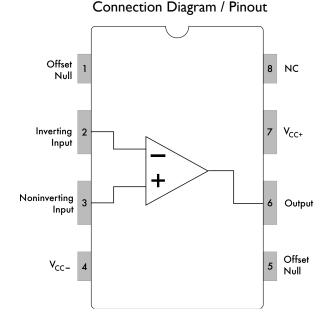

Evil Mad Scientist

Evil Mad Scientist Laboratories / evilmadscientist.com 1285 Forgewood Ave. Sunnyvale CA 94089

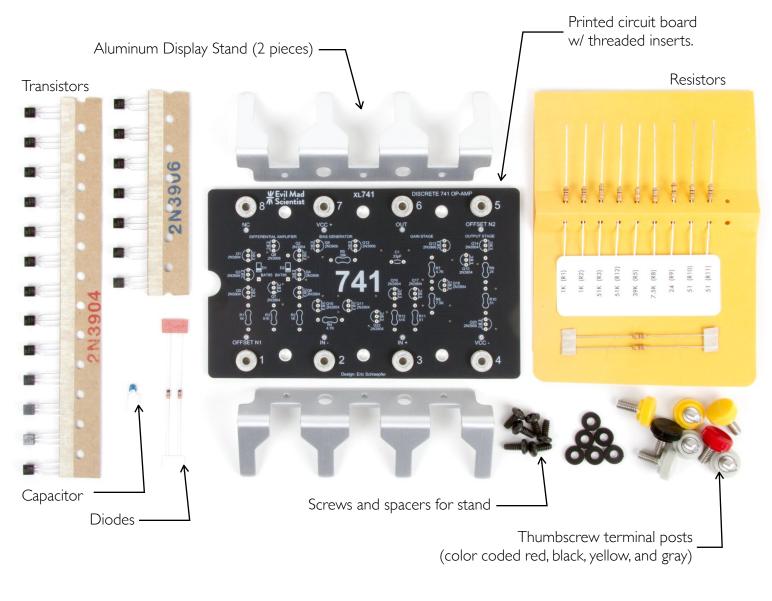
Questions? Please contact us: sales@evilmadscientist.com

XL741 & 741SE Discrete Operational Amplifiers

Re-create one of the most classic, popular, and all-around useful chips of all time.


The xL741 and 741SE Discrete Operational Amplifiers are faithful and functional transistor-scale replicas of the classic μ a741 op-amp integrated circuit.

Design by Eric Schlaepfer (tubetime.us), working in collaboration with Evil Mad Scientist Laboratories.

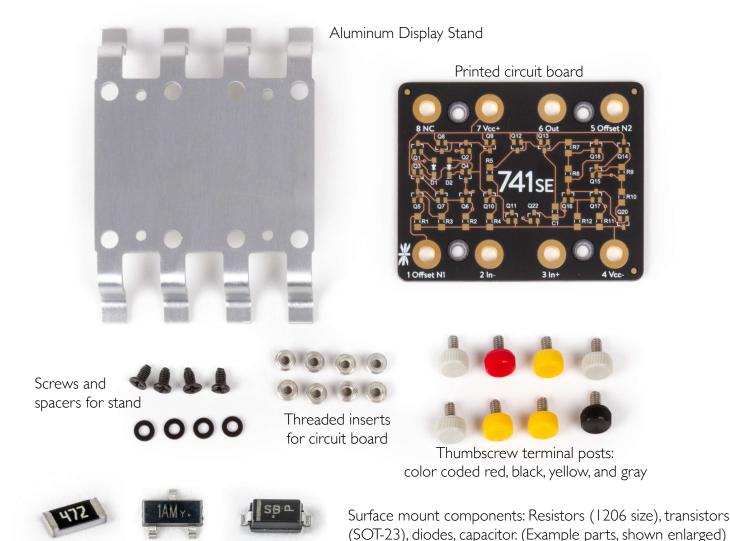

The latest version of this document and additional resources about '741 op-amps are available at: <u>https://wiki.evilmadscientist.com/741</u>

Main Specifications

- Kit type: Through-hole soldering kit (XL741) or Surface mount soldering kit (741SE)
- Assembly instructions: Printed, included with kit
- Function: Equivalent circuit to µa741 op-amp IC. Some performance characteristics differ; Refer to Abs. Maximum ratings and Electrical Characteristics
- RoHS compliance: All kit components are RoHS compliant (lead free)
- Connection methods: Terminal posts (bare wire, lug, or alligator clip) or solder

Kit Contents:"XL741" Through-hole soldering kit

Completed kit


Contents of the xL741 kit:

- The xL741 printed circuit board (extra thick 0.100"), pre-fitted with eight 8-32 threaded inserts
- The transistors, resistors, diodes and capacitor required to assemble the kit
- Eight thumbscrews (terminal posts) with color-coded caps
- Two-piece "IC Legs" stand, anodized aluminum
- Mounting screws and spacers for attaching the "IC Legs" stand
- Printed assembly instructions (not shown)

Tools and materials required for assembly (not included with kit):

- Soldering iron
- Solder
- Wire clippers
- Phillips head screwdriver (#2 size recommended).

Kit Contents: "741se" Surface-mount soldering kit

Completed kit

Contents of the 741SE Surface-mount Soldering Kit:

- The 741 SE printed circuit board (black with clear mask and visible traces)
- Surface mount threaded inserts
- The transistors, resistors, diodes and capacitor required to assemble the kit
- Eight thumbscrews (terminal posts) with color-coded caps
- Single-piece "SOIC Legs" stand, anodized aluminum
- Mounting screws and spacers for attaching the stand
- Printed assembly instructions (not shown)

Tools and materials required for assembly (not included with kit):

- Solder (paste or wire)
- Soldering iron (or other surface mount soldering equipment)
- Fine-point metal tweezers
- Phillips head screwdriver (#1 size recommended).

Schematic Diagram

Electrical Components

Reference	Qty	Туре	Value (XL741)	Value (741se)
Q1,2,5,6,7,10,11,14-18,22	13	NPN Transistor	2N3904	MMBT3904
Q3,4,8,9,12,13,20	7	PNP Transistor	2N3906	MMBT3904
RI,R2	2	Resistor	l kΩ	l kΩ
R3,R12	2	Resistor	51 kΩ	51 kΩ
R4,R7	2	Resistor	4.7 kΩ	4.7 kΩ
R5	I	Resistor	39 kΩ	39 kΩ
R8	I	Resistor	7.5 kΩ	7.5 kΩ
R9	I	Resistor	24 Ω	24 Ω
RIO,RII	2	Resistor	5ΙΩ	5ΙΩ
CI	13	Cap., Ceramic	33 _P F	33 pF
DI,D2	2	Diode, Schottky	BAT85	BAT54

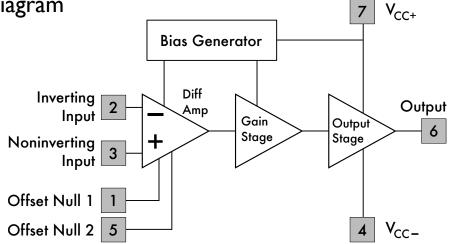
Absolute Maximum Ratings¹

Parameter	Symbol	Value	Unit
Supply Voltage, Positive ²	V _{CC+}	+18	V
Supply Voltage, Negative	V _{CC} -	-18	V
Differential Input Voltage3	V _{ID}	±30	V
Input Voltage (any input) 4	V _{IN}	Lesser of V_{CC} or ±15	V

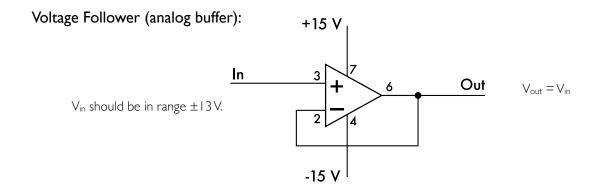
Notes:

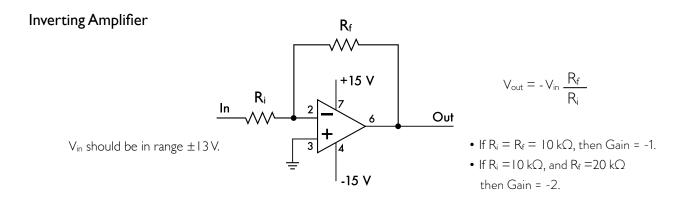
- 1. Exceeding Absolute Maximum Ratings may cause permanent damage to the device. Please refer to Electrical Characteristics for recommended operating parameters.
- 2. Input voltages are measured with respect to the midpoint between V_{CC+} and V_{CC-} .
- 3. Differential Input Voltage is the voltage at pin IN+ with respect to the voltage at pin IN-.
- 4. Input voltages must not exceed V_{cc} nor 15 V in magnitude.

Electrical Characteristics

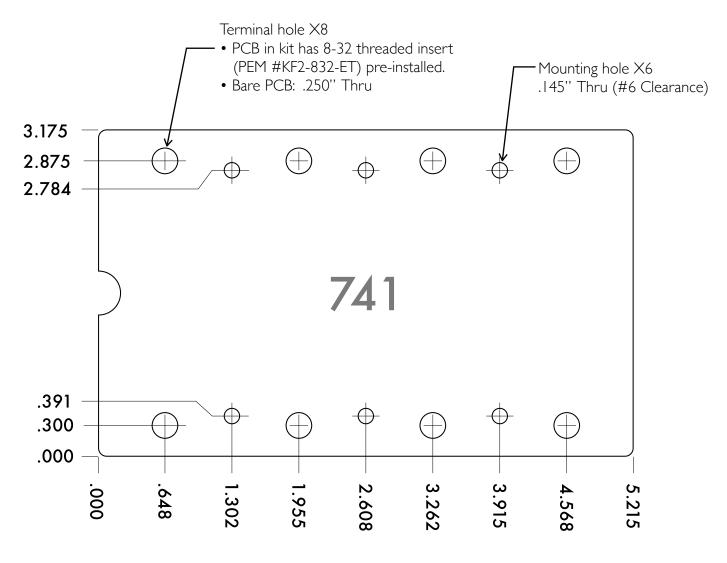

At $V_{CC} = \pm 15$ V, $T_A = 25$ °C (unless otherwise specified)

Parameter	Symbol	Conditions	Тур	Unit
Input Offset Voltage	V _{IO}	R _S ≤ 10 kΩ	2	mV
Input Offset Current	lio		20	nA
Input Bias Current	I _{IB}		80	nA
Input Resistance	ri		2	MΩ
Input Capacitance1	Ci		10	pF
Offset Voltage Adjustment Range	$\Delta V_{IO(ADJ)}$		±15	mV
Input Voltage Range (Common Mode)	V _{IR}		±13	V
Common Mode Rejection Ratio ¹	CMRR	R _S ≤ 10 kΩ	43	dB
Supply Voltage Sensitivity	$\Delta V_{IO}/\Delta V_{CC}$	R _S ≤ 10 kΩ	30	μV/V
Large-Signal Differential Voltage Gain	A _{VD}	$R_L \ge 2 \ k\Omega, \ V_{OUT} = \pm 10 \ V$	200	V/mV
Output Voltage Swing	V _{ом}	R _L ≥ 10 kΩ	±14	V
		$R_L \ge 2 \ k\Omega$	±13	V
Output Resistance	ro		75	Ω
Output Short-Circuit Current	los		25	mA
Supply Current	lcc	V _O = 0 V, No load	1.7	mA
Power Consumption	PD	V _O = 0 V, No load	50	mW
Transient Response (unity gain)		V_{in} = 20 mV R _L = 2 k Ω , C _L ≤ 100 pF		
Risetime	tr	$V_{CC} = 5 V$	0.3	μs
Overshoot			5	%
Slew Rate	SR	$R_L \ge 2 \ k\Omega$	0.5	V/µs


Notes:

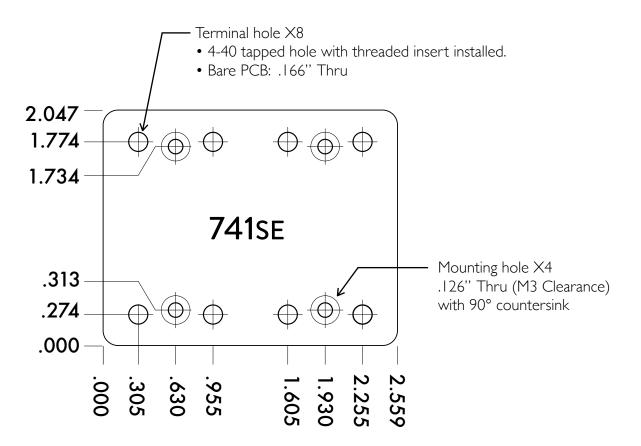

1. Note that this value differs significantly from the μ A741 integrated circuit.

Block Diagram



Example Circuits

XL741 Package information: Circuit board physical layout and mounting holes



Note: All dimensions are in INCHES.

Additional physical specifications:

- Printed Circuit Board size: 5.215 X 3.175 inches (13.25 X 8.06 cm) wide
- PCB thickness: 0.100" (2.54 mm) nominal, not including threaded inserts
- PCB thickness: 0.196" (4.98 mm) nominal, including threaded inserts
- Overall thickness: Allow 0.5" min. clearance above and below circuit board
- Mounting holes: Six #6 clearance holes provided. See drawing for locations.
- Height of "DIP IC legs" stand: 1.25 inches (3.175 cm) nominal, not including spacers
- Height of "DIP IC legs" stand: 1.31 inches (3.33 cm) nominal , including spacers, to bottom of PCB.

741SE Package information: Circuit board physical layout and mounting holes

Note: All dimensions are in INCHES.

Additional physical specifications:

- Printed Circuit Board size: 2.559 X 2.047 inches (6.50 X 5.20 cm) wide
- PCB thickness: 0.062" (1.6 mm) nominal, not including threaded inserts
- PCB thickness: 0.125" (3.2 mm) nominal, including threaded inserts
- Overall thickness: Allow 0.25" min. clearance above circuit board for thumbscrews (if installed)
- Mounting holes: Four M3 countersunk clearance holes provided. See drawing for locations.
 - Height of "SOIC legs" stand: 0.433 inches (11 mm) nominal, not including spacers
- Overall height: 0.80 inches (20.2 mm), from bottom of base to top of thumbscrews