

FlowArm PLTW 4 Guide

Table of Contents

CHAPTER 1	1 Overview	4
		5
	User Interface	6
	Connecting	7
	CONNECTING VIA USB (FOR SSC-32U, RB-LYN-850)	7
	CONNECTING VIA SERIAL CABLE (FOR DISCONTINUED SSC-32, RB-LYN-100)	8
	CONNECTING VIA BLUETOOTH (FOR SSC-32U + BLUETOOTH, RB-LYN-851)	9
	Simulator	12
	Side Elevation Controls	
	TOP ELEVATION CONTROLS.	
	CONTROL PANEL	15
	Help	15
	Emergency Stop	16
	Агм Түре	16
	CALIBRATION	16
	GRIPPER CONTROL	17
	Wrist Control	17
	Spare Servos	17
	Output Switches	17
	Input LEDs	18
CHAPTER 2	2 Sequencer	19
	Sequences	20
	SEQUENCE LIST	
	Sequence Management	20
	Saving Sequences	21
	Loading Sequences	21
	CLEAR ALL	21
	Frames	22
	Adding and Deleting and Naming	22
	TIMELINE LOCKING	22
	Moving and Resizing	23
	Recording to a Frame	23
	Copy and Paste	24
	Pause Before Frame	24
	Remove Gaps Between Frames	24
	Reverse Frames	25

CHAPTER 3	3 PS2 Control	28
	Introduction	29

1 Overview

THE AL5 ARM PROJECT

Introduction

This guide explains how to use the FlowBotics Studio AL5 Arm project. Most of the information in this guide will also apply to the <u>FlowArm PLTW software</u> (RB-Dsp-11).

If you have not already done so you'll need to read the FlowBotics Studio user guide and be familiar with how to launch the AL5 Arm project from the FlowBotics Studio Project Browser.

The FlowBotics Studio user guide is available from the Help button in FlowBotics Studio.

If you need information on how to assemble your robotics kit you can find it here:

http://www.lynxmotion.com//images/document/PDF/PLTW-AL5D-Guide-11.pdf

User Interface

When you open the AL5 Arm project you'll see the interface is essentially broken into two main areas, the Robot Simulator and the Control Panel.

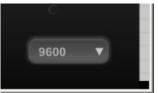
The Simulator is used to show you how the robot is currently positioned. It also allows you to change the position of the robot.

The Control Panel contains elements for connecting to the robot, changing it and for sending and receiving data. However, the biggest part of the Control Panel is the zSequencer which allows you to program a series of movements.

CONTROL PANEL

Connecting

Before we go any further we'll talk about how you connect your robot to the PC so that it can communicate with FlowBotics studio projects, such as the AL5 software / FlowArm PLTW.


Connecting Via USB (for <u>SSC-32U, RB-Lyn-850</u>)

The simplest way to connect is directly using an RS232 to USB cable. Here are the steps you need to follow in order to set this up.

- STEP 1 Connect the USB cable to the SSC-32U board on your robot
- STEP 2 Plug the USB connector into the PC
- STEP 3 Power on the robot (VS1 = 6 V DC) Check the <u>SSC-32U manual</u> for more details on power options (pages 15-16)
- STEP 4 Start the FlowArm PLTW 4 software
- **STEP 5** If your SSC-32U is set to a baud rate of 9600 (default speed), please make sure to activate the Bluetooth icon (it should be blue)

Alternatively, make sure your baud rate selection in the bottom right corner matches the one on the SSC-32U

You can check the baud rate of the SSC-32U by using the BAUD button. See the <u>SSC-32U manual</u> for more details.

- **STEP 6** The port selector is set to Automatic (AUTO) by default and will scan through the available ports until it finds the one connected to the SSC-32U. The Auto light will flash when searching.
- **STEP 7** When the board has been found the Auto light will illuminate permanently and so will the Found light. The selector will show the COM port that is being used.

CHAPTER 1

Your robot is now connected and ready to be controlled and programmed by FlowBotics Studio

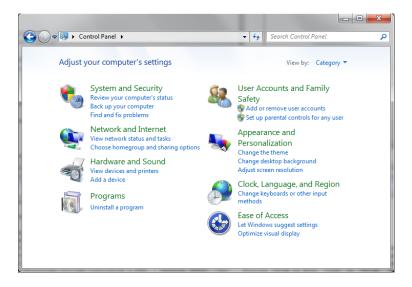
Connecting Via Serial Cable (for discontinued <u>SSC-32, RB-Lyn-100</u>)

The simplest way to connect is directly using an RS232 to USB cable. Here are the steps you need to follow in order to set this up.

- STEP 8 Connect the RS232 connector to the SSC-32 board on your robot
- STEP 9 Plug the USB connector into the PC
- **STEP 10** Power on the robot
- STEP 11 Start the FlowArm PLTW 4 software
- **STEP 12** The port selector is set to Automatic (AUTO) by default and will scan through the available ports until it finds the one connected to the SSC-32. The Auto light will flash when searching.
- **STEP 13** When the board has been found the Auto light will illuminate permanently and so will the Found light. The selector will show the COM port that is being used.

Your robot is now connected and ready to be controlled and programmed by FlowBotics Studio

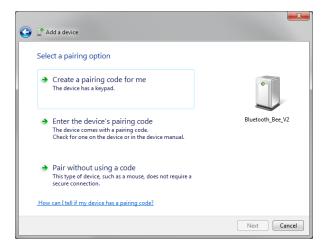
If for some reason the software can't find the board then if you know which COM port it's on you can choose this manually from the COM port selector.


Connecting Via Bluetooth (for <u>SSC-32U + Bluetooth, RB-Lyn-851</u>)

If you want to be cable free then you can set up a Bluetooth connection. For this your PC will need to have Bluetooth either built in or via a USB adapter. You'll also need an RS232 to Bluetooth connector to plug into the SSC-32 such as the XBee board available from Robotshop.

Stage 1 – Bluetooth Pairing

If you already have your bluetooth adapter paired with your PC you can skip to stage 2.


- STEP 1 Connect the RS232 to Bluetooth connector to the SSC-32 board on your robot
- STEP 2 Ensure your PC has its Bluetooth capability switched on
- STEP 3 Power on the robot
- **STEP 4** We first need to pair with the Bluetooth device. Click the Start button in Windows and choose Control Panel.

STEP 5 Under Hardware And Sound click Add A Device. Windows will search for your Bluetooth device.

0	🖞 Add a device	x
	Select a device to add to this computer Windows will continue to look for new devices and display them here.	
	Bluetooth Bee_V2 Bluetooth Other	
	What if Windows doesn't find my device?	
	Next Ca	ncel

STEP 6 Once Windows finds your device click on it then click NextYou will be presented with a number of Pairing options.

- **STEP 7** For the XBee we have a pairing code to enter (1234) so we choose option and click Next.
- **STEP 8** Enter the code and click Add Device.
- **STEP 9** Windows will finish the process by adding your device to the system. You're now ready to go!

Stage 2 - Connect To The Software

With your Bluetooth device successfully paired you can now move on and connect to the software.

- **STEP 1** Start the FlowArm PLTW 4 software
- **STEP 2** In the project user interface click the Bluetooth button so that it is illuminated. This will make sure that the software uses the correct baud rate and adjusts communications for the lower bandwidth.

- **STEP 3** The port selector is set to Automatic (AUTO) by default and will scan through the available ports until it finds the one connected to the SSC-32. The Auto light will flash when searching.
- **STEP 4** When the board has been found the Auto light will illuminate permanently and so will the Found light. The selector will show the COM port that is being used.

Your robot is now connected and ready to be controlled and programmed by FlowBotics Studio

If for some reason the software can't find the board then if you know which COM port it's on you can choose this manually from the COM port selector.

Now that you know how to connect we will continue with our tour of the project user interface.

Simulator

The Simulator shows a side elevation representation of the robot arm on the left-hand side and a top elevation of the arm (view from above) on the right-hand side.

You can directly manipulate these representations in order to position the arm using the mouse. There are also fine adjustment controls and numerical representations of the position that you can edit for ultimate precision.

Side Elevation Controls

The side elevation gives you the most control over arm position.

There are a number of different ways of interacting with the arm on screen. We'll go through these one-by-one.

Move to Target

Clicking anywhere in the side elevation will move the arms hand position to exactly where you clicked. The shoulder and elbow are defined using Inverse Kinematics so all you need to do is focus on where you want the arm to go.

Drag

Having clicked you can then hold the mouse button and drag the arm around to find the position you want.

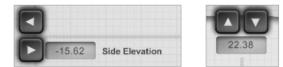
Base

If you hold the SHIFT key while dragging with the mouse you can control base rotation.

Hand Tilt

You can tilt the hand by right-clicking and fragging the mouse up and down.

Wrist Rotate


By holding the SHIFT key whilst right-clicking and dragging you can rotate the wrist joint (if available on your robot arm)

Gripper

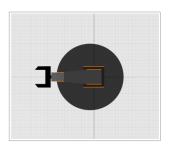
Finally, by holding the CTRL key whilst right-clicking and dragging you can open and close the gripper

Finer Control

Fine adjustments to the position of the arm can be made using the buttons at the end of each axis.

If you click and hold these buttons they will auto repeat, that is to say that they will continually nudge the arm in the applicable direction until the mouse button is released.

The numerical displays show the absolute position of the arm as coordinates within the side elevation. For high precision control you can click on these and change them.


Hand Lock

At the base of the arm are the controls for the hand. You can set the hand tilt explicitly by editing the numerical output.

You can also lock the hand in place which means that the software will automatically adjust the hand angle to maintain the same pointing direction as the arm moves.

Top Elevation Controls

The top elevation allows you to control the base rotation only.

Click on the top elevation and drag to rotate the arm.

Finer Control

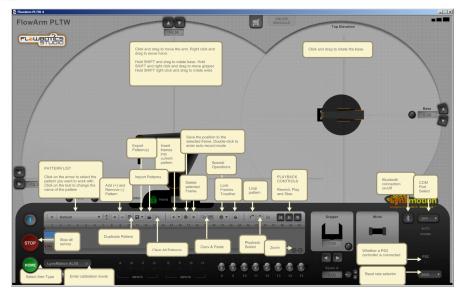
Fine adjustments to the base rotation can be made using the buttons to the right of the top elevation. As with the side elevation these buttons will auto-repeat if held down.

The numerical display shows the base angle in degrees. Once again, for high precision control you can click on these and change them.

Control Panel

The Control Panel has several functions. First it provides some essential configuration controls for things like COM port connection and calibration.

Second it contains additional controls for manipulating your robot. These compliment the ones we've already talked about relating to direct interaction with the simulator.


Finally it houses the sequencer. This is the biggest element in the panel and as such we deal with it in its very own chapter.

For now we'll focus on the other two sets of elements and we'll deal with them one-by-one starting with in-project help.

Help

There are a large number of buttons and controls on the project interface so if you ever need a quick reminder of what a particular control is for you can quickly call up the in-project Help overlay. Just click the button shown below to toggle the overlay on and off.

Emergency Stop

On very rare occasions you may need to stop your robot in its tracks. For this purpose we've added an emergency stop button. Click here and the software will immediately stop all servos and kill all communications.

Arm Type

The AL5 comes in a number of flavours each with their own dimensions and operating limits. You can select the arm that applies to you from this list.

Calibration

Small differences in robot orientation are inevitable. Even if the same person built the same kit twice in a row there would always be some small differences between the two. In order to compensate for this we have a calibration facility.

Click the Calibration button to enter calibration mode.

This will display a number of knobs on the interface. Click and drag these to alter the servo position. You'll need to have the robot connected in order to see the servos adjust as you move the knobs.

The knobs are zero at the vertical position. If you hold the CTRL key on your keyboard and click on a knob it will reset it to zero.

Gripper Control

To define the gripper position use the gripper control. Click on the control and drag to open and close the grippers.

For fine control there are open and close buttons. You can click and hold these to continuously open or close the gripper.

The gripper position is at 1.0 when fully open and zero when closed. You can see this in the numeric display. This can also be edited for ultra precision.

Wrist Control

The wrist control is next to the gripper control. Click and drag to rotate the wrist. The image shows the gripper as if you were facing it head on so it will show when the gripper closes as well.

Once again there are fine adjustment buttons and a numerical display showing the exact angle in degrees (-90 to 90). You can of course edit this value by clicking on it.

Spare Servos

We've included a couple of controls for addressing two spare servos (pins 6 and 7 on the SSC-32). There are knobs for setting these. We also have the usual fine tuning options.

Output Switches

There are eight switches on the control panel which allow you to use pins 8 to 15 on the SSC-32 as digital outputs.

Input LEDs

There are four input LEDs that indicate the state of the 4 digital inputs on the SSC-32 board. These are labelled A,B,C and D just like they are on the SSC-32. These inputs trigger an action on a rising edge (state changing from inactive to active) as follows:

A => Play sequence from beginning

B => Play from pause

C => Play from pause

D => Pause sequence

ORCHESTRATING MOVEMENT

Sequences

The sequencer allows you to make your robot move over time by transitioning from one position to another. Each transition we call a frame and a sequence of frames we call a sequence.

You can create as many sequences as you like. You can play sequences back manually or using the inputs mentioned in the Control Panel section, Input LEDs sub-section.

This section describes the sequence management functions of the Sequencer.

Sequence List

The sequence list is the first control on the sequencer. If you click on the arrow on the right-hand edge you'll see a list of the sequences that have been created and by selecting one you can move to that sequence. You can also scroll through the list one-by-one using the up and down arrow buttons.

Clicking on the name of a sequence will allow you to change this. Simply type in the box then press the Return key or click away.

Sequence Management

Add Sequence

To add a sequence click the add button. A new sequence will appear in the list and its name will open for editing.

+

Remove Sequence

Click the remove sequence button to delete the currently selected sequence from the list. This action is irreversible so you will be asked for confirmation.

-

Duplicate Sequence

If you want to make a new sequence based on an existing one then you can duplicate it.

啗

Saving Sequences

IMPORTANT: If you want to keep any sequences you create then you must export them otherwise they will be lost when you return to the project browser.

To do this click the export button.

Save Selected Pattern
Save All Patterns

You can choose whether to export all your sequences or just the currently selected one. Sequences are saved to files so you'll need to pick a filename and folder to save to. If a sequence uses sub sequences these will be saved even if you choose only to save the selected sequence.

Loading Sequences

If you have saved sequences that you want to restore then click the Import button. You will be asked to choose a previously saved sequence file.

The sequences in the file will be added to the list. They do not replace the sequence list. Also it doesn't matter how many sequences the file contains, all of them will be imported.

Clear All

If you want to start from scratch you can clear all the sequences from the list using the clear all button.

Frames

We now know how to manage sequences now lets see how you build one. As we said earlier a sequence is made up of frames. A frame represents a transition between robot states over time.

In addition to frames, you can also add other sequences to a sequence. This allows quite complex series of movements to be built up very quickly and easily.

Adding and Deleting and Naming

To add a frame click the Add button. A new frame will be added at the end of the sequence. The duration of the frame will be whatever the last frame duration was. The frame will record whatever position the robot is currently set to.

+ *

You can add a sub sequence to the sequence by clicking the arrow to the right of the Add button. A drop list of the available sequences will appear. Select one and it will be added to the end of the sequence.

To delete a sequence or frame from a sequence, click the Delete button

×

To name a frame, simply double-click the top blue part of it. You will then be able to enter a name by typing text directly. Save the new name by pressing the [Enter] key once donce.

Warning: please note that when double-clicking a frame to name it, it will play the frame which may move your robotic arm suddenly. You may want to activate the **STOP** button first to prevent movement when naming frames.

Timeline Locking

The timeline is locked by default. This means that frames will automatically run from one to the next – you cannot create space in between. Moving a frame past another one will move it along the order in the timeline.

If the timeline is unlocked then you can move frames independently of each other and also create gaps of time in between.

Moving and Resizing

To move a frame on the timeline, simply click on it and drag it to the time you want it to start. The start time will be displayed as you drag. How frames move relative to each other is determined by whether the timeline is locked (see previous section).

To resize a frame grab the right-hand edge and drag it.

	5	10	15		25
		9.0	00	+ +	Stop 1
				u	
0.00s					

When moving or resizing the mouse snaps to the nearest unit on the timeline. If you hold SHIFT while moving or resizing no snap will be applied.

When the timeline is unlocked then if you hold CTRL while dragging or resizing a frame all frames to the right of the selected frame will be moved so that the time interval between the selected frame and the next one is maintained.

Recording to a Frame

When you add a frame it will record the state that the robot is currently in. If you want to change this state first select the frame by clicking on it. Next move the robot to the position you want to record. When you're happy press the record button.

The frame will flash to indicate that it has been updated.

Auto Record

If you want changes you make to be automatically recorded you can lock the record button in place by double-clicking on it. Now whenever you change the robot position the currently selected frame will be updated.

CHAPTER 2

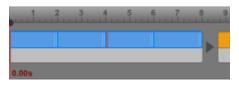
The record button will light up to show that auto record is on.

To switch auto record off, double-click on the record button again.

Copy and Paste

Sometimes you might want to copy the robot state from one frame to another. To do this we have copy and paste. To copy the data from a frame, select it then click the Copy button.

6


To duplicate the data on another frame, select the target frame and click the Paste button.

Pause Before Frame

You can insert a pause before a frame commences. This is useful if you want the sequencer to stop and wait for some external event before continuing. First select the frame then click the Operations button and select Toggle Pause Before Frame. A red line will show at the start of the frame to show the pause.

To remove the pause select the frame again and select Toggle Pause Before Frame after clicking on the Operations button.

茶▼

Remove Gaps Between Frames

If the timeline is unlocked then you can instantly remove all the gaps between frames and push them up against each other by clicking the Operations button and choosing Remove Gaps Between Frames from the menu.

Reverse Frames

It's useful to be able to reverse the order of frames in a sequence. To do this click the Operations button and choose Reverse Frames.

Sequence Playback

Once you have some frames in a sequence you can try playing it. Click the Play button to start the sequencer playing the current sequence.

The play button lights up in green when the sequencer is playing.

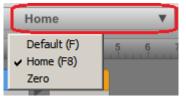
To stop playing click the Play button again or click the Stop button.

You can reset the play position to the star by clicking the Reset button.

You can also move the play position manually. Click on the black handle at the top of the playback position line and drag to move it.

Assign an input to a sequence

You can assign an input to a sequence by choosing one in the drop-down list left of the sequence name:


CHAPTER 2

By default a sequence does not have a input associated with it. When you click on that box, you will be presented with a list of possible inputs:

	¥	
	F1	
	F2	
	F3	
	F4	
	F5	
	F6	
	F7	
	F8	
1	F9	LOUIS CO.
l	F10	n
1	F11	
	F12	
	E	D Har
Ľ.	F	
	G	
1	н	
	Clear All	lt

You can choose one of the 12 function keys from your keyboard (top row) or one of the extra inputs on the SSC-32U (E, F, G, H). A sequence can only have one input associated with it. Similarly, an input can only be associated with one sequence at a time. If you choose an input in the list that is already associated, it will be removed from its previous sequence and assigned to the current one.

By clicking on the sequence list, you will see which input is associated to each sequence to the right of their name:

If a sequence is already playing when its associated input is triggered, it will ignore that input and continue playing as normal. If an input that is associated is triggered when a different sequence is playing, it will be stopped and the

Decision Frame

At the end of every sequence there is a permanent frame called the decision frame (it is orange for easy identification):

Click on the top part (orange) to change the last action of the sequence. There are 3 options:

- STOP: once the sequence is completed, nothing else will happen
- LOOP: once the sequence is completed, it will repeat a set amount of time
- GOTO: once the sequence is completed, it will trigger the input selected
 If another sequence is associated with that input, it will then play

Playback Control

You can change the speed of playback by changing the speed multiplier. Click the up and down arrows to alter this.

Normally a sequence plays to the end then stops. However, sometimes you want a sequence to repeat. You can toggle this by clicking the Loop button.

USING THE PS2 CONTROLLER

Introduction

The project has been pre-configured to work with the wireless Lynxmotion PS2 controller. To use the controller simply plug in the wireless adapter. The project should detect the adapter within a matter of seconds and the PS2 light will illuminate on the project user interface.

IMPORTANT – Use in Analog Mode

The Lynxmotion PS2 controller must be switched into analog mode in order for it to work correctly with the project. To do this press the Analog button on the centre of the controller. The 'NEGCON' light should illuminate to show that analog mode has been started.

Controller Mappings

The controller has been configured to control the project as indicated below. Note that the controller movements in this case have been made to move by a single step. Holding a button or stick position will cause the software to auto repeat.

Left Thumb Stick Left / Right	Arm forward / back
Left Thumb Stick Up / Down	Arm up / down
Right Thumb Stick Left / Right	Wrist Rotate
Right Thumb Stick Up / Down	Hand Tilt
Upper Trigger Buttons (1)	Base Rotate
Lower Trigger Buttons (1)	Gripper Open / Close
Cross Button	Toggle Lock Hand

If you load in the demo sequence for the project then you can trigger this by pressing the Triangle button.