arduino microcontroller

*4WD 100mm Mecanum wheel

*DC motors with encoders

*Microcontroller and IO expansion board

*Flexible base plate ensuring roadholding of each single wheel

*Programmable with c,c++

*Based on Arduino microcontroller

RB009_4WD Mecanum wheel Simple Base

 *4WD 100mm Omni wheel

 *DC motors with encoders

 *Microcontroller and IO expansion board

 *Idea platform to learn and build your omni wheel robot

 *Easy to assemble

 * Capable of omni direction movement and rotating

 *Programmable with c,c++

*Based on Arduino microcontroller

RB008_4WD Omni wheel Simple Base

This is a 4 wheel drive,Mecanum wheel mobile platform vehicle is stable and can be made to move in

any direction and turn by varying the direction and speed of each wheel. Moving all four wheels in the

same direction causes forward/backward movement, running left/right sides in opposite directions

causes rotation, and running front and rear in opposite directions causes sideways movement.Its special

way its rear wheels mounted ensure roadholding of each wheel.

www.nexusrobot.com Robot Kits manual

 98

 Omni4WD Class Reference

This document describes a car with four Motors. On the Introduction, you will know how to use the

Omni4WD library to control the Motors,then to control the car

#include<MotorWheel.h>

Include the header file MotorWheel.h

This section gives a full listing of the capabilities of Omni4WD

Class Omni4WD

Interface for visit of peripherals

 Public functions

Omni4WD::Omni4WD(MotorWheel* wheelUL,MotorWheel* wheelLL,

 MotorWheel* wheelLR,MotorWheel* wheelUR):

 _wheelUL(wheelUL),_wheelLL(wheelLL),

 _wheelLR(wheelLR),_wheelUR(wheelUR) {

 setSwitchMotorsStat(MOTORS_FB);

}

Construct a new Omni4WD instance.

in your sketch. This will create a Omni4WD object called Omni4WD. You can then use any of its methods;

for instance, to control a Omni4WD attached to pins, you could write

Parameters:

MotorWheel* wheelUL

 A point named wheelUL as the object of MotorWheel

MotorWheel* wheelLL

A point named wheelLL as the object of MotorWheel

MotorWheel* wheelLR

A point named wheelLR as the object of MotorWhee

MotorWheel* wheelUR

A point named wheelUR as the object of MotorWhee

unsigned char switchMotors()

 Switch Motors to control

This will lie within the range specified at Omni4WD::getSwitchMotorsStat()

www.nexusrobot.com Robot Kits manual

 99

See: Omni3WD::getSwitchMotorsStat()

unsigned char switchMotorsReset()

 Reset for switch motors to control

unsigned int setMotorAll(unsigned int speedMMPS=0,bool dir=DIR_ADVANCE)

 Set all motors’ speed and direction

This will lie within the range specified at Omni4WD:: wheelULSetSpeedMMPS() and

Omni4WD::wheelLLSetSpeedMMPS() and Omni4WD::wheelLRSetSpeedMMPS() and

Omni4WD::wheelURSetSpeedMMPS()

Parameters:

unsigned int speedMMPS=0

The speed for the motor run,initialize it.

bool dir=DIR_ADVANCE

The direction the motor run

See:

Omni4WD:: wheelULSetSpeedMMPS()

Omni4WD::wheelLLSetSpeedMMPS()

Omni4WD::wheelLRSetSpeedMMPS()

Omni4WD::wheelURSetSpeedMMPS()

unsigned int setMotorAllStop()

 Set all Motors stop

This will lie within the range specified at Omni4WD::setMotorAll()

See: Omni4WD::setMotorAll()

unsigned int setMotorAllAdvance(unsigned int speedMMPS=0)

 Set all motors run forward

This will lie within the range specified at Omni4WD::setMotorAll()

Parameters:
unsigned int speedMMPS=0

The speed for the motor run,initialize it.

See: Omni4WD::setMotorAll()

unsigned int setMotorAllBackoff(unsigned int speedMMPS=0)

 Set all motors run back off

www.nexusrobot.com Robot Kits manual

 100

This will lie within the range specified at Omni4WD::setMotorAll()

Parameters:
unsigned int speedMMPS=0

The speed for the motor run,initialize it.

See: Omni4WD::setMotorAll()

unsigned int setCarStop()

 Stop the car

This will lie within the range specified at Omni4WD::setMotorAll() and Omni4WD::setCarstat()

See:
Omni4WD::setMotorAll()

Omni4WD::setCarstat()

unsigned int setCar(unsigned int speedMMPS=0)

 Set the car moves forward

 Because the car have Four wheels ,so the car moves forward ,the wheels will have different state

each other.

This will lie within the range specified at Omni4WD:: wheelULSetSpeedMMPS() and

Omni4WD::wheelLLSetSpeedMMPS() and Omni4WD::wheelLRSetSpeedMMPS() and

Omni4WD::wheelURSetSpeedMMPS() and Omni4WD::setCarstat()

Parameters:
unsigned int speedMMPS=0

The speed for the motor run,initialize it.

See:

Omni4WD:: wheelULSetSpeedMMPS()

Omni4WD::wheelLLSetSpeedMMPS()

Omni4WD::wheelLRSetSpeedMMPS()

Omni4WD::wheelURSetSpeedMMPS()

Omni4WD::setCarstat()

unsigned int setCarBackoff(unsigned int speedMMPS=0)

 Set the car moves forward

 Because the car have Four wheels ,so the car moves forward ,the wheels will have different state.

This will lie within the range specified at Omni4WD:: wheelULSetSpeedMMPS() and

Omni4WD::wheelLLSetSpeedMMPS() and Omni4WD::wheelLRSetSpeedMMPS() and

Omni4WD::wheelURSetSpeedMMPS() and Omni4WD::setCarstat()

www.nexusrobot.com Robot Kits manual

 101

Parameters:
unsigned int speedMMPS=0

The speed for the motor run,initialize it.

See:

Omni4WD:: wheelULSetSpeedMMPS()

Omni4WD::wheelLLSetSpeedMMPS()

Omni4WD::wheelLRSetSpeedMMPS()

Omni4WD::wheelURSetSpeedMMPS()

Omni4WD::setCarstat()

unsigned int setCarLeft(unsigned int speedMMPS=0)

 Set the car turn Left

This will lie within the range specified at Omni4WD:: wheelULSetSpeedMMPS() and

Omni4WD::wheelLLSetSpeedMMPS() and Omni4WD::wheelLRSetSpeedMMPS() and

Omni4WD::wheelURSetSpeedMMPS() and Omni4WD::setCarstat()

Parameters:
unsigned int speedMMPS=0

The speed for the motor run,initialize it.

See:

Omni4WD:: wheelULSetSpeedMMPS()

Omni4WD::wheelLLSetSpeedMMPS()

Omni4WD::wheelLRSetSpeedMMPS()

Omni4WD::wheelURSetSpeedMMPS()

Omni4WD::setCarstat()

unsigned int setCarRight(unsigned int speedMMPS=0)

 Set the car turn right

This will lie within the range specified at Omni4WD:: wheelULSetSpeedMMPS() and

Omni4WD::wheelLLSetSpeedMMPS() and Omni4WD::wheelLRSetSpeedMMPS() and

Omni4WD::wheelURSetSpeedMMPS() and Omni4WD::setCarstat()

Parameters:
unsigned int speedMMPS=0

The speed for the motor run,initialize it.

See:

Omni4WD::wheelULSetSpeedMMPS()

Omni4WD::wheelLLSetSpeedMMPS()

Omni4WD::wheelLRSetSpeedMMPS()

Omni4WD::wheelURSetSpeedMMPS()

www.nexusrobot.com Robot Kits manual

 102

Omni4WD::setCarstat()

unsigned int setCarRotateLeft(unsigned int speedMMPS=0)

 Set the car rotate left

This will lie within the range specified at Omni4WD::setCarstat() and mni4WD::setMotorAllBackoff()

Parameters:
unsigned int speedMMPS=0

The speed for the car moves,initialize it.

See:
Omni4WD::setCarstat()

Omni4WD::setMotorAllBackoff()

unsigned int setCarRotateRight(unsigned int speedMMPS=0)

Set the car for rotate right

This will lie within the range specified at Omni4WD::setCarstat() and

Omni4WD::setMotorAllAdvance()

Parameters:
unsigned int speedMMPS=0

The speed for the car moves,initialize it.

See:
Omni4WD::setCarstat()

Omni4WD::setMotorAllAdvance()

unsigned int setCarUpperLeft(unsigned int speedMMPS=0)

 Set the car upper left

This will lie within the range specified at Omni4WD:: wheelULSetSpeedMMPS() and

Omni4WD::wheelLLSetSpeedMMPS() and Omni4WD::wheelLRSetSpeedMMPS() and

Omni4WD::wheelURSetSpeedMMPS() and Omni4WD::setCarstat()

Parameters:
unsigned int speedMMPS=0

The speed for the motor moves,initialize it.

See:

Omni4WD::wheelULSetSpeedMMPS()

Omni4WD::wheelLLSetSpeedMMPS()

Omni4WD::wheelLRSetSpeedMMPS()

Omni4WD::wheelURSetSpeedMMPS()

Omni4WD::setCarstat()

www.nexusrobot.com Robot Kits manual

 103

unsigned int setCarLowerLeft(unsigned int speedMMPS=0)

 Set the car Lower left

This will lie within the range specified at Omni4WD::wheelULSetSpeedMMPS() and

Omni4WD::wheelLLSetSpeedMMPS() and Omni4WD::wheelLRSetSpeedMMPS() and

Omni4WD::wheelURSetSpeedMMPS() and Omni4WD::setCarstat()

Parameters:
unsigned int speedMMPS=0

The speed for the motor run,initialize it.

See:

Omni4WD::wheelULSetSpeedMMPS()

Omni4WD::wheelLLSetSpeedMMPS()

Omni4WD::wheelLRSetSpeedMMPS()

Omni4WD::wheelURSetSpeedMMPS()

Omni4WD::setCarstat()

unsigned int setCarUpperRight(unsigned int speedMMPS=0)

Set the car upper Right

This will lie within the range specified at Omni4WD::wheelULSetSpeedMMPS() and

Omni4WD::wheelLLSetSpeedMMPS() and Omni4WD::wheelLRSetSpeedMMPS() and

Omni4WD::wheelURSetSpeedMMPS() and Omni4WD::setCarstat()

Parameters:
unsigned int speedMMPS=0

The speed for the motor run,initialize it.

See:

Omni4WD::wheelULSetSpeedMMPS()

Omni4WD::wheelLLSetSpeedMMPS()

Omni4WD::wheelLRSetSpeedMMPS()

Omni4WD::wheelURSetSpeedMMPS()

Omni4WD::setCarstat()

unsigned int setCarLowerRight(unsigned int speedMMPS=0)

Set the car Lower right

This will lie within the range specified at Omni4WD::wheelULSetSpeedMMPS() and

Omni4WD::wheelLLSetSpeedMMPS() and Omni4WD::wheelLRSetSpeedMMPS() and

Omni4WD::wheelURSetSpeedMMPS() and Omni4WD::setCarstat()

Parameters: unsigned int speedMMPS=0

www.nexusrobot.com Robot Kits manual

 104

The speed for the motor run,initialize it.

See:

Omni4WD::wheelULSetSpeedMMPS()

Omni4WD::wheelLLSetSpeedMMPS()

Omni4WD::wheelLRSetSpeedMMPS()

Omni4WD::wheelURSetSpeedMMPS()

Omni4WD::setCarstat()

unsigned int getCarSpeedMMPS() const

 Get the car’s speed

return: The car’s speed

unsigned int setCarSpeedMMPS(unsigned int speedMMPS=0,unsigned int ms=1000)

Set the speed of the car

This will lie within the range specified at Omni4WD::getCarSpeedMMPS()

Parameters:

unsigned int speedMMPS=0

The speed for the car moves,initialize it.

unsigned int ms=1000

The time used for the to moves the car at this speed

See: Omni4WD::getCarSpeedMMPS()

unsigned int setCarSlow2Stop(unsigned int ms=1000)

Set the car stop in 1000 milliseconds

This will lie within the range specified at Omni4WD::setCarSpeedMMPS()

Parameters:
unsigned int ms=1000

The time used for stop the car,initialize it

See: Omni4WD::getCarSpeedMMPS()

unsigned int getCarSpeedMMPS() const

 Get the car’s speed

return: The car’s speed

unsigned int setCarSpeedMMPS(unsigned int speedMMPS=0,unsigned int ms=1000)

 The car’s speed be set

www.nexusrobot.com Robot Kits manual

 105

This will lie within the range specified at Omni4WD::getCarSpeedMMPS()

Parameters:

unsigned int speedMMPS=0

The speed for the car moves,initialize it.

unsigned int ms=1000

The time used for the car moves at this speed

See: Omni4WD::getCarSpeedMMPS()

unsigned int setCarSlow2Stop(unsigned int ms=1000)

 Stop the car in 1000 milliseconds

This will lie within the range specified at Omni4WD::setCarSpeedMMPS()

Parameters:
unsigned int ms=1000

The time to stop the car,initialize it

See: Omni4WD::getCarSpeedMMPS()

unsigned int wheelULGetSpeedMMPS() const

 Get the speed of the upper left wheel

This will lie within the range specified at MotorWheel::getSpeedMMPS()

See: MotorWheel::getSpeedMMPS()

unsigned int wheelULSetSpeedMMPS(unsigned int speedMMPS=0,bool dir=DIR_ADVANCE)

 Set the speed for the upper left wheel

This will lie within the range specified at MotorWheel::setSpeedMMPS()

Parameters:

unsigned int speedMMPS=0

The speed for the wheel run,initialize it

bool dir=DIR_ADVANCE

The direction for the wheel run

See: MotorWheel::setSpeedMMPS()

unsigned int wheelLLGetSpeedMMPS() const

 Get the speed of the Lower left wheel

This will lie within the range specified at MotorWheel::getSpeedMMPS()

See: MotorWheel::getSpeedMMPS()

www.nexusrobot.com Robot Kits manual

 106

unsigned int wheelLLSetSpeedMMPS(unsigned int speedMMPS=0,bool dir=DIR_ADVANCE)

Set the speed for the lower left wheel

This will lie within the range specified at MotorWheel::setSpeedMMPS()

Parameters:

unsigned int speedMMPS=0

The speed for the wheel run,initialize it

bool dir=DIR_ADVANCE

The direction for the wheel run

See: MotorWheel::setSpeedMMPS()

unsigned int wheelURGetSpeedMMPS() const

 Get the speed of the upper right wheel

This will lie within the range specified at MotorWheel::getSpeedMMPS()

See: MotorWheel::getSpeedMMPS()

unsigned int wheelURSetSpeedMMPS(unsigned int speedMMPS=0,bool dir=DIR_ADVANCE)

Set the speed for the upper right wheel

This will lie within the range specified at MotorWheel::setSpeedMMPS()

Parameters:

unsigned int speedMMPS=0

The speed for the wheel run,initialize it

bool dir=DIR_ADVANCE

The direction for the wheel run

See: MotorWheel::setSpeedMMPS()

unsigned int wheelLRGetSpeedMMPS() const

 Get the speed of the lower right wheel

This will lie within the range specified at MotorWheel::getSpeedMMPS()

See: MotorWheel::getSpeedMMPS()

unsigned int wheelLRSetSpeedMMPS(unsigned int speedMMPS=0,bool dir=DIR_ADVANCE)

Set the speed for the lower right wheel

This will lie within the range specified at MotorWheel::setSpeedMMPS()

Parameters: unsigned int speedMMPS=0

www.nexusrobot.com Robot Kits manual

 107

The speed for the wheel run,initialize it

bool dir=DIR_ADVANCE

The direction for the wheel run

See: MotorWheel::setSpeedMMPS()

bool PIDEnable(float kc=KC,float taui=TAUI,float taud=TAUD,unsigned int interval=1000)

 Call the PID,make it work for the car. Then this will work for every wheels

This will lie within the range specified at MotorWheel::PIDEnable()

Parameters:

Float kc

Proportional term,initialize it

Float taui

Integral term

Float taud

Derivative term

Unsigded int interval

The time the PID work last

see : MotorWheel::PIDEnable()

bool PIDRegulate()

 Regulate the PID ,in order to adjust the speed of the Motor.

This will lie within the range specified at MotorWheel:: PIDRegulate()

see : MotorWheel:: PIDRegulate()

void delayMS(unsigned int ms=100, bool debug=false)

 The time used for the car work as the same action

 In the function,every 10 milliseconds,it will call the function PIDRegulate once time

Parameters:

unsigned long ms=100

The time the action last,initialize it

bool debug=false

A flag

www.nexusrobot.com Robot Kits manual

 108

void debugger(bool wheelBackDebug=true,bool wheelRightDebug=true,bool wheelLeftDebug=true)

const

 Debug the speed of the wheel

Car _state enum

Used to configure the behavior of a car.

Note that not all car can be configured in every state.

Variables:

STAT_UNKNOWN

 The state of the car unknown

 STAT_STOP

 The car’s state is stop

 STAT_ADVANCE

 The car’s state is moves forward

 STAT_BACKOFF

 The car’s state is get back off

 STAT_RIGHT

 The car’s state is turn right

 STAT_LEFT

 The car’s state is turn left

 STAT_ROTATELEFT

 The car’s state is moves rotate left

 STAT_ROTATERIGHT

 The car’s state is moves rotate right

 STAT_UPPERLEFT

 The car’s state is run upper left

 STAT_LOWERLEFT

 The car’s state is moves lower left

 STAT_LOWERRIGHT

 The car’s state is moves lower right

 STAT_UPPERRIGHT

The car’s state is moves upper right

www.nexusrobot.com Robot Kits manual

 109

unsigned char getCarStat() const

 Get the state of the car

return : The car’s state

Motor _state enum

Used to configure the behavior of a motor.

Note that not all motors can be configured in every state.

Variables:

MOTORS_FB

The switchmotorstat is front back

MOTORS_BF

The switchmotorstat is back front

unsigned char getSwitchMotorsStat() const

 Get the state of the Motor

return : The motor’s state

 Private parameters

 MotorWheel* _wheelUL

A point named _wheelUL as the object of MotorWheel

 MotorWheel* _wheelLL

A point named _wheelLL as the object of MotorWheel

 MotorWheel* _wheelLR

A point named _wheelLR as the object of MotorWheel

 MotorWheel* _wheelUR

A point named _wheelUR as the object of MotorWheel

unsigned char _carStat

 To save the car’s state

unsigned char setCarStat(unsigned char stat)

 Set the state of the car

Parameters: unsigned char stat

The state want to set

www.nexusrobot.com Robot Kits manual

 110

return :
Carstate if the stat in the range of the want

STAT_UNKNOWN otherwise

unsigned char _switchMotorsStat

 Switch the motors’ state

unsigned char setSwitchMotorsStat(unsigned char switchMotorsStat)

 Set the Motors’ state

This will lie within the range specified at Omni4WD::getSwitchMotorsStat()

Parameters: unsigned char switchMotorsStat

The state want to set

See: Omni4WD::getSwitchMotorsStat()

Omni4WD()

Construct a new R2DW instance.

void demoActions(unsigned int speedMMPS=100,unsigned int duration=5000,unsigned int

uptime=500,bool debug=false);

A demo function for four wheels car to show

void Omni4WD::demoActions(unsigned int speedMMPS,unsigned int duration,

 unsigned int uptime,bool debug) {

 unsigned int (Omni4WD::*carAction[])(unsigned int speedMMPS)={

 &Omni4WD::setCarAdvance, // Car advance

 &Omni4WD::setCarBackoff, //Car back off

 &Omni4WD::setCarLeft, //Car turn left

 &Omni4WD::setCarRight, //Car turn right

 &Omni4WD::setCarUpperLeft, //Car upper left

 &Omni4WD::setCarLowerRight, //Car lower right

 &Omni4WD::setCarLowerLeft, //Car lower left

 &Omni4WD::setCarUpperRight, //Car upper right

 &Omni4WD::setCarRotateLeft, // Car rotate left

 &Omni4WD::setCarRotateRight //Car rotate right

www.nexusrobot.com Robot Kits manual

 111

 };

 for(int i=0;i<10;++i) { //the car have 10 demo actions

 (this->*carAction[i])(0); // default parameters not available in function

pointer

 setCarSpeedMMPS(speedMMPS,uptime); //in the uptime , the car’s speed accelerate

from 0 to speedMMPS

 delayMS(duration,debug); //the car’s state last “duration” times

 setCarSlow2Stop(uptime); //stop the car slowly in uptime

 }

 setCarStop(); //stop the car

 delayMS(duration); //delay(duration)

 switchMotors(); //switch the motors.

}

www.nexusrobot.com Robot Kits manual

 112

 Omni4WD_test

Here’s an example ,we use it to test a car with four wheels.after this ,you will More thorough

understanding of the library

Simple code:

#include <MotorWheel.h>

#include <Omni3WD.h>

#include <Omni4WD.h>

#include <PID_Beta6.h>

#include <PinChangeInt.h>

#include <PinChangeIntConfig.h>

 // Include the header files

/*

 \ /

 wheel1 \ / wheel4

 Left \ / Right

 / \

 wheel2 / \ wheel3

 Right / \ Left

 */

irqISR(irq1,isr1); // Intterrupt function.on the basis of the pulse,work for wheel1

MotorWheel wheel1(3,2,4,5,&irq1);

//This will create a MotorWheel object called Wheel1

//Motor PWM:Pin5, DIR:Pin4, Encoder A:Pin12, B:Pin13

irqISR(irq2,isr2);

MotorWheel wheel2(11,12,14,15,&irq2);

irqISR(irq3,isr3);

www.nexusrobot.com Robot Kits manual

 113

MotorWheel wheel3(9,8,16,17,&irq3);

irqISR(irq4,isr4);

MotorWheel wheel4(10,7,18,19,&irq4);

Omni4WD Omni(&wheel1,&wheel2,&wheel3,&wheel4);

// This will create a Omni4WD object called Omni4WD.

//You can then use any of its methods; for instance,

// to control a Omni4WD attached to pins, you could write

void setup() {

 //TCCR0B=TCCR0B&0xf8|0x01; // warning!! it will change millis()

 TCCR1B=TCCR1B&0xf8|0x01; // Pin9,Pin10 PWM 31250Hz

 TCCR2B=TCCR2B&0xf8|0x01; // Pin3,Pin11 PWM 31250Hz

 Omni.PIDEnable(0.31,0.01,0,10); // Enable PID

 }

void loop() {

 Omni.demoActions(200,5000,500,false);

//Call the demoActions from the Class Omni4WD

 //speedMMPS=200 duration=5000

 //uptime =500 debug=false

 /*

 Omni.setCarLeft(0);

 Omni.setCarSpeedMMPS(200,500);

 Omni.delayMS(5000);

 Omni.setCarSlow2Stop(500);

 Omni.setCarRight(0);

 Omni.setCarSpeedMMPS(200,500);

 Omni.delayMS(5000);

 Omni.setCarSlow2Stop(500);

 */

 }

www.nexusrobot.com Robot Kits manual

 114

Sample Wiring Diagram for RB011 ,Mecanum 4WD V4.1

www.nexusrobot.com Robot Kits manual

 115

 4WD platform with 4 SONAR

Look the above figure of simple Wiring Diagram for RB011 ,Mecanum 4WD V4.1. this code is matched

for it

4WD platform with 4 SONAR code

#include <MotorWheel.h>

#include <Omni4WD.h>

#include <PID_Beta6.h>

#include <PinChangeInt.h>

#include <PinChangeIntConfig.h>

#include <SONAR.h> // Include the header files

/*

**

 Sonar:0x12

 | |

 M3 | | M2

 | |

 Sonar:0x13 | | Sonar:0x11

 | |

 | | Power Switch

 | |

 | |

 | |

 M4 | | M1

 | |

 Sonar:0x14

**

*/

irqISR(irq1,isr1); // Intterrupt function.on the basis of the pulse, work for wheel1

MotorWheel wheel1(3,2,4,5,&irq1); //This will create a MotorWheel object called Wheel1

 //Motor PWM:Pin3, DIR:Pin2, Encoder A:Pin4, B:Pin5

irqISR(irq2,isr2);

MotorWheel wheel2(11,12,14,15,&irq2);

irqISR(irq3,isr3);

MotorWheel wheel3(9,8,16,17,&irq3);

www.nexusrobot.com Robot Kits manual

 116

irqISR(irq4,isr4);

MotorWheel wheel4(10,7,18,19,&irq4);

Omni4WD Omni(&wheel1,&wheel2,&wheel3,&wheel4);

// This will create a Omni4WD object called Omni. then You can use any of its methods;

// for instance, to control a Omni4WD attached to pins, you could write

SONAR sonar11(0x11),sonar12(0x12),sonar13(0x13),sonar14(0x14); // Software initialization

//SONAR is be defined in <SONAR.h> as a class

unsigned short distBuf[4]; // Used to save the data of the 3 sonars return

unsigned char sonarsUpdate() {

 static unsigned char sonarCurr = 1; // A variable save a data used to flag the state of sonar

 if(sonarCurr==4) sonarCurr=1;

 else ++sonarCurr;

 if(sonarCurr==1) { // The conditions is ture?

 distBuf[1]=sonar12.getDist(); // Get the value of distance from sonar12

 sonar12.trigger(); // Trigger sonar12

 } else if(sonarCurr==2) {

 distBuf[2]=sonar13.getDist();

 sonar13.trigger();

 } else if(sonarCurr==3){

 distBuf[3]=sonar14.getDist();

 sonar14.trigger();

 } else {

 distBuf[0]=sonar11.getDist();

 sonar11.trigger();

 }

 return sonarCurr; // Return the value

}

void goAhead(unsigned int speedMMPS){ // Car moves advance

 if(Omni.getCarStat()!=Omni4WD::STAT_ADVANCE) Omni.setCarSlow2Stop(300);

 Omni.setCarAdvance(0); // If the car’s state is not advance.stop it

 // else moves advance continue

 Omni.setCarSpeedMMPS(speedMMPS, 300); // Set the car speed at 300

}

void turnLeft(unsigned int speedMMPS){

www.nexusrobot.com Robot Kits manual

 117

 if(Omni.getCarStat()!=Omni4WD::STAT_LEFT) Omni.setCarSlow2Stop(300);

 Omni.setCarLeft(0);

 Omni.setCarSpeedMMPS(speedMMPS, 300);

}

void turnRight(unsigned int speedMMPS){

 if(Omni.getCarStat()!=Omni4WD::STAT_RIGHT) Omni.setCarSlow2Stop(300);

 Omni.setCarRight(0);

 Omni.setCarSpeedMMPS(speedMMPS, 300);

}

void rotateRight(unsigned int speedMMPS){

 if(Omni.getCarStat()!=Omni4WD::STAT_ROTATERIGHT) Omni.setCarSlow2Stop(300);

 Omni.setCarRotateRight(0);

 Omni.setCarSpeedMMPS(speedMMPS, 300);

}

void rotateLeft(unsigned int speedMMPS){

 if(Omni.getCarStat()!=Omni4WD::STAT_ROTATELEFT) Omni.setCarSlow2Stop(300);

 Omni.setCarRotateLeft(0);

 Omni.setCarSpeedMMPS(speedMMPS, 300);

}

void allStop(unsigned int speedMMPS){

 if(Omni.getCarStat()!=Omni4WD::STAT_STOP) Omni.setCarSlow2Stop(300);

 Omni.setCarStop();

}

void backOff(unsigned int speedMMPS){

}

//void(*motion[8])(unsigned int speedMMPS) = {goAhead, turnLeft, rotateRight, rotateLeft,

 //turnRight, goAhead, rotateRight, backOff};

void(*motion[16])(unsigned int speedMMPS) = {goAhead, turnRight, goAhead, turnRight,

 turnLeft, goAhead, turnLeft, goAhead,

 rotateRight, rotateRight, turnRight, turnRight,

www.nexusrobot.com Robot Kits manual

 118

 rotateLeft, backOff, turnLeft, allStop}; // used the method of demotion

unsigned long currMillis=0;

void demoWithSensors(unsigned int speedMMPS,unsigned int distance) {

 unsigned char sonarcurrent = 0;

 if(millis()-currMillis>SONAR::duration + 20) { // every 80 ms to call sonarUpdate once

 currMillis=millis();

 sonarcurrent = sonarsUpdate();

 }

 if(sonarcurrent == 4){

 unsigned char bitmap = (distBuf[0] < distance); //right Four of every byte

 bitmap |= (distBuf[1] < distance) << 1; // back

 bitmap |= (distBuf[2] < distance) << 2; // left

 bitmap |= (distBuf[3] < distance) << 3; // front

 (*motion[bitmap])(speedMMPS);

 }

 Omni.PIDRegulate(); //PID regulate

}

void setup() {

 delay(2000);

 TCCR1B=TCCR1B&0xf8|0x01; // Pin9,Pin10 PWM 31250Hz

 TCCR2B=TCCR2B&0xf8|0x01; // Pin3,Pin11 PWM 31250Hz

 SONAR::init(13);

 //Omni.switchMotors();

 Omni.PIDEnable(2.0,1.0,0,10); //PID enable

}

void loop() {

 //Omni.demoActions(250,5000,500,false);

 demoWithSensors(100,30); //call the demo speed=300, distance=30.

}

 Servo Motor

www.nexusrobot.com Robot Kits manual

 119

This document describes a car with three servo Motors. On the Introduction, you will know how to control

the servo Motors,then to control the car

Before you read this code,you should know about the Servo Motor Theory.To understand how the motor

works.

 *3WD 48mm Omni wheel

*Aluminum alloy fram

*Capable of rotation

*Includes Ultrasonic sensors

*Microcontroller and IO expansion board

*Programmable with C, C++

 *Based on Arduino microcontroller

RB014_48mm 3WD Omni Wheel mobile robot kit
The 3WD 48mm Omni wheel mobile robot kit use three omni wheels with drive moving forward,

backward, left, and right without change the direction and speed. Includes microcontroller and motors, it

is programmable. Programming is performed by connecting to your PC and writting programs. There are

still pre-drilled holes of screw and its firm aluminum alloy body makes it convenient and possible to add

more levels.

 Simple code

#define MOTOR1_E 9 //define the pin 9 as the motor1’s pwm signal control pin

#define MOTOR2_E 10 //define the pin 10 as the motor2’s pwm signal control pin

#define MOTOR3_E 11 //define the pin 11 as the motor3’s pwm signal control pin

//***//

void goAhead(){

 analogWrite(MOTOR1_E, 48); //stop run motor1

 analogWrite(MOTOR2_E, 62); //forward run motor2

 analogWrite(MOTOR3_E, 34); // Revese run motor3

}

//***//

void getBack(){

 analogWrite(MOTOR1_E,48); //stop tun motor1

 analogWrite(MOTOR2_E,32); // Reverse run motor2

 analogWrite(MOTOR3_E,64); //forward run motor3

}

//**//

void Left(){

 analogWrite(MOTOR1_E,36); // Reverse run motor1

 analogWrite(MOTOR2_E,53); //forward run motor2

www.nexusrobot.com Robot Kits manual

 120

 analogWrite(MOTOR3_E,53); //forward run motor3

}

void Right(){

 analogWrite(MOTOR1_E,66); //forward run motor1

 analogWrite(MOTOR2_E,40); //Reverse run motor2

 analogWrite(MOTOR3_E,40); //Reverse run motor3

}

//**//

void RotateRight(){

 analogWrite(MOTOR1_E,66); //forward run motor1

 analogWrite(MOTOR2_E,62); //forward run motor2

 analogWrite(MOTOR3_E,64); //forward run motor3

}

//***//

void RotateLeft(){

 analogWrite(MOTOR1_E,36); // reverse run motor 1

 analogWrite(MOTOR2_E,32); // reverse run motor 2

 analogWrite(MOTOR3_E,34); // reverse run motor 3

}

//**//

void allStop(){

 analogWrite(MOTOR1_E, 48); //stop run motor1

 analogWrite(MOTOR2_E, 44); //stop run motor2

 analogWrite(MOTOR3_E, 46); //stop run motor3

}

//***//

void (*motion[7])()={ goAhead,getBack,Left,Right,RotateLeft,RotateRight,allStop};

void demotion(){

 for(int i=0;i<7;i++){ // The demotion have 8 actions

 (*motion[i])(); // call the action

 delay(3000); // Each action last 3000 milliseconds

 }

}

//***//

void setup() {

 TCCR1B=TCCR1B&0xf8|0x04; //PIN 9 and PIN 10 cotroled by Timer1 122HZ

 TCCR2B=TCCR2B&0xf8|0x06; //PIN 11 and PIN 3 cotroled by Timer2 122HZ

www.nexusrobot.com Robot Kits manual

 121

 pinMode(MOTOR1_E, OUTPUT); // Define the pin Mode as OUTPUT

 pinMode(MOTOR2_E, OUTPUT);

 pinMode(MOTOR3_E, OUTPUT);

 Serial.begin(19200);

}

void loop(){

 demotion(); // Call the demotion

}

Sample Wiring Diagram for 3WD omni wheel mobile robot

www.nexusrobot.com Robot Kits manual

 122

 Servo_3WD platform with 3 SONAR

Look the above figure of simple Wiring Diagram for 3WD omni wheel mobile robot. Tis code is matched

for it

Servo_3WD omni wheel mobile robot code

#include <SONAR.h> // Include the header files

SONAR sonar11(0x11),sonar12(0x12),sonar13(0x13); // Software initialization

//SONAR is be defined in <SONAR.h> as a class

#define MOTOR1_E 9 //define the pin 9 as the motor1’s pwm signal control pin

#define MOTOR2_E 10 //define the pin 10 as the motor2’s pwm signal control pin

#define MOTOR3_E 11 //define the pin 11 as the motor3’s pwm signal control pin

//**//

unsigned short distBuf[3];

unsigned char sonarUpdate(){

 static unsigned int sonarCurr=1;

 if(sonarCurr==3) sonarCurr=1;

 else ++sonarCurr;

 Serial.println(sonarCurr);

 if(sonarCurr==1) {

 distBuf[0]=sonar11.getDist(); //Save the data of the distance get from Sonar11.

 sonar12.trigger(); // Tregger sonar12

 }else if(sonarCurr==2){

 distBuf[1]=sonar12.getDist();

 sonar13.trigger(); // trigger the sonar13

 }else if(sonarCurr==3){

 distBuf[2]=sonar13.getDist(); //according to the address to read the serial.

 sonar11.trigger(); // trigger the sonar11

 }

 return sonarCurr;

}

//***//

void goAhead(){

 analogWrite(MOTOR1_E, 48); //stop motor1

 analogWrite(MOTOR2_E, 62); //forward motor2

 analogWrite(MOTOR3_E, 34); // Revese motor3

}

//***//

void getBack(){

www.nexusrobot.com Robot Kits manual

 123

 analogWrite(MOTOR1_E,48);

 analogWrite(MOTOR2_E,32);

 analogWrite(MOTOR3_E,64);

}

//**//

void turnLeft(){

 analogWrite(MOTOR1_E,36); //Revese

 analogWrite(MOTOR2_E,53); //forward

 analogWrite(MOTOR3_E,53); //forward

}

void turnRight(){

 analogWrite(MOTOR1_E,66); //forward

 analogWrite(MOTOR2_E,40); //Revese

 analogWrite(MOTOR3_E,40); //Revese

}

//**//

void RotateRight(){

 analogWrite(MOTOR1_E,66); //forward

 analogWrite(MOTOR2_E,62); //forward

 analogWrite(MOTOR3_E,64); //forward

}

//***//

void RotateLeft(){

 analogWrite(MOTOR1_E,36); //Revese

 analogWrite(MOTOR2_E,32); //Revese

 analogWrite(MOTOR3_E,34); //Revese

}

//**//

void judge(){

 if(distBuf[0]>=30){

 if(distBuf[1]<=10 && distBuf[2]>10) turnRight();

 else if(distBuf[2]<=10 && distBuf[1]>10) turnLeft();

 else if(distBuf[1]<=10 && distBuf[2]<=10) RotateLeft();

 else goAhead();

 }else RotateLeft();

}

//**//

void allStop(){

www.nexusrobot.com Robot Kits manual

 124

 analogWrite(MOTOR1_E, 48); // stop the motor1

 analogWrite(MOTOR2_E, 44); // stop the motor2

 analogWrite(MOTOR3_E, 46); // stop the motor3

}

//***//

void (*motion[8])()={ goAhead,RotateLeft,turnRight,RotateLeft,turnLeft,RotateLeft,judge,allStop};

//change the

 void demowithSosars(){

 unsigned char sonarcurrent=0;

 if(millis()-currMillis>SONAR::duration){ //judge if the time more than SONAR::duration;

 currMillis=millis();

 sonarcurrent= sonarUpdate(); //if the requirement was ture call the function;

 }

 if(sonarcurrent==3){

 unsigned char bitmap = (distBuf[0] < 20);//front

 bitmap |= (distBuf[1]<20) <<1; //left

 bitmap |= (distBuf[2]<20) <<2; //right

 Serial.print("bitmap=");

 Serial.println(bitmap,DEC);

 (*motion[bitmap])();

 }

}

//***//

void setup() {

 TCCR1B=TCCR1B&0xf8|0x04;

 TCCR2B=TCCR2B&0xf8|0x06;

 pinMode(MOTOR1_E, OUTPUT);

 pinMode(MOTOR2_E, OUTPUT);

 pinMode(MOTOR3_E, OUTPUT);

 SONAR::init(); //call the init() from SONAR.h;

 delay(2000);

 Serial.begin(19200);

}

void loop(){

 demowithSosars();

 //delay(200);

}

