
COMPONENTS

COMPONENT REFERENCE

V E R S I O N 3 . 0 . 2

C O N T E N T S

CHAPTER 1 1 Introduction 16

ABOUT THIS GUIDE... 17

CHAPTER 2 2 Components 18

ADD... 19

ADD TO FLOAT ARRAY .. 20

AFTER DUPLICATE ..21

AFTER LOAD .. 22

APPEND ARRAY ... 23

ARC .. 24

AREA TO FLOAT .. 27

AREA UNION ...28

ARRAY BUILDER .. 30

ASCII TO STRING ... 31

ASIO IN .. 32

ASIO OUT ... 33

ASSEMBLER .. 34

AUDIO DEVICES ... 36

AUDIO SELECT .. 37

AUDIO STREAM.. 38

BAR START POS ... 39

BINARY TO HEX.. 40

BIQUAD FILTER ..41

BIQUAD FILTER COEFF .. 42

BITMAP .. 43

BITMAP AREA ... 45

BITMAP ARRAY FROM BITMAP ... 47

BITMAP ARRAY FROM FILE ... 49

- ii -

C O N T E N T S

BITMAP CREATE .. 50

BITMAP DRAW ...51

BITMAP DRAW TRANSFORM .. 52

BITMAP GET AT .. 53

BITMAP RESIZE ... 54

BITMAP SAMPLE AND HOLD ... 55

BITMAP SAVE ..56

BITMAP SIZE ...57

BOOL TO FALSE ... 58

BOOL TO TRUE .. 59

BOOLEAN ... 60

BOOLEAN AND .. 61

BOOLEAN OR ... 62

BOOLEAN XOR ... 63

BUS CREATE .. 64

BUS EXTRACT ... 65

CAMSHIFT TRACKER... 66

CANNY EDGE DETECTION... 67

CHANGED.. 68

CLEAR AUDIO.. 69

CLIP ... 70

COLOUR ...71

COLOUR DETECT.. 72

COLOUR DIALOG ... 73

COLOUR MATRIX ..74

COLOUR MATRIX SET ... 75

COLOUR TO HSV .. 76

COLOUR TO INT ... 77

COM PORT ... 78

COS... 80

- iii -

C O N T E N T S

COS INVERSE... 81

COSH .. 82

COUNTER ... 83

COUNTER ADVANCED .. 84

DE-ZIPPER .. 85

DECIBEL .. 86

DELAY ... 87

DELAY BY ONE SAMPLE .. 88

DELAY COMPENSATION .. 89

DIRECT SOUND IN ... 90

DIRECT SOUND IN DEVICES ..91

DIRECT SOUND IN SELECT.. 92

DIRECT SOUND OUT ..93

DIVIDE.. 94

DOUBLE ROUND NEAREST.. 95

DOUBLE STREAM ADD... 96

DOUBLE STREAM MULTIPLY...97

DOUBLE STREAM SUBTRACT... 98

DOUBLE TO STREAM.. 99

DRAW LOOP ... 100

DRAW TO BITMAP .. 101

DROP LIST CONTROL ... 102

DSP CODE ..104

EDIT CONTROL .. 105

ELLIPSE ... 107

ENVELOPE CONTROL... 108

EQUALS ... 109

EXE BACKGROUND COLOUR ... 110

EXE FULL SCREEN ... 111

EXE QUIT ... 112

- iv -

C O N T E N T S

EXE ZOOM... 113

FFT.. 114

FILE DIALOG ... 115

FILLED ELLIPSE ... 117

FILLED RECTANGLE .. 118

FILLED ROUND RECTANGLE .. 119

FILTER COEFFICIENTS ..120

FIND FILES ... 121

FLOAT ... 122

FLOAT ABS .. 124

FLOAT ARRAY ... 125

FLOAT ARRAY ABS ...126

FLOAT ARRAY DRAW .. 127

FLOAT ARRAY GET AT ..128

FLOAT ARRAY RESAMPLE .. 129

FLOAT ARRAY SAMPLE AND HOLD ... 130

FLOAT ARRAY SECTION ... 131

FLOAT ARRAY TO MEM ... 132

FLOAT ARRAY TO POLY ... 133

FLOAT INVERSE.. 134

FLOAT INVERT.. 135

FLOAT POWER .. 136

FLOAT QUEUE ... 137

FLOAT STACK ... 138

FLOAT TO AREA ...139

FLOWBOARD... 140

FLOWBOARD GSM.. 142

FONT... 144

FORMAT STRING... 145

FRAME SYNC... 146

- v -

C O N T E N T S

FRAME TO MONO.. 147

FULL SCREEN.. 148

GET PIXEL ... 149

GRAPH DOTS .. 150

GRAPH FFT ...151

GRAPH LINES ... 152

GRAPH TO POINT ARRAY ... 154

GREATER THAN.. 155

GREATER THAN OR EQUAL TO.. 156

GRID TO PIXEL .. 157

HAAR FACE DETECT... 158

HARD DISK SERIAL .. 159

HEX TO BINARY ... 160

HEX TO INT ...161

HEX TO STRING ... 162

HSV TO COLOUR ... 163

HTTP POST ... 164

IFFT... 165

IF THEN ELSE.. 166

IMAGE DOWNLOAD.. 168

IMPULSE ... 169

INDEX SELECTOR ... 170

INT ... 172

INT ABS ... 174

INT AND ...175

INT ARRAY ..176

INT ARRAY GET AT .. 177

INT ARRAY SAMPLE AND HOLD ... 178

INT ARRAY TO MEM .. 179

INT INVERSE... 180

- vi -

C O N T E N T S

INT LOOP ... 181

INT MODULUS ..182

INT NOT ...183

INT OR .. 184

INT QUEUE ... 185

INT SHIFT LEFT.. 186

INT SHIFT RIGHT...187

INT STACK .. 188

INT TO COLOUR .. 189

INT TO HEX ...190

INT TRANSITION ... 191

INT XOR ..192

IS KEY PRESSED ... 193

IS PLAYING ... 194

LABJACKU3-HV... 195

LABJACKU3-LV.. 199

LAST SWITCH ..203

LESS THAN... 204

LESS THAN OR EQUAL TO...205

LINE ... 206

LINEAR GRADIENT .. 207

LOG10 .. 209

MAC ADDRESS .. 210

MAGNITUDE/PHASE TO REAL/IMG... 211

MAX.. 212

MAX FLOAT ARRAY .. 213

MCC-1208FS...214

MCC-1608FS...216

MEASURE TEXT ... 218

MEM CREATE .. 219

- vii -

C O N T E N T S

MEM TO FLOAT ARRAY ... 220

MEM TO FLOAT ARRAY MIN/MAX .. 221

MESSAGE BOX .. 222

MIDI AFTERTOUCH .. 223

MIDI CONTROL CHANGE .. 224

MIDI EVENT .. 225

MIDI IN .. 226

MIDI IN DEVICES .. 228

MIDI IN SELECT ... 229

MIDI MONO ... 230

MIDI OUT ... 231

MIDI OUT DEVICES ... 232

MIDI OUT SELECT .. 233

MIDI PITCH BEND ...234

MIDI SPLITTER ... 235

MIDI TO MULTI VOICE ..236

MIDI TO VOICES ... 241

MIN... 243

MIN FLOAT ARRAY.. 244

MODULE .. 245

MODULE GUI ... 246

MODULE INPUT .. 248

MODULE OUTPUT ... 249

MODULE PROPERTIES GUI .. 250

MODULE WIRELESS OUTPUT .. 252

MONO BOOLEAN READOUT... 254

MONO READOUT .. 255

MONO TO FLOAT ..256

MONO TO FRAME ... 257

MONO TO FRAME ... 258

- viii -

C O N T E N T S

MONO TO GRAPH ...259

MOTION DETECT... 260

MOUSE AREA ..262

MOUSE DRAG ... 263

MOUSE LDBL-CLICK ...264

MOUSE LDOWN .. 265

MOUSE LUP ...266

MOUSE MOVE ... 267

MOUSE OVER ... 268

MOUSE RDBL-CLICK .. 269

MOUSE RDOWN .. 270

MOUSE RUP .. 271

MULTIPLEXER .. 272

MULTIPLY.. 273

MULTIPLY FLOAT ARRAY .. 274

MULTIPLY FLOAT ARRAY PAIR... 275

NETVOX ALARM SECURITY.. 276

NETVOX LIGHT SENSOR... 278

NETVOX MAINS POWER OUTLET.. 280

NETVOX TEMPERATURE SENSOR...282

NETVOX USB... 284

NETWORK CLIENT .. 286

NETWORK SERVER ... 288

NEW LINE .. 290

NORM ..291

NOT .. 292

NOTE EQUAL .. 293

NOTE EVENT .. 294

NOTE TO INT ... 295

NOTE TO INT ... 296

- ix -

C O N T E N T S

OFFLINE MODE ... 297

OPEN ASIO SETTINGS ...298

OWL ENERGY MONITOR... 299

PACK .. 301

PEN .. 302

PHIDGETS 0/0/4 .. 303

PHIDGETS 0/0/8 .. 305

PHIDGETS 0/0/16 .. 307

PHIDGETS 2/2/2... 309

PHIDGETS 8/8/8 .. 311

PHIDGETS ACCELEROMETER ... 313

PHIDGETS ANALOG.. 315

PHIDGETS BRIDGE...317

PHIDGETS ENCODER ... 319

PHIDGETS FREQUENCY COUNTER..321

PHIDGETS GPS... 323

PHIDGETS IR TRANSMIT AND RECEIVE .. 325

PHIDGETS LED 64...327

PHIDGETS MOTOR CONTROL... 329

PHIDGETS RFID.. 332

PHIDGETS SERVO ADVANCED... 334

PHIDGETS SPACIAL ... 337

PHIDGETS STEPPER CONTROLLER...339

PHIDGETS TEMPERATURE.. 342

PHIDGETS TEXT LCD..344

PHIDGETS TOUCH LINEAR/CIRCULAR... 346

PITCH TO FREQUENCY ... 348

PIXEL TO GRID .. 349

PLUGIN FOLDER .. 350

POINT ARRAY LINES ... 351

- x -

C O N T E N T S

POLY READOUT ... 353

POLY TO GRAPH .. 354

POLY TO MONO ... 355

POLY TO POLYINT .. 356

POLYINT TO POLY .. 357

POPUP LIST CONTROL .. 358

PPQ POS ... 360

PRESET MANAGER ... 361

PRESET MANAGER (MODULE)...363

PRESET TEXT FILE ... 367

PS2 LYNXMOTION CONTROLLER ... 370

RAMP .. 372

RANDOM NUMBER .. 373

RECTANGLE .. 374

REDRAW .. 375

REDRAW AREA .. 376

REDRAW LIMITER ... 377

ROTATE ... 378

ROUND RECTANGLE ..379

RUBY .. 380

SAMPLE AND HOLD .. 381

SAMPLE POSITION .. 382

SAMPLE RATE ... 383

SAVE WAVE ... 384

SAWTOOTH ... 385

SELECT ... 386

SELECTOR .. 387

SET PIXEL ..388

SET SAMPLE RATE .. 389

SFZ ... 390

- xi -

C O N T E N T S

SHELL EXECUTE .. 391

SHIFT FLOAT ARRAY ...392

SHOW CURSOR ... 393

SIGNAL ANALYSER ... 394

SIN ... 395

SIN INVERSE.. 396

SINE ... 397

SINH ... 398

SLIDE .. 399

SMOOTH .. 400

SORT FLOAT ARRAY ... 401

SORT STRING ARRAY ..402

STREAM ADD... 403

STREAM DIVIDE.. 404

STREAM GREATER THAN.. 405

STREAM GREATER THAN OR EQUAL TO... 406

STREAM LESS THAN..407

STREAM LESS THAN OR EQUAL TO... 408

STREAM MAX...409

STREAM MIN... 410

STREAM MULTIPLY...411

STREAM SUBTRACT... 412

STREAM TO DOUBLE.. 413

STRING .. 414

STRING ARRAY .. 415

STRING ARRAY FIND ... 416

STRING ARRAY GET AT .. 417

STRING ARRAY SPLIT ... 418

STRING ARRAY TO STRING ... 419

STRING ARRAY TO STRING ... 420

- xii -

C O N T E N T S

STRING EXTRACT ... 421

STRING FIND ...422

STRING LENGTH .. 423

STRING QUEUE ..424

STRING REPLACE ... 425

STRING SPLIT ... 426

STRING STACK .. 427

STRING TO ASCII ... 428

STRING TO HEX.. 429

STRING TO STRING ARRAY ... 430

STRING TO STRING ARRAY ... 431

STRING TO SYSEX .. 432

STRING FORMAT .. 433

SUBTRACT... 435

SUBTRACT FROM FLOAT ARRAY ...436

SUM FLOAT ARRAY .. 437

SUNBURST GRADIENT ... 438

SYSEX TO STRING .. 440

SYSTEM FOLDERS .. 441

SYSTEM FONTS ... 444

TAN .. 445

TAN INVERSE... 446

TANH .. 447

TEMPO .. 448

TEXT.. 449

TEXT DRAW... 450

TEXT LOAD .. 451

TEXT SAVE ... 452

TEXT VIEW ... 453

TICKER 100 ... 454

- xiii -

C O N T E N T S

TICKER 25 ... 455

TIME ... 456

TIMER ..457

TIME SIGNATURE ..458

TOOLTIP HELP ...459

TRANSLATE ... 460

TRIANGLE ... 461

TRIGGER BLOCKER ...462

TRIGGER BUTTON .. 463

TRIGGER COUNTER..464

TRIGGER DIV .. 465

TRIGGER SWITCH ... 466

UNPACK ... 467

VIDEO DELAY... 468

VIDEO SAVE.. 469

VIDEO STREAM... 471

VIEW AREA .. 473

VIEW SIZE .. 474

VOICES TO POLY...475

VST EDITOR OPEN ... 476

VST PARAMETER .. 477

VST PARAMETER ARRAY .. 479

VST PLUGIN INFO ... 482

VST PRESET STRING ...483

WAVE ARRAY READ ... 484

WAVE FILE ... 485

WAVE FILE ARRAY ... 487

WAVE READ ... 489

WAVE READ HOP... 490

WAVE TABLE .. 491

- xiv -

C O N T E N T S

WAVE TABLE READ ... 492

WEB CAM .. 493

WEB URL ...494

WII NUNCHUCK.. 495

WIIMOTE... 497

WIIMOTE IR.. 499

WIRELESS INPUT .. 501

WIRELESS OUTPUT ... 503

X DRAG ACCUMULATE .. 505

X10 ACTIVE HOME... 506

XBOX 360... 507

XY DRAG ACCUMULATE .. 510

Y DRAG ACCUMULATE .. 512

- xv -

1 Introduction
ABOUT THIS GUIDE

INTRODUCTION

About This Guide

In this guide you’ll find individual descriptions for all the components supplied with FlowStone. It is

intended as reference material to accompany the main user guide.

The components are listed in ascending alphabetical order. If you want to look up a particular

component quickly use the table of contents at the beginning of this guide.

Other Information

We have a separate guide which describes how to use the software. This can be found in the Manuals

section of our web site at:

http://www.dsprobotics.com/manualsarea.php

If you are looking for tutorials then see the Tutorials section of the DSP Robotics web site:

http://www.dsprobotics.com/tutorials.html

Additional information and articles about the software can be found at:

http:// www.dsprobotics.com / support

If you have any comments about this guide please email them to info@dsprobotics.com.

- 17 -

http://www.dsprobotics.com/manualsarea.php
http://www.dsprobotics.com/support
http://www.dsprobotics.com/support
http://www.dsprobotics.com/support
http://www.dsprobotics.com/support
http://www.dsprobotics.com/tutorials.html

CHAPTER 2

2 Components
A-Z LISTING OF ALL PRIMITIVES & MODULES

- 18 -

COMPONENTS

Add

Description

This component adds two values together.

Connectors

Inputs Type Outputs Type

Input 1 Template Sum of inputs Template

Input 2 Template

- 19 -

CHAPTER 2

Add to Float Array

Description

This primitive adds a single float value to every entry in the input array.

Connectors

Inputs Type Outputs Type

Array to modify Float Array Array of added values Float Array

Float value to add to each

entry in the array

Float

- 20 -

COMPONENTS

After Duplicate

Description

The After Duplicate component sends a trigger after a schematic has been duplicate. You can use this

to do any initialisation that may be needed after dragging a module from the toolbox or pasting it or any

other operation that involves duplication.

Connectors

Inputs Type Outputs Type

N/A Trigger when the containing

module has been duplicated

or reproduced

Trigger

- 21 -

CHAPTER 2

After Load

Description

The After Load component sends a trigger after a schematic has been loaded. You can use this to do

any post loading initialisation that may be needed.

Connectors

Inputs Type Outputs Type

N/A Trigger when schematic has

just completed loading

Trigger

- 22 -

COMPONENTS

Append Array

Description

The Append Float Array, Append String Array and Append Int Array component will append the

contents of two arrays together resulting in one single array which contains the contents of both arrays.

Connectors

Inputs Type Outputs Type

First array Float Array Array containing values from

both arrays

Float Array

Second array Float Array

- 23 -

CHAPTER 2

Arc

Description

The Arc primitive draws a portion of the edge of a circle or ellipse depending on whether the bounding

area is square or rectangular (Technically an arc is a portion of the circumference of a circle but here it

is extended to ellipses as well). The arc is defined by the bounding area in which it is to be drawn, a

starting angle and an angle to indicate the amount of sweep (both in degrees), as well as by the pen

object to be used to draw the segment.

- 24 -

COMPONENTS

Connectors

Inputs Type Outputs Type

View to draw onto View The same View as the input,

but anything connected here

is drawn on top

View

The bounding area of the

arc. (Note: the pen line will

extend beyond this area by

one half its width)

Area

The pen used to draw the

segment

Pen

The Start Angle (in degrees).

This starts from the 9 ‘o’

clock position and runs

clockwise

Float

The Sweep Angle (in

degrees) runs clockwise

and defines the length of the

segment

Float

- 25 -

CHAPTER 2

Example

- 26 -

COMPONENTS

Area to Float

Description

The Area to Float component splits an Area into X, Y, Width and Height.

Connectors

Inputs Type Outputs Type

Area to split Area X component Float

Y component Float

Width component Float

Height component Float

- 27 -

CHAPTER 2

Area Union

Description

The Area Union primitive takes two area inputs and finds the smallest bounding rectangular area in

which both will fit.

Connectors

Inputs Type Outputs Type

First area Area Union of the two areas Area

Second area Area

- 28 -

COMPONENTS

Example

- 29 -

CHAPTER 2

Array Builder

Description

The Array Builder components provide you with a more visual way of creating an array of Strings,

Floats or Ints. This component is useful for small to medium sized arrays. It can also make it easier to

manage arrays where the elements are frequently changing value.

The inputs define the values at each index in the array. So connecting a value to the first input will set

the first entry in the array. As this is a template connector the first link you make will also determine the

data type (String, Float or Int).

To add subsequent entries simply connect a value to the 'spare' template connector. This will become

a connector of the appropriate type and a new 'spare' will appear below it. By connecting more inputs

in this way you can quickly build up an array.

Connectors

Inputs Type Outputs Type

The first entry in the array String / Float / Int The array itself String Array / Float

Array / Int Array

Any number of other inputs String / Float / Int or

template if 'spare'

- 30 -

COMPONENTS

ASCII to String

Description

The ASCII to String primitive converts an integer into its corresponding ASCII character (or more

accurately the ISO Latin 1 character as ASCII is only defined through 127). For values above 255 the

output 'wraps' back to zero (so the character returned will equal the modulus remainder dividing by

256).

Connectors

Inputs Type Outputs Type

ASCII character code

(0-255)

Int Corresponding ASCII

character

String

- 31 -

CHAPTER 2

ASIO In

Description

ASIO (Audio Stream Input Output) is a digital audio protocol specified by Steinberg which provides an

interface between an application and the sound card. The ASIO In primitive provides a mono

connection for each mono input supported by the hardware sound device on your computer.

The ASIO In components provide the only way to receive audio signals from an external source (via

inputs on your sound card). Note that only one ASIO In component is allowed in your schematic.

Connectors

Inputs Type Outputs Type

N/A One output for each channel

supported by the selected

audio device

Mono

Other Features

The body of the component displays which input device is currently being used. All devices supporting

the ASIO protocol are listed so to select a different one just click on it.

To deselect a device (and therefore switch ASIO input off) simply click on it again.

A small spanner (wrench) icon allows quick access to the device driver's user interface.

- 32 -

COMPONENTS

ASIO Out

Description

ASIO (Audio Stream Input Output) is a digital audio protocol specified by Steinberg which provides an

interface between an application and the sound card. The ASIO Out primitive provides a mono

connection for each mono output supported by the hardware sound device on your computer.

The ASIO Out and Direct Sound Out components provide the only way to send audio signals to your

sound card. You therefore must have at least one of these connected up to your schematic if you want

to hear any sound. Note that only one ASIO Out component is allowed in your schematic.

Connectors

Inputs Type Outputs Type

One input for each channel

supported by the selected

audio device

Mono The assembler code

generated by the component

String

Other Features

The body of the component displays which output device is currently being used. All devices

supporting the ASIO protocol are listed so to select a different one just click on it.

To deselect a device (and therefore ASIO output off) simply click on it again.

A small spanner (wrench) icon allows quick access to the device driver's user interface.

- 33 -

CHAPTER 2

Assembler

Description

The Assembler component allows you to write low-level x86 assembler code and use it in your

schematic. There are special commands for creating inputs and outputs so that you can connect the

Assembler component to other components. See the Code Component section in the main user guide

for more information.

NOTE: This is a very advanced feature and should be used with care. With such low-level control it is

possible to crash the software.

Connectors

Inputs Type Outputs Type

N/A Compiled code – attach to a

Text component to view

Code

- 34 -

COMPONENTS

Supported Instructions

The assembler component only supports the following subset of the x86 instruction set:

add reg,reg; add reg,integer; add reg,var;

addps xmmReg,sseVar; addps xmmReg,xmmReg; andps xmmReg,xmmReg;

andnps xmmReg,xmmReg; andps xmmReg,sseVar; and reg,integer;

call reg; cmp reg,integer; cmp reg,reg;

cmpps xmmReg,sseVar,type; cmpps xmmReg,xmmReg,type; cvtps2dq xmmReg,sseVar;

cvtdq2ps xmmReg,sseVar; divps xmmReg,sseVar; divps xmmReg,xmmReg;

fistp sseVar[channel]; fist sseVar[channel]; fild sseVar[channel];

fld [reg]; fstp [reg]; fld sseVar[channel];

fld sseVar[channel]; fstp [reg]; fld sseVar[channel];

fld sseVar[eax]; fsin; fsub;

fsincos; fptan; fstp sseVar[channel];

fstp sseVar[eax]; fst sseVar[channel]; fxch;

fmul; fadd; fprem;

frndint; fldlg2; fyl2x;

inc [reg]; jnz integer; jnz label;

jz label; maxps xmmReg,sseVar; minps xmmReg,sseVar;

mov reg,sseVar[channel]; mov sseVar[channel],reg; mov reg,reg;

mov reg,integer; mov [reg],integer; mov reg,[reg];

mov eax,[ebp+integer]; mov [reg],reg; minps xmmReg,[eax];

movaps [eax],xmmReg; movaps xmmReg,[eax]; movaps xmmReg,xmmReg;

movaps xmmReg,sseVar; movaps xmmReg,sseVar[eax]; movaps sseVar,xmmReg;

movaps sseVar[eax],xmmReg; mulps xmmReg,sseVar; mulps xmmReg,xmmReg;

pop reg; push reg; rcpps xmmReg,xmmReg;

rdtsc; shl reg,integer; shr reg,integer;

subps xmmReg,xmmReg; subps xmmReg,sseVar; sub reg,integer;

fscale f2xm1 fld1

fld st(N) fstp st(n); sqrtps xmmReg,xmmReg;

- 35 -

CHAPTER 2

Audio Devices

Description

You can use the Audio Devices component to find out how many audio devices there are on the

system you're running on. The first output tells you how many devices there are and the second output

gives you a list of device names.

This component is used inside the Audio Selector module to provide the list from which you the choose

an audio device.

Connectors

Inputs Type Outputs Type

N/A Number of devices available Int

Array of device names String Array

- 36 -

COMPONENTS

Audio Select

Description

The Audio Select primitive allows you to select an audio device. It overrides whatever you have

selected on the ASIO In/Out or DirectSound In/Out components.

This component is used inside the Audio Selector module and is used in conjunction with the Audio

Devices primitive.

Connectors

Inputs Type Outputs Type

Index of device you want to

select

Int Index of the currently

selected device (or -1 if no

devices are selected)

Int

- 37 -

CHAPTER 2

Audio Stream

Description

This component allows you to stream audio from media file locally or across a network.

You must provide a valid URL or file path.

To begin streaming, trigger the Start input. The audio arrives as a stereo mono stream.

To toggle streaming trigger the Pause/Play input. Triggering the Stop input will end streaming. Having

stopped, for an audio file, you can only resume by re-starting from the beginning.

Connectors

Inputs Type Outputs Type

URL or file path for the audio

stream

String Left channel of streamed

audio

Mono

Start streaming Trigger Right channel of streamed

audio

Mono

Pause or resume play Trigger The play state (0=stopped,

1=playing, 2=paused)

Boolean

Stop streaming Trigger The play position (for files)

as a percentage (0-100%)

Float

The input buffer size in

seconds (default = 1)

Float

- 38 -

COMPONENTS

Bar Start Pos

Description

When your VST plugin is used within a host this component will output the current songs bar start

position (in 1 pulse (unit) per quarter). For more details see the VST SDK documentation.

Connectors

Inputs Type Outputs Type

N/A Bar start position Stream

- 39 -

CHAPTER 2

Binary to Hex

Description

Converts a string of binary to a string of hex. Each 8 bits of binary is converted to Ascii and then the

hex representation of that byte is used in the hex string.

For example, the binary string “0010111110111011” is converted to the hex string “2FBB”.

Connectors

Inputs Type Outputs Type

String of binary String String of hex String

- 40 -

COMPONENTS

Biquad Filter

Description

A low pass biquad IIR filter using 2 poles, 2 zeros and 12dB per octave.

Connectors

Inputs Type Outputs Type

Input signal Stream Output signal Stream

Normalised cutoff frequency

(0-1) where 1 is half

sampling rate

Stream

Resonance Stream

- 41 -

CHAPTER 2

Biquad Filter Coeff

Description

A coefficient controlled biquad filter using 2 poles, 2 zeros and 12dB per octave specified by the filter

coefficients.

Connectors

Inputs Type Outputs Type

Input signal Stream Output signal Stream

a0 Stream

a1 Stream

a2 Stream

b1 Stream

b2 Stream

- 42 -

COMPONENTS

Bitmap

Description

The Bitmap primitive component loads a bitmap image from a file. Once the bitmap has been loaded

the component retains the data, no reference to the original file path is required.

FlowStone supports bmp, jpeg, tiff, gif and png image types.

Connectors

Inputs Type Outputs Type

Path to image file on disk String The bitmap Bitmap

Trigger to load the file Trigger Width of the image in pixels Int

Height of the image in pixels Int

- 43 -

CHAPTER 2

Example

The following example shows how to use the Bitmap component to load an image into a schematic.

- 44 -

COMPONENTS

Bitmap Area

Description

The Bitmap Area primitive draws a portion of a bitmap into a view. The bitmap is drawn to the

destination area provided. If the destination area is a different size from the source area the bitmap will

be resized to fit. The can be used, for example, to magnify some portion of a bitmap. There is also an

optional colour matrix input that can be used to alter the resulting colours of the bitmap in the

destination area.

Connectors

Inputs Type Outputs Type

View to draw onto View The same View as the input,

but anything connected here

is drawn on top

View

Source bitmap to use Bitmap

Source area in the bitmap

(in pixels, with the origin in

the top-left corner).

Area

Destination area on the View

(in grid squares)

Area

An optional colour matrix for

performing colour

transformations

Colour Matrix

- 45 -

CHAPTER 2

Example

The schematic file below is bitmap viewer with a small magnifying box that works by moving the cursor

over the bitmap image. The mouse movements are tracked and a small segment directly over the

mouse movement becomes the source bitmap area and is displayed in a destination are in the same

location of the view but at a higher magnification.

Some calculations are required in order to achieve any interesting results as the source and

destination areas must calculated and use different dimensions (pixels vs. grid squares). In the above

schematic these calculations are hidden within the module labelled ‘calc areas’.

- 46 -

COMPONENTS

Bitmap Array from Bitmap

Description

The Bitmap Array from Bitmap primitive allows you to build an array of bitmaps from images that you

already have loaded in your schematic. You can choose how the bitmaps are stored when they are

saved with the schematic by selecting from one of five different image encoder types: bmp, jpeg, gif, tiff

and png. You can also choose not to store the bitmaps with the schematic using ‘none’ as the encoder

type.

Connectors

Inputs Type Outputs Type

Bitmap to add to the array Bitmap Array of bitmaps Bitmap Array

Index of the bitmap in the

array to be copied in

Int

Trigger to load the specified

bitmap

Trigger

Encoder type for storing the

bitmaps when the schematic

is saved (none, bmp, jpeg,

gif, tiff or png). If ‘none’ is

chosen then the bitmaps will

not be saved with the

schematic.

String

- 47 -

CHAPTER 2

Trigger to clear the array Trigger

- 48 -

COMPONENTS

Bitmap Array from File

Description

The Bitmap Array from File primitive allows you to build an array of bitmaps by loading them

individually from files. You can choose how the bitmaps are stored when they are saved with the

schematic by selecting from one of five different image encoder types: bmp, jpeg, gif, tiff and png. You

can also choose not to store the bitmaps with the schematic using ‘none’ as the encoder type.

Connectors

Inputs Type Outputs Type

Path to a bitmap file on disk String Array of bitmaps Bitmap Array

Index of the bitmap in the

array to be loaded

Int

Trigger to load the specified

bitmap

Trigger

Encoder type for storing the

bitmaps when the schematic

is saved (none, bmp, jpeg,

gif, tiff or png). If ‘none’ is

chosen then the bitmaps will

not be saved with the

schematic.

String

Trigger to clear the array Trigger

- 49 -

CHAPTER 2

Bitmap Create

Description

The Bitmap Create primitive generates a bitmap and draws onto it whatever is attached to its View

output. The bitmap can then be used as an input by other bitmap components.

Connectors

Inputs Type Outputs Type

Width of the bitmap in pixels Int The generated bitmap Bitmap

Height of the bitmap in

pixels

Int Connect GUI components to

draw to the bitmap here

View

Grid Step to use when

drawing to the bitmap

Float Trigger when bitmap has

been created

Trigger

Trigger to create the bitmap Trigger

Trigger to redraw the bitmap Trigger

- 50 -

COMPONENTS

Bitmap Draw

Description

The Bitmap Draw primitive draws a bitmap onto a view. An Area must be supplied to define the part of

the view that the bitmap is drawn into. The bitmap will be stretched if necessary to fit exactly into the

area supplied.

You can also define a transparency for the rendered bitmap. You should take care when using this

option for bitmaps that are likely to be redrawn many times per second as the calculation can be quite

cpu intensive, particularly with larger bitmaps.

Connectors

Inputs Type Outputs Type

View to draw onto View The same View as the input,

but anything connected here

is drawn on top

View

Destination area on the View

(in grid squares)

Area

The bitmap to draw Bitmap

Transparency level (0-255)

where 0 is invisible and 255

is opaque

Int

- 51 -

CHAPTER 2

Bitmap Draw Transform

Description

The Bitmap Draw Transform primitive draws a bitmap onto a view. An Area must be supplied to define

the part of the view that the bitmap is drawn into. The bitmap will be stretched if necessary to fit exactly

into the area supplied.

You can also apply a colour transformation using a colour matrix. See the Colour Matrix component for

more information. You should take care when using this option for bitmaps that are likely to be redrawn

many times per second as the calculation can be quite cpu intensive, particularly with larger bitmaps.

Connectors

Inputs Type Outputs Type

View to draw onto View The same View as the input,

but anything connected here

is drawn on top

View

Destination area on the View

(in grid squares)

Area

The bitmap to draw Bitmap

The colour transformation (if

any) to be applied

ColourMatrix

- 52 -

COMPONENTS

Bitmap Get At

Description

This component extracts the bitmap at a particular index in an array of bitmaps.

Connectors

Inputs Type Outputs Type

Array of bitmaps BitmapArray Extracted bitmap Bitmap

Index of the bitmap to be

extracted

Int Trigger when the extraction

is complete

Trigger

Trigger to do the extraction Trigger

- 53 -

CHAPTER 2

Bitmap Resize

Description

This component resizes a bitmap by applying a specified scale factor. Depending on the scale factor

the bitmap can be increased or decreased in size.

Connectors

Inputs Type Outputs Type

Source bitmap Bitmap Resized bitmap Bitmap

Scale factor to apply. Below

1 will reduce the size and

above 1 will increase the

size.

Float Trigger when the bitmap has

been resized

Trigger

Trigger to do the resize Trigger

- 54 -

COMPONENTS

Bitmap Sample and Hold

Description

The Bitmap Sample and Hold component will store a source bitmap when triggered. Any requests for

the bitmap from the Bitmap output will return the last one that was stored.

You can choose how the bitmaps are stored when they are saved with the schematic by selecting from

one of five different image encoder types: bmp, jpeg, gif, tiff and png. You can also choose not to store

the bitmaps with the schematic using ‘none’ as the encoder type.

Connectors

Inputs Type Outputs Type

Source bitmap Bitmap Stored bitmap Bitmap

Trigger to store the current

source bitmap

Trigger Trigger when the bitmap has

been stored

Trigger

Encoder type for storing the

bitmaps when the schematic

is saved (none, bmp, jpeg,

gif, tiff or png). If ‘none’ is

chosen then the bitmaps will

not be saved with the

schematic.

String

- 55 -

CHAPTER 2

Bitmap Save

Description

The Bitmap Save component saves a bitmap to a specified file path. You can choose from one of five

different image encoder types for saving bitmaps: bmp, jpeg, gif, tiff and png.

Connectors

Inputs Type Outputs Type

Source bitmap Bitmap Trigger when saving is

complete

Trigger

Full path to the bitmap file

you want to save to

String

Trigger to do the save Trigger

Encoder type for storing the

bitmap (bmp, jpeg, gif, tiff or

png).

String

- 56 -

COMPONENTS

Bitmap Size

Description

This component gives you the size of a Bitmap in pixels.

Connectors

Inputs Type Outputs Type

Source bitmap Bitmap Width of bitmap in pixels Int

Height of bitmap in pixels Int

- 57 -

CHAPTER 2

Bool to False

Description

The Bool to False component sends a trigger whenever the value at the input changes from True to

False.

Connectors

Inputs Type Outputs Type

Boolean value to test Boolean Trigger on transition from

True to False

Trigger

- 58 -

COMPONENTS

Bool to True

Description

The Bool to True component sends a trigger whenever the value at the input changes from False to

True.

Connectors

Inputs Type Outputs Type

Boolean value to test Boolean Trigger on transition from

False to True

Trigger

- 59 -

CHAPTER 2

Boolean

Description

The Boolean primitive stores a two-state value: either True or False. To change the value stored click

on the main body of the component.

The component can be resized horizontally.

You can also change the type by right-clicking on the input or output. A pop-up menu will appear as

shown below.

Simply click on the type you want to change to.

Connectors

Inputs Type Outputs Type

Set the value Boolean The current stored value Boolean

- 60 -

COMPONENTS

Boolean And

Description

Calculates the logical AND of two boolean values.

Connectors

Inputs Type Outputs Type

First value Boolean AND value Boolean

Second value Boolean

- 61 -

CHAPTER 2

Boolean Or

Description

Calculates the logical OR of two boolean values.

Connectors

Inputs Type Outputs Type

First value Boolean OR value Boolean

Second value Boolean

- 62 -

COMPONENTS

Boolean XOr

Description

Calculates the logical XOR of two boolean values.

Connectors

Inputs Type Outputs Type

First value Boolean XOR value Boolean

Second value Boolean

- 63 -

CHAPTER 2

Bus Create

Description

Allows you to combine several channels of data into just one. This can greatly simplify a schematic as

data can be passed in just a single bus link. The channels are defined by a comma separated string

which provides a name for each channel. You can extract data from a bus using the Bus Extract

component.

When you connect the channel names you’ll get a new template input for each channel. You then

connect these up to whatever you want to pass through the bus. You can resize the Bus Create

component so that longer connector labels can be read more easily.

Only the following types can be combined into a bus:

Trigger, Boolean, Float, Int, String, Float Array, Int Array, String Array, Stream, Stream Boolean, Poly,

Poly Boolean, Mono, Mono Boolean, Mono4, Area, Pen, Colour, Colour Matrix.

Connectors

Inputs Type Outputs Type

Comma separated list of

channel names

String Bus containing all the

channels

Bus

connectors for each channel

- 64 -

COMPONENTS

Bus Extract

Description

The Bus Extract component extracts one or more channels of data from a bus. Buses can be used to

greatly simplify a schematic as data can be passed in just a single bus link. The channels are defined

by a comma separated string which provides a name for each channel.

A bus is created by a Bus Create component.

When you connect the channel names you’ll get a new template output for each channel. You then

connect these up to whatever you want to pass through the bus. You can resize the Bus Extract

component so that longer connector labels can be read more easily.

Only the following types can be combined into a bus:

Trigger, Boolean, Float, Int, String, Float Array, Int Array, String Array, Stream, Stream Boolean, Poly,

Poly Boolean, Mono, Mono Boolean, Mono4, Area, Pen, Colour, Colour Matrix.

Connectors

Inputs Type Outputs

Comma separated list of

channel names

String connectors for each channel

Source bus Bus

- 65 -

CHAPTER 2

CamShift Tracker

Description

The CamShift Tracker is a video processing component that allows you to track an area of an image

as it changes over time.

The tracker works by computing the histogram of the initial area and using this to compare against the

image as it changes. The image is converted to HSV in the process and the smin and vmin values

allow you to tweak how the S and V components are used in the algorithm.

Connectors

Inputs Type Outputs Type

The image source Bitmap The current location of the

area you are tracking

Area

The initial area of the image

you want to track in pixel

coordinates

Area The rotation angle of the

area you are tracking in

degrees

Float

Starts tracking Trigger Tracking is in progress Boolean

Stops Tracking Trigger

Minimum HSV saturation Int

Minimum HSV value Int

- 66 -

COMPONENTS

Canny Edge Detection

Description

This component finds the edges in an image using the Canny edge detection algorithm.

The Canny algorithm uses hysteresis and the Thresh1 and Thresh2 inputs define the high and low

boundaries for this. They are in the range 0-255.

The Aperture is another input into the calculation. There are three options specified by an Int index,

0=3, 1=5 and 2=7. The default is 0 i.e. and aperture of 3.

Connectors

Inputs Type Outputs Type

The source image you want

to process

Bitmap Processed grayscale image

showing detected edges

Bitmap

First threshold for the

hysteresis (0-255)

Float

Second threshold for the

hysteresis (0-255)

Float

The aperture size. 0=3, 1=5,

2=7

Int

- 67 -

CHAPTER 2

Changed

Description

This simple primitive will only send data to the output when the input value changes to a different

value. You can use this to reduce the flow of triggers through a schematic. For example, if you may be

constantly calculating a result for display purposes but may only want to redraw the GUI when the

value differs from what went before.

The component has template connectors which means it can be used with multiple data types

including Floats, Ints, Strings, Booleans, Float/Int/String arrays and Areas. You can right-click on the

connectors at any time to change the type.

Connectors

Inputs Type Outputs Type

Input Value Template The input value if it has

changed

Template

- 68 -

COMPONENTS

Clear Audio

Description

The Clear Audio component simply resets all audio streams. You can use this as a panic option if your

schematic uses feedback that might spiral out of control. It is also needed in some occasions to clear

the audio buffers when changing settings or presets.

Connectors

Inputs Type Outputs Type

Trigger to clear the audio Trigger N/A N/A

- 69 -

CHAPTER 2

Clip

Description

When you draw onto a View you draw inside a region called the Clipping Area. By default the clipping

area of a View is defined by the bounding area of the module panel to which it applies.

The clipping area can be changed by applying one or more Clip components in sequence. Each Clip

modifies the current clipping area by applying another area according to a particular clipping mode.

The clipping modes are as follows:

0 Intersect The clipping area becomes the intersection of the current clipping area and the new area

1 Union The clipping area becomes the areas covered by the current area and the new area

2 Complement The clipping area becomes the part of the new area that does not intersect with the current

clipping area

3 Exclude The clipping area becomes the area covered by the current area but not the new area

4 Xor The clipping area becomes the areas covered by the current area or the new area, but not

both

Connectors

Inputs Type Outputs Type

Source View View View with modified clipping View

Area to apply to clipping Area

Clipping mode Int

- 70 -

COMPONENTS

Colour

Description

This component allows you to define a colour. Click on the central colour swatch to change the current

colour. The standard Windows colour dialog will appear. You can use this to select a colour.

Connectors

Inputs Type Outputs Type

N/A Currently selected colour Colour

- 71 -

CHAPTER 2

Colour Detect

Description

The Colour Detect component finds the areas in an image that match a particular colour.

A colour range in HSV (Hue/Saturation/Value) format is used to define the regions of interest. You

provide a lower and upper HSV. The algorithm will check the H,S and V components of pixels in the

image against the upper and lower ranges for each component. H is in the range 0-360, S and V are in

the range 0-255. An example input would be “360,255,255”.

The MinArea input allows you to specify a threshold for discarding detected areas based on their size.

This input is an area in pixels2.

Connectors

Inputs Type Outputs Type

The source image you want

to process

Bitmap Processed image showing

the detected areas

Bitmap

Lower HSV limit. Three

numbers, comma separated

String Bounding box of largest

detected area

Area

Upper HSV limit. Three

numbers, comma separated

String Number of detected areas Int

Threshold for discarding

areas in square pixels

Int X coordinate of centroid of

largest detected area

Int

Y coordinate of centroid of

largest detected area

Int

- 72 -

COMPONENTS

Colour Dialog

Description

This component allows you to launch the standard Windows colour dialog and use it to get colour

selections from users. You can supply an alpha blend value so that the returned colour is modified to

have that value. You can also specify the default colour that the dialog shows when launched.

Connectors

Inputs Type Outputs Type

Trigger to open the dialog Trigger Selected colour Colour

Alpha blend transparency for

the colour that is returned

(0-255) where 255 is opaque

and 0 is transparent

Int Trigger if OK was pressed Trigger

Colour to show when the

dialog opens

Colour Trigger if Cancel was

pressed

Trigger

- 73 -

CHAPTER 2

Colour Matrix

Description

This component creates a Colour Matrix which you can use for performing colour transformations on

bitmaps. The matrix itself is a 5x5 floating point matrix and is supplied by a comma separated string of

values. The best way to define a colour matrix is to use a Text component as shown below.

Connectors

Inputs Type Outputs Type

Comma separated string of

matrix entries

String The colour matrix Colour Matrix

Trigger to parse the supplied

data and create the matrix

Trigger Whether the matrix was

created

Boolean

- 74 -

COMPONENTS

Colour Matrix Set

Description

The Colour Matrix Set component allows you to set the value for a particular entry in the matrix.

Connectors

Inputs Type Outputs Type

Colour matrix to change Colour Matrix The modified colour matrix Colour Matrix

Row index (0-4) of entry to

be changed

Int

Column index (0-4) of entry

to be changed

Int

The value to change to Float

- 75 -

CHAPTER 2

Colour to HSV

Description

The Colour to HSV component converts a colour to Hue, Saturation and Value components.

Connectors

Inputs Type Outputs Type

Colour to convert Colour HSV as comma separated

string

String

Hue component (0-360) Int

Saturation component (0-

255)

Int

Value component (0-255) Int

- 76 -

COMPONENTS

Colour to Int

Description

The Colour to Int component splits a colour into Alpha Transparency, Red, Green and Blue

components.

Connectors

Inputs Type Outputs Type

Colour to split Colour Alpha transparency (0-255)

where 255 is opaque and 0

is transparent

Int

Red component (0-255) Int

Green component (0-255) Int

Blue component (0-255) Int

- 77 -

CHAPTER 2

COM Port

Description

The COM Port component allows you to send and receive messages through a specified COM port.

Note: In the Free edition you are limited to using just one COM port at a time. In the Enterprise edition

you can use up to 4 ports. In the Professional edition you can use as many as you like.

Having specified the characteristics of the Port you need to send a trigger to the Open input. The Open

output will respond with True if this was a success. Any errors are reported through the Log output so

long as you have the Log input set to true.

Data is sent as strings. Data is received as complete strings only if you specify a terminator. The

terminator needs to be an ASCII code. So for example, specify zero for null terminated strings or 16 to

use carriage return.

If no terminator is specified then the component will deliver received data one byte at a time. If the Hex

input is set to True then this will be a two character hex code, otherwise it will be a single character.

You may find it useful to store this data in a String Queue for post processing.

- 78 -

COMPONENTS

Connectors

Inputs Type Outputs Type

Index of the COM port you

want to use. So 1 = COM1

and so on.

Int Whether the COM port was

opened successfully.

Boolean

Baud rate. If not specified

then 9600 is used

Int Data received in from the

COM port

String

Stop bits (0 for 1, 1 for 1.5

and 2 for 2). Defaults to 1

stop bit.

Int Trigger when data has been

successfully sent through

the COMport

Trigger

Parity (0=none, 1=odd,

2=even, 3=mark, 4=space).

Default is no parity scheme.

Int Log showing activity on the

port (if logging switched on).

String

Byte size, the number of bits

in each byte sent. If not

specified then 8bits are

used.

Int Array of port numbers that

are available on the host PC

Int Array

Open the COM port Trigger

Close the COM port Trigger

Data you want to send out

through the port

String

ASCII code of the terminator

you want to look for when

receiving data. If not

supplied then data is output

in single bytes.

Int

Send the specified data

through the port

Trigger

Whether the data being sent

and received is hex

Boolean

Whether to log activity on

the port. Useful for

debugging.

Boolean

Clear the log Trigger

- 79 -

CHAPTER 2

Cos

Description

Standard trigonometric Cosine function with radians as the input units.

Connectors

Inputs Type Outputs Type

Float value in radians Float Result of calculation Float

- 80 -

COMPONENTS

Cos Inverse

Description

Standard trigonometric Inverse Cosine function with radians as the output units.

Connectors

Inputs Type Outputs Type

Float value Float Result of calculation in

radians

Float

- 81 -

CHAPTER 2

Cosh

Description

Standard hyperbolic cosine function with radians as the input units.

Connectors

Inputs Type Outputs Type

Float value in radians Float Result of calculation Float

- 82 -

COMPONENTS

Counter

Description

The Counter component is a simple counter that increments in unit steps from zero every time the Inc

input is triggered. You can reset the counter to zero by triggering the Reset input.

Connectors

Inputs Type Outputs

Trigger to increment the

counter

Trigger The current value of the

counter

Int

Trigger to reset the counter

to zero

Trigger

- 83 -

CHAPTER 2

Counter Advanced

Description

This is a more advanced version of the simple Counter component. You set a Minimum and Maximum

limit for the counter and also a place to start. The type input determines how to count:

0 Up The counter starts from the minimum value, counts up to the maximum and then stops

1 Down The counter starts from the maximum value, counts down to the minimum and then stops

2 Up/Down The counter starts from the minimum value, counts up to the maximum and then counts

back down again. The counting continues cycling between the two limits in this way.

- 84 -

COMPONENTS

De-zipper

Description

The De-zipper component is used for making smooth transitions between float values when feeding

them into a stream section.

For example, say you have a knob connected to a stream multiplier for attenuating an audio signal. As

you turn the knob the floating point value changes in steps over time. This stepping can be heard as

background noise called zipper noise.

The De-zipper component removes zipper noise by applying a simple low-pass filter to input float

values.

Connectors

Inputs Type Outputs Type

Float values from a Float

section of schematic

Stream Float values as a smoothed

signal

Stream

Duration of the transition Int

- 85 -

CHAPTER 2

Decibel

Description

Converts an array of floats to decibels (10*Log10).

Connectors

Inputs Type Outputs Type

Source array Float Array Array of dB values Float Array

- 86 -

COMPONENTS

Delay

Description

The Delay primitive buffers incoming data and delays the output by the number of samples given in the

integer input.

The delay length is limited to 262144 samples (just less than 6 seconds at 44.1 kHz). Longer delays

can be implemented using the Code component.

Note that there is a minimum delay of 1 sample so even if the Delay input is zero there will be a single

sample delay.

Connectors

Inputs Type Outputs Type

Mono stream Mono Delayed Mono stream Mono

Number of samples delay Int

- 87 -

CHAPTER 2

Delay by One Sample

Description

The Delay by One Sample primitive buffers the incoming data for one sample duration before sending

it to the output.

Connectors

Inputs Type Outputs Type

Audio stream Stream Delayed audio stream Stream

- 88 -

COMPONENTS

Delay Compensation

Description

This primitive allows you to send delay compensation to a host in an exported plugin. In line with the

VST SDK, the delay time is expressed as a number of samples. You should only use this component

once per plugin.

Connectors

Inputs Type Outputs Type

Delay compensation in

samples

Int N/A

- 89 -

CHAPTER 2

Direct Sound In

Description

Microsoft's DirectSound is a digital audio protocol specified which provides the interface between

applications and the sound card. The DirectSound In primitive provides a mono connection for the Left

and Right input channels of the sound devices on your computer.

The Direct Sound In and ASIO In components provide the only way to receive audio signals from an

external source (via inputs on your sound card). Note that only one Direct Sound In component is

allowed in your schematic.

Connectors

Inputs Type Outputs Type

N/A Left audio channel Mono

Right audio channel Mono

Other Features

The body of the component displays which input device is currently being used. All devices supporting

the DirectSound protocol are listed so to select a different one just click on it.

To deselect a device (and therefore switch Direct Sound input off) simply click on it again.

- 90 -

COMPONENTS

Direct Sound In Devices

Description

You can use the Direct Sound In Devices component to find out how many Direct Sound input devices

there are on the system you're running on. The first output tells you how many devices there are and

the second output gives you a list of device names.

This component can be used used to provide information for GUI based selection controls that select

the input device.

Connectors

Inputs Type Outputs Type

N/A Number of devices available Int

Array of device names String Array

- 91 -

CHAPTER 2

Direct Sound In Select

Description

The Direct Sound In Select primitive allows you to select an Direct Sound input device. It overrides

whatever you have selected on the DirectSound In component.

This component can be used to build GUI components that control which Direct Sound input device is

selected.

Connectors

Inputs Type Outputs Type

Index of device you want to

select

Int Index of the currently

selected device (or -1 if no

devices are selected)

Int

- 92 -

COMPONENTS

Direct Sound Out

Description

Microsoft's DirectSound is a digital audio protocol specified which provides the interface between

applications and the sound card. The DirectSound Out primitive provides a mono connection for the

Left and Right channels of the sound devices on your computer.

The Direct Sound Out and ASIO Out components provide the only way to send audio signals to your

sound card. You therefore must have at least one of these connected up to your schematic if you want

to hear any sound. Note that only one Direct Sound Out component is allowed in your schematic.

Connectors

Inputs Type Outputs Type

Left audio channel Mono N/A

Right audio channel Mono

Other Features

The body of the component displays which output device is currently being used. All devices

supporting the DirectSound protocol are listed so to select a different one just click on it.

To deselect a device (and therefore switch Direct Sound output off) simply click on it again.

- 93 -

CHAPTER 2

Divide

Description

This component divides the first (top) value by the second one.

The component has template connectors which means it can be used with multiple data types

including Floats, Ints and Float/Int arrays. You can right-click on the connectors at any time to change

the type.

Connectors

Inputs Type Outputs Type

Input 1 Template Division of inputs Template

Input 2 Template

- 94 -

COMPONENTS

Double Round Nearest

Description

This component converts Double Stream values to the nearest integer value.

Double Stream is similar to standard Float Stream except that it works at double the precision. It is

particularly useful for counters.

Connectors

Inputs Type Outputs Type

Input signal Double Stream Rounded output Double Stream

- 95 -

CHAPTER 2

Double Stream Add

Description

This component adds two Double Stream values together.

Double Stream is similar to standard Float Stream except that it works at double the precision. It is

particularly useful for counters.

Connectors

Inputs Type Outputs Type

Input signal 1 Double Stream Sum of inputs Double Stream

Input signal 2 Double Stream

- 96 -

COMPONENTS

Double Stream Multiply

Description

This component multiplies two Double Stream values together.

Double Stream is similar to standard Float Stream except that it works at double the precision. It is

particularly useful for counters.

Connectors

Inputs Type Outputs Type

Input signal 1 Double Stream Product of inputs Double Stream

Input signal 2 Double Stream

- 97 -

CHAPTER 2

Double Stream Subtract

Description

This component subtracts two Double Stream values from one another.

Double Stream is similar to standard Float Stream except that it works at double the precision. It is

particularly useful for counters.

Connectors

Inputs Type Outputs Type

Input signal 1 Double Stream Input 1 minus Input 2 Double Stream

Input signal 2 Double Stream

- 98 -

COMPONENTS

Double to Stream

Description

This component converts a Double Stream to a standard Stream.

Double Stream is similar to standard Float Stream except that it works at double the precision. It is

particularly useful for counters.

Connectors

Inputs Type Outputs Type

Double Stream Double Stream Double Stream converted to

Float Stream

Stream

- 99 -

CHAPTER 2

Draw Loop

Description

The Draw Loop component runs a loop between two float values causing a draw at the View output at

each stage. You can use this to draw several similar items in one go. For example, you can draw a list

of strings using the current loop value as an input to change position. The Step LFO module in the

toolbox uses this to draw the bars for display.

Connectors

Inputs Type Outputs Type

View to draw on View The same View as the input,

but anything connected here

is drawn for every iteration

of the loop

View

Start value for the loop Float Current loop value Float

Step increment value for the

loop

Float

End value for the loop Float

- 100 -

COMPONENTS

Draw to Bitmap

Description

This component allows you to draw onto a bitmap. By connecting GUI components to the View output

you can draw onto a copy of a source bitmap and get the result at the Bitmap output.

Connectors

Inputs Type Outputs Type

Source bitmap Bitmap The modified bitmap Bitmap

The grid step to use when

drawing onto the bitmap

Float View that represents the

bitmap canvass. Connect

GUI components here

View

Trigger to initiate the

drawing

Trigger Trigger when drawing is

complete

Trigger

- 101 -

CHAPTER 2

Drop List Control

Description

The Drop List Control defines a drop list of selectable values. The drop-list is displayed when you send

a trigger to the Open input. The drop-list closes when you select an item from the list.

You can decide whether to check an item in the list, usually to show the current selection. You can also

choose the style of the list when there are too many items to show vertically on the screen. The default

(if you leave the style blank) is “AutoCol” this will split the list into vertical columns. You can also

specify the exact number of items per column manually by using a number for the style.

The other option for style is “Scroll” - this will maintain a single column but with scroll buttons at either

end to scroll through the list.

For a good example of how the Drop List control works have a look inside the Selector control module

in the toolbox.

Connectors

Inputs Type Outputs Type

View on which to display the

list when it opens

View The last selected list item String

The desired x-coordinate of

the top-left corner of the list

when it is opened

Float The index of the selected list

item

Int

- 102 -

COMPONENTS

The desired y-coordinate of

the top-left corner of the list

when it is opened

Float The number of entries in the

list

Int

Comma separated list of

entries

String

Trigger to open the drop-list Trigger

Index of item to show as

checked

Int

The drop-list style, either

“AutoCol”,“Scroll” or a

number representing the

maximum number of items

per column. If no value is

supplied then “AutoCol” is

assumed

String

- 103 -

CHAPTER 2

DSP Code

Description

The DSP Code component allows you to write algorithms using a small set of instructions and use it in

your schematic. There are special commands for creating inputs and outputs so that you can connect

the Assembler component to other components.

There is a whole chapter dedicated to the DSP Code component in the main user guide.

Connectors

Inputs Type Outputs Type

N/A Translated x86 assembler

code – attach to a Text

component to view

String

- 104 -

COMPONENTS

Edit Control

Description

Creates an edit control on a view. You can define the size, position, font, text and background colours.

You can also specify whether the edit control is single line (for input fields) or multiline (for entering text

with line breaks).

Connectors

Inputs Type Outputs Type

View to display the edit

control on

View The same View as the input,

but anything connected here

is drawn on top

View

Area defining the position

and size of the edit control

Area The string defined by the

control

String

Font to use for the text Font Flag showing True when the

control is in edit mode and

False otherwise

Boolean

Text colour Colour

Background colour Colour

Sets the text in the control String

- 105 -

CHAPTER 2

Only send a trigger after

editing is complete

Boolean

Forces the Edit control to

start editing without the need

for a mouse click

Trigger

Allows you to make the Edit

multi line like a text editor

Boolean

- 106 -

COMPONENTS

Ellipse

Description

Draws an ellipse on a View.

Connectors

Inputs Type Outputs Type

View to display the ellipse on View The same View as the input,

but anything connected here

is drawn on top

View

Area defining the position

and size of the ellipse

Area

Pen defining the outline

colour, thickness and style

Pen

- 107 -

CHAPTER 2

Envelope Control

Description

The envelope control component is used for creating your own custom envelopes. The key to this is

the stage output which tells you what the voice is doing. The stages are:

0 - Off Voice not active or envelope stopped

1 - On Note on, voice triggered or retriggered (stage 1 only occurs for one sample)

3 - Execute Note held on, voice active, envelope executing

4 - Release Note off, voice still active, envelope releasing

If you have the Hold input set to true the voice will hold after note off until you send a TRUE value to

the End input at which point the voice will be deleted.

So just running through it: transition to stage 1 tells you to (re)start the envelope and you continue

executing until the stage moves to 4 (if Hold is true). At this point you execute the release part of your

envelope. When complete send a TRUE value to the End input.

Another benefit of this component is that it allows you to hard sync automatically without having to

connect to the retrigger from the MIDI to Poly module. This is exactly what happens in the Wave Player

module to make the wave restart from the beginning on retrigger.

Connectors

Inputs Type Outputs Type

End the envelope (when in

release stage)

Stream Boolean Current stage

(Off=0,On=1,Execute=3,

Release=4)

Stream

Whether to Hold for release

stage after note off

Boolean

- 108 -

COMPONENTS

Equals

Description

This component determines whether the two input values are equivalent and sends a True or False

result to the output.

The component has template connectors which means it can be used with multiple data types

including Floats, Ints, Strings and Float/Int/String arrays. You can right-click on the connectors at any

time to change the type.

Connectors

Inputs Type Outputs Type

First value to compare Template Whether the two input

values are exactly equal

Boolean

Second value to compare Template

- 109 -

CHAPTER 2

EXE Background Colour

Description

Use this in an exported exe to set the default background colour. This colour is also used for areas

outside of the main GUI when running in full screen mode

Connectors

Inputs Type Outputs Type

The colour you want to use Colour

- 110 -

COMPONENTS

EXE Full Screen

Description

Use this in an exported exe to toggle between full screen and windowed modes . This could be linked

to a button on the GUI or in response to some outside event or timer.

Connectors

Inputs Type Outputs Type

Trigger to toggle full screen Trigger

- 111 -

CHAPTER 2

EXE Quit

Description

Use this in an exported exe to close the application. This could be a button on the GUI or in response

to some outside event or timer.

Connectors

Inputs Type Outputs Type

Trigger to close the exe Trigger

- 112 -

COMPONENTS

EXE Zoom

Description

Use this in an exported exe to set the zoom level. You may want to have a fixed level or change in

response to some user input.

You can only pick from discrete zoom levels. The options are as follows:

0 25% Zoom 4 150% Zoom

1 50% Zoom 5 200% Zoom

2 75% Zoom 6 300% Zoom

3 100% Zoom 7 Fit to Screen (when in full screen mode)

Connectors

Inputs Type Outputs Type

Zoom level option Int N/A

Set the zoom level Trigger

- 113 -

CHAPTER 2

FFT

Description

This component performs a fast fourier transform using arrays of Real and Imaginary numbers.

Connectors

Inputs Type Outputs Type

Array of Real parts Float Array Array of transformed Real

parts

Float Array

Array of Imaginary parts Float Array Array of transformed

Imaginary parts

Float Array

- 114 -

COMPONENTS

File Dialog

Description

This component allows you to display the standard Windows file dialog box. You can choose whether

the dialog is for saving or loading. You also have access to file filters and extensions.

The File Filters input is used to determine which file types to display in the dialog. Each filter is made

from two strings. The first describes the filter. For example “Text Files (*.txt)”, you can use whatever

description you like. The second string is the file extension and this must be of the format “*.extension”.

The two strings are separated by a vertical bar | . You can have multiple extensions but these must be

separated by a semicolon.

You can also have multiple filters and these must be separated by a vertical bar |. The completed filter

specification must be terminated with a double vertical line ||.

Examples

Text Files (*.txt)|*.txt||

Image Files (*.png;*.bmp;*.jpg;*.tiff)| *.png;*.bmp;*.jpg;*.tiff||

PNG Files (*.png)|*.png|Jpeg Files (*.jpg)|*.jpg||

- 115 -

CHAPTER 2

Connectors

Inputs Type Outputs Type

Trigger to open dialog Trigger Path to the selected file (if

any)

String

File filters String Trigger if OK was pressed Trigger

Type of dialog, 0=Save and

1=Load

Int Trigger if Cancel was

pressed

Trigger

Text to show on the title bar

of the dialog

String

Path to folder to start in String

Default filename to use

(including the file extension)

String

Default file extension to

append to filenames that are

specified without an

extension (include the dot)

String

- 116 -

COMPONENTS

Filled Ellipse

Description

Draws a filled ellipse on a View.

Connectors

Inputs Type Outputs Type

View to display the ellipse on View The same View as the input,

but anything connected here

is drawn on top

View

Area defining the position

and size of the ellipse

Area

Colour to fill the ellipse with Colour

- 117 -

CHAPTER 2

Filled Rectangle

Description

Draws a filled rectangle on a View.

Connectors

Inputs Type Outputs Type

View to display the rectangle

on

View The same View as the input,

but anything connected here

is drawn on top

View

Area defining the position

and size of the rectangle

Area

Colour to fill the rectangle

with

Colour

- 118 -

COMPONENTS

Filled Round Rectangle

Description

Draws a filled round rectangle on a View, that is a rectangle with rounded corners.

Connectors

Inputs Type Outputs Type

View to display the rectangle

on

View The same View as the input,

but anything connected here

is drawn on top

View

Area defining the position

and size of the rectangle

Area

Colour to fill the rectangle

with

Colour

Corner size in grid squares.

A value of 1 will give you a

corner that has an effective

radius of 1 grid square

Float

- 119 -

CHAPTER 2

Filter Coefficients

Description

Calculates the coefficients used for a low-pass biquad IIR filter using 2 poles, 2 zeros and 12dB per

octave from the cutoff frequency and resonance. Use this in the Biquad Filter Coeff component.

Connectors

Inputs Type Outputs Type

Normalised cutoff frequency

(0-1) where 1 is half

sampling rate

Stream a0 Stream

Resonance Stream a1 Stream

a2 Stream

b1 Stream

b2 Stream

- 120 -

COMPONENTS

Find Files

Description

The Find Files component will look for files matching a certain specification inside a folder on your hard

disk. The Filter input specifies the folder followed by a filename. The filename can contain the *

character to specify a wildcard in which case multiple matching files may be found.

Example Filters

C:\Program Files\Outsim\FlowStone\ *.dll

C:\ data*.txt

C:\Files\Downloads\picture.png

The component will return an array of filenames that match the filter. The number of files found is also

given together with a trigger when the operation is complete.

Connectors

Inputs Type Outputs

Filter specifying what file(s)

to look for

String Array of filenames that

match the filter

String Array

Trigger to start finding

matching files

Trigger Number of matching files

found

Int

Trigger when the operation

is complete

Trigger

- 121 -

CHAPTER 2

Float

Description

The Float component allows you to enter and view floating point data. To enter a value just click on the

main body of the component and type it in. Press Return, Tab or just click away to finish editing.

You can also change the value using the scroll strip to the right of the component. To use the scroll

strip click on it and hold the mouse down. Keeping the mouse down, move up to increase the value

and move down to decrease the value.

The increment is proportional to the amount you move your mouse to the left or right of the scroll strip.

Moving to the left decreases the increment, moving to the right increases the increment. To maintain

the current increment independent of the horizontal position of the mouse hold SHIFT as you move. To

move in round number intervals hold CTRL (eg 1000, 100, 10, 1, 0.1, 0.01 etc. depending on the

current increments size).

You can copy and paste data using the standard accelerator key combinations (CTRL+C,X and V).

The component can be resized horizontally for viewing larger numbers.

- 122 -

COMPONENTS

You can also change the type by right-clicking on the input or output. A pop-up menu will appear as

shown below.

Simply click on the type you want to change to.

Connectors

Inputs Type Outputs Type

Set the value Float The current stored value Float

- 123 -

CHAPTER 2

Float Abs

Description

This component calculates the absolute value of the input or in other words the magnitude ignoring the

sign.

Connectors

Inputs Type Outputs Type

Float value Float Absolute value Float

- 124 -

COMPONENTS

Float Array

Description

The Float Array component creates an array of floating point numbers by setting, inserting and deleting

individual elements in the array. You define the index of the element you want to refer to and if needed

the value you want to set or insert at that index. The array will resize automatically to accommodate

elements set or inserted at indexes higher than the current size of the array.

Connectors

Inputs Type Outputs

Value to use Float Array of floats Float Array

The reference index used for

set, insert and delete

Int Trigger sent when the array

has been changed

Trigger

Set the value at the index Trigger The number of array entries Int

Clear the array Trigger

Array to make this equal to Float Array

Insert the value at the index Trigger

Delete the entry at the index Trigger

- 125 -

CHAPTER 2

Float Array Abs

Description

The Float Array Abs component will replace each value in a float array with its absolute value .

Connectors

Inputs Type Outputs Type

The source array Float Array Array of absolute values Float Array

- 126 -

COMPONENTS

Float Array Draw

Description

The Float Array Draw component is used when you have a mouse drag operation that you need to

map onto a float array. The advantage it has over using just a standard float array is that it interpolates

between values when you are dragging. Without such interpolation you can get ‘missed’ points during

fast drags as the mouse drag resolution decreases.

Connectors

Inputs Type Outputs Type

Number of points in the float

array

Int The float array Float Array

Index of the point to be

updated

Int

Value to change to Float

True if a drag operation is in

progress, False otherwise

Boolean

Trigger to set the value at

the current index

Trigger

Float array to replace the

whole array with

Float Array

- 127 -

CHAPTER 2

Float Array Get At

Description

The Float Array Get At component extracts a particular entry from a Float Array.

Connectors

Inputs Type Outputs

The source array of floating

point numbers

Float Array The number at the given

index

Float

The index to get the value

for

Int Trigger sent when the value

has been extracted

Trigger

Trigger to get the value Trigger

- 128 -

COMPONENTS

Float Array Resample

Description

This component allows you to up or down sample a float array to an alternative size.

Connectors

Inputs Type Outputs Type

Source Float Array Float Array Resampled Float Array Float Array

Required size of the

resampled array

Int

Interpolation option

(0=nearest value, 1=linear,

2=cubic)

Int

Whether to smooth the end

points so that they loop

round nicely from end to

start (useful for looping

samples)

Boolean

- 129 -

CHAPTER 2

Float Array Sample and Hold

Description

When a trigger is received this component will take a sample of the float array and hold it at the output

until the next trigger is received.

Connectors

Inputs Type Outputs Type

Source Float Array Float Array Last held sample of the input

Float Array

Float Array

Trigger to take a sample Trigger

- 130 -

COMPONENTS

Float Array Section

Description

This component splits off a section of a Float Array. The section is defined by a start point and a

section size.

Connectors

Inputs Type Outputs Type

Source Float Array Float Array Section of Float Array Float Array

Number of points in the

section

Int

Index of the first point in the

array at which the section

should start (starting at zero)

Int

- 131 -

CHAPTER 2

Float Array to Mem

Description

The Float Array to Mem component converts an array of floating point numbers to a memory buffer.

This can then be read at sampling rate by the Wave Read component.

Connectors

Inputs Type Outputs

Array of floating point

numbers

Float Array Memory buffer Mem

- 132 -

COMPONENTS

Float Array to Poly

Description

Creates a Poly signal which consists of values extracted from a float array. The values are extracted

using a PolyInt signal as an index into the array.

Connectors

Inputs Type Outputs Type

Array of floats to use for

generating the Poly signal

Float Array Generated poly signal Poly

PolyInt signal that defines

which array value to use for

each sample in the

generated signal

PolyInt

- 133 -

CHAPTER 2

Float Inverse

Description

This component calculates the inverse sign of the input value, effectively it multiplies the input by -1.

Connectors

Inputs Type Outputs Type

Input value Float Inverse of the input Float

- 134 -

COMPONENTS

Float Invert

Description

This component inverts the input value, effectively dividing the input into 1.

Connectors

Inputs Type Outputs Type

Input value Float Inverted input value Float

- 135 -

CHAPTER 2

Float Power

Description

The Float Power primitive calculates the result of the first input raised to the power of the second input.

Connectors

Inputs Type Outputs Type

Base value Float Base value to the power of

exponent value

Float

Exponent value Float

- 136 -

COMPONENTS

Float Queue

Description

The Float Queue component stores float values in a queue. Values are pushed in and popped out on a

first in, first out basis (FIFO).

You can get the queue in Float Array form from the third output. The array contains items in the order

they would be popped out – so the first item is at the front of the queue, the second item is next and so

on.

Connectors

Inputs Type Outputs

Next number to be pushed

onto the queue

Float The number at the front of

the queue

Float

Trigger to push the next

number onto the queue

Trigger Number of entries in the

queue

Int

Trigger to pop the next

number off the queue

Trigger The queue as a float array Float Array

Trigger to clear all entries

from the queue

Trigger

- 137 -

CHAPTER 2

Float Stack

Description

The Float Stack component stores float values in a stack. Values are pushed in and popped out on a

last in, first out basis (LIFO).

You can get the stack in Float Array form from the third output. The array contains items in the order

they would be popped out – so the first item is at the top of the stack, the second item is next and so

on.

Connectors

Inputs Type Outputs

Next number to be pushed

onto the stack

Float The number at the top of the

stack

Float

Trigger to push the next

number onto the stack

Trigger Number of entries in the

stack

Int

Trigger to pop the next

number off the stack

Trigger Stack represented as an

array of floats

Float Array

Trigger to clear all entries

from the stack

Trigger

- 138 -

COMPONENTS

Float to Area

Description

The Float to Area component constructs an Area from X, Y, Width and Height components.

Connectors

Inputs Type Outputs Type

X component Float Corresponding Area Area

Y component Float

Width component Float

Height component Float

- 139 -

CHAPTER 2

FlowBoard

Description

This primitive allows you to send and receive data to and from the DSP Robotics FlowBoard DAQ.

Once you have the board connected to your PC you need to start the component by sending a trigger

to the first input. The 'On' output will return True if a connection has been established (False

otherwise).

The board has 16 digital outputs, 16 digital inputs and 8 analog inputs. These are mirrored on the

component. The 16 boolean inputs will send data out through the 16 digital outputs. The 8 integer

outputs receive data from the 8 analog inputs. The 16 boolean outputs receive data from the 16 digital

inputs.

The 8 Int outputs are in the range 0-1023.

- 140 -

COMPONENTS

Connectors

Inputs Type Outputs Type

Trigger to start the

component

Trigger Whether the board is

connected and on

Boolean

16 x inputs to change the

state of the 16 digital outputs

on the board

Boolean 16 x outputs receiving the

state of the 16 digital inputs

on the board

Boolean

8 x outputs receiving analog

data from the 8 analog

inputs on the board (range

0-1023)

Int

Connector for attaching

components that allow you

to control some of the

satellite boards, the GSM

board being one such

example.

Int

- 141 -

CHAPTER 2

FlowBoard GSM

Description

This primitive allows you to control a FlowBoard GSM Board. The GSM Board hardware must be

connected to the Modem connector on your FlowBoard. In Flowstone you then need a FlowBoard

component and a FlowBoard GSM component in your schematic. You then need to link these

components together by connecting from the FlowBoard output on the FlowBoard component (the very

last output) to the FlowBoard input on the FlowBoard GSM component (the very first one).

Once the components are connected you then need to start the FlowBoard component by sending a

trigger to the first input. The 'On' output on the FlowBoard component will return True if a connection

has been established (False otherwise). The Board output on the FlowBoard GSM component will

return 1 if the FlowBoard is detected and 2 if both the FlowBoard and the GSM Board are detected.

Signal strength is shown at the Signal output. This is in the range 0-30. A value of -1 is output if the

board is searching for the network or if the board is not connected.

To send a message you need to provide message text and a phone number at the Message and

Number inputs. Trigger the Send input to send the message.

The Status output indicates the message send state. A value of 0 indicates that the last message has

been sent successfully. A value of 1 indicates sending in progress. A value of 2 is output if the last

message failed to send.

The Count output shows how many messages are waiting to be sent (including any message currently

being sent).

Received messages will automatically appear at the Messages and Numbers outputs. These two

string arrays are aligned such that the first number corresponds to the first message and so on.

You can use the Pop input to pop the oldest message off the top of the arrays. The Clear input will

clear all received messages.

- 142 -

COMPONENTS

Connectors

Inputs Type Outputs Type

Connection to FlowBoard

component

Int The state of the board.

1=flowboard detected,

2=flowboard and GSM

detected. 0=no board

detected

Int

The text for the message

you want to send (160

characters max)

String The network signal strength.

This is in the range 0-30. A

value of -1 indicates

searching for network or no

connection

Int

The telephone number for

the recipient of the message

String The current send status.

0=last message succeeded,

1=sending in progress.

2=last message failed to

send.

Int

Trigger to send the message Trigger The number of messages

waiting to be sent

Int

Pop the oldest received

message off the received

messages list

Trigger Array of messages received StringArray

Clear all received messages

from the list

Trigger Array of numbers

corresponding to messages

received

StringArray

- 143 -

CHAPTER 2

Font

Description

Creates a Font from a typeface, font size and style. The typeface is the name of the font face e.g. Arial

or Tahoma. Size is the height of the text in grid squares (it is not a point size).

Style can be any combination of the following strings (in any order):

normal, bold, italic, underline, strike

Examples

bolditalic, underlineboldstrike, italicunderline

You can leave the style parameter out and a regular style will be assumed.

Connectors

Inputs Type Outputs Type

Font typeface name (default

is Arial)

String The font Font

Font size in grid squares Float

Style (see Description

above)

String

- 144 -

COMPONENTS

Format String

Description

The Format String primitive applies standard C string formatting to a numeric string input. This is

particularly useful for making numeric data conform to user interface requirements such as displaying

a fixed number of decimal places.

The value input has String type but should be connected to either an Int or Float for the formatting to

work correctly.

The format specifications are defined here:

http://msdn.microsoft.com/en-us/library/kwwtf9ch(VS.71).aspx

Connectors

Inputs Type Outputs Type

The Float or Int that you

want to format

Float or Int The formatted string String

Format specification string String

- 145 -

http://msdn.microsoft.com/en-us/library/kwwtf9ch(VS.71).aspx

CHAPTER 2

Frame Sync

Description

This Frame Sync component sends an integer value precisely at the time each buffer of audio is

requested. The integer value is the number of samples that has been requested for the buffer.

For full details about how to use this see the section on Frames in the Ruby Component chapter of the

main user guide.

Connectors

Inputs Type Outputs Type

Size of the audio buffer Ruby Value

- 146 -

COMPONENTS

Frame to Mono

Description

This Frame to Mono component converts a Frame of samples back to Mono. It should be used in

conjunction with the Mono to Frame component in order to process Mono data via the Ruby

component.

It can also be used with the Frame Sync component. The Frame Sync will tell your Ruby component

when to send a frame and how many samples to send so that you stay exactly in sync with the Mono

stream.

For more information about this see the section on Frames in the Ruby Component chapter of the

main user guide.

Connectors

Inputs Type Outputs Type

Ruby Frame object with a

buffer of samples

Ruby Value Mono signal Mono

- 147 -

CHAPTER 2

Full Screen

Description

This primitive is only used for exported exes and allows you to control full screen mode from the front

panel by connecting a GUI component like a toggle button to the trigger input.

Connectors

Inputs Type Outputs Type

Toggles between full screen

mode in exported exe’s

Trigger N/A

- 148 -

COMPONENTS

Get Pixel

Description

Gets the colour of a pixel at a particular point in a bitmap.

Connectors

Inputs Type Outputs Type

Source bitmap Bitmap Colour of the pixel at (x,y) Colour

The x-coordinate of the

required pixel

Int

The y-coordinate of the

required pixel

Int

Trigger to get the colour Trigger

- 149 -

CHAPTER 2

Graph Dots

Description

Draws a set of points using a dot for each point. The Float Array input supplies the y-coordinates.

These are assumed to be in the range 0 to 1 (–1 to 1 if the graph is centred on zero). This means that

you may need to use the Norm component if you want to make sure that your values are all visible.

The x-coordinates are automatically generated and are equally spaced across the horizontal axis.

Connectors

Inputs Type Outputs Type

View to draw onto View The same View as the input,

but anything connected here

is drawn on top

View

The array of y-coordinates Float Array

The area of the view that the

graph will be drawn into

Area

The dot colour Colour

Radius of the dots (grid sq.) Float

True if the graph is centred

on zero, False otherwise

Boolean

- 150 -

COMPONENTS

Graph FFT

Description

The Graph FFT primitive performs a Fast Fourier Transform (FFT) on an array of float data. The

outputs are the magnitude and phase outputs from the FFT calculation.

Connectors

Inputs Type Outputs Type

Source data (usually from a

wave file or a snapshot of a

signal)

Float Array Magnitude component of the

calculation

Float Array

Phase component of the

calculation

Float Array

- 151 -

CHAPTER 2

Graph Lines

Description

Draws a line through a set of points. The Float Array input supplies the y-coordinates. These are

assumed to be in the range 0 to 1 (–1 to 1 if the graph is centred on zero). This means that you may

need to use the Norm component if you want to make sure that your values are all visible. The x-

coordinates are automatically generated and are equally spaced across the horizontal axis unless you

set the Log input to True in which case the x-coordinates will be logged.

By default the line drawn through the points is made from straight line segments. You can also choose

to draw a best fit curve through the points by setting the Curve input to True.

- 152 -

COMPONENTS

Connectors

Inputs Type Outputs Type

View to draw onto View The same View as the input,

but anything connected here

is drawn on top

View

The array of y-coordinates Float Array

The area of the view that the

graph will be drawn into

Area

The pen defining the colour,

thickness and style of the

lines

Pen

Radius of the dots (grid sq.) Float

True if the graph is centred

on zero, False otherwise

Boolean

True if you want to log the

x-axis, False otherwise

Boolean

True if you want a curved

line, False otherwise

Boolean

- 153 -

CHAPTER 2

Graph to Point Array

Description

The Graph to Point Array component creates an array of points from two float arrays. Currently the

only component that uses a Point Array is the Point Array Lines component and so the only use of this

component is in creating custom graphs.

Connectors

Inputs Type Outputs Type

Array of x values Float Array Array of points constructed

from the x and y values

Point Array

Array of y values Float Array

- 154 -

COMPONENTS

Greater Than

Description

This component compares the two inputs and returns a Boolean based on whether the first input is

greater than the second input.

The component has template connectors which means it can be used with multiple data types

including Floats, Ints, Strings and Float/Int/String arrays. You can right-click on the connectors at any

time to change the type.

Connectors

Inputs Type Outputs Type

Input 1 Template Whether input 1 is greater

than input 2

Boolean

Input 2 Template

- 155 -

CHAPTER 2

Greater Than or Equal To

Description

This component compares the two inputs and returns a Boolean based on whether the first input is

greater than or equal to the second input.

The component has template connectors which means it can be used with multiple data types

including Floats, Ints, Strings and Float/Int/String arrays. You can right-click on the connectors at any

time to change the type.

Connectors

Inputs Type Outputs Type

Input 1 Template Whether input 1 is greater

than or equal to input 2

Boolean

Input 2 Template

- 156 -

COMPONENTS

Grid to Pixel

Description

The Grid to Pixel components convert values in Grid Squares to values in Pixels. There are two

versions, one for Floats and one for Areas.

Connectors

Inputs Type Outputs Type

Float or Area in grid square

units

Float/Area Float or Area in pixel units Float/Area

- 157 -

CHAPTER 2

Haar Face Detect

Description

The Haar Face Detect component uses the Haar algorithm to find a face in an image.

The component requires a Haar cascade which is an XML file that defines the classification criteria

used in the detection process. You can download such files from the DSP Robotics support area.

Optional input parameters include a threshold for feature size, whether to apply Canny edge detection

pruning, whether to look for a single object and an option to perform only a rough calculation. All of

these serve to speed up the detection process.

Connectors

Inputs Type Outputs Type

The source image you want

to process

Bitmap The bounding box of the

largest detected face

Area

Path to the XML

classification file

String The number of detections Int

The minimum feature size in

pixels

Int

Apply Canny pruning Boolean

Look for a single object Boolean

Rough calculation only Boolean

- 158 -

COMPONENTS

Hard Disk Serial

Description

Gets the serial number of the first hard disk attached to the host PC.

Connectors

Inputs Type Outputs Type

Trigger to get the serial

number

Trigger Serial number of hard disk String

- 159 -

CHAPTER 2

Hex to Binary

Description

Converts a string of hex to a string of binary. Each byte of hex is converted to 8 bit binary.

For example, the hex string “2FBB” is converted to “0010111110111011”.

Connectors

Inputs Type Outputs Type

String of hex String String of binary String

- 160 -

COMPONENTS

Hex to Int

Description

Calculates the decimal equivalent of a hexadecimal number.

Connectors

Inputs Type Outputs Type

Hex String Integer equivalent Int

- 161 -

CHAPTER 2

Hex to String

Description

Converts a string of hex to a string of characters. Each byte of hex is converted to an Ascii character.

For example, the hex string “68656C6C6F” is converted to the character string “hello”.

Connectors

Inputs Type Outputs Type

String of hex String String of characters String

- 162 -

COMPONENTS

HSV to Colour

Description

The HSV to Colour component creates a colour from Hue, Saturation and Value components. You can

choose whether to specify the HSV as a comma separated string or as separate integer components.

Connectors

Inputs Type Outputs Type

HSV as a comma separated

string.

String Corresponding Colour Colour

Hue component (0-360) Int

Saturation component (0-

255)

Int

Value component (0-255) Int

- 163 -

CHAPTER 2

HTTP Post

Description

The HTTP Post component allows you to send data to and receive data from a web server using the

HTTP post request method.

You specify the server URL at the URL input – for example, http://www.dsprobotics.com

You then specify the page on the server e.g. scripts\myphp.php

The Names and Values array inputs allow you to specify the key-value pair data that you want to send

to the page. The first entry in the Names array is paired with the first value in the Values array. So for

example, “forename=Fred&age=30” would have forename and age in the Names array and Fred and

30 in the Values array.

Trigger the Submit input to send the post request. The Ok output will show true if it succeeded. Any

data returned can be accessed from the Data output

Connectors

Inputs Type Outputs Type

Address of the web server String Result of the last Colour

Name of the page on the

server

String Any data returned from the

server

String

Array of data item names String Array

Array of data item values String Array

Trigger to execute the post

- 164 -

http://www.dsprobotics.com/

COMPONENTS

iFFT

Description

This component performs an inverse fast fourier transform on arrays of Real and Imaginary numbers.

Connectors

Inputs Type Outputs Type

Array of Real parts Float Array Array of transformed Real

parts

Float Array

Array of Imaginary parts Float Array Array of transformed

Imaginary parts

Float Array

- 165 -

CHAPTER 2

If Then Else

Description

This component implements an if/then/else conditional statement. In a language like C this would be

written as follows:

if(control > condition1)

{

// Then output for condition1

}

else if(control > condition2)

{

// Then output for condition2

}

…

else

{

// Else output

}

For this component the If input defines the control variable this could be an int, float or string. You

specify which of these using the Type input (either “int”,”float” or “string”).

The 'Op' input defines the comparison operation, one of “=”,“<=”,”<”,”>' or ”>=”. If left blank then “=” will

be assumed.

The conditions and corresponding 'then outputs' are provided as two string arrays. However, these can

contain ints, floats or strings. Their treatment in the comparison process is determined by the Type

input.

- 166 -

COMPONENTS

Connectors

Inputs Type Outputs Type

The data type to be used,

“int”,”float” or “string”

String The result of the comparison String

The control variable String

The comparison operation,

“=”,“<=”,”<”,”>' or ”>=”

String

The condition values to use

in the comparison

String Array

The output for each

condition should it be met

String Array

The output should no

conditions be met

String

- 167 -

CHAPTER 2

Image Download

Description

This component will download an image from a web server using HTTP GET.

This is useful for accessing web based cameras and such like.

You do is provide a valid URL for the image and then trigger the Download input and the image will be

downloaded and output as a bitmap.

Connectors

Inputs Type Outputs Type

URL of the image file you

want to download

String The downloaded image Bitmap

Trigger to download the

image

Trigger

- 168 -

COMPONENTS

Impulse

Description

Generates an impulse signal. This has a value of one as the first sample and zero for all others. Use

this to test the frequency response of a filter.

Connectors

Inputs Type Outputs Type

N/A Impulse signal Stream

- 169 -

CHAPTER 2

Index Selector

Description

The Index Selector component is used to select between a list of string values. You supply these as a

comma separated string or using a Text component. The body of the component changes to show

each string as an option. You can click on these options to select one. The selected string and index

will be sent to the outputs.

The main use of the Index Selector is to provide a mechanism for creating a drop list of options on a

property panel (see the Properties section in the main user guide for more information).

- 170 -

COMPONENTS

Connectors

Inputs Type Outputs Type

Set of option strings String Index of current selection

(zero based)

Int

Whether to order the options

in ascending alphabetical

order

Boolean The currently selected

option string

String

Set the current selection String

- 171 -

CHAPTER 2

Int

Description

The Int component allows you to enter and view integer data. To enter an integer just click on the main

body of the component and type in a number. Press Return, Tab or just click away to finish editing.

You can also change the value using the scroll strip to the right of the component. To use the scroll

strip click on it and hold the mouse down. Keeping the mouse down, move up to increase the value

and move down to decrease the value.

The increment is proportional to the amount you move your mouse to the right of the scroll strip. To

maintain the current increment independent of the horizontal position of the mouse hold SHIFT as you

move. To move in round number intervals hold CTRL (eg 1, 10, 100, 1000 etc. depending on the

current increments size).

You can copy and paste data using the standard accelerator key combinations (CTRL+C,X and V).

The component can be resized horizontally for viewing larger numbers.

- 172 -

COMPONENTS

You can also change the type by right-clicking on the input or output. A pop-up menu will appear as

shown below.

Simply click on the type you want to change to.

Connectors

Inputs Type Outputs Type

Set the value Int The current stored value Int

- 173 -

CHAPTER 2

Int Abs

Description

This component calculates the absolute value of the input or in other words the magnitude ignoring the

sign.

Connectors

Inputs Type Outputs Type

Float value Int Absolute value Int

- 174 -

COMPONENTS

Int And

Description

Calculates the bitwise AND of two int values.

Connectors

Inputs Type Outputs Type

First value Int AND value Int

Second value Int

- 175 -

CHAPTER 2

Int Array

Description

The Int Array component creates an array of integers by setting, inserting and deleting individual

elements in the array. You define the index of the element you want to refer to and if needed the value

you want to set or insert at that index. The array will resize automatically to accommodate elements

set or inserted at indexes higher than the current size of the array.

Connectors

Inputs Type Outputs

Value to use Int Array of ints Int Array

The reference index used for

set, insert and delete

Int Trigger sent when the array

has been changed

Trigger

Set the value at the index Trigger The number of array entries Int

Clear the array Trigger

Array to make this equal to Int Array

Insert the value at the index Trigger

Delete the entry at the index Trigger

- 176 -

COMPONENTS

Int Array Get At

Description

The Int Array Get At component extracts a particular entry from a Int Array.

Connectors

Inputs Type Outputs Type

The source array of integers Int Array The number at the given

index

Int

The index to get the value

for

Int Trigger sent when the value

has been extracted

Trigger

Trigger to get the value Trigger

- 177 -

CHAPTER 2

Int Array Sample and Hold

Description

When a trigger is received this component will take a sample of the int array and hold it at the output

until the next trigger is received.

Connectors

Inputs Type Outputs Type

Source Int Array Int Array Last held sample of the input

Int Array

Int Array

Trigger to take a sample Trigger

- 178 -

COMPONENTS

Int Array to Mem

Description

The Int Array to Mem component converts an array of integers to a memory buffer. This can then be

read at sampling rate by the Wave Read component.

Connectors

Inputs Type Outputs Type

Array of integers Int Array Memory buffer Mem

- 179 -

CHAPTER 2

Int Inverse

Description

This component calculates the inverse sign of the input value, effectively it multiplies the input by -1.

Connectors

Inputs Type Outputs Type

Input value Int Inverse of the input Int

- 180 -

COMPONENTS

Int Loop

Description

The Int Loop component cycles a fixed number of times sending a trigger on each iteration. You

specify how many times to iterate (N). By default the loop counter starts at zero and increments in unit

steps but you can start at any integer value you like.

To prevent hanging the loop is automatically limited to a maximum of 1000 iterations. You can bypass

this safety mechanism by setting the No Limit input to True.

Connectors

Inputs Type Outputs Type

Number of iterations Int The current iteration counter

value

Int

The start value for the

iteration counter

Int Trigger sent on each

iteration

Trigger

Trigger to start the loop Trigger Trigger sent when all the

iterations are complete

Trigger

False if the iterations are to

be limited to 1000

Boolean

- 181 -

CHAPTER 2

Int Modulus

Description

The Int Modulus primitive calculates the remainder when the first input is divided by the second input.

Connectors

Inputs Type Outputs Type

Integer value Int Modulus Int

Integer divisor Int

- 182 -

COMPONENTS

Int Not

Description

This component returns the bitwise NOT equivalent of the input value.

Connectors

Inputs Type Outputs Type

Int input Int Bitwise NOT value Int

- 183 -

CHAPTER 2

Int Or

Description

Calculates the bitwise OR of two int values.

Connectors

Inputs Type Outputs Type

First value Int OR value Int

Second value Int

- 184 -

COMPONENTS

Int Queue

Description

The Int Queue component stores int values in a queue. Values are pushed in and popped out on a first

in, first out basis (FIFO).

You can get the queue in Int Array form from the third output. The array contains items in the order

they would be popped out – so the first item is at the front of the queue, the second item is next and so

on.

Connectors

Inputs Type Outputs

Next number to be pushed

onto the queue

Float The number at the front of

the queue

Int

Trigger to push the next

number onto the queue

Trigger Number of entries in the

queue

Int

Trigger to pop the next

number off the queue

Trigger The queue as an int array Int Array

Trigger to clear all entries

from the queue

Trigger

- 185 -

CHAPTER 2

Int Shift Left

Description

Shifts the bits in the first input to the left by the number in the second input. This is equivalent to

multiplying the first input by 2 raised to the power of the second input.

Connectors

Inputs Type Outputs Type

Int value to shift left Int Shifted value Int

Number of bits to shift by Int

- 186 -

COMPONENTS

Int Shift Right

Description

Shifts the bits in the first input to the right by the number in the second input. This is equivalent to

dividing the first input by 2 raised to the power of the second input.

Connectors

Inputs Type Outputs Type

Int value to shift right Int Shifted value Int

Number of bits to shift by Int

- 187 -

CHAPTER 2

Int Stack

Description

The Int Stack component stores int values in a stack. Values are pushed in and popped out on a last

in, first out basis (LIFO).

You can get the stack in Int Array form from the third output. The array contains items in the order they

would be popped out – so the first item is at the top of the stack, the second item is next and so on.

Connectors

Inputs Type Outputs

Next number to be pushed

onto the stack

Float The number at the top of the

stack

Int

Trigger to push the next

number onto the stack

Trigger Number of entries in the

stack

Int

Trigger to pop the next

number off the stack

Trigger Stack represented as an

array of ints

Int Array

Trigger to clear all entries

from the stack

Trigger

- 188 -

COMPONENTS

Int to Colour

Description

The Int to Colour component creates a colour from an Alpha Transparency, Red, Green and Blue

components.

Connectors

Inputs Type Outputs Type

Alpha transparency (0-255)

where 255 is opaque and 0

is transparent

Int Corresponding Colour Colour

Red component (0-255) Int

Green component (0-255) Int

Blue component (0-255) Int

- 189 -

CHAPTER 2

Int to Hex

Description

Calculates the hexadecimal equivalent of a decimal number.

Connectors

Inputs Type Outputs Type

Decimal integer Int Hex equivalent String

- 190 -

COMPONENTS

Int Transition

Description

The Int Transition component monitors an input value and sends a trigger whenever the value moves

from one ‘From’ value to another ‘To’ value. The monitored input value must be at the ‘From’ value then

change to the ‘To’ when it next changes in order for the transition to be counted.

Connectors

Inputs Type Outputs

Value to be monitored for the

transition

Int Trigger sent when the

transition takes place

Trigger

The start value for the

transition

Int

The target value for the

transition

Int

- 191 -

CHAPTER 2

Int XOr

Description

Calculates the bitwise XOR of two int values.

Connectors

Inputs Type Outputs Type

First value Int XOR value Int

Second value Int

- 192 -

COMPONENTS

Is Key Pressed

Description

The Is key Pressed component is used to determine whether a particular key is currently pressed. The

key can be specified explicitly by it’s letter or you can use the Virtual Key Code.

For a complete list of virtual key codes see the following link (all codes are in hex and must be

converted to decimal before use):

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/winui/WinUI/WindowsUserInterface/UserInput/VirtualKeyCodes.asp

You can also use “CTRL”, “ALT” or “SHIFT” as shortcuts for those keys.

Note that this component does not send a trigger when the state of the key changes, it can only be

used for investigating the current state of a key – this happens whenever you trigger the Check input.

Connectors

Inputs Type Outputs Type

Letter or shortcut or virtual

key code

String Flag which will read True if

the key is currently pressed

and False otherwise

Boolean

Trigger to check the state of

the key

- 193 -

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/WinUI/WindowsUserInterface/UserInput/VirtualKeyCodes.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/WinUI/WindowsUserInterface/UserInput/VirtualKeyCodes.asp

CHAPTER 2

Is Playing

Description

When your VST is used within a host these components will tell you whether the host is playing or not.

There are two versions. The first version will output 1.0 when the host is playing and 0.0 otherwise and

should be used in Poly or Mono sections of your schematic.

The second version will output True when the host is playing and False otherwise. This is useful if you

want to respond to changes in the playing state by performing a one-off calculation or displaying visual

feedback. There are two output connectors, one Boolean for use in triggered sections of schematic

and another Ruby Value connector for use in Ruby components. The Ruby value is sent with precise

timing so if timing is an issue use this one.

Connectors

Inputs Type Outputs Type

N/A Whether the host is playing

or not

Stream or

Boolean + Ruby

Value

- 194 -

COMPONENTS

LabJackU3-HV

Description

This primitive allows you to control and receive data from a LabJack U3-HV data acquisition device.

Once you have the board connected to your PC you need to start the component by sending a trigger

to the first input. The 'On' output will return True if a connection has been established (False

otherwise).

If you have multiple boards connected to your PC then you should provide the address of the board

you want to connect to (the address is described in the U3 user guide).

The board has 16 flexible I/O pins and 4 fixed analog inputs. These are mirrored on the component.

Aside from the fixed analog inputs the I/O can be configured in various different ways to provide

- 195 -

CHAPTER 2

analog or digital inputs. If a pin is configured as an input then it will appear as an output connector on

the component so that you can retrieve its value and if it is an output then it will appear as an input

connector on the component so that you can set its value.

Flexible I/O

To set the I/O you need to supply a comma separated string or a newline separated list of strings in a

Text component to the I/O input. Each entry defines the format for a particular I/O pin. The entry starts

with two characters to determine the type and direction: "DI", "DO" or "AI" for digital in, out and analog

in respectively.

In the case of analog it defaults to single ended but you can set the negative channel with a minus

symbol followed by "SE","SP","VR" (single ended, special (0-3.6v or -10/+20v), internal voltage ref) or

the number of the pin you want to have as the negative channel.

To set the I/O you need to trigger the Set input below the I/O String input.

For example:

“DO4, DO5, AI6, AI7-SP, AI8-6” would make pins 4 and 5 digital outputs. Pins 6,7 and 8 would all be

analog inputs with 6 being single ended, 7 using the special 0-3.6v range and 8 using input 6 as a

negative channel.

Timers and Counters

The U3 has two timers and two counters that you can use. The timers and counters take over the

flexible I/O. You specify a start pin and then depending on the number of timers and counters you use

the pins from this start pin onwards will be used as timers or counters.

You can set the number of counters via the Counters input.

The timers are set using a configuration string. This is similar to the I/O specification in that it's a

comma separated list of parameters (or a newline separated list if you use a Text component).

The timer configuration string is in the form

{number of timers} {clock{/divisor}} {mode timer0} {value timer0} {{mode timer1} {value timer1}}

Clock values can be 4, 12 or 48 MHz and can include a divisor as well. There is also a 1 MHz clock

which must include a divisor. This gives 7 possible clock value strings:

1MHz/{divisor} , 4MHz/{divisor} , 12MHz/{divisor} , 48MHz/{divisor} , 4MHz , 12MHz or 48MHz.

Where {divisor} is an integer in the range 0-255.

Modes are strings and map onto the U3 modes exactly. They can be one of the following:

PWM16, PWM8, RISINGEDGES32, FALLINGEDGES32, DUTYCYCLE, FIRMCOUNTER,

FIRMCOUNTERDEBOUNCE, FREQOUT, QUAD, TIMERSTOP, SYSTIMERLOW, SYSTIMERHIGH,

SYSTIMERHIGH, RISINGEDGES16 or FALLINGEDGES16.

- 196 -

COMPONENTS

Some examples:

“1,48MHz,FREQOUT,128" – a single timer, clock 48MHz using the Frequency Output method

“2,4MHz/200,PWM16,32768,PWM8,16384" – two timers, clock 48MHz with divisor 200

To set the timer and counter configuration trigger the Set unput below the Counters input on the

component.

Because the timers and counters take over some of the flexible I/O pins you should see the outputs on

the component corresponding to those pins change to Integer connectors labeled TIM0, TIM1, CTR0

or CTR1.

Note that when using a clock with a divisor the LabJack U3 only allows you to use 1 counter.

The U3 has two DACs you can set the value of these using the DAC0 and DAC1 inputs on the

component.

You can reset a timer or counter by sending the appropriate index value to the Reset input. Send 1 or 2

to reset the 1st or 2nd timer and 3 or 4 to reset the 1st or 2nd counter.

For more information on the workings of the U3 see the U3 user guide.

- 197 -

CHAPTER 2

Connectors

Inputs Type Outputs Type

Trigger to start the

component

Trigger Whether the U3 is

connected and on

Boolean

Address of the board you

want to connect to (optional)

String The ambient temperature of

the board

Float

Configuration string to set

the I/O

String 4 x outputs used to deliver

the values of the FIO0-FIO3

analog inputs on the U3

Float

Trigger to set the I/O Trigger 12 x outputs used for the

FIO and EIO pins that are

setup as inputs on the U3

Boolean / Float

The start pin for any timers

or counters

Int 4 x outputs used for the CIO

pins that are setup as inputs

on the U3

Boolean

Configuration string for

setting up any timers

String

Number of counters required Int

Trigger to set up the timers

and counters

Trigger

Index of timer or counter you

want to reset (1=Timer1,

2=Timer2, 3=Counter1,

4=Counter2)

Set the value of DAC0 Float

Set the value of DAC1 Float

12 x inputs used for the FIO

and EIO pins that are setup

as outputs on the U3

Boolean

4 x inputs used for the CIO

pins that are setup as

outputs on the U3

Boolean

- 198 -

COMPONENTS

LabJackU3-LV

Description

This primitive allows you to control and receive data from a LabJack U3-LV data acquisition device.

Once you have the board connected to your PC you need to start the component by sending a trigger

to the first input. The 'On' output will return True if a connection has been established (False

otherwise).

If you have multiple boards connected to your PC then you should provide the address of the board

you want to connect to (the address is described in the U3 user guide).

- 199 -

CHAPTER 2

The board has 20 flexible I/O pins. These are mirrored on the component. The I/O can be configured in

various different ways to provide analog or digital inputs. If a pin is configured as an input then it will

appear as an output connector on the component so that you can retrieve its value and if it is an output

then it will appear as an input connector on the component so that you can set its value.

Flexible I/O

To set the I/O you need to supply a comma separated string or a newline separated list of strings in a

Text component to the I/O input. Each entry defines the format for a particular I/O pin. The entry starts

with two characters to determine the type and direction: "DI", "DO" or "AI" for digital in, out and analog

in respectively.

In the case of analog it defaults to single ended but you can set the negative channel with a minus

symbol followed by "SE","SP","VR" (single ended, special (0-3.6v or -10/+20v), internal voltage ref) or

the number of the pin you want to have as the negative channel.

To set the I/O you need to trigger the Set input below the I/O String input.

For example:

“DO4, DO5, AI6, AI7-SP, AI8-6” would make pins 4 and 5 digital outputs. Pins 6,7 and 8 would all be

analog inputs with 6 being single ended, 7 using the special 0-3.6v range and 8 using input 6 as a

negative channel.

Timers and Counters

The U3 has two timers and two counters that you can use. The timers and counters take over the

flexible I/O. You specify a start pin and then depending on the number of timers and counters you use

the pins from this start pin onwards will be used as timers or counters.

You can set the number of counters via the Counters input.

The timers are set using a configuration string. This is similar to the I/O specification in that it's a

comma separated list of parameters (or a newline separated list if you use a Text component).

The timer configuration string is in the form

{number of timers} {clock{/divisor}} {mode timer0} {value timer0} {{mode timer1} {value timer1}}

Clock values can be 4, 12 or 48 MHz and can include a divisor as well. There is also a 1 MHz clock

which must include a divisor. This gives 7 possible clock value strings:

1MHz/{divisor} , 4MHz/{divisor} , 12MHz/{divisor} , 48MHz/{divisor} , 4MHz , 12MHz or 48MHz.

Where {divisor} is an integer in the range 0-255.

Modes are strings and map onto the U3 modes exactly. They can be one of the following:

PWM16, PWM8, RISINGEDGES32, FALLINGEDGES32, DUTYCYCLE, FIRMCOUNTER,

FIRMCOUNTERDEBOUNCE, FREQOUT, QUAD, TIMERSTOP, SYSTIMERLOW, SYSTIMERHIGH,

SYSTIMERHIGH, RISINGEDGES16 or FALLINGEDGES16.

- 200 -

COMPONENTS

Some examples:

“1,48MHz,FREQOUT,128" – a single timer, clock 48MHz using the Frequency Output method

“2,4MHz/200,PWM16,32768,PWM8,16384" – two timers, clock 48MHz with divisor 200

To set the timer and counter configuration trigger the Set unput below the Counters input on the

component.

Because the timers and counters take over some of the flexible I/O pins you should see the outputs on

the component corresponding to those pins change to Integer connectors labeled TIM0, TIM1, CTR0

or CTR1.

Note that when using a clock with a divisor the LabJack U3 only allows you to use 1 counter.

The U3 has two DACs you can set the value of these using the DAC0 and DAC1 inputs on the

component.

You can reset a timer or counter by sending the appropriate index value to the Reset input. Send 1 or 2

to reset the 1st or 2nd timer and 3 or 4 to reset the 1st or 2nd counter.

For more information on the workings of the U3 see the U3 user guide.

- 201 -

CHAPTER 2

Connectors

Inputs Type Outputs Type

Trigger to start the

component

Trigger Whether the U3 is

connected and on

Boolean

Address of the board you

want to connect to (optional)

String The ambient temperature of

the board

Float

Configuration string to set

the I/O

String 16 x outputs used for the

FIO and EIO pins that are

setup as inputs on the U3

Boolean / Float

Trigger to set the I/O Trigger 4 x outputs used for the CIO

pins that are setup as inputs

on the U3

Boolean

The start pin for any timers

or counters

Int

Configuration string for

setting up any timers

String

Number of counters required Int

Trigger to set up the timers

and counters

Trigger

Index of timer or counter you

want to reset (1=Timer1,

2=Timer2, 3=Counter1,

4=Counter2)

Set the value of DAC0 Float

Set the value of DAC1 Float

16 x inputs used for the FIO

and EIO pins that are setup

as outputs on the U3

Boolean

4 x inputs used for the CIO

pins that are setup as

outputs on the U3

Boolean

- 202 -

COMPONENTS

Last Switch

Description

The Float Switch component is used to select between two inputs depending on which one changed

last. The most recently changed input will be used to supply the float value to the output.

The component has template connectors which means it can be used with multiple data types

including Floats, Ints, Strings, Booleans, Float/Int/String arrays and Colours. You can right-click on the

connectors at any time to change the type.

Connectors

Inputs Type Outputs Type

First float value Template Most recently changed value Template

Second float value Template

- 203 -

CHAPTER 2

Less Than

Description

This component compares the two inputs and returns a Boolean based on whether the first input is

less than the second input.

The component has template connectors which means it can be used with multiple data types

including Floats, Ints, Strings and Float/Int/String arrays. You can right-click on the connectors at any

time to change the type.

Connectors

Inputs Type Outputs Type

Input 1 Template Whether input 1 is less than

input 2

Boolean

Input 2 Template

- 204 -

COMPONENTS

Less Than or Equal to

Description

This component compares the two inputs and returns a Boolean based on whether the first input is

less than or equal to the second input.

The component has template connectors which means it can be used with multiple data types

including Floats, Ints, Strings and Float/Int/String arrays. You can right-click on the connectors at any

time to change the type.

Connectors

Inputs Type Outputs Type

Input 1 Template Whether input 1 is less than

or equal to input 2

Boolean

Input 2 Template

- 205 -

CHAPTER 2

Line

Description

Draws a straight line on a View. The line is defined by an Area. The x and y coordinates of the area

define the start of the line and the width and height define a vector offset to the end point. This means

that for some lines you will need to use negative widths and heights.

Connectors

Inputs Type Outputs Type

View to display the line on View The same View as the input,

but anything connected here

is drawn on top

View

Area defining the start and

direction of the line

Area

Pen defining the outline

colour, thickness and style

Pen

- 206 -

COMPONENTS

Linear Gradient

Description

The Linear Gradient component draws either an ellipse or a rectangle with a gradient fill effect. This

produces a seamless linear transition between two colours.

- 207 -

CHAPTER 2

Connectors

Inputs Type Outputs Type

View to draw on View The same View as the input,

but anything connected here

is drawn on top

View

Area defining the bounding

area of the ellipse or

rectangle

Area

Either “Rectangle” or

“Ellipse”

String

First colour in the gradient Colour

Second colour in the

gradient

Colour

The angle of the gradient in

degrees running clockwise

from the horizontal

String

- 208 -

COMPONENTS

Log10

Description

Calculates the logarithm (base 10) of a float.

Connectors

Inputs Type Outputs Type

Source number Float Log10 of source Float

- 209 -

CHAPTER 2

MAC Address

Description

Gets the MAC addresses of all network devices attached to the host PC. The addresses are returned

as a comma separated list.

Note that on some systems this component will not return any MAC addresses.

Connectors

Inputs Type Outputs Type

Trigger to get the MAC

addresses

Trigger Comma separated list of

MAC addresses

String

- 210 -

COMPONENTS

Magnitude/Phase to Real/Img

Description

This component converts arrays of Magnitude and Phase to Real and Imaginary parts. This is used

mainly in FFT calculations.

Connectors

Inputs Type Outputs Type

Array of Magnitudes Float Array Array of Real parts Float Array

Array of Phases (0-2pi) Float Array Array of Imaginary parts Float Array

- 211 -

CHAPTER 2

Max

Description

This component compares the two inputs and returns the greater of the two.

The component has template connectors which means it can be used with multiple data types

including Floats, Ints and Float/Int arrays. You can right-click on the connectors at any time to change

the type.

Connectors

Inputs Type Outputs Type

Input 1 Template The greater of the two inputs Template

Input 2 Template

- 212 -

COMPONENTS

Max Float Array

Description

The Max Float Array component will give you the maximum value in an array of floats together with the

index in the array at which that maximum occurred.

Connectors

Inputs Type Outputs Type

Float array to examine Float Array The index at which the

maximum occurs

Int

The maximum value in the

array

Float

- 213 -

CHAPTER 2

MCC-1208FS

Description

This primitive allows you to send and receive data to and from the Measurement Computing Corp.

1208FS data acquisition board.

If you have multiple boards connected to your PC then you should provide the number of the board

you want to connect to at the 'Board' input. This number is assigned by Measurement Computing's

InstaCal application so refer to that to get the board number if you need it.

- 214 -

COMPONENTS

The board has 16 digital I/O pins and 8 analog inputs. The digital I/O is split into two banks, A and B.

Each bank can be configured as a set of digital inputs or digital outputs.

The analog inputs can be configured as 8 single ended inputs or 4 differential inputs.

To set the I/O configuration you need to supply a string to the I/O input of the component. This should

be a comma separated list of any combination of the following:

SE - single ended analog inputs

D - differential analog inputs

AI - set bank A of digital I/O to be inputs

BI - set bank B of digital I/O to be inputs

AO - set bank A of digital I/O to be outputs

BO - set bank B of digital I/O to be outputs

For example:

“SE,AI,BO” would use single ended analog, bank A as digital inputs and bank B as digital outputs.

“D,BI” would use differential analog and bank B as digital inputs.

Note that the I/O string only alters what you specify in the list. If you don't specify what bank A does it

will remain as it is – it will not be reset to default settings.

Also note that you need to trigger the Set input in order for changes to take place.

When using differential analog inputs you can set the ranges. To do this use a string formatted as

follows:

R[n]=[type]

Where [n] is a single digit in the range 0-3 representing the analog I/O pin you want to configure

and [type] is one of the following strings:

BIP20VOLTS BIP10VOLTS BIP5VOLTS BIP4VOLTS BIP2PT5VOLTS

BIP2VOLTS BIP1PT25VOLTS BIP1VOLTS

So for example, "R2= BIP5VOLTS" would set analog input pin number 3 (so at index 2) to use the

range +/-5 volts.

These range settings are combined with the other I/O settings as comma separated values as before.

For example, "AI,BO,R2= BIP5VOLTS".

Note that cbw32.dll must be installed on the host system for this component to work. If you have

installed the Measurement Computing drivers then this file should be on your system.

- 215 -

CHAPTER 2

MCC-1608FS

Description

This primitive allows you to send and receive data to and from the Measurement Computing Corp.

1608FS data acquisition board.

If you have multiple boards connected to your PC then you should provide the number of the board

you want to connect to at the 'Board' input. This number is assigned by Measurement Computing's

InstaCal application so refer to that to get the board number if you need it.

The board has 8 digital I/O pins and 8 analog inputs. The digital I/O can each be configured

individually as either a digital input or a digital output. The analog inputs are all configured as single

ended.

To set the I/O configuration you need to supply a string to the I/O input of the component. This should

be a comma separated list of any combination of the following:

DIn - set digital I/O pin n to be an input where n is the index of the pin (0-7)

DOn - set digital I/O pin n to be an output where n is the index of the pin (0-7)

- 216 -

COMPONENTS

For example, “DI2,DO4,DI5” would use pins DIO2 and DIO5 as inputs and pin DIO4 as an output.

Note that the I/O string only alters what you specify in the list. If you don't specify what DIO3 does for

example it will remain as it is – it will not be reset to default settings. Also note that you need to trigger

the Set input in order for changes to take place.

For the analog inputs you can set the ranges. To do this use a string formatted as follows:

Rn=[type]

Where n is a single digit in the range 0-7 representing the analog I/O pin you want to configure and

[type] is one of the following strings:

BIP1VOLTS BIP2VOLTS BIP5VOLTS BIP10VOLTS

So for example, "R2= BIP5VOLTS" would set analog input pin CH2 IN to use the range +/-5 volts.

These range settings are combined with the other I/O settings as comma separated values as before.

For example, "DI2,DO4,DI5,R2=BIP5VOLTS".

Note that cbw32.dll must be installed on the host system for this component to work. If you have

installed the Measurement Computing drivers then this file should already be on your system.

Connectors

Inputs Type Outputs Type

Board number you want to

connect to (as assigned by

InstaCal) or blank to connect

to any board

Int Status. OK, NOBOARD or

the Measurement

Computing error number.

String

I/O settings (see above) String 8 x outputs receiving analog

data from the 8 analog

inputs on the board in V

Float

Trigger to set the I/O

settings

Trigger 8 x outputs receiving the

state of the 8digital inputs on

the board

Boolean

8 x inputs to change the

state of the 8 digital outputs

on the board

Boolean Value at the boards counter

input

Int

Trigger to reset the boards

counter

Trigger

- 217 -

CHAPTER 2

Measure Text

Description

This component measures the area that text will occupy when drawn. You supply the text, font and

formatting information together with a maximum bounding rectangle that the text must fit inside. The

component then tells you the area within that boundary which the text will occupy.

Connectors

Inputs Type Outputs Type

View to display the text on View The same View as the input,

but anything connected here

is drawn on top

View

Area into which the text is to

be drawn

Area

The text colour Colour

The text to be displayed String

The font for the text Font

Text formatting options String Format

- 218 -

COMPONENTS

Mem Create

Description

This component creates a memory buffer of a particular size. The size is specified in bytes. This

means that if you want to store N floats you’ll need 4*N bytes.

Connectors

Inputs Type Outputs

Size of the buffer in bytes Int Memory buffer Mem

Trigger to create the buffer.

If the buffer has already

been created this will reset

the buffer

Trigger

Deletes the buffer Trigger

- 219 -

CHAPTER 2

Mem to Float Array

Description

This component converts a memory buffer to an arrays of floats.

This component is useful for extracting raw float data from a wave file either for display or for

manipulation.

Connectors

Inputs Type Outputs

Memory buffer Mem Float array equivalent Float Array

- 220 -

COMPONENTS

Mem to Float Array Min/Max

Description

This component converts a memory buffer to arrays of floats by finding the minimum and maximum

values over groups of samples. The size of each group of samples is defined by the Step input. If the

Mem contains mono data then the left and right arrays will return the same data.

This component is useful if you want to draw a wave but don’t want to draw every single sample in the

wave.

Connectors

Inputs Type Outputs

Memory buffer Mem Minimum sample per

grouping on the left channel

Float Array

Size of each grouping Int Maximum sample per

grouping on the left channel

Float Array

Minimum sample per

grouping on the right

channel

Float Array

Maximum sample per

grouping on the right

channel

Float Array

Number of samples in each

array

Int

- 221 -

CHAPTER 2

Message Box

Description

This component displays a Windows message box. You can set the message text, the window title, the

icon and the dialog type. The output is a boolean value indicating whether the OK or Yes button was

pressed.

Connectors

Inputs Type Outputs Type

Trigger to open the message

box

Trigger Whether the OK/Yes button

was pressed

Boolean

The message text String

The title for the dialog box String

The icon to use (see

description above)

Int

The icon to use (see

description above)

Int

The type of message box

(see description above)

Int

- 222 -

COMPONENTS

MIDI Aftertouch

Description

This component allows you to extract aftertouch information from MIDI data typically from the pressure

applied to an aftertouch sensitive MIDI controller. Aftertouch is specified as an integer in the range 0-

127 with 127 representing the highest level of aftertouch and zero meaning no aftertouch at all.

Note: this component is actually responding to channel pressure in that it is not responsive to

individual differences in note pressure between different keys and it is responding to MIDI events with

the status byte xC0 to xCF and not those between xA0 and xAF.

Connectors

Inputs Type Outputs Type

MIDI data MIDI Aftertouch information in the

range 0-127

Int

- 223 -

CHAPTER 2

MIDI Control Change

Description

The MIDI control change primitive extracts control change events for the specified control parameter.

The parameter is specified as an integer value. To find out what control parameters are available

please look them up in the MIDI standard documentation.

Connectors

Inputs Type Outputs Type

MIDI data MIDI The current value of the

control change parameter in

the range 0-127

Int

Control change parameter

you want to extract

Int Trigger when the parameter

changes

Trigger

- 224 -

COMPONENTS

MIDI Event

Description

MIDI data messages are composed of four distinct parts. Each part is an integer value. The parts are

as follows:

Status - (0-127) the type of MIDI event

Channel - (1-16) the MIDI channel on which the event was received

Data 1 - (0-127) the first byte of data received (for note events this is the note pitch)

Data 2 - (0-127) the second byte of data received (for note events this is the velocity)

The MIDI Event component takes this information and creates a MIDI event message.

Connectors

Inputs Type Outputs Type

Status part (0-127) Int MIDI event message MIDI

MIDI Channel part (1-16) Int

Data 1 part (0-127) Int

Data 2 part (0-127) Int

Trigger to determine when to

send the MIDI event

Trigger

- 225 -

CHAPTER 2

MIDI In

Description

If you want to use MIDI input from an external source then this is the component you need. Each MIDI

device installed on your PC is displayed as a button on the body of the component. To select or

deselect one of these just click on it.

You can choose to receive input from as many devices as you like. You can also have as many MIDI In

components in your schematic as you like. However, you will not be able to select the same MIDI

device on more than one of these components.

Connectors

Inputs Type Outputs Type

N/A MIDI data from the selected

device(s)

MIDI

- 226 -

COMPONENTS

Other Features

The first device on the MIDI In component is PC Keyboard. This isn’t a device as such but it allows you

to use your PC keyboard as a MIDI input device. This is very handy if you’re on a laptop or if you don’t

have an external MIDI controller.

The PC Keyboard covers 2 consecutive octaves spanning middle C. On a U.S. or U.K. keyboard the

lower octave begins at ‘Z’ with middle C at ‘Q’ and the upper octave ends at ‘I’. All other note

associations are shown in the diagram below.

On other keyboard layouts the key positions are the same although the key names may vary.

- 227 -

CHAPTER 2

MIDI In Devices

Description

This component retrieves the number of MIDI In devices on the host PC together with their names and

their availabilities.

Connectors

Inputs Type Outputs Type

N/A N/A The number of devices Int

Array of device names String Array

Availability of each device

(0=in use, 1=available)

Int Array

- 228 -

COMPONENTS

MIDI In Select

Description

The MIDI In Select component allows you to select a MIDI In device from within a schematic.

Connectors

Inputs Type Outputs Type

The index of the device you

want to select. The MIDI In

Devices component returns

an array of device names

which you can refer to to find

the appropriate index.

Int MIDI data from the selected

device

MIDI

The index of the currectly

selected device

Int

Trigger when the chosen

device is already in use

Trigger

- 229 -

CHAPTER 2

MIDI Mono

Description

The MIDI Mono primitive generates data that can be used to control a simple mono synth. A more

flexible voice management scheme is available through the Midi To Poly voice management module

and the MIDI to Voices and Voices to Poly primitives. However, the MIDI Mono primitive is still a viable

component to read the number of open note events on a MIDI stream, the frequency of the last played

note or the MIDI note number of the most recent note.

Connectors

Inputs Type Outputs Type

MIDI data MIDI The pitch of the last note

played (60 = Middle C).

Int

The number of open note

events (keys pressed on a

MIDI keyboard)

Int

The normalised frequency of

the note played with 1 being

half the sample rate

Float

- 230 -

COMPONENTS

MIDI Out

Description

The MIDI Out primitive allows you to send MIDI data to an external MIDI device. Each MIDI device

installed on your PC is displayed as a button on the body of the component. To select or deselect one

of these just click on it.

You can choose to send MIDI data to as many devices as you like. You can also have as many MIDI

Out components in your schematic as you like. However, you will not be able to select the same MIDI

device on more than one of these components.

Connectors

Inputs Type Outputs Type

MIDI data MIDI N/A

- 231 -

CHAPTER 2

MIDI Out Devices

Description

This component retrieves the number of MIDI Out devices on the host PC together with their names

and their availabilities.

Connectors

Inputs Type Outputs Type

N/A N/A The number of devices Int

Array of device names String Array

Availability of each device

(0=in use, 1=available)

Int Array

- 232 -

COMPONENTS

MIDI Out Select

Description

The MIDI Out Select component allows you to select a MIDI Out device from within a schematic.

Connectors

Inputs Type Outputs Type

MIDI to send to the selected

device

MIDI The index of the currectly

selected device

Int

The index of the device you

want to select. The MIDI Out

Devices component returns

an array of device names

which you can refer to to find

the appropriate index.

Int Trigger when the chosen

device is already in use

Trigger

- 233 -

CHAPTER 2

MIDI Pitch Bend

Description

MIDI Pitch Bend gives the amount of pitch bend as an integer from MIDI data typically from the pitch

bend wheel of a MIDI controller.

Connectors

Inputs Type Outputs Type

MIDI data MIDI Pitch bend in the range

0-16384 with 8192

representing the centre

value.

Int

- 234 -

COMPONENTS

MIDI Splitter

Description

MIDI data messages are composed of four distinct parts. Each part is an integer value. The parts are

as follows:

Status - (0-127) the type of MIDI event

Channel - (1-16) the MIDI channel on which the event was received

Data 1 - (0-127) the first byte of data received (for note events this is the note pitch)

Data 2 - (0-127) the second byte of data received (for note events this is the velocity)

The MIDI Splitter component extracts this information from MIDI data and sends the results to its four

integer outputs. Note that no triggers are sent from the outputs when they change, instead a single

trigger is sent through the fifth output once all the other outputs have been updated.

Connectors

Inputs Type Outputs Type

MIDI data MIDI Status part (0-127) Int

MIDI Channel part (1-16) Int

Data 1 part (0-127) Int

Data 2 part (0-127) Int

Trigger when a new MIDI

event is received

Trigger

- 235 -

CHAPTER 2

MIDI to Multi Voice

Description

The MIDI to Multi Voice primitive takes all the functionality of the MIDI to Voices component but

extends it in two ways:

1. It allows multiple voices to be generated in response to a single note

2. It allows you change the characteristics of a voice or voices depending on the note played

As with the MIDI to Voices this component works alongside the Voices to Poly component. You would

always pair these components together when using them in a synth.

How it Works

The MIDI to Multi Voice has 4 int array inputs. These come in two pairs one for note key range and one

for note velocity. For each pair, one array provides the lower value in the range and one provides the

upper value.

The entries in the arrays are indexed from 0 upwards. These indexes define a parameter called a

Voice Tag. When you play a MIDI note the MIDI to Multi Voice compares the note to the key and

velocity range at each index. If the note falls within the defined boundaries then a voice is generated

for that note and that voice is assigned a Voice Tag equal to the value of the index in question.

This is how (1) & (2) above are achieved. If a note matches the range(s) for more than one index then

more than one voice will be generated for that note achieving (1) above.

- 236 -

COMPONENTS

The Voice Tag is passed on to the Voices to Poly where it is accessible as a Poly output. You can use

this in your audio processing to make changes to the sound depending on the tag and this achieves

(2) above.

To show the effect on the voice tag based on these arrays is much easier using some examples.

EXAMPLE 1

Let's say you have the arrays as follows:

LoKey HiKey

0 59

60 127

With this configuration notes up to middle C (0-59) will carry a voice tag of zero and notes at middle C

and beyond (60-127) will carry a voice tag of 1.

EXAMPLE 2

Now let's look at the velocity ranges:

LoVel HiVel

0 31

62 63

63 95

96 127

With this configuration you will get voice tags in the range 0-3 and you can use this to increase the

volume or to vary filter parameters for example.

- 237 -

CHAPTER 2

EXAMPLE 3

What happens if you use both velocity and key range?

LoKey HiKey LoVel HiVel

0 59 0 63

60 127 0 63

0 59 64 127

60 127 64 127

This time tag 0 will represent low notes with low velocity, tag 1 will represent high notes with low

velocity and tags 2 and 3 will be represent low and high notes with high velocity.

EXAMPLE 4

In all the above cases a single note could only fall within the range(s) for any one index. However, you

don't have to define your key and velocity ranges so that they are mutually exclusive.

LoKey HiKey LoVel HiVel

0 127 0 127

0 127 0 127

On this occasion any note you play will match the ranges at index 0 and index 1. In this case two

voices will be generated for a single note. This allows you to make some nice effects. For example,

you can detune the voice with tag 1 slightly or apply a different LFO rate to create a thicker layered

sound.

- 238 -

COMPONENTS

EXAMPLE 5

One ideal application of this new component is sample playback. You can now easily trigger different

samples for each key or play a different sample based on velocity.

LoKey HiKey

60 60

61 61

62 62

63 63

Here notes 60, 61, 62 and 63 will map onto voice tags 0,1,2 and 3 and you can use these as indexes

to specify which sample to use in a Wave Array.

Some Points to Note

As you have probably seen from the examples, you don't have to provide both key and velocity

information. If you leave one set blank then no restrictions will be applied.

If your key and velocity ranges are set up in such a way that a particular note doesn't fit into any of

them then no voices will be generated for that note.

Finally, if you don't specify any key or velocity ranges then every voice will get a tag of zero making

the MIDI to Multi Voice essentially behave the same as the MIDI to Voices.

Voice Mangement

This works in the same way as for the MIDI to Voices. You can define a maximum number of voices

(this is unlimited). When the maximum number of voices are in use the next note played will ‘steal’ one

of the existing voices. Stealing is done on a first in, first out basis.

The Hold Stolen input defines whether notes whose voices are stolen will be held so that, as long as

the stolen notes remains on (i.e. no note off has been received) , they can be reinstated when a free

voice becomes available.

The R-new input determines whether envelopes are re-triggered when a new note steals a voice.

The R-old input determines whether envelopes are re-triggered when a held note is reinstated.

The NoRpt input allows you to choose to reuse the same voice whenever the same note is repeatedly

played instead of repeating the note in a new voice each time (the default behaviour).

NoSus is the same as NoRpt but applies only when MIDI sustain is on.

- 239 -

CHAPTER 2

Connectors

Inputs Type Outputs Type

MIDI data MIDI Voice data (currently only

the Voices to Poly primitive

takes this data type as an

input)

Voice

Maximum number of voices

that can be playing at any

one time.

Int

Key range lower limits Int Array

Key range upper limits Int Array

Note velocity lower limits Int Array

Note velocity upper limits Int Array

Hold Stolen defines whether

notes whose voices are

stolen will be held

Boolean

Retrigger New determines

whether envelopes are re-

triggered when a new note

steals a voice

Boolean

Retrigger Old input

determines whether

envelopes are re-triggered

when a held note is

reinstated

Boolean

NoRpt reuses the same

voice(s) when the same note

is repeatedly played

Boolean

NoSus is the same as

NoRpt but applies only

during MIDI Sustain

Boolean

- 240 -

COMPONENTS

MIDI to Voices

Description

The MIDI to Voices primitive component pairs with the Voices to Poly primitive to provide voice

managed data.

Note: Currently there is no reason to use this component on its own, instead you should use the MIDI

to Poly module which combines the MIDI to Voices and Voices to Poly components.

The inputs to the MIDI to Voices primitive define how the voice management works - by this we mean

how the module responds to note messages from the attached MIDI source. You can define a

maximum number of voices (this is unlimited). When the maximum number of voices are in use the

next note played will ‘steal’ one of the existing voices. Stealing is done on a first in, first out basis.

The Hold Stolen input defines whether notes whose voices are stolen will be held so that, as long as

the stolen notes remains on (i.e. no note off has been received) , they can be reinstated when a free

voice becomes available.

The R-new input determines whether envelopes are re-triggered when a new note steals a voice.

The R-old input determines whether envelopes are re-triggered when a held note is reinstated.

The NoRpt input allows you to choose to reuse the same voice whenever the same note is repeatedly

played instead of repeating the note in a new voice each time (the default behaviour).

NoSus is the same as NoRpt but applies only when MIDI sustain is on.

- 241 -

CHAPTER 2

Connectors

Inputs Type Outputs Type

MIDI data MIDI Voice data (currently only

the Voices to Poly primitive

takes this data type as an

input)

Voice

Maximum number of voices

that can be playing at any

one time.

Int

Hold Stolen defines whether

notes whose voices are

stolen will be held

Boolean

Retrigger New determines

whether envelopes are re-

triggered when a new note

steals a voice

Boolean

Retrigger Old input

determines whether

envelopes are re-triggered

when a held note is

reinstated

Boolean

NoRpt reuses the same

voice when the same note is

repeatedly played

Boolean

NoSus is the same as

NoRpt but applies only

during MIDI Sustain

Boolean

- 242 -

COMPONENTS

Min

Description

This component compares the two inputs and returns the lower of the two.

The component has template connectors which means it can be used with multiple data types

including Floats, Ints and Float/Int arrays. You can right-click on the connectors at any time to change

the type.

Connectors

Inputs Type Outputs Type

Input 1 Template The lower of the two inputs Template

Input 2 Template

- 243 -

CHAPTER 2

Min Float Array

Description

This component works out where the minimum value appears in the input array. It also returns the

index of the element in the array that corresponds to that minimum value.

Connectors

Inputs Type Outputs

The source array Float Array The index of the entry that

contains the minimum value

Int

The minimum value found Float

- 244 -

COMPONENTS

Module

Description

Modules are special types of component in that they are defined by their own schematic containing

other components and modules. There are no inputs and outputs by default, you add these yourself by

placing Module Input and Module Output components inside.

For a complete description of how modules work see Chapter 4 of the main user guide.

- 245 -

CHAPTER 2

Module GUI

Description

The Module GUI component (MGUI for short) gives a module a front panel and allows you to use the

low-level GUI components to define the graphics and interaction capabilities.

Note that if you don’t want or need to use the GUI components then you can just use the G button on

the module action panel to add a front panel (see the Front Panel section in Chapter 4 of the main user

guide).

All GUI information is sent through View connectors. These are yellow circles with a V in the middle.

The MGUI has one View output. Anything connected to this will either draw onto the front panel or

handle mouse messages from it.

The two Float outputs can be used to get the size of the front panel if this is needed.

The two float inputs allow you to set the position of the module when it appears in a parent front panel.

Direct placement using front panel editing is usually preferred to explicit placement but this can

sometimes be useful.

If you want to hide the grey module border then you can do this by setting the Border input to False.

Mouse move messages are suppressed by default. By mouse moves we mean movement of the

mouse with no buttons held down. When a button is held we call it a mouse drag and these are not

suppressed.

The reason for suppressing mouse moves is that because of their frequency they use measurable

processing as messages are passed up and down the module hierarchy. Mouse moves are rarely

used and so there is no point in having this extra processing when it isn’t needed. If you do need to

have mouse move handling then set the Mouse input to True.

- 246 -

COMPONENTS

Connectors

Inputs Type Outputs Type

Connector for displaying this

panel on another front panel.

Often this is connected to a

wireless input.

View Connect this to other

components in order to

display them on the front

panel or to handle mouse

messages

View

Set the x position of the

panel in a parent panel

Float Width of the modules front

panel

Float

Set the y position of the

panel in a parent panel

Float Height of the modules front

panel

Float

Allows you to hide the grey

module border. Useful for

creating more compact utility

modules

Boolean

Enables mouse move

messages to pass through

the View connectors

Boolean

- 247 -

CHAPTER 2

Module Input

Description

Place a Module Input primitive inside a module to give the module an input connector. The component

has a single Temple output connector. To change the type either right-click on the connector and

choose a type from the pop-up menu or create a link from the connector to another component and the

template will pick up the type.

For more information on module inputs see the section on Inputs and Outputs in the Modules chapter

(Chapter 4) of the main user guide.

Connectors

Inputs Type Outputs Type

N/A Template connector which

must be set to the type you

require for the module input

Template

- 248 -

COMPONENTS

Module Output

Description

Place a Module Output primitive inside a module to give the module an output connector. The

component has a single Temple input connector. To change the type either right-click on the connector

and choose a type from the pop-up menu or create a link from the connector to another component

and the template will pick up the type.

For more information on module outputs see the section on Inputs and Outputs in the Modules chapter

(Chapter 4) of the main user guide.

Connectors

Inputs Type Outputs Type

Template connector which

must be set to the type you

require for the module

output

Template N/A

- 249 -

CHAPTER 2

Module Properties GUI

Description

The Properties GUI component (PGUI for short) gives a module a property panel and allows you to

use the low-level GUI components to define the graphics and interaction capabilities.

Note that if you don’t want or need to use the GUI components then you can just use the P button on

the module action panel to add a front panel (see the Properties section in Chapter 4 of the main user

guide).

All GUI information is sent through View connectors. These are yellow circles with a V in the middle.

The MGUI has one View output. Anything connected to this will either draw onto the property panel or

handle mouse messages from it.

The two Float outputs can be used to get the size of the property panel if this is needed.

The two float inputs allow you to set the position of the property panel when it appears in a parent

property panel. Direct placement using front panel editing is usually preferred to explicit placement but

this can sometimes be useful.

Mouse move messages are suppressed by default. By mouse moves we mean movement of the

mouse with no buttons held down. When a button is held we call it a mouse drag and these are not

suppressed.

The reason for suppressing mouse moves is that because of their frequency they use measurable

processing as messages are passed up and down the module hierarchy. Mouse moves are rarely

used and so there is no point in having this extra processing when it isn’t needed. If you do need to

have mouse move handling then set the Mouse input to True.

- 250 -

COMPONENTS

Connectors

Inputs Type Outputs Type

Connector for displaying this

panel on another property

panel. Often this is

connected to a wireless

input labelled Properties.

View Connect this to other

components in order to

display them on the property

panel or to handle mouse

messages

View

Set the x position of the

panel in a parent property

panel

Float Width of the modules

property panel

Float

Set the y position of the

panel in a parent property

panel

Float Height of the modules

property panel

Float

Enables mouse move

messages to pass through

the View connectors

Boolean

- 251 -

CHAPTER 2

Module Wireless Output

Description

Most modules will have fixed output connectors that you physically link up to other connectors.

However, it is sometimes useful to make a module output wireless. Instead of using a Module Output

component you use a Module Wireless Output component.

The component has a single Temple input connector. To change the type either right-click on the

connector and choose a type from the pop-up menu or create a link from the connector to another

component and the template will pick up the type.

By adding wireless outputs to your module the module becomes a wireless module. The module will

behave In the same way as a Wireless Output component establishing wireless links with matching

Wireless Input components lower down in the module hierarchy. As with Wireless Outputs a match is

determined by the type of connector and the component label.

Wireless modules can be identified by the wireless symbol which appears on the module body. This

will appear grey when no links have been established. However, if one or more Module Wireless

Outputs within the module have established connections with matching Wireless Inputs the wireless

symbol will light up.

For more information on wireless links see the corresponding section in the Components and Links

chapter (Chapter 3) of the main user guide.

- 252 -

COMPONENTS

Connectors

Inputs Type Outputs Type

Template connector which

must be set to the type you

want for the wireless output

Template N/A

- 253 -

CHAPTER 2

Mono Boolean Readout

Description

The Mono Boolean Readout allows you to inspect the value of a signal from an output connector that’s

linked into a running mono section. This can be very handy for debugging.

Connectors

Inputs Type Outputs Type

Mono Boolean stream data Mono Boolean N/A

- 254 -

COMPONENTS

Mono to Float

Description

The Mono to Float component allows you to take Float samples from a Mono signal. The trigger input

defines when the sample is taken. This is very useful for visually examining the data passing through a

Mono stream.

Connectors

Inputs Type Outputs Type

Mono signal to take samples

from

Mono Current sample Float

Trigger to say when to take

the sample

Trigger

- 255 -

CHAPTER 2

Mono to Frame

Description

This version of the Mono to Frame component captures buffers of samples at the rate they are

processed by the audio engine. Unlike the Mono to Float and Mono to Graph components the Mono to

Frame allows you to capture and process every sample that passes through a Mono stream.

The output is a Ruby Frame object. You can examine or process this using a Ruby component. For

more information about this see the section on Frames in the Ruby Component chapter of the main

user guide.

Connectors

Inputs Type Outputs Type

Mono signal Mono Ruby Frame object with a

buffer of samples

Ruby Value

- 256 -

COMPONENTS

Mono to Frame

Description

This version of the Mono to Frame component captures buffers of samples at a rate determined by the

Samples input. The Samples input should be an integer value (a Ruby Fixnum) that specifies the

number of samples to grab.

The output will be the last N samples that passed through the Mono input (where N is the number of

requested samples).

The output value is a Ruby Frame object. You can examine or process this using a Ruby component.

For more information about Frames see the section on Frames in the Ruby Component chapter of the

main user guide.

Connectors

Inputs Type Outputs Type

Mono signal Mono Ruby Frame object with a

buffer of samples

Ruby Value

Ruby value containing the

number of samples you want

to grab

Ruby Value

- 257 -

CHAPTER 2

Mono to Graph

Description

The Mono to Graph component allows you to take an array of samples from up to 8 Mono streams.

The trigger input defines when the samples are taken. The number of samples taken is defined at the

NS input. This component is very useful for graphing a mono signal.

There are four versions of the Mono to Graph. If you want to compare one or more signals you need to

use a single Mono to Graph component with multiple inputs. If you use two separate Mono to Graph

components then because the Mono section is calculated constantly, even if you trigger the Get input

from the same source it is very unlikely that you'll get exactly the same snapshot of samples from both

components.

Connectors

Inputs Type Outputs Type

Mono signal to take samples

from (up to 8)

Mono Array of samples taken (up

to 8)

Float Array

Number of samples to take Int

Trigger to say when to take

the samples

Trigger

- 258 -

COMPONENTS

Motion Detect

Description

Motion Detect is a video processing component that locates areas of movement in an image.

Each new image is compared with the frame before and if any pixel differs by more than the Delta

input value then this is registered as movement and stored in a binary image.

These binary images are stored over a period of time defined by the Duration input (Dur). The images

are then faded out with the oldest image being almost transparent and the most recent being fully

opaque. These images are overlayed to produce a movement gradient called the Motion History Image

(MHI).

The algorithm looks at the MHI and for each pixel it examines the neighbouring pixels to determine the

difference in intensity gradient. If the gradient falls between the MinT and MaxT values then it registers

that movement has occurred.

MinT is the minimum MHI duration and MaxT is the maximum MHI duration. Because the gradient

exactly corresponds to the duration inside the MHI these values are specified as times in seconds. So

differences in intensity between neighbouring pixels are equivalent to differences in time between

neighbouring pixels.

- 259 -

CHAPTER 2

Connectors

Inputs Type Outputs Type

The source image you want

to process

Bitmap Motion history image Bitmap

Threshold for detecting

image transitions. Default is

30

Int Whether any movement was

detected

Boolean

Duration of motion image

history (seconds). Default is

1sec.

Float X coordinates of centre

detected movements (pixels)

Float Array

Minimum MHI duration

(seconds). Default is 0.05

Float Y coordinates of centre of

detected movements (pixels)

Float Array

Maximum MHI duration

(seconds). Default is 0.5

Float Widths of detected areas of

movement (pixels)

Float Array

Heights of detected areas of

movement (pixels)

Float Array

Directions of detected areas

of movement (degrees)

Float Array

- 260 -

COMPONENTS

Mouse Area

Description

Creates an area on a View that receives mouse messages.

Connectors

Inputs Type Outputs Type

View to create the area on View The same View as the input,

but anything connected here

is drawn on top

View

The area to use Area

- 261 -

CHAPTER 2

Mouse Drag

Description

The Mouse Drag component allows you to handle drag operations for a mouse area. If you connect

this component to a Mouse Area then when a drag operation is in progress the component will send

the x and y coordinates of the mouse as the drag progresses.

Connectors

Inputs Type Outputs Type

Mouse messages from a

Mouse Area component

Mouse The x-coordinate of the

mouse whilst dragging

Float

Whether to hide the cursor

during dragging (0=show,

1=hide and hold, 2=hide)

Int The y-coordinate of the

mouse whilst dragging

Float

Flag indicating if a drag

operation is in progress

Boolean

Trigger sent for each mouse

movement

Trigger

- 262 -

COMPONENTS

Mouse LDbl-click

Description

This component allows you to handle left mouse button double-click events for a mouse area. If you

connect this component to a Mouse Area then when you double-click on the area the component will

output the x and y coordinates of the clicked point.

Connectors

Inputs Type Outputs Type

Mouse messages from a

Mouse Area component

Mouse The x-coordinate of the

double-clicked point

Float

The y-coordinate of the

double-clicked point

Float

Trigger when a double-click

occurs

Trigger

- 263 -

CHAPTER 2

Mouse LDown

Description

This component allows you to handle left mouse button down events for a mouse area. If you connect

this component to a Mouse Area then when you click on the area the component will output the x and y

coordinates of the clicked point.

Connectors

Inputs Type Outputs Type

Mouse messages from a

Mouse Area component

Mouse The x-coordinate of the

clicked point

Float

The y-coordinate of the

clicked point

Float

Trigger when a click occurs Trigger

- 264 -

COMPONENTS

Mouse LUp

Description

This component allows you to handle left mouse button up events for a mouse area. If you connect this

component to a Mouse Area then when you click on the area and subsequently release the button, the

component will output the x and y coordinates of the clicked point.

Connectors

Inputs Type Outputs Type

Mouse messages from a

Mouse Area component

Mouse The x-coordinate of the

mouse when the button is

released

Float

The y-coordinate of the

mouse when the button is

released

Float

Trigger when a mouse up

event occurs

Trigger

- 265 -

CHAPTER 2

Mouse Move

Description

The Mouse Move component allows you to track the mouse position as it passes over an area. Note

that mouse move message flow is turned off by default for performance reasons so in order to use a

Mouse Move component you must ensure that mouse moves are switched on in the MGUI for the

module where the mouse area is defined (see picture below).

When the Mouse Move component is configured correctly, the two Float outputs give the position of

the mouse as it moves over the defined area.

Connectors

Inputs Type Outputs Type

Mouse messages from a

Mouse Area component

Mouse The x-coordinate of the

mouse as it passes over the

mouse area

Float

The y-coordinate of the

mouse as it passes over the

mouse area

Float

- 266 -

COMPONENTS

Mouse Over

Description

This component determines whether the mouse is over a particular area in a view. The boolean output

will show True when the mouse is over and False otherwise. This output is triggered whenever the

state changes.

Note that mouse move message flow is turned off by default for performance reasons so in order to

use a Mouse Over component you must ensure that mouse moves are switched on in the MGUI for

the module where the mouse area is defined (see picture below).

Connectors

Inputs Type Outputs Type

View on which to monitor the

mouse status

View Whether the mouse is over

the area

Boolean

Area of the view to be

monitored

Area

- 267 -

CHAPTER 2

Mouse RDbl-click

Description

This component allows you to handle right mouse button double-click events for a mouse area. If you

connect this component to a Mouse Area then when you right double-click on the area the component

will output the x and y coordinates of the clicked point.

Connectors

Inputs Type Outputs Type

Mouse messages from a

Mouse Area component

Mouse The x-coordinate of the right

double-clicked point

Float

The y-coordinate of the right

double-clicked point

Float

Trigger when a right double-

click occurs

Trigger

- 268 -

COMPONENTS

Mouse RDown

Description

This component allows you to handle right mouse button down events for a mouse area. If you

connect this component to a Mouse Area then when you right click on the area the component will

output the x and y coordinates of the right clicked point.

Connectors

Inputs Type Outputs Type

Mouse messages from a

Mouse Area component

Mouse The x-coordinate of the right

clicked point

Float

The y-coordinate of the right

clicked point

Float

Trigger when a right click

occurs

Trigger

- 269 -

CHAPTER 2

Mouse RUp

Description

This component allows you to handle right mouse button up events for a mouse area. If you connect

this component to a Mouse Area then when you right click on the area and subsequently release the

button, the component will output the x and y coordinates of the clicked point.

Connectors

Inputs Type Outputs Type

Mouse messages from a

Mouse Area component

Mouse The x-coordinate of the

mouse when the right button

is released

Float

The y-coordinate of the

mouse when the right button

is released

Float

Trigger when a right mouse

up event occurs

Trigger

- 270 -

COMPONENTS

Multiplexer

Description

The Multiplexer component routes a single input to just one of a number of outputs. The component

has template connectors which means that you can use it with any connector type. The type is defined

when you connect your first link to the component.

When you connect an output a new, unassigned output will appear below it. By continuously

connecting unassigned outputs in this way you can build up to the number of outputs you require.

Multiplexers are particularly useful with View connectors for switching between different displays.

Connectors

Inputs Type Outputs Type

Index of selected output

(zero based)

Int Any number Any Type

Input data Any Type

- 271 -

CHAPTER 2

Multiply

Description

This component multiplies the two inputs.

The component has template connectors which means it can be used with multiple data types

including Floats, Ints and Float/Int arrays. You can right-click on the connectors at any time to change

the type.

Connectors

Inputs Type Outputs Type

Input 1 Template The product of the two inputs Template

Input 2 Template

- 272 -

COMPONENTS

Multiply Float Array

Description

This primitive multiplies each entry in the input array by a single float value.

Connectors

Inputs Type Outputs Type

Array to modify Float Array Array of multiplied values Float Array

Float value to multiply by

each entry in the array

Float

- 273 -

CHAPTER 2

Multiply Float Array Pair

Description

This primitive multiplies each entry in the input array by the entry at the same index in a second float

array. If the arrays are different sizes then the larger of the two is truncated to the length of the smaller

one.

Connectors

Inputs Type Outputs Type

First Array Float Array Array of multiplied values Float Array

Second Array Float Array

- 274 -

COMPONENTS

Netvox Alarm Security

Description

This component allows you to connect to a Netvox alarm security device that is paired with a Netvox

USB adapter attached to your PC. Netvox alarm security devices include window and passive infra red

sensors.

IMPORTANT: you must first use a Netvox USB component and successfully connect to the USB

adapter before attempting to connect to a device.

Before starting the component you need to send the IEEE address of the device to the 'Id' input. The

IEEE address is usually written on the device itself.

Trigger the Start input to connect. The Status output will show as "Searching”. If the device can't be

found the status will show as “Not Found”. If the status shows “No Network” then the Netvox USB

adapter has been disconnected.

On successful startup the device details will be updated. Battery level, device type, tamper , alarm and

fault status are all updated.

You have the option to set the Heartbeat via the 'Heart' input. This is the rate at which the device will

send signals back to the USB adapter to tell it that it is still alive. It also reports full device details

during these signals. The Heartbeat period is in seconds.

To trigger an update manually you can send a trigger to the 'Query' input.

If the device alarm is triggered the 'Alarm' output will send its status immediately (or as soon as the

network allows).

If the connection is lost at any time the status will change to “Lost Connection”. Reconnection will start

automatically at which point the status will change to “Reconnecting”.

- 275 -

CHAPTER 2

Connectors

Inputs Type Outputs Type

IEEE address of the device

you want to connect to

String The current connection

status

String

Trigger to start the

component

Trigger The percentage battery level

(-1 means if it could not be

read)

Int

Trigger to query the

component

Trigger The type of security device

(if applicable)

String

Set the heartbeat (in secs) Int The current heartbeat (secs) Int

Whether the alarm has been

triggered

Boolean

Whether the device has

been tampered with

Boolean

Whether the device has

encountered a fault

Boolean

- 276 -

COMPONENTS

Netvox Light Sensor

Description

This component allows you to connect to a Netvox light sensor device that is paired with a Netvox USB

adapter attached to your PC.

IMPORTANT: you must first use a Netvox USB component and successfully connect to the USB

adapter before attempting to connect to a device.

Before starting the component you need to send the IEEE address of the device to the 'Id' input. The

IEEE address is usually written on the device itself.

Trigger the Start input to connect. The Status output will show as "Searching”. If the device can't be

found the status will show as “Not Found”. If the status shows “No Network” then the Netvox USB

adapter has been disconnected.

On successful startup the device details will be updated. Battery level and detected light level will be

sent to the relevant outputs.

You can set the minimum and maximum time reporting intervals in seconds and the reportable change.

These 3 work together as follows:

When the detected light intensity is greater than the change in light intensity value specified in

reportable change, the device will report the intensity information at the minimum reporting interval

specified. With the maximum time interval it's the other way around ie. when the detected light

intensity is less than the change in light intensity value specified in reportable change, the intensity

information will be reported at the maximum reporting interval specified.

Updates are triggered automatically based on the above settings. However, you can request an update

manually by sending a trigger to the 'Query' input.

If the connection is lost at any time the status will change to “Lost Connection”. Reconnection will start

automatically at which point the status will change to “Reconnecting”.

- 277 -

CHAPTER 2

Connectors

Inputs Type Outputs Type

IEEE address of the device

you want to connect to

String The current connection

status

String

Trigger to start the

component

Trigger The percentage battery level

(-1 means if it could not be

read)

Int

Trigger to query the

component

Trigger The brightness level in LUX Int

The minimum reporting

interval (in secs)

Int

The maximum reporting

interval (in secs)

Int

The reportable change Int

- 278 -

COMPONENTS

Netvox Mains Power Outlet

Description

This component allows you to connect to a Netvox mains power outlet device that is paired with a

Netvox USB adapter attached to your PC.

IMPORTANT: you must first use a Netvox USB component and successfully connect to the USB

adapter before attempting to connect to a device.

Before starting the component you need to send the IEEE address of the device to the 'Id' input. The

IEEE address is usually written on the device itself.

Trigger the Start input to connect. The Status output will show as "Searching”. If the device can't be

found the status will show as “Not Found”. If the status shows “No Network” then the Netvox USB

adapter has been disconnected.

On successful startup the device details will be updated. Battery level, On/Off status, Current, Voltage,

Power and Energy usage will all be sent to the relevant outputs.

You can request an update manually by sending a trigger to the 'Query' input.

To switch the mains outlet on or off you can send a boolean value to the 'On' input. Trigger the 'Toggle'

input to flip the state of the outlet.

If the connection is lost at any time the status will change to “Lost Connection”. Reconnection will start

automatically at which point the status will change to “Reconnecting”.

- 279 -

CHAPTER 2

Connectors

Inputs Type Outputs Type

IEEE address of the device

you want to connect to

String The current connection

status

String

Trigger to start the

component

Trigger The percentage battery level

(-1 means if it could not be

read)

Int

Trigger to query the

component

Trigger Whether the outlet is

currently on

Boolean

Switch the outlet on or off Boolean Current usage in Amps Int

Toggle the outlet from its

current state

Boolean Voltage level in Volts Int

Power consumption in Watts Int

Energy usage in kWh Float

- 280 -

COMPONENTS

Netvox Temperature Sensor

Description

This component allows you to connect to a Netvox temperature sensor device that is paired with a

Netvox USB adapter attached to your PC.

IMPORTANT: you must first use a Netvox USB component and successfully connect to the USB

adapter before attempting to connect to a device.

Before starting the component you need to send the IEEE address of the device to the 'Id' input. The

IEEE address is usually written on the device itself.

Trigger the Start input to connect. The Status output will show as "Searching”. If the device can't be

found the status will show as “Not Found”. If the status shows “No Network” then the Netvox USB

adapter has been disconnected.

On successful startup the device details will be updated. Battery level, Temperature will be sent to the

relevant outputs. Humidity and UV levels will also be reported if supported by the device.

You can set the minimum and maximum time reporting intervals in seconds and the reportable change.

These 3 work together as follows:

Minimum reporting time interval is the minimum reporting time, in seconds. If this value is set

to 0, then there is no minimum limit. Maximum reporting time interval is the fixed reporting

time, in seconds. If this value is set to 0, then the device will not report the temperature.

Reportable change is the minimum temperature change between the previous and the last

detected. If the change in temperature is greater than Reportable Change value, the device

issues the report at the minimum reporting time. If the change is less than the reportable

change, it will not report until the time reaches the maximum reporting time.

Updates are triggered automatically based on the above settings. However, you can request an update

manually by sending a trigger to the 'Query' input.

- 281 -

CHAPTER 2

If the connection is lost at any time the status will change to “Lost Connection”. Reconnection will start

automatically at which point the status will change to “Reconnecting”.

Connectors

Inputs Type Outputs Type

IEEE address of the device

you want to connect to

String The current connection

status

String

Trigger to start the

component

Trigger The percentage battery level

(-1 means if it could not be

read)

Int

Trigger to query the

component

Trigger The temperature level in

degrees celcius

Float

The minimum reporting

interval (in secs)

Int The percentage humidity (if

supported by device)

Float

The maximum reporting

interval (in secs)

Int The UV level (if supported

by device)

Int

The reportable change Int

- 282 -

COMPONENTS

Netvox USB

Description

This component allows you to connect to a Netvox home automation USB adapter.

The adapter installs as a virtual COM port so you need to find out which port it's on before you can use

this component.

Send the com port number to the 'Port' input (just the number, not the 'COM' part). You can set the

Baud Rate or leave this unconnected to use the default.

Trigger the Start input to connect. The 'On' output will send True if successful or False otherwise. If

connected the Status output will show as "Connected”. If no USB adapter can be found the status will

show as “Device Not Found”.

Once you are connected to an adapter you can use the other Netvox components to connect to

devices that are paired with the adapter.

- 283 -

CHAPTER 2

Connectors

Inputs Type Outputs Type

Trigger to start the

component

Trigger Whether a connection was

successful

Boolean

The COM port number that

the adapter is connected to

Int The current connection

status

String

The baud rate in bps

(optional). Leave

unconnected to use the

default baud rate of 115200

Int

- 284 -

COMPONENTS

Network Client

Description

This primitive allows you to send and receive data to and from a server across a network.

You can choose whether to create a TCP or UDP connection. You can also specify whether you are

communicating via character strings (straight text) or hex strings.

- 285 -

CHAPTER 2

Connectors

Inputs Type Outputs Type

The IP address of the server

you want to connect to

String Whether the connection is

open or not

String

The port you want to

connect to

Int Data received in from the

server

String

The type of connection,

either 'TCP' or 'UDP'

String Trigger when data has been

sent out to the server

Trigger

Trigger to open the

connection

Trigger If the Log input is set to true

then the activity log can be

accessed from here

String

Trigger to close the

connection

Trigger

The data you want to send String

Whether the data being

transmitted and received is

hex (as opposed to

character strings)

Boolean

Trigger to send the data Trigger

Whether you want to log

activity across the

connection. This can be

helpful to make sure

everything is working as you

expect. The log is accessible

through the Log output

Boolean

Trigger to clear the log Trigger

- 286 -

COMPONENTS

Network Server

Description

This primitive allows you to receive and and send data from and to clients across a network.

You can choose whether to create a TCP or UDP connection. You can also specify whether you are

communicating via character strings (straight text) or hex strings.

When sending the data is sent to all clients that are connected to the server.

- 287 -

CHAPTER 2

Connectors

Inputs Type Outputs Type

The port you want the server

to use through

Int Whether the server has

started and a connection is

open

String

The type of connection,

either 'TCP' or 'UDP'

String The IP address of the server

(once the connection has

been set up)

String

Trigger to start the server Trigger Data received in from any

clients

String

Trigger to stop the server Trigger Trigger when data has been

sent out

Trigger

The data you want to send String If the Log input is set to true

then the activity log can be

accessed from here

String

Whether the data being

received and transmitted is

hex (as opposed to

character strings)

Boolean

Trigger to send the data Trigger

Whether you want to log

activity across the server

connection. This can be

helpful to make sure

everything is working as you

expect. The log is accessible

through the Log output

Boolean

Trigger to clear the log Trigger

- 288 -

COMPONENTS

New Line

Description

This component outputs the new line character.

Connectors

Inputs Type Outputs Type

N/A The new line character String

- 289 -

CHAPTER 2

Norm

Description

Normalises an array of float values. The values are scaled so that they fall between –1 and 1.

Connectors

Inputs Type Outputs Type

Source array Float Array Array of normalised values Float Array

- 290 -

COMPONENTS

Not

Description

This component returns the opposite value from the input turning True to False and False to True.

Connectors

Inputs Type Outputs Type

Boolean input Boolean Inverse of the input value Boolean

- 291 -

CHAPTER 2

Note Equal

Description

The Note Equal primitive will filter out all MIDI events except those associated with the value fed to the

'note' input (each semitone has a unique MIDI integer value from 0 to 127 with Middle C = 60). MIDI

messages that do not relate to notes other than the specified one do not pass through.

Connectors

Inputs Type Outputs Type

MIDI data MIDI MIDI data MIDI

MIDI Note number Int

- 292 -

COMPONENTS

Note Event

Description

The Note Event primitive generates a MIDI note on/off event pair in order to play a note.

Connectors

Inputs Type Outputs Type

MIDI Channel (1-16) Int MIDI event message MIDI

Note number indicating the

pitch of the note to be

played (60 = middle C)

Int

Velocity of the note (0-127) Int

Duration of the note

(milliseconds). Technically it

is the period of time between

sending a note on event and

a corresponding note off

event for the same MIDI

channel and note values

Int

Trigger to determine when to

send the MIDI note event

Trigger

- 293 -

CHAPTER 2

Note to Int

Description

Converts a note name to a MIDI note number. For example, C3 is MIDI note 60.

Connectors

Inputs Type Outputs

Note name String Equivalent MIDI note

number

Int

- 294 -

COMPONENTS

Note to Int

Description

Converts a note name to a MIDI note number. For example, C3 is MIDI note 60.

Connectors

Inputs Type Outputs

Note name String Equivalent MIDI note

number

Int

- 295 -

CHAPTER 2

Offline Mode

Description

When used inside an exported VST this component will determine whether the host is in offline mode

or not. This is useful if you want to apply more cpu intensive processing like over sampling only when

the host is using the plugin for rendering or some other non-live purpose.

Connectors

Inputs Type Outputs Type

N/A Whether the host is in offline

mode

Boolean

- 296 -

COMPONENTS

Open ASIO Settings

Description

Use this in an exported exe to provide access to the ASIO settings dialog. You can use a button or

other GUI element to trigger this. The boolean output allows you to determine whether an ASIO driver

is currently selected. This is useful because the ASIO settings only apply to the selected ASIO driver

and if no ASIO driver is selected the input trigger will do nothing.

Connectors

Inputs Type Outputs Type

Trigger to open the ASIO

settings

Trigger Whether an ASIO driver is

currently selected

Boolean

- 297 -

CHAPTER 2

OWL Energy Monitor

Description

This primitive allows you to interface to an OWL Energy Monitor. It will work either with a direct

connection via USB cable or using an OWL USB adapter for connecting wirelessly.

Once you have the board connected to your PC you need to start the component by sending a trigger

to the 'Start' input. The 'On' output will return True if a connection has been established (False

otherwise). If successful the 'Status' output should change from “Not Started” to “Started”.

To read data send a trigger to the 'Read' input. The status should change to “Connected - Waiting for

OWL data”. It may take up to a minute or two to find any devices and gather their readings so keep

triggering the Read input until your devices are found. If you want to get continuous readings use a

Ticker25 or a timer to repeatedly trigger the 'Read' input.

When devices are located the status will change to “Connected - Data read successfully”. The device

ids are sent as an array via the 'Devices' output. The corresponding current readings (in Amps) are

sent as an array via the 'Readings' output.

If you are connecting wirelessly and pick up more than one device you can focus on a particular one

by passing its id into the 'Selected Device' input. The reading from the device will be sent out through

the 'Selected Device' output. If no device id is supplied then the 'Selected Device' output will show the

reading for the first device.

- 298 -

COMPONENTS

Connectors

Inputs Type Outputs Type

Trigger to start the

component

Trigger Whether a connection was

successful

Boolean

Trigger to attempt to read

data from connected devices

Trigger The current connection

status

String

Id of the device you want to

focus on

Int Returns an array of found

device ids

Int Array

Returns an array of

readings , one for each

device

Float Array

Returns the reading for the

device you have selected to

focus on or the first device if

you haven't made a choice

Float

- 299 -

CHAPTER 2

Pack

Description

The Pack component literally ‘packs’ 4 mono streams into one Mono4 stream. You can then take full

advantage of SSE as any stream components you connect up to this will effectively be processing the

original 4 mono channels at the same time.

To get the 4 mono streams back again use the Unpack component. Using Pack (and Unpack) can

radically increase the efficiency of a Mono section.

Connectors

Inputs Type Outputs Type

First mono stream Mono All 4 mono streams ‘packed’

into one stream

Mono4

Second mono stream Mono

Third mono stream Mono

Fourth mono stream Mono

- 300 -

COMPONENTS

Pen

Description

This component creates a Pen that you can use for drawing. A pen is defined by colour, line thickness

and style parameters. The thickness is a float and is in grid squares.

Style can be any one of the following strings:

solid, dash, dot, dashdot, dashdotdot

You can leave the style input disconnected and a solid style will be assumed.

Connectors

Inputs Type Outputs Type

The colour for the pen Colour The pen Pen

Thickness of the pen in grid

squares

Float

Pen line style (see

description above)

String

- 301 -

CHAPTER 2

Phidgets 0/0/4

Description

This primitive allows you to control a Phidgets 0/0/4 Interface Kit board.

Once you have the board connected to your PC you need to start the component by sending a trigger

to the first input. The 'On' output will return True if a connection has been established (False

otherwise).

If you have multiple boards connected to your PC then you should provide the unique serial number of

the board you want to connect to at the 'Conn' (connection string) input. If you want to connect to a

device on a remote server provide the device serial, IP and port or server name and also a password if

necessary separated by commas. Use -1 as the serial if you want to connect to the first device found.

Example connection strings:

“196491” or “635824,myserver” or “-1,myserver,password” or “142567,192.168.1.1,800,password”

The board has 4 digital outputs. These are mirrored on the component. The 4 boolean inputs will

control the 4 digital outputs on the board.

- 302 -

COMPONENTS

Connectors

Inputs Type Outputs Type

Trigger to start the

component

Trigger Whether the board is

connected and on

Boolean

Connection string (optional) String

4 x inputs to change the

state of the 4 digital outputs

on the board

Boolean

- 303 -

CHAPTER 2

Phidgets 0/0/8

Description

This primitive allows you to control a Phidgets 0/0/8 Interface Kit board.

Once you have the board connected to your PC you need to start the component by sending a trigger

to the first input. The 'On' output will return True if a connection has been established (False

otherwise).

If you have multiple boards connected to your PC then you should provide the unique serial number of

the board you want to connect to at the 'Conn' (connection string) input. If you want to connect to a

device on a remote server provide the device serial, IP and port or server name and also a password if

necessary separated by commas. Use -1 as the serial if you want to connect to the first device found.

Example connection strings:

“196491” or “635824,myserver” or “-1,myserver,password” or “142567,192.168.1.1,800,password”

The board has 8 digital outputs. These are mirrored on the component. The 4 boolean inputs will

control the 8 digital outputs on the board.

- 304 -

COMPONENTS

Connectors

Inputs Type Outputs Type

Trigger to start the

component

Trigger Whether the board is

connected and on

Boolean

Connection string (optional) String

8 x inputs to change the

state of the 8 digital outputs

on the board

Boolean

- 305 -

CHAPTER 2

Phidgets 0/0/16

Description

This primitive allows you to control a Phidgets 0/0/16 Interface Kit board.

Once you have the board connected to your PC you need to start the component by sending a trigger

to the first input. The 'On' output will return True if a connection has been established (False

otherwise).

If you have multiple boards connected to your PC then you should provide the unique serial number of

the board you want to connect to at the 'Conn' (connection string) input. If you want to connect to a

device on a remote server provide the device serial, IP and port or server name and also a password if

necessary separated by commas. Use -1 as the serial if you want to connect to the first device found.

Example connection strings:

“196491” or “635824,myserver” or “-1,myserver,password” or “142567,192.168.1.1,800,password”

- 306 -

COMPONENTS

The board has 16 digital outputs and 16 digital inputs. These are mirrored on the component. The 16

boolean inputs will send data out through the 16 digital outputs on the board. The 16 boolean outputs

receive data from the 16 digital inputs on the board.

Connectors

Inputs Type Outputs Type

Trigger to start the

component

Trigger Whether the board is

connected and on

Boolean

Connection string (optional) String 16 x outputs receiving the

state of the 16 digital inputs

on the board

Boolean

16 x inputs to change the

state of the 16 digital outputs

on the board

Boolean

- 307 -

CHAPTER 2

Phidgets 2/2/2

Description

This primitive allows you to control a Phidgets 2/2/2 Interface Kit board.

Once you have the board connected to your PC you need to start the component by sending a trigger

to the first input. The 'On' output will return True if a connection has been established (False

otherwise).

If you have multiple boards connected to your PC then you should provide the unique serial number of

the board you want to connect to at the 'Conn' (connection string) input. If you want to connect to a

device on a remote server provide the device serial, IP and port or server name and also a password if

necessary separated by commas. Use -1 as the serial if you want to connect to the first device found.

Example connection strings:

“196491” or “635824,myserver” or “-1,myserver,password” or “142567,192.168.1.1,800,password”

The board has 2 digital outputs, 2 digital inputs and 2 analog inputs. These are mirrored on the

component. The 2 boolean inputs will send data out through the 2 digital outputs. The 2 integer outputs

receive data from the 2 analog inputs. The 2 boolean outputs receive data from the 2 digital inputs.

The 2 Int outputs are in the range 0-999.

- 308 -

COMPONENTS

Connectors

Inputs Type Outputs Type

Trigger to start the

component

Trigger Whether the board is

connected and on

Boolean

Connection string (optional) String

Connection string (optional) String 8 x outputs receiving analog

data from the 8 analog

inputs on the board

Int

8 x inputs to change the

state of the 8 digital outputs

on the board

Boolean 8 x outputs receiving the

state of the 8 digital inputs

on the board

Boolean

- 309 -

CHAPTER 2

Phidgets 8/8/8

Description

This primitive allows you to send and receive data to and from the Phidgets 8/8/8 Interface Kit board.

Once you have the board connected to your PC you need to start the component by sending a trigger

to the first input. The 'On' output will return True if a connection has been established (False

otherwise).

If you have multiple boards connected to your PC then you should provide the unique serial number of

the board you want to connect to at the 'Conn' (connection string) input. If you want to connect to a

device on a remote server provide the device serial, IP and port or server name and also a password if

necessary separated by commas. Use -1 as the serial if you want to connect to the first device found.

Example connection strings:

“196491” or “635824,myserver” or “-1,myserver,password” or “142567,192.168.1.1,800,password”

- 310 -

COMPONENTS

The board has 8 digital outputs, 8 digital inputs and 8 analog inputs. These are mirrored on the

component. The 8 boolean inputs will send data out through the 8 digital outputs. The 8 integer outputs

receive data from the 8 analog inputs. The 8 boolean outputs receive data from the 8 digital inputs.

The 8 Int outputs are in the range 0-999.

Connectors

Inputs Type Outputs Type

Trigger to start the

component

Trigger Whether the board is

connected and on

Boolean

Connection string (optional) String 8 x outputs receiving analog

data from the 8 analog

inputs on the board

Int

8 x inputs to change the

state of the 8 digital outputs

on the board

Boolean 8 x outputs receiving the

state of the 8 digital inputs

on the board

Boolean

- 311 -

CHAPTER 2

Phidgets Accelerometer

Description

This primitive allows you to interface to the Phidgets Accelerometer board.

Once you have the board connected to your PC you need to start the component by sending a trigger

to the first input. The 'On' output will return True if a connection has been established (False

otherwise).

If you have multiple boards connected to your PC then you should provide the unique serial number of

the board you want to connect to at the 'Conn' (connection string) input. If you want to connect to a

device on a remote server provide the device serial, IP and port or server name and also a password if

necessary separated by commas. Use -1 as the serial if you want to connect to the first device found.

Example connection strings:

“196491” or “635824,myserver” or “-1,myserver,password” or “142567,192.168.1.1,800,password”

You can set the sensitivity for the three axes. This is a value from 0 to 1 and represents the amount

that the acceleration has to change in order for you to be sent an update.

The X, Y and Z outputs then give you the acceleration value for each axis in the range -1 to 1.

- 312 -

COMPONENTS

Connectors

Inputs Type Outputs Type

Trigger to start the

component

Trigger Whether the board is

connected and on

Boolean

Connection string (optional) String X-axis acceleration Float

The amount the X-axis

acceleration needs to

change by before it's

updated

Float Y-axis acceleration Float

The amount the Y-axis

acceleration needs to

change by before it's

updated

Float Z-axis acceleration Float

The amount the Z-axis

acceleration needs to

change by before it's

updated

Float

- 313 -

CHAPTER 2

Phidgets Analog

Description

This primitive allows you to control a Phidgets Analog board.

Once you have the board connected to your PC you need to start the component by sending a trigger

to the first input. The 'On' output will return True if a connection has been established (False

otherwise).

If you have multiple boards connected to your PC then you should provide the unique serial number of

the board you want to connect to at the 'Conn' (connection string) input. If you want to connect to a

device on a remote server provide the device serial, IP and port or server name and also a password if

necessary separated by commas. Use -1 as the serial if you want to connect to the first device found.

Example connection strings:

“196491” or “635824,myserver” or “-1,myserver,password” or “142567,192.168.1.1,800,password”

The board has 4 analog outputs. You can enable and set the voltage for each output independently.

Voltages are in the range -10 to +10 volts.

- 314 -

COMPONENTS

Connectors

Inputs Type Outputs Type

Trigger to start the

component

Trigger Whether the board is

connected and on

Boolean

Connection string (optional) String

Enable output 0 Boolean

Voltage for output 0 (+/-10v) Float

Enable output 1 Boolean

Voltage for output 1 (+/-10v) Float

Enable output 2 Boolean

Voltage for output 2 (+/-10v) Float

Enable output 3 Boolean

Voltage for output 3 (+/-10v) Float

- 315 -

CHAPTER 2

Phidgets Bridge

Description

This primitive allows you to control a Phidgets Bridge board.

Once you have the board connected to your PC you need to start the component by sending a trigger

to the first input. The 'On' output will return True if a connection has been established (False

otherwise).

If you have multiple boards connected to your PC then you should provide the unique serial number of

the board you want to connect to at the 'Conn' (connection string) input. If you want to connect to a

device on a remote server provide the device serial, IP and port or server name and also a password if

necessary separated by commas. Use -1 as the serial if you want to connect to the first device found.

Example connection strings:

“196491” or “635824,myserver” or “-1,myserver,password” or “142567,192.168.1.1,800,password”

The board has 4 analog inputs. You can enable and set the gain for each input independently. Gains

must be either 1,8,16,32,64 or 128. If you enter a value outside of this range it will be rounded to the

nearest of these values. Higher gain gives you lower noise and higher resolution.

- 316 -

COMPONENTS

Connectors

Inputs Type Outputs Type

Trigger to start the

component

Trigger Whether the board is

connected and on

Boolean

Connection string (optional) String Value at input 0 in mV/V Float

Enable input 0 Boolean Value at input 1 in mV/V Float

Gain at input 0 Int Value at input 2 in mV/V Float

Enable input 1 Boolean Value at input 3 in mV/V Float

Gain at input 1 Int

Enable input 2 Boolean

Gain at input 2 Int

Enable input 3 Boolean

Gain at input 3 Int

- 317 -

CHAPTER 2

Phidgets Encoder

Description

This primitive allows you to interface to the Phidgets Encoder board.

Once you have the board connected to your PC you need to start the component by sending a trigger

to the first input. The 'On' output will return True if a connection has been established (False

otherwise).

If you have multiple boards connected to your PC then you should provide the unique serial number of

the board you want to connect to at the 'Conn' (connection string) input. If you want to connect to a

device on a remote server provide the device serial, IP and port or server name and also a password if

necessary separated by commas. Use -1 as the serial if you want to connect to the first device found.

Example connection strings:

“196491” or “635824,myserver” or “-1,myserver,password” or “142567,192.168.1.1,800,password”

You can set the sensitivity for the three axes. This is a value from 0 to 1 and represents the amount

that the acceleration has to change in order for you to be sent an update.

The X, Y and Z outputs then give you the acceleration value for each axis in the range -1 to 1.

- 318 -

COMPONENTS

Connectors

Inputs Type Outputs Type

Trigger to start the

component

Trigger Whether the board is

connected and on

Boolean

Connection string (optional) String Number of encoders

supported by the connected

board

Int

Zero based index of the

encoder you want to use

(some boards support

multiple encoders)

Int Number of digital inputs

supported by the connected

board

Int

Power on or off the specified

encoder

Boolean Position of the specified

encoder

Int

Set the position of the

specified encoder

Int The change since the last

recorded encoder change

Int

The elapsed time in

milliseconds since the last

recorded encoder change

Int

The index position of the

encoder if supported

Int

State of the boards digital

input 0

Boolean

State of the boards digital

input 1

Boolean

State of the boards digital

input 2

Boolean

State of the boards digital

input 3

Boolean

- 319 -

CHAPTER 2

Phidgets Frequency Counter

Description

This primitive allows you to control a Phidgets Frequency Counter board.

Once you have the board connected to your PC you need to start the component by sending a trigger

to the first input. The 'On' output will return True if a connection has been established (False

otherwise).

If you have multiple boards connected to your PC then you should provide the unique serial number of

the board you want to connect to at the 'Conn' (connection string) input. If you want to connect to a

device on a remote server provide the device serial, IP and port or server name and also a password if

necessary separated by commas. Use -1 as the serial if you want to connect to the first device found.

Example connection strings:

“196491” or “635824,myserver” or “-1,myserver,password” or “142567,192.168.1.1,800,password”

The board has two channels for measuring. For each one you can enable the channel. You can set the

Filter to zero crossing or logic level (0=zero crossing, 1=logic level), depending on your sensor. You

can set the timeout in milliseconds (the default is 1000 if you leave this input empty). The reset trigger

will reset the counter.

- 320 -

COMPONENTS

Connectors

Inputs Type Outputs Type

Trigger to start the

component

Trigger Whether the board is

connected and on

Boolean

Connection string (optional) String Frequency calculated at

channel 0 in Hz

Float

Enable channel 0 Boolean Number of pulses counted

for channel 0

Int

Set the filter for channel 0

(0=zero crossing, 1=logic

level)

Int Total time spent counting in

microseconds for channel 0

Int

Timeout (ms) for channel 0 Int Frequency calculated at

channel 1 in Hz

Float

Reset the counter for

channel 0

Trigger Number of pulses counted

for channel 1

Int

Enable channel 1 Boolean Total time spent counting in

microseconds for channel 1

Int

Set the filter for channel 1

(0=zero crossing, 1=logic

level)

Int

Timeout (ms) for channel 1 Int

Reset the counter for

channel 1

Trigger

- 321 -

CHAPTER 2

Phidgets GPS

Description

This primitive allows you to control a Phidgets GPS board.

Once you have the board connected to your PC you need to start the component by sending a trigger

to the first input. The 'On' output will return True if a connection has been established (False

otherwise).

If you have multiple boards connected to your PC then you should provide the unique serial number of

the board you want to connect to at the 'Conn' (connection string) input. If you want to connect to a

device on a remote server provide the device serial, IP and port or server name and also a password if

necessary separated by commas. Use -1 as the serial if you want to connect to the first device found.

Example connection strings:

“196491” or “635824,myserver” or “-1,myserver,password” or “142567,192.168.1.1,800,password”

The component reads latitude, longitude, altitude, velocity and heading information from the board. It

also reports whether a fix has been achieved.

- 322 -

COMPONENTS

Connectors

Inputs Type Outputs Type

Trigger to start the

component

Trigger Whether the board is

connected and on

Boolean

Connection string (optional) String Whether a fix has been

achieved

Boolean

Latitude of position in

degrees North

Float

Longitude of position in

degrees East

Float

Altitude in metres above sea

level

Float

Velocity in km/h Float

Heading in degrees Float

- 323 -

CHAPTER 2

Phidgets IR Transmit and Receive

Description

This primitive allows you to interface to the Phidgets IR board.

Once you have the board connected to your PC you need to start the component by sending a trigger

to the first input. The 'On' output will return True if a connection has been established (False

otherwise).

If you have multiple boards connected to your PC then you should provide the unique serial number of

the board you want to connect to at the 'Conn' (connection string) input. If you want to connect to a

device on a remote server provide the device serial, IP and port or server name and also a password if

necessary separated by commas. Use -1 as the serial if you want to connect to the first device found.

Example connection strings:

“196491” or “635824,myserver” or “-1,myserver,password” or “142567,192.168.1.1,800,password”

To send an IR code you need to attach a String to the Code input. This must contain the full NEC

encoding for the code you want to send . An example code would be:

08b750af,32,2,2,108500,501,8980,4590,501,1761,501,626,8980,2333,501,|,0,0,0,0

To send the code simply trigger the Send input.

When IR codes are received you'll get the short hex code at the Hex output and the full NEC encoding

at the Code output. The Rept output gives you the repeat count for a code – the number of times it has

been repeated if say a transmit button on a remote was held down.

- 324 -

COMPONENTS

Connectors

Inputs Type Outputs Type

Trigger to start the

component

Trigger Whether the board is

connected and on

Boolean

Connection string (optional) String Short hex code of any IR

received

String

Full NEC encoding of the IR

code you want to transmit

String Full NEC encoding of any IR

receieved

String

Trigger to send the code Trigger Repeat count of any IR code

received

Int

- 325 -

CHAPTER 2

Phidgets LED 64

Description

This primitive allows you to interface to the Phidgets LED 64 board.

Once you have the board connected to your PC you need to start the component by sending a trigger

to the first input. The 'On' output will return True if a connection has been established (False

otherwise).

If you have multiple boards connected to your PC then you should provide the unique serial number of

the board you want to connect to at the 'Conn' (connection string) input. If you want to connect to a

device on a remote server provide the device serial, IP and port or server name and also a password if

necessary separated by commas. Use -1 as the serial if you want to connect to the first device found.

Example connection strings:

“196491” or “635824,myserver” or “-1,myserver,password” or “142567,192.168.1.1,800,password”

This is a very simple component to use. Simply specify the LED you want to control using the LED

input. This should be a value from 0 to 63. Then set the luminance using the Lum input. Luminance is

in the range 0 to 100 with 0 being off and 100 being fully on.

The current luminance of the specified LED is also given at the Lum output.

- 326 -

COMPONENTS

Connectors

Inputs Type Outputs Type

Trigger to start the

component

Trigger Whether the board is

connected and on

Boolean

Connection string (optional) String Number of LEDs supported

by the board

Int

Index of the LED you want

to control (0-63)

Int Luminance of the currently

selected LED

Int

Luminance level you want to

set the specified LED to (0-

100)

Int

Set the voltage for ALL

LEDs. You can only choose

certain voltages so this input

takes values 0-3 where

0=1.7v, 1=2.75v, 2=3.9v

and 3=5v.

Int

Set the current for ALL

LEDs. You can only choose

certain currents so this input

takes values 0-3 where

0=20mA, 1=40mA, 2=50mA

and 3=80mA.

Int

- 327 -

CHAPTER 2

Phidgets Motor Control

Description

This primitive allows you to interface to the two Phidgets Motor Control boards (both 2 motor HC and 4

motor LC).

Once you have the board connected to your PC you need to start the component by sending a trigger

to the first input. The 'On' output will return True if a connection has been established (False

otherwise).

If you have multiple boards connected to your PC then you should provide the unique serial number of

the board you want to connect to at the 'Conn' (connection string) input. If you want to connect to a

device on a remote server provide the device serial, IP and port or server name and also a password if

necessary separated by commas. Use -1 as the serial if you want to connect to the first device found.

Example connection strings:

“196491” or “635824,myserver” or “-1,myserver,password” or “142567,192.168.1.1,800,password”

Specify the index of the motor you want to control using the Motor input. This should be a value from 0

to 1 if using the two motor board and 0-3 for the 4 motor.

You can set the velocity and acceleration for the motor using the Vel and Accel inputs.

Current velocity is given at the Vel output as well as minimum and maximum acceleration capabilities.

- 328 -

COMPONENTS

You can set the braking from zero to 100% and switch back EMF sensing on or off. If the motor you're

using has an encoder then you can set this using the Encoder input.

If the board has digital inputs then the status of these is reflected by the four boolean outputs labeled

0-3.

If the board has analog inputs then the status of these is reflected by the two integer outputs labeled

A0 and A1.

Encoder and back EMF values can also be read if applicable.

- 329 -

CHAPTER 2

Connectors

Inputs Type Outputs Type

Trigger to start the

component

Trigger Whether the board is

connected and on

Boolean

Connection string (optional) String Number of motors

supported by the connected

board

Int

Index of the motor you want

to control (0-3)

Int Current velocity of the

selected motor

Float

Velocity you want to set for

the selected motor

Float Minimum supported

acceleration for the selected

motor

Float

Acceleration you want to set

for the selected motor

Float Maximum supported

acceleration for the selected

motor

Float

Braking amount 0-100% Float State of the boards digital

input 0

Boolean

Set the encoder on the

motor if there is one

Int State of the boards digital

input 1

Boolean

Switch back EMF sensing

on or off

Boolean State of the boards digital

input 2

Boolean

State of the boards digital

input 3

Boolean

Value at first analog input Int

Value at second analog input Int

Encoder position (if any) Int

Back EMF value Float

- 330 -

COMPONENTS

Phidgets RFID

Description

This primitive allows you to interface to the Phidgets RFID board.

Once you have the board connected to your PC you need to start the component by sending a trigger

to the first input. The 'On' output will return True if a connection has been established (False

otherwise).

If you have multiple boards connected to your PC then you should provide the unique serial number of

the board you want to connect to at the 'Conn' (connection string) input. If you want to connect to a

device on a remote server provide the device serial, IP and port or server name and also a password if

necessary separated by commas. Use -1 as the serial if you want to connect to the first device found.

Example connection strings:

“196491” or “635824,myserver” or “-1,myserver,password” or “142567,192.168.1.1,800,password”

The Ant input controls whether the RFID sensor is on or off. You can switch the on board LED on and

off via the LED input.

The board has two digital outputs that you can control using the '0' and '1' inputs.

When an RFID tag passes close enough to the sensor it's id is sent to the TagId output. The Found

output will change from false to true when a tag is in close proximity.

- 331 -

CHAPTER 2

Connectors

Inputs Type Outputs Type

Trigger to start the

component

Trigger Whether the board is

connected and on

Boolean

Connection string (optional) String Whether the RFID sensor is

on or off

Boolean

Switch the RFID sensor on

or off

Boolean Whether there is an RFID

tag in close proximity

Boolean

Switch the on board LED on

or off

Boolean Id code of any detected

RFID tag

String

Change the state of the first

digital output

Boolean

Change the state of the

second digital output

Boolean

- 332 -

COMPONENTS

Phidgets Servo Advanced

Description

This primitive allows you to interface to the two Phidgets Advanced servo boards (both 1 motor and 8

motor).

Once you have the board connected to your PC you need to start the component by sending a trigger

to the first input. The 'On' output will return True if a connection has been established (False

otherwise).

If you have multiple boards connected to your PC then you should provide the unique serial number of

the board you want to connect to at the 'Conn' (connection string) input. If you want to connect to a

device on a remote server provide the device serial, IP and port or server name and also a password if

necessary separated by commas. Use -1 as the serial if you want to connect to the first device found.

Example connection strings:

“196491” or “635824,myserver” or “-1,myserver,password” or “142567,192.168.1.1,800,password”

Specify the index of the servo you want to control using the Servo input. This should be a value from 0

to 7 depending on the board you have connected.

- 333 -

CHAPTER 2

You can set the servo type using the Type input. This is optional and if left unconnected will adopt the

default type settings. The available types are:

1 Default - originally based on the Futaba FP-S148

2 Raw US mode - all position, velocity, acceleration functions are specified in microseconds

rather then degrees

3 HiTec HS-322HD Standard Servo

4 HiTec HS-5245MG Digital Mini Servo

5 HiTec HS-805BB Mega Quarter Scale Servo

6 HiTec HS-422 Standard Servo

7 Tower Pro MG90 Micro Servo

8 HiTec HSR-1425CR Continuous Rotation Servo

9 HiTec HS-785HB Sail Winch Servo

10 HiTec HS-485HB Deluxe Servo

11 HiTec HS-645MG Ultra Torque Servo

12 HiTec HS-815BB Mega Sail Servo

13 Firgelli L12 Linear Actuator 30mm 50:1

14 Firgelli L12 Linear Actuator 50mm 100:1

15 Firgelli L12 Linear Actuator 50mm 210:1

16 Firgelli L12 Linear Actuator 100mm 50:1

17 Firgelli L12 Linear Actuator 100mm 100:1

The other connectors allow you to control or inspect the state of the specified servo. There are all

explained in the Connectors table below.

- 334 -

COMPONENTS

Connectors

Inputs Type Outputs Type

Trigger to start the

component

Trigger Whether the board is

connected and on

Boolean

Connection string (optional) String Number of servos

supported by the connected

board

Int

Index of the servo you want

to use

Int Whether the selected servo

is moving or not

Boolean

Type of servo. This is

optional. See above for

supported types

Int Current position of the

selected servo

Float

Whether the servo is

powered on or not

Boolean Current velocity of the

selected servo

Float

Whether to use ramping (ie.

velocity and acceleration

settings)

Boolean Minimum supported velocity

for the selected servo

Float

Set the position of the

specified servo

Float Maximum supported velocity

for the selected servo

Float

Set the velocity of the

specified servo (only used if

ramping is on)

Float Minimum supported

acceleration for the selected

servo

Float

Set the acceleration of the

specified servo (only used if

ramping is on)

Float Maximum supported

acceleration for the selected

servo

Float

Set the minimum position of

the specified servo

Float Returns the minimum

position of the specified

servo

Float

Set the maximum position of

the specified servo

Float Returns the maximum

position of the specified

servo

Float

- 335 -

CHAPTER 2

Phidgets Spacial

Description

This primitive allows you to interface to the two Phidgets Spacial boards (0/0/3 and 3/3/3).

Once you have the board connected to your PC you need to start the component by sending a trigger

to the first input. The 'On' output will return True if a connection has been established (False

otherwise).

If you have multiple boards connected to your PC then you should provide the unique serial number of

the board you want to connect to at the 'Conn' (connection string) input. If you want to connect to a

device on a remote server provide the device serial, IP and port or server name and also a password if

necessary separated by commas. Use -1 as the serial if you want to connect to the first device found.

Example connection strings:

“196491” or “635824,myserver” or “-1,myserver,password” or “142567,192.168.1.1,800,password”

- 336 -

COMPONENTS

Connectors

Inputs Type Outputs Type

Trigger to start the

component

Trigger Whether the board is

connected and on

Boolean

Connection string (optional) String Number of acceleration axes

supported by the board

Int

Set the rate at which data is

received from the board in

milliseconds. Leave

disconnected or set to zero

for maximum rate

Float Number of gyroscope axes

supported by the board

Int

Trigger to zero the

gyroscope

Trigger Number of compass axes

supported by the board

Int

X-axis acceleration (+/-5G) Float

Y-axis acceleration (+/-5G) Float

Z-axis acceleration (+/-5G) Float

X-axis gyroscope (degrees) Float

Y-axis gyroscope (degrees) Float

Z-axis gyroscope (degrees) Float

X-axis compass (gauss) Float

Y-axis compass (gauss) Float

Z-axis compass (gauss) Float

Pitch (degrees) Float

Roll (degrees) Float

Bearing (degrees) Float

- 337 -

CHAPTER 2

Phidgets Stepper Controller

Description

This primitive allows you to interface to the two Phidgets Stepper Controller boards (both 1 motor

bipolar and 4 motor unipolar).

Once you have the board connected to your PC you need to start the component by sending a trigger

to the first input. The 'On' output will return True if a connection has been established (False

otherwise).

If you have multiple boards connected to your PC then you should provide the unique serial number of

the board you want to connect to at the 'Conn' (connection string) input. If you want to connect to a

device on a remote server provide the device serial, IP and port or server name and also a password if

necessary separated by commas. Use -1 as the serial if you want to connect to the first device found.

Example connection strings:

“196491” or “635824,myserver” or “-1,myserver,password” or “142567,192.168.1.1,800,password”

Specify the index of the motor you want to control using the Motor input. This should be a value from 0

to 3 depending on the board. You can set the target position for the motor as well as velocity and

acceleration using the Pos, Vel and Accel inputs.

- 338 -

COMPONENTS

The Curr input sets the current and so allows you to control torque. If the board has digital inputs then

the status of these is reflected by the four boolean outputs labeled 0-3.

The Zero input will zero the position counter thus making the current motor position the initial reference

point.

- 339 -

CHAPTER 2

Connectors

Inputs Type Outputs Type

Trigger to start the

component

Trigger Whether the board is

connected and on

Boolean

Connection string (optional) String Number of motors

supported by the board

Int

Index of the motor you want

to control (0-3)

Int Whether the selected motor

is moving or not

Boolean

Position you want to set for

the selected motor

Float Current position of the

selected motor

Float

Velocity you want to set for

the selected motor

Float Current velocity of the

selected motor

Float

Acceleration you want to set

for the selected motor

Float Minimum supported velocity

for the motor

Float

Current you want to set for

the selected motor

Float Maximum supported velocity

for the motor

Float

Trigger to zero the position Trigger Minimum supported

acceleration for the motor

Float

Maximum supported

acceleration for the motor

Float

Minimum supported current

for the selected motor

Float

Maximum supported current

for the selected motor

Float

Minimum supported position

for the selected motor

Float

Maximum supported position

for the selected motor

Float

State of digital input 0 Boolean

State of digital input 1 Boolean

State of digital input 2 Boolean

State of digital input 3 Boolean

- 340 -

COMPONENTS

Phidgets Temperature

Description

This primitive allows you to interface to the two Phidgets Temperature Sensor boards (both 1 input and

4 input).

Once you have the board connected to your PC you need to start the component by sending a trigger

to the first input. The 'On' output will return True if a connection has been established (False

otherwise).

If you have multiple boards connected to your PC then you should provide the unique serial number of

the board you want to connect to at the 'Conn' (connection string) input. If you want to connect to a

device on a remote server provide the device serial, IP and port or server name and also a password if

necessary separated by commas. Use -1 as the serial if you want to connect to the first device found.

Example connection strings:

“196491” or “635824,myserver” or “-1,myserver,password” or “142567,192.168.1.1,800,password”

The four Type inputs allow you to specify the type of thermocouple you have attached to input. This is

a string input and can be 'K','J','E' or 'T'. If no type is provided it is assumed to be type 'K'.

The four Snsy inputs allow you to set the sensitivity for each input i.e. how much the temperature

needs to change before an update in temperature will be received. The default is 0.5 degrees Celcius.

- 341 -

CHAPTER 2

Connectors

Inputs Type Outputs Type

Trigger to start the

component

Trigger Whether the board is

connected and on

Boolean

Connection string (optional) String Ambient temperature of the

board in degrees Celcius

Float

Type of thermocouple

attached to input 1. Either

'K','J','E' or 'T'.

String Temperature at input 1 in

degrees Celcius

Float

Type of thermocouple

attached to input 2. Either

'K','J','E' or 'T'.

String Temperature at input 2 in

degrees Celcius

Float

Type of thermocouple

attached to input 3. Either

'K','J','E' or 'T'.

String Temperature at input 3 in

degrees Celcius

Float

Type of thermocouple

attached to input 4. Either

'K','J','E' or 'T'.

String Temperature at input 4 in

degrees Celcius

Float

Sensitivity of input 1 Float

Sensitivity of input 2 Float

Sensitivity of input 3 Float

Sensitivity of input 4 Float

- 342 -

COMPONENTS

Phidgets Text LCD

Description

This primitive allows you to interface to the Phidgets Text LCD and Text LCD Adapter boards.

Once you have the board connected to your PC you need to start the component by sending a trigger

to the first input. The 'On' output will return True if a connection has been established (False

otherwise).

If you have multiple boards connected to your PC then you should provide the unique serial number of

the board you want to connect to at the 'Conn' (connection string) input. If you want to connect to a

device on a remote server provide the device serial, IP and port or server name and also a password if

necessary separated by commas. Use -1 as the serial if you want to connect to the first device found.

Example connection strings:

“196491” or “635824,myserver” or “-1,myserver,password” or “142567,192.168.1.1,800,password”

The Text LCD Adapter board allows you to control up to two screens. To choose the screen send either

0 (first screen) or 1 (second screen) to the Screen input.

To tell FlowStone what screen size you are using with your adapter, use the Size input. This takes a

string of the format 'RxC' where R is the number of rows and C is the number of columns. For

example, '2x20' for a screen with 2 rows and 20 columns.

- 343 -

CHAPTER 2

Connectors

Inputs Type Outputs Type

Trigger to start the

component

Trigger Whether the board is

connected and on

Boolean

Connection string (optional) String

The text or character you

want to show on the display.

Note that this will wrap from

the first to the second line if

no line break is included in

the string

String

Position where you want to

start displaying the text. 0-19

for the first row and 20-39

for the second row

Int

Controls the cursor. 0=off,

1=on, 2=blinking

Int

Whether to turn the back

light on or off

Boolean

The contrast level (0-255) Int

The brightness level (0-255) Int

The screen you want to

address, 0 or 1 (adapter

board only)

Int

The size of screen you are

using (adapter board only)

String

- 344 -

COMPONENTS

Phidgets Touch Linear/Circular

Description

This primitive allows you to interface to the Phidgets Linear and Circular Touch Sensor boards.

Once you have the board connected to your PC you need to start the component by sending a trigger

to the first input. The 'On' output will return True if a connection has been established (False

otherwise).

If you have multiple boards connected to your PC then you should provide the unique serial number of

the board you want to connect to at the 'Conn' (connection string) input. If you want to connect to a

device on a remote server provide the device serial, IP and port or server name and also a password if

necessary separated by commas. Use -1 as the serial if you want to connect to the first device found.

Example connection strings:

“196491” or “635824,myserver” or “-1,myserver,password” or “142567,192.168.1.1,800,password”

- 345 -

CHAPTER 2

Connectors

Inputs Type Outputs Type

Trigger to start the

component

Trigger Whether the board is

connected and on

Boolean

Connection string (optional) String Returns True when in close

proximity to the sensor

Boolean

Returns True when touching

the sensor

Boolean

The value corresponding to

the touch point

Int

- 346 -

COMPONENTS

Pitch to Frequency

Description

Converts a pitch value to a frequency. There are two versions of this component. The stream version

should be used in Mono and Poly sections and performs the calculation at sampling rate. The Float

version should be used for static calculations.

Connectors

Inputs Type Outputs Type

Pitch Stream/Float Equivalent frequency Stream/Float

- 347 -

CHAPTER 2

Pixel to Grid

Description

The Pixel to Grid components convert values in Pixels to values in Grid Squares. There are two

versions, one for Floats and one for Areas.

Connectors

Inputs Type Outputs Type

Float or Area in pixel units Float/Area Float or Area in grid square

units

Float/Area

- 348 -

COMPONENTS

Plugin Folder

Description

The plugin folder component gives you the folder where your exported exe resides.

When inside FlowStone the folder given is whatever you have set up as the target folder for exported

executables. If you wish, you can provide a test folder that will be used only when working within

FlowStone.

Connectors

Inputs Type Outputs

Optional test folder path String Folder path for your

exported exe

String

- 349 -

CHAPTER 2

Point Array Lines

Description

The Point Array Lines component draws a line through a set of points. This is similar to the Graph

Lines component. However, in this case both the x and y coordinates are supplied. As with the Graph

Lines component, the y-coordinates are assumed to be in the range 0 to 1 (–1 to 1 if the graph is

centred on zero). This means that you may need to use the Norm component if you want to make

sure that your values are all visible. The x-coordinates are automatically normalised so that they fit

within the area of the graph.

By default the line drawn through the points is made from straight line segments. You can also choose

to draw a best fit curve through the points by setting the Curve input to True.

To generate a Point Array to use as input use the Graph to Point Array component.

Connectors

Inputs Type Outputs Type

View to draw onto View The same View as the input,

but anything connected here

is drawn on top

View

The area of the view that the

graph will be drawn into

Area

The array of points Point Array

The pen defining the colour,

thickness and style of the

lines

Pen

- 350 -

COMPONENTS

True if the graph is centred

on zero, False otherwise

Boolean

True if you want a curved

line, False otherwise

Boolean

- 351 -

CHAPTER 2

Poly to Graph

Description

The Poly to Graph component takes the first 2048 samples from a Poly stream and puts them in an

array. Poly sections are only active when voices are active and for this component the samples are the

first ones generated by the first note played only.

The Get trigger determines when the data is sent to the Float Array output but does not affect which

samples are taken – these are always the first 2048 in the signal no matter when the trigger is fired.

Connectors

Inputs Type Outputs Type

Poly signal to take samples

from

Poly Poly signal passing through Poly

Trigger to say when to send

the samples to the Float

Array output

Trigger Array of samples taken Float

- 352 -

COMPONENTS

Poly to Mono

Description

The Poly to Mono primitive is an essential part of any polyphonic synth. It acts as a voice combiner

adding together the independent signals from each Poly channel and producing a single Mono stream

of data.

Note: A Poly to Mono component must have a MIDI to Poly module (or a Voices to Poly) somewhere in

the Poly section that precedes it. It can also only connect into one such section – no two MIDI to Poly

modules can feed into the same Poly to Mono.

Connectors

Inputs Type Outputs Type

Poly data Poly Single Mono stream Mono

Assembler code generated

by the Poly section that

connects into it

String

- 353 -

CHAPTER 2

Poly to PolyInt

Description

The Poly to PolyInt primitive converts Poly signals to PolyInt signals by rounding float values to the

nearest integer above or below.

Example

A float value of 1.4 would be converted to an integer value of 1. However, a float value of 1.6 would be

converted to an integer value of 2 because 1.6 is closer to 2 than it is to 1.

Note that to round to the nearest integer below all you need to do is subtract 0.5 from the Poly signal

before running it through the Poly to PolyInt component.

Connectors

Inputs Type Outputs Type

Poly stream (which contains

floating point numbers)

Poly PolyInt stream containing

the same numbers rounded

to the nearest integer value

PolyInt

- 354 -

COMPONENTS

PolyInt to Poly

Description

The PolyInt to Poly primitive converts PolyInt signals to Poly signals by converting the integer values to

their equivalent in floating point form.

Connectors

Inputs Type Outputs Type

PolyInt stream (which

contains integers)

PolyInt Poly stream containing the

same numbers in floating

point format

Poly

- 355 -

CHAPTER 2

Popup List Control

Description

The Popup List Control defines a popup list of selectable values. You need to define an area on the

View where the control is to appear and supply a list of options (via a comma separated string). Having

done this you can then click on the control and, as you hold the mouse down, the list will pop up. By

moving the mouse up and down you can scroll through the options. You then release the mouse to

accept the current selection.

The component outputs the selected string and the index of the selection (which is zero based).

Connectors

Inputs Type Outputs Type

View on which to display the

control

View The same View as the input,

but anything connected here

is drawn on top

View

- 356 -

COMPONENTS

The position and size of the

control

Area The selected item String

The font to use for

displaying the selected item

on the control

Font The index of the selected

item in the list

Int

The text colour Colour

The background colour of

the pop up list

Colour

A comma separated list of

entries for the pop up list

String

The maximum number of

rows to show in the pop up

list (default is 8)

Int

Set the selected item Int

- 357 -

CHAPTER 2

PPQ Pos

Description

The PPQ Pos primitive outputs the current songs quarter position when your VST is used within a

host. This is a floating point value, for more details see the VST SDK documentation

Connectors

Inputs Type Outputs Type

N/A PPQ position Stream

- 358 -

COMPONENTS

Preset Manager

Description

The Preset Manager component controls preset changes within a schematic.

The component stores the program names but the data is stored in Preset Parameter, Preset

Parameter array and Preset String components. The Preset Manager notifies these parameter

components via its Preset output connector. Mostly this information is transferred via use wireless

links.

The Preset Manager also controls parameter updates. The Lock input determines whether changes to

parameters are discarded between program changes. The Save input can be triggered regardless of

the lock state in order to save any changes made.

The Before and After Program Change trigger outputs are very useful if for delaying global calculations

until after a program change has occurred. If the calculations depend on several parameters then you

can wait until all parameters have been updated as a result of the program change before doing any

calculations.

You must have one and only one preset manager per module if you want to have preset support. In the

majority of cases the Preset Manager module will be all you need.

- 359 -

CHAPTER 2

Connectors

Inputs Type Outputs Type

Nprgs is the number of

programs you want

Int Connector for

communicating with Preset

Parameter components

Preset

Set the currently selected

program

Int Index of the currently

selected program

Int

Set the name of the current

program (24 chars max)

String The current program name String

Whether the programs are

locked so that data changes

are not altered permanently

Boolean List of all program names String

Trigger to save any

parameter changes made

regardless of lock state

Trigger Trigger sent just before a

program change occurs

Trigger

Set all the program names

at once using a separated

string

String Trigger sent after a program

change occurs

Trigger

- 360 -

COMPONENTS

Preset Manager (module)

Description

The Preset Manager module is the key to adding preset handling to your plugins. To add preset

support simply drop a Preset Manager inside your plugin module.

The Preset Manager is wireless and will establish a Preset type connection with all the preset

parameters and arrays inside the standard knob, slider and other built in modules. These connections

are used to manage preset changes and other such operations.

The number of programs and their names are set via the properties panel. You can also save and load

preset data and set program names using text files via the File menu (see Preset Text Files below).

Connectors

Inputs Type Wireless Outputs Type

N/A Preset connection Preset

Preset Text Files

The software uses a very flexible system for managing preset data. The reason for using this system

instead of the standard fxb/fxp system is that it is much more adaptive to the synth building process.

The fxb/fxp system assumes a fixed format. However, when you’re developing a plugin the structure

can often change. If we used a rigid format like fxb/fxp your data would be unusable after making any

changes.

- 361 -

CHAPTER 2

Using the system we have you can save preset data part way through development and still retain that

data as your plugin evolves.

Using

The Preset Manager allows you to load and save preset data to and from text files for storage or for

modification. These features are accessed via the File menu on the Preset Manager front panel. You

can save/load all the programs or you can choose to save the current program or load a single

program into the current one.

File Format

The preset data is saved in a simple tabular format and stored in a text file for easy editing externally.

Best to use a spreadsheet program like Microsoft Excel™ to view or manipulate the data. The example

below shows an excerpt from the preset text file for a synth.

Preset Table Format

Number of programs = 32

Number of parameters = 26

Parameter Type Tekno Honk Low Distant Rez Sweeper …

OSC1-Detuner-Fine Float 0.289429 0.5 0.2625 …

OSC1-Detuner-Octave Float 0.444445 0.333333 0.666667 …

OSC2-Detuner-Fine Float 0.752513 0.5 0.7875 …

OSC2-Detuner-Octave Float 0.444445 0.333333 0.666667 …

OSC1-Waveform Float 0.2 0.8 0.2 …

OSC2-Waveform Float 0.2 0.4 0.2 …

OSC1-Volume Float 0.644708 0.5 0.575 …

OSC2-Volume Float 0.5 0.0 0.5 …

… … … … …

The first 3 rows are always the same except for the number of programs and parameters which will

obviously vary.

There is then a blank line followed by the table of preset data. The first column is the preset parameter

name. Parameter names must be unique. If you find any that are the same then you need to go

back to your schematic and change them.

- 362 -

COMPONENTS

The next column is the data type. Currently this can only be one of the following:

String

Float

Float Array (N) (where N is the size of the float array)

For Float Arrays there is an entry in the parameter column for the name followed by a numbered entry

for each element in the array. These numbered entries do not count when considering uniqueness of

parameter names.

The rest of the columns define the parameter data for each program. If you’ve saved just the current

program then you’ll just have one column.

Manipulating

One advantage of the preset text file system is that you can manipulate the files before re-loading.

Possible uses include rearranging program order or collating programs from separate files into one.

You can also just update a selection of parameters by deleting the rows for the parameters you don’t

want to affect.

If you make any changes to the number of parameters or programs then you need to make sure you

update the figures for these in the 2 nd and 3rd lines of the file.

At the top of each program column is the program name. You can change these names in the text file

and then load them back in so that all your program names get updated.

Loading

It’s useful to understand what happens when a preset text file is loaded into a schematic as you can

use this to your advantage under certain circumstances.

First the number of programs and number of parameters are read in. The software then cycles through

each parameter in turn. It reads the parameter name from the Parameter column and then tries to find

a preset parameter in your schematic that matches the name. If it fails to find a match the parameter

data is ignored. This means that if you have deleted something from your schematic the preset data

will still load in correctly.

If your schematic contains new preset parameters not included in the file then these will not be

affected. Having loaded in your previous preset data you can then make adjustments to the new

parameters and save out a new file to reflect the schematic changes you have made.

One other point to note is that the preset loading will never create new programs. If your data file has

more programs than you have set in the Preset Manager in your schematic then the extra programs

will be ignored. If you want to use these programs just go to your schematic and increase the number

of programs as required.

- 363 -

CHAPTER 2

Properties

The Total box is where you define how many programs you require. New programs are automatically

assigned program names. You can cycle through the programs using the + and – buttons. Program

names can then be changed in the Program box.

If you check the Lock box then the preset manager will only save changes when you press the save

button (this includes changes to both preset parameters via knobs/sliders and to program names). If

you move from one program to the next without saving any changes will be lost.

For the background you can set the outline style from the Line drop list. There are options for solid,

dashed, dotted lines or you can choose to have no outline at all. Line thickness is specified in grid

squares. The Corner size is also specified in grid squares and determines how rounded the corners

are.

There are several background Fill options. You can have a solid, linear or radial gradient fills. You can

also choose to have no fill colour. For a solid fill only the Col1 colour applies. For the two gradient fills

Col1 and Col2 define the boundary colours. For linear gradients you can also specify the angle of the

gradient.

- 364 -

COMPONENTS

Preset Text File

Description

The Preset Text File component allows you to transfer preset data to and from a text file. The format

used is very flexible and has been designed with the plugin developer in mind as it allows the structure

of the plugin to change without losing the preset data.

The component accesses and updates the data stored in Preset Parameter and Preset Parameter

array components. It notifies these parameter components via its Preset output connector. Mostly this

information is transferred via use wireless links.

Connectors

Inputs Type Outputs Type

Path to the text file on the

hard disk

String Connector for

communicating with Preset

Parameter components

Preset

Trigger to save the preset

data to the file

Trigger All program names in the

text file (use a Text

component to view these)

String

Trigger to load preset data

from the text file

Trigger

Whether to save just the

currently selected program

Boolean

- 365 -

CHAPTER 2

(otherwise all are saved)

Whether to save or load

preset order information

Boolean

Program names to use when

saving (usually come from

the Preset Manager)

String

File Format

The file format used is very easy to understand. It is tab delimited and it’s best viewed in a

spreadsheet application like Microsoft Excel™. Here’s an extract from an example synth:

Preset Table Format

Number of programs = 32

Number of parameters = 26

Parameter Type Tekno Honk Low Distant

co
n

ti
n

u
es

 r
ig

h
t

OSC1-Detuner-Fine Float 0.289429 0.5

OSC1-Detuner-Octave Float 0.555556 0.444444

OSC2-Detuner-Fine Float 0.752513 0.5

OSC2-Detuner-Octave Float 0.555556 0.444444

OSC1-Waveform Float 0.2 0.8

OSC2-Waveform Float 0.2 0.4

OSC1-Volume Float 0.644708 0.5

OSC2-Volume Float 0.5 0

Filter Envelope-Attack Float 0.075 0

Filter Envelope-Decay Float 0.760487 0

continues down

- 366 -

COMPONENTS

The first three lines give the table format, number of programs and number of parameters. After that

comes a table which contains all the preset data. The first column shows the preset parameter name

(this must be unique for each parameter). The second column shows the data type – either String,

Float or Float Array. The columns after that show the data for each program and are headed by the

program name.

Parameter Order

If the Preset Text File Order input was set to True there will be an additional column after the Type

called Order. Initially this will show –1 for all parameters. To specify the order of parameters as they will

appear in the host you should assign a number to each parameter. Parameters with the lowest

numbers will appear at the top of the parameter list. Parameters left at –1 will be highest on the list.

Reloading Parameter Data

When the text file is loaded back in the software will take each parameter in turn and locate the Preset

Parameter or Preset Parameter Array component with the same name in your schematic and load in

the data for all the programs. If it can’t find a match the data is ignored.

Program name data is also loaded and is sent to the Program Names output on the Preset Text File

component.

- 367 -

CHAPTER 2

PS2 Lynxmotion Controller

Description

The PS2 Lynxmotion Controller component allows you to receive input data from a connected

Lynxmotion PS2 controller.

To use this you must have an appropriate PS2 controller attached to your PC. If you trigger the

Connect input on the component it will pick up the controller and you can then use the outputs to

respond to controller input.

NOTE: the Analog option on the controller must be selected in order for it to work with FlowStone.

- 368 -

COMPONENTS

Connectors

Inputs Type Outputs Type

Trigger to connect to an

attached Lynxmotion PS2

controller

Trigger Whether the component is

connected to a controller

Trigger

Is the Triangle button pressed Boolean

Is the Circle button pressed Boolean

Is the Cross button pressed Boolean

Is the Square button pressed Boolean

Is the Lower Left trigger

button pressed

Boolean

Is the Lower Right trigger

button pressed

Boolean

Is the Upper Left trigger

button pressed

Boolean

Is the Upper Right trigger

button pressed

Boolean

Is the Select button pressed Boolean

Is the Start button pressed Boolean

Is Left Thumb stick pressed Boolean

Is Right Thumb stick pressed Boolean

Position of the D-pad as an

angle in degrees clockwise

from the Up position. -1 if

nothing pressed.

Int

Left Thumb Stick X (-1 to 1) Float

Left Thumb Stick Y (-1 to 1) Float

Right Thumb Stick X (-1 to 1) Float

Right Thumb Stick Y (-1 to 1) Float

- 369 -

CHAPTER 2

Ramp

Description

The Ramp primitive generates a non-bandlimited wave whose values increase linearly from 0 to 1

according to the normalised frequency input.

Connectors

Inputs Type Outputs Type

Normalised frequency (0-1) with 1

meaning half sampling rate) of the wave

to be generated.

Stream The generated wave Stream

Hard sync on transition from false to true Stream

Boolean

- 370 -

COMPONENTS

Random Number

Description

The Random Number primitive generates pseudo-random numbers. You can choose a fixed seed to

reproduce a stream of numbers or leave the Seed input unconnected and the component will seed

itself based on system time when the component is loaded or added to a schematic. A seed of 1 will

reset the stream of numbers generated by the component.

Trigger the Get input to produce the next number in the current sequence.

Connectors

Inputs Type Outputs Type

Trigger to produce the next number in the

current sequence.

Trigger The last generated

random number

Int

Seed the random number sequence Int

- 371 -

CHAPTER 2

Rectangle

Description

Draws a rectangle on a View.

Connectors

Inputs Type Outputs Type

View to display the rectangle

on

View The same View as the input,

but anything connected here

is drawn on top

View

Area defining the position

and size of the rectangle

Area

Pen defining the outline

colour, thickness and style

Pen

- 372 -

COMPONENTS

Redraw

Description

The Redraw component gives you low-level control over when redraws occur on a view. This particular

version redraws everything on the view.

When inside an exported exe the Redraw component limits the redraw rate to 100Hz during

automation for efficiency purposes. You can switch this off by setting the HiRes input to True.

Connectors

Inputs Type Outputs Type

View to redraw View The same View as the input,

but anything connected here

is drawn on top

View

Trigger to do the redraw Trigger

Whether to enable instant

redraws during automation

in exported plugins

Boolean

- 373 -

CHAPTER 2

Redraw Area

Description

The Redraw Area component gives you low-level control over when redraws occur on a view. This

particular version redraws everything inside a particular area of a view.

When inside an exported exe the Redraw component limits the redraw rate to 100Hz during

automation for efficiency purposes. You can switch this off by setting the HiRes input to True.

Connectors

Inputs Type Outputs Type

View to redraw View The same View as the input,

but anything connected here

is drawn on top

View

Area to redraw Area

Trigger to do the redraw Trigger

Whether to enable instant

redraws during automation

in exported plugins

Boolean

- 374 -

COMPONENTS

Redraw Limiter

Description

The Redraw Limiter component is used to restrict the rate of flow of triggers through a schematic. It is

primarily used for sections of schematic that are used for drawing whilst either interacting or

automating. In such cases redraws do not need to occur at the same rate that values are updating so

this component allows you to restrict data flow to something around 100Hz.

Connectors

Inputs Type Outputs Type

Triggers at full rate Trigger Triggers at a rate no greater

than 100Hz

Trigger

- 375 -

CHAPTER 2

Rotate

Description

Applies a rotation transformation to the view. Any GUI components attached to this component are

rotated according to the transformation.

Connectors

Inputs Type Outputs Type

View to rotate View The same View as the input,

but anything connected here

is rotated according to the

transformation

View

The x-coordinate of the

centre point of the rotation

Float

The x-coordinate of the

centre point of the rotation

Float

Rotation angle clockwise in

degrees

Float

- 376 -

COMPONENTS

Round Rectangle

Description

Draws a round rectangle on a View, that is a rectangle with rounded corners.

Connectors

Inputs Type Outputs Type

View to display the rectangle

on

View The same View as the input,

but anything connected here

is drawn on top

View

Area defining the position

and size of the rectangle

Area

Pen defining the outline

colour, thickness and style

Pen

Corner size in grid squares.

A value of 1 will give you a

corner that has an effective

radius of 1 grid square

Float

- 377 -

CHAPTER 2

Ruby

Description

The Ruby component allows you to write standard Ruby code and use it in your schematic. The inputs

and outputs can be changed interactively by dragging the grippers below the connectors and by right-

clicking on the connectors themselves

There is a huge chapter dedicated to the Ruby component in the main user guide. All the information

about it can be found there.

Connectors

Inputs Type Outputs Type

User defined User defined User defined User defined

- 378 -

COMPONENTS

Sample and Hold

Description

This component holds a value until the trigger input is hit at which point the current value is passed to

the output.

The component has template connectors which means it can be used with multiple data types

including Floats, Ints, Strings, Booleans, Float/Int/String arrays and Areas. You can right-click on the

connectors at any time to change the type.

Connectors

Inputs Type Outputs Type

Float value to sample and

hold

Template Value when the trigger was

last fired

Template

Trigger to send the current

value to the output

Trigger

- 379 -

CHAPTER 2

Sample Position

Description

The Sample Position primitive outputs the current songs sample position when your VST plugin is

used within a host.

Connectors

Inputs Type Outputs Type

N/A Sample position Stream

- 380 -

COMPONENTS

Sample Rate

Description

The Sample Rate primitive will give you the sample rate of the currently selected audio device either

within FlowStone or when used in an exported exe.

This component is essential for ensuring that fixed time periods are translated into the correct number

of samples for use with low-level components like delays and ADSR envelopes.

Connectors

Inputs Type Outputs Type

N/A Sample rate (in samples per

second)

Float

- 381 -

CHAPTER 2

Save Wave

Description

This component saves a memory buffer to a Wave file (.wav). You specify the path to the file, sampling

rate and the sample format.

The sample format can be 16, 24 or 32 bit integer or 32 bit float. This is determined by a string

supplied to the Format input. The string should be “int16”, “int24”, “int32” or “float32”.

Send a trigger to the Save input to execute the save.

Connectors

Inputs Type Outputs

Memory buffer Mem

Trigger to execute the save Trigger

Full path to the file you want

to save to

String

Sampling rate (samples per

second)

Int

Sample format – one of

int16, int24, int32 or float32

String

- 382 -

COMPONENTS

Sawtooth

Description

The Sawtooth primitive produces the classic Sawtooth waveform. Its rich harmonic content makes it

ideal for subtractive synthesis and this bandlimited form avoids aliased overtones. The phase input can

be used for frequency modulation (phase modulation).

This Sawtooth HB primitive produces a Sawtooth wave with overtones limited to half the available

bandwidth. Its inputs are the same as the basic Sawtooth and it is included primarily for educational

purposes.

This Sawtooth DB produces a Sawtooth wave with overtones limited to twice the available bandwidth.

It therefore produces aliasing. Its inputs are the same as the basic Sawtooth and it too is included

primarily for educational purposes.

Connectors

Inputs Type Outputs Type

Normalised frequency (0-1) with 1

meaning half sampling rate) of the wave

to be generated.

Stream The generated wave Stream

Phase shift for the generated wave in the

range 0-1 where 1 represents a shift of

2*pi

Stream

Hard sync on transition from false to true Stream

Boolean

- 383 -

CHAPTER 2

Select

Description

The Select component will select between two inputs based on the value of the boolean input. The first

input is selected if boolean input is False and the second input is selected if the boolean input is True.

The component has template connectors which means it can be used with multiple data types

including Floats, Ints, Strings, Booleans, Float/Int/String arrays and Areas. You can right-click on the

connectors at any time to change the type.

Connectors

Inputs Type Outputs Type

First float value Template Value selected by the

boolean input

Template

Second float value Template

Whether to pick the first

input (False) or the second

input (True)

Boolean

- 384 -

COMPONENTS

Selector

Description

The Selector component routes just one input from a set of inputs to a single output. The component

has template connectors which means that you can use it with any connector type. The type is defined

when you connect your first link to the component.

When you connect an input a new, unassigned input will appear below it. By continuously connecting

unassigned inputs in this way you can build up to the number of inputs you require.

Selectors are useful for choosing between different options or for switching stream sections in and out

of a schematic.

Connectors

Inputs Type Outputs Type

Index of selected output

(zero based)

Int One single output Any Type

Any number of other inputs Any Type

- 385 -

CHAPTER 2

Set Pixel

Description

Sets the colour of a specified pixel in a bitmap.

Connectors

Inputs Type Outputs Type

Bitmap to modify Bitmap

The x-coordinate of the pixel

to be changed

Int

The y-coordinate of the pixel

to be changed

Int

Colour to set the pixel to Colour

Trigger to set the pixel

colour

Trigger

- 386 -

COMPONENTS

Set Sample Rate

Description

Sets the sample rate for the currently selected audio device. You provide a rate and then send a trigger

to the Set input in order to attempt the change. If the rate couldn't be set (usually because the audio

device doesn't support it) then you'll get a trigger sent to the output.

Connectors

Inputs Type Outputs Type

The sample rate you want to

set (in samples per second)

Int Trigger if the sample rate

could not be set

Trigger

Trigger to attempt the

change

Trigger

- 387 -

CHAPTER 2

SFZ

Description

The SFZ component parses an sfz format file creating a Bus from which you can read the parsed

parameters. The sfz format was developed by rgc audio which is now owned by Cakewalk. It's a basic

but very flexible concept using a simple text file to define a set of samples together with arrangement

and performance parameters. (see http://www.cakewalk.com/devxchange/sfz.asp)

The SFZ component supports a large subset of the opcodes but not the full set. These are listed

below. To read a parameter simply use a Bus Extract with the corresponding sfz opcode name(s).

group

sample

lochan

hichan

lokey

hikey

key

pitch_keycenter

pitch_keytrack

effect1

effect2

lovel

hivel

transpose

tune

ampeg_delay

ampeg_attack

ampeg_hold

ampeg_decay

ampeg_sustain

ampeg_release

fileg_delay

fileg_attack

fileg_hold

fileg_decay

fileg_sustain

fileg_release

fileg_depth

fillfo_delay

fillfo_freq

fillfo_depth

amplfo_delay

amplfo_freq

amplfo_depth

loop_mode

Loop_start

loop_end

volume

pan

cutoff

resonance

Connectors

Inputs Type Outputs Type

Path to the sfz file String Result: 0=success, 1=bad

file, 2=parse failed

Int

Trigger to start parsing the

file

Trigger Bus containing the parsed

data

Bus

- 388 -

COMPONENTS

Shell Execute

Description

The Shell Execute component will start an external program. You provide the path to the program

executable and any command line arguments then send a trigger to launch the app.

For example:

Connectors

Inputs Type Outputs

Full file path to the

application you want to

launch

String Trigger when application has

been launched

Trigger

Any command line

arguments

String

Trigger to launch the

application

Trigger

- 389 -

CHAPTER 2

Shift Float Array

Description

This component will shift the elements in a float array round by a particular number of entries.

Elements that get ‘pushed off’ the end of the array are wrapped round to the beginning of the array.

The example below shows how this works.

Connectors

Inputs Type Outputs

The float array to be shifted Float Array The shifted array Float Array

Number of elements to shift Int

Trigger to do the shifting Trigger

- 390 -

COMPONENTS

Show Cursor

Description

The Show Cursor component allows you to show or hide the mouse cursor. You can also choose

whether to hold the mouse position when you hide the cursor and restore the mouse position when

you show it again.

WARNING: use this component with care or you may find yourself without a cursor.

Connectors

Inputs Type Outputs Type

Whether to show the cursor (so False will

hide it)

Boolean N/A

Whether to maintain the mouse position

while the cursor is hidden

Boolean

- 391 -

CHAPTER 2

Signal Analyser

Description

The Signal Analyser allows you to analyse the signal that would be produced by a section of Poly

components. The Analyser simply runs the Poly code section for a defined number of samples. The

output is an array containing the calculated samples. You can then plot this on a graph or use it for

some other calculation.

The other outputs from the Signal Analyser are a String containing the compiled code for the attached

Poly section and an array of the number of cpu cycles used for each calculated sample.

NOTE: You cannot connect an Analyser into a section of code that contains a Poly to Mono

component.

Connectors

Inputs Type Outputs Type

Section of Poly components

to analyse

Poly Array of calculated samples Float Array

The number of samples to

calculate

Int The compiled code for the

attached Poly section

String

Trigger to recalculate Trigger Array of cpu cycles used for

each sample

Float Array

- 392 -

COMPONENTS

Sin

Description

Standard trigonometric Sine function with radians as the input units.

Connectors

Inputs Type Outputs Type

Float value in radians Float Result of calculation Float

- 393 -

CHAPTER 2

Sin Inverse

Description

Standard trigonometric Inverse Sine function with radians as the output units.

Connectors

Inputs Type Outputs Type

Float value Float Result of calculation in

radians

Float

- 394 -

COMPONENTS

Sine

Description

The Sine primitive produces a sinusoid waveform. The phase input can be used for frequency

modulation (phase modulation). It has no harmonic content of its own and is often used as modulation

source.

- 395 -

CHAPTER 2

Sinh

Description

Standard hyperbolic sine function with radians as the input units.

Connectors

Inputs Type Outputs Type

Float value in radians Float Result of calculation Float

Connectors

Inputs Type Outputs Type

Normalised frequency (0-1) with 1

meaning half sampling rate) of the wave

to be generated.

Stream The generated wave Stream

Phase shift for the generated wave in the

range 0-1 where 1 represents a shift of

2*pi

Stream

Hard sync on transition from false to true Stream

Boolean

- 396 -

COMPONENTS

Slide

Description

The Slide component will slide from one float value to another at a particular rate. This can be useful

for animation effects. The rate is specified as a time between steps in milliseconds. The component

uses Windows timers so it can’t be relied on for accuracy particularly below 15 milliseconds.

Connectors

Inputs Type Outputs Type

The target value Float The current value Float

The time between steps in

milliseconds

Int

The step value Float

For setting the current value Float

- 397 -

CHAPTER 2

Smooth

Description

Changes the smooth mode for a View. By default smoothing (antialiasing) is applied to all GUI

graphics. This component can be used to switch this smoothing off or back on again.

Smoothed Not Smoothed

Connectors

Inputs Type Outputs Type

View to display the rectangle

on

View The same View as the input,

but anything connected here

is drawn on top

View

Whether to turn smoothing

on or off

Boolean

- 398 -

COMPONENTS

Sort Float Array

Description

The Sort Float Array primitive sorts the elements in the input array into ascending numerical order.

Connectors

Inputs Type Outputs Type

Array to sort Float Array Sorted array Float Array

- 399 -

CHAPTER 2

Sort String Array

Description

The Sort String Array component sorts an array of strings into ascending alphabetical order.

Connectors

Inputs Type Outputs

Source string array String Array The sorted array String Array

- 400 -

COMPONENTS

Stream Add

Description

This component adds two Stream values together.

Connectors

Inputs Type Outputs Type

Input signal 1 Stream Sum of inputs Stream

Input signal 2 Stream

- 401 -

CHAPTER 2

Stream Divide

Description

This component divides the first Stream value by the second one.

Connectors

Inputs Type Outputs Type

Input signal Stream Division of inputs Stream

Divisor signal Stream

- 402 -

COMPONENTS

Stream Greater Than

Description

This component compares the two inputs and returns a Stream Boolean based on whether the first

input is greater than the second input.

Connectors

Inputs Type Outputs Type

Input signal 1 Stream Whether input signal 1 is

greater than input signal 2

Stream Boolean

Input signal 2 Stream

- 403 -

CHAPTER 2

Stream Greater Than or Equal to

Description

This component compares the two inputs and returns a Stream Boolean based on whether the first

input is greater than or equal to the second input.

Connectors

Inputs Type Outputs Type

Input signal 1 Stream Whether input signal 1 is

greater than or equal to

input signal 2

Stream Boolean

Input signal 2 Stream

- 404 -

COMPONENTS

Stream Less Than

Description

This component compares the two inputs and returns a Stream Boolean based on whether the first

input is less than the second input.

Connectors

Inputs Type Outputs Type

Input signal 1 Stream Whether input signal 1 is

less than input signal 2

Stream Boolean

Input signal 2 Stream

- 405 -

CHAPTER 2

Stream Less Than or Equal to

Description

This component compares the two inputs and returns a Stream Boolean based on whether the first

input is less than or equal to the second input.

Connectors

Inputs Type Outputs Type

Input signal 1 Stream Whether input signal 1 is

less than or equal to input

signal 2

Stream Boolean

Input signal 2 Stream

- 406 -

COMPONENTS

Stream Max

Description

This component compares the two inputs and returns the greater of the two.

Connectors

Inputs Type Outputs Type

Input signal 1 Stream The greater of the two inputs Stream

Input signal 2 Stream

- 407 -

CHAPTER 2

Stream Min

Description

This component compares the two inputs and returns the lower of the two.

Connectors

Inputs Type Outputs Type

Input signal 1 Stream The lower of the two inputs Stream

Input signal 2 Stream

- 408 -

COMPONENTS

Stream Multiply

Description

This component multiplies two Stream values together.

Connectors

Inputs Type Outputs Type

Input signal 1 Stream Product of inputs Stream

Input signal 2 Stream

- 409 -

CHAPTER 2

Stream Subtract

Description

This component subtracts two Stream values from one another.

Connectors

Inputs Type Outputs Type

Input signal 1 Stream Input 1 minus Input 2 Stream

Input signal 2 Stream

- 410 -

COMPONENTS

Stream to Double

Description

This component converts a standard Stream to a Double Stream.

Double Stream is similar to standard Float Stream except that it works at double the precision. It is

particularly useful for counters.

Connectors

Inputs Type Outputs Type

Standard Float Stream Stream Float Stream converted to

Double Stream

Double Stream

- 411 -

CHAPTER 2

String

Description

The String component allows you to enter and view character string data. To add a string just click on

the main body of the component and type it in. Press Return, Tab or just click away to finish editing.

You can copy and paste data using the standard accelerator key combinations (CTRL+C,X and V).

The component can be resized horizontally for viewing long strings.

You can also change the type by right-clicking on the input or output. A pop-up menu will appear as

shown below.

Simply click on the type you want to change to.

Connectors

Inputs Type Outputs Type

Set the string String The current stored string String

- 412 -

COMPONENTS

String Array

Description

The String Array component creates an array of strings by setting, inserting and deleting individual

elements in the array. You define the index of the element you want to refer to and if needed the value

you want to set or insert at that index. The array will resize automatically to accommodate elements

set or inserted at indexes higher than the current size of the array.

Connectors

Inputs Type Outputs

Value to use String Array of strings String Array

The reference index used for

set, insert and delete

Int Trigger sent when the array

has been changed

Trigger

Set the value at the index Trigger The number of array entries Int

Clear the array Trigger

Array to make this equal to String Array

Insert the value at the index Trigger

Delete the entry at the index Trigger

- 413 -

CHAPTER 2

String Array Find

Description

The String Array Find primitive will find the first occurrence of a given string in the array. You can

choose whether comparisons are case sensitive. You can also choose whether to reverse the direction

of the find and start at the end of the array working backwards towards the front. By default the find will

start at the beginning of the array and work forwards.

Example

If the source array is Apple, Banana, Orange, Pear then finding “Orange” would return an index of 2.

However, if you change the Rev input to True then the result would be 1.

Connectors

Inputs Type Outputs Type

Source array to search

through

String Index of the string in the

array (zero indexed) or -1 if

the string was not found.

Int

String to find String

Whether comparisons

should be case sensitive

Boolean

Perform the find in reverse

from beginning to start

Boolean

- 414 -

COMPONENTS

String Array Get At

Description

The String Array Get At component extracts a particular entry from a String Array.

Connectors

Inputs Type Outputs

The source array of text

strings

String Array The number at the given

index

String

The index to get the value

for

Int Trigger sent when the string

has been extracted

Trigger

Trigger to get the string Trigger

- 415 -

CHAPTER 2

String Array Split

Description

The String Array Split primitive will break a given string array into two parts at a given point. Note that

the split position starts at zero.

Connectors

Inputs Type Outputs Type

Source string array String Array String array to the left of the

split

String Array

Position at which to make

the split (zero indexed)

Int String array to the right of

the split

String Array

- 416 -

COMPONENTS

String Array to String

Description

This component converts a String Array to a single String by appending the entries in the array to each

other in order.

Example

The array “Apples”,”Oranges”,”Pears” would become “ApplesOrangesPears”.

Connectors

Inputs Type Outputs Type

Array of strings String Array String of appended entries

from the array

String

- 417 -

CHAPTER 2

String Array to String

Description

This component converts a String Array to a single String by appending the entries in the array to each

other in order and inserting the Sep input string in between entries to separate them.

Example

The array “Apples”,”Oranges”,”Pears” with Sep set to “,” would become “Apples,Oranges,Pears”.

Connectors

Inputs Type Outputs Type

Array of strings String Array String of appended entries

from the array

String

Separator to insert between

entries

String

- 418 -

COMPONENTS

String Extract

Description

The String Extract primitive will give you a sub-string of a particular size starting from a particular point

in the string. Note that positions start at zero.

Example

If the string is ‘FlowStone’ then using a Pos of 4 and a Count of 5 you’d get ‘Stone’.

Connectors

Inputs Type Outputs Type

Source string String Extracted sub-string String

Position of the first character

in the required sub-string

(zero indexed)

Int

Number of characters to

extract

Int

- 419 -

CHAPTER 2

String Find

Description

The String Find primitive will find the first occurrence of a given sub-string inside a string. You can

choose whether comparisons are case sensitive. You can also choose whether to reverse the direction

of the find and start at the end of the string working backwards. By default the find will start at the

beginning of the string and work forwards.

Example

If the source string is ‘C:\Windows\Temp’ then using a Find string of ‘\’ the result would be 2. However,

if you change the Rev input to True then the result would be 10.

Connectors

Inputs Type Outputs Type

Source string String Position of the sub-string

(zero indexed) or -1 if the

sub-string was not found.

Int

Sub-string to find String

Whether comparisons

should be case sensitive

Boolean

Perform the find in reverse

from beginning to start

Boolean

- 420 -

COMPONENTS

String Length

Description

Calculates the length of a string by counting the number of characters. This includes all whitespace

characters.

Example

If the source string is ‘Apples and Oranges’ then the length will be 18.

Connectors

Inputs Type Outputs Type

Source string String Number of characters in the

string.

Int

- 421 -

CHAPTER 2

String Queue

Description

The String Queue component stores string values in a queue. Values are pushed in and popped out on

a first in, first out basis (FIFO).

You can get the queue in String Array form from the third output. The array contains items in the order

they would be popped out – so the first item is at the front of the queue, the second item is next and so

on.

Connectors

Inputs Type Outputs

Next number to be pushed

onto the queue

Float The string at the front of the

queue

String

Trigger to push the next

number onto the queue

Trigger Number of entries in the

queue

Int

Trigger to pop the next

number off the queue

Trigger The queue as a string array String Array

Trigger to clear all entries

from the queue

Trigger

- 422 -

COMPONENTS

String Replace

Description

The String Replace primitive will replace the characters at a particular position in a given string with

another sub-string. Note that positions start at zero.

Example

If the source string is ‘Apples and Oranges’ then using a Pos of 10 and sub-string of ‘Bananas’ you’d

get ‘Apples and Bananas’.

Connectors

Inputs Type Outputs Type

Source string String Modified string String

Position of the first character

to be replaced (zero

indexed)

Int

Replacement sub-string Int

- 423 -

CHAPTER 2

String Split

Description

The String Split primitive will break a given string into two parts at a given point. Note that the split

position starts at zero.

Example

If the source string is ‘FlowStone’ then using a Pos of 4 you’d get ‘Flow’ and ‘Stone’.

Connectors

Inputs Type Outputs Type

Source string String String to the left of the split String

Position at which to make

the split (zero indexed)

Int String to the right of the split String

- 424 -

COMPONENTS

String Stack

Description

The String Stack component stores string values in a stack. Values are pushed in and popped out on a

last in, first out basis (LIFO).

You can get the stack in String Array form from the third output. The array contains items in the order

they would be popped out – so the first item is at the top of the stack, the second item is next and so

on.

Connectors

Inputs Type Outputs

Next number to be pushed

onto the stack

Float The number at the top of the

stack

String

Trigger to push the next

number onto the stack

Trigger Number of entries in the

stack

Int

Trigger to pop the next

number off the stack

Trigger Stack represented as an

array of strings

String Array

Trigger to clear all entries

from the stack

Trigger

- 425 -

CHAPTER 2

String to ASCII

Description

The String to ASCII primitive converts a string character to its corresponding ASCII character code (or

more accurately the ISO Latin 1 character as ASCII is only defined through 127).

Connectors

Inputs Type Outputs Type

String character String ASCII character code

(0-255)

Int

- 426 -

COMPONENTS

String to Hex

Description

Converts a string of characters to a string of hex. Each character is first converted to Ascii and then the

hex representation of that byte is used in the hex string.

For example, the character string “hello” is converted to the hex string “68656C6C6F”.

Connectors

Inputs Type Outputs Type

String of characters String String of hex String

- 427 -

CHAPTER 2

String to String Array

Description

This component converts a String to an Array of Strings by splitting the string up character by

character and inserting the characters into the array.

Example

The String “Apples” would become a String Array with entries: “A”,”p”,”p”,”l”,”e”,”s”.

Connectors

Inputs Type Outputs Type

String to split String Array of characters String Array

- 428 -

COMPONENTS

String to String Array

Description

This component converts a String to an Array of Strings by splitting the string up using the supplied

delimiter or field width or both to determine where to make a split.

Examples

The String “Apples,Oranges,Pears” with a delimiter of “,“ would become a String Array with entries:

“Apples”, “Oranges” and “Pears”.

The String “1011011101011110” with a Width of 4 would become a String Array with entries:

“1011”,”0111”,”0101”,”1110”

Connectors

Inputs Type Outputs Type

String to split String Array of individual strings String Array

Delimiter to use when

looking where to split the

string

String

Maximum length of each

string in the resulting array

Int

- 429 -

CHAPTER 2

String to Sysex

Description

This component takes a string of hex and sends it out as MIDI System Exclusive data. Useful for

controlling external MIDI hardware.

- 430 -

COMPONENTS

String Format

Description

Creates a String Format for use with a Text component. A String Format combines a text style,

horizontal alignment and vertical alignment.

The style can be any combination of the following:

normal, righttoleft, nowrap, vertical

For example:

nowrapvertical, nowraprighttoleft.

The righttoleft style specifies that the reading order is right to left, nowrap prevents text from

wrapping when it runs outside the defined area and vertical will cause text to be drawn vertically

instead of horizontally.

For horizontal alignment you can use:

left, center or right

For vertical alignment you can use

top, center or bottom

Connectors

Inputs Type Outputs Type

Formatting style String The String Format String Format

Horizontal alignment String

Vertical alignment String

- 431 -

CHAPTER 2

Connectors

Inputs Type Outputs Type

String of hex String Sysex data MIDI

Trigger to send the hex Trigger

- 432 -

COMPONENTS

Subtract

Description

This component subtracts two values from one another.

The component has template connectors which means it can be used with multiple data types

including Floats, Ints and Float/Int arrays. You can right-click on the connectors at any time to change

the type.

Connectors

Inputs Type Outputs Type

Input 1 Template Input 1 minus input 2 Template

Input 2 Template

- 433 -

CHAPTER 2

Subtract from Float Array

Description

Subtracts the same float value from every entry in a float array.

Connectors

Inputs Type Outputs Type

Array to subtract from Float Array Resulting array Float Array

Float value to be subtracted Float

- 434 -

COMPONENTS

Sum Float Array

Description

The Sum Float Array primitive adds all the elements in the input array together and outputs the result.

Connectors

Inputs Type Outputs Type

Array to sum Float Array Sum of all entries Float Array

- 435 -

CHAPTER 2

Sunburst Gradient

Description

The Sunburst Gradient component draws either an ellipse or a rectangle with a sunburst fill effect. This

effect creates a seamless transition through increasing concentric circles from a centre to an outer

colour. This component useful for creating lighting effects.

The gradient is defined by a bounding area inside which the fill can be rectangular or ellipsoid. You

specify a centre colour and a colour at the boundary and you can set the coordinates of the centre

point as well.

- 436 -

COMPONENTS

The H focus and V focus inputs determine the focus scale. These are float values in the range (0-1)

and determine at which point the centre colour starts to blend into the boundary colour. A focus scale

value of zero will begin transition immediately. A focus scale of 0.5 will have the centre colour for half

the range of the fill before blending to the boundary colour for the other half.

The above picture shows a sunburst fill with H Focus of 0.2 and a V Focus of 0.8.

Connectors

Inputs Type Outputs Type

View to draw on View The same View as the input,

but anything connected here

is drawn on top

View

Area defining the bounding

area of the ellipse or

rectangle

Area

Either “Rectangle” or

“Ellipse”

String

First colour in the gradient Colour

Second colour in the

gradient

Colour

The x-coordinate of the

centre point of the fill in grid

squares

Float

The y-coordinate of the

centre point of the fill in grid

squares

Float

Horizontal focus scale (0-1) Float

vertical focus scale (0-1) Float

- 437 -

CHAPTER 2

Sysex to String

Description

This component receives MIDI System Exclusive data and outputs it as a string of hex. Useful for

processing data from external MIDI hardware.

Connectors

Inputs Type Outputs Type

Sysex data MIDI String of hex String

Trigger when data is

received

Trigger

- 438 -

COMPONENTS

System Folders

Description

This component gives you the full paths to the Document and Application Data folders on the host PC.

This is needed if you want to store local settings.

You can also get the values of other system specific folder paths from the Custom output by supplying

the appropriate id to the Int input.

Connectors

Inputs Type Outputs Type

Path to Documents folder String

Path to Application Data

folder

String

Required custom folder id Int Folder path defined by the

Int input

String

- 439 -

CHAPTER 2

The custom folder id's are as follows:

Id and Description Default folder on Windows 7

-1 = FlowStone Install Folder C:\Program Files\DSP Robotics\FlowStone

0 = Desktop C:\Users\[username]\Desktop

2 = Start Menu Programs C:\Users\

[username]\AppData\Roaming\Microsoft\Windows\Start

Menu\Programs

5 = Documents C:\Users\[username]\Documents

6 = Favourites C:\Users\[username]\Favorites

7 = Startup C:\Users\

[username]\AppData\Roaming\Microsoft\Windows\Start

Menu\Programs\Startup

8 = Recent C:\Users\

[username]\AppData\Roaming\Microsoft\Windows\Recent

9 = Send To C:\Users\

[username]\AppData\Roaming\Microsoft\Windows\SendTo 1

1 = Start Menu C:\Users\

[username]\AppData\Roaming\Microsoft\Windows\Start

Menu

13 = Music C:\Users\[username]\Music

14 = Videos C:\Users\[username]\Videos

19 = Network Shortcuts C:\Users\

[username]\AppData\Roaming\Microsoft\Windows\Network

Shortcuts

20 = Fonts C:\Windows\Fonts

21 = Templates C:\Users\

[username]\AppData\Roaming\Microsoft\Windows\Templates

26 = AppData Roaming C:\Users\[username]\AppData\Roaming

27 = Printer Shortcuts C:\Users\

[username]\AppData\Roaming\Microsoft\Windows\Printer

Shortcuts

28 = AppData Local C:\Users\[username]\AppData\Local

32 = Temporary Internet Files C:\Users\

[username]\AppData\Local\Microsoft\Windows\Temporary

Internet Files

33 = Cookies C:\Users\

[username]\AppData\Roaming\Microsoft\Windows\Cookies

- 440 -

COMPONENTS

Id and Description Default folder on Windows 7

34 = History C:\Users\

[username]\AppData\Local\Microsoft\Windows\History

35 = Program Data C:\ProgramData

36 = Windows C:\Windows

37 = System32 C:\Windows\system32

38 = Program Files C:\Program Files

39 = Pictures C:\Users\[username]\Pictures

40 = User C:\Users\[username]

43 = Common Files C:\Program Files\Common Files

45 = Windows Templates C:\ProgramData\Microsoft\Windows\Templates

46 = Public Documents C:\Users\Public\Documents

47 = Program Data Administrative Tools C:\ProgramData\Microsoft\Windows\Start

Menu\Programs\Administrative Tools

48 = AppData Administrative Tools C:\Users\

[username]\AppData\Roaming\Microsoft\Windows\Start

Menu\Programs\Administrative Tools

- 441 -

CHAPTER 2

System Fonts

Description

The System Fonts component gives you a list of all the fonts installed on the host system. The font

names are provided as a string array and as a delimited string that you can look at using a Text

component.

Connectors

Inputs Type Outputs

Trigger to get the font list Trigger Array of font names String Array

Delimited string containing

the font names

String

Number of fonts found Int

- 442 -

COMPONENTS

Tan

Description

Standard trigonometric Tangent function with radians as the input units.

Connectors

Inputs Type Outputs Type

Float value in radians Float Result of calculation Float

- 443 -

CHAPTER 2

Tan Inverse

Description

Standard trigonometric Inverse Tangent function with radians as the output units.

Connectors

Inputs Type Outputs Type

Float value Float Result of calculation in

radians

Float

- 444 -

COMPONENTS

Tanh

Description

Standard hyperbolic tangent function with radians as the input units.

Connectors

Inputs Type Outputs Type

Float value in radians Float Result of calculation Float

- 445 -

CHAPTER 2

Tempo

Description

When your VST is used within a host these components will tell you the current host tempo in beats

per minute (BPM). This is most often used when creating tempo synchronised effects.

There are two versions of the Tempo primitive a Stream version for use in Poly or Mono sections and a

Float version for use in green data sections.

Connectors

Inputs Type Outputs Type

N/A Current tempo in BPM Stream/Float

- 446 -

COMPONENTS

Text

Description

The Text component allows you to enter and view character string data that stretches over several

lines. To add a string just click on the main body of the component and type it in. Press Return to start

a new line. Press Tab or just click away to finish editing.

You can copy and paste data using the standard accelerator key combinations (CTRL+C,X and V).

You can also use the mouse wheel, PGUP, PGDN, HOME and END keys to navigate text that spans

many lines.

The Text component can be used for generating fixed arrays of Floats or Ints as a list of numbers

separated by line breaks can be automatically converted to a Float or Int Array (and vice-versa).

The component can be resized horizontally and vertically for viewing larger amounts of text.

Connectors

Inputs Type Outputs Type

Set the string String The current stored string String

- 447 -

CHAPTER 2

Text Draw

Description

Draws text on a view. You specify the area into which the text will be drawn together with any

formatting options.

Connectors

Inputs Type Outputs Type

View to display the text on View The same View as the input,

but anything connected here

is drawn on top

View

Area into which the text is to

be drawn

Area

The text colour Colour

The text to be displayed String

The font for the text Font

Text formatting options String Format

- 448 -

COMPONENTS

Text Load

Description

This component allows you to load text from a text file.

Connectors

Inputs Type Outputs

Full path to the text file on

your hard disk

String The contents of the text file String

Trigger to load the file Trigger Trigger when the file has

loaded

Trigger

- 449 -

CHAPTER 2

Text Save

Description

This component allows you to save text to a text file.

Connectors

Inputs Type Outputs

Text to be saved String Trigger when the file has

been saved

Trigger

Full path to the text file on

your hard disk

String

Trigger to save the file Trigger

- 450 -

COMPONENTS

Ticker 100

Description

The Ticker 100 component sends a trigger roughly 100 times per second. The component uses a

Windows timer and therefore cannot be relied upon to be accurate. This component is useful for

animation or for restricting data flow through a schematic.

Connectors

Inputs Type Outputs

N/A Trigger sent 100 times per

second

Trigger

- 451 -

CHAPTER 2

Ticker 25

Description

The Ticker 25 component sends a trigger roughly 25 times per second. The component uses a

Windows timer and therefore cannot be relied upon to be accurate. This component is useful for

animation or for restricting data flow through a schematic.

Connectors

Inputs Type Outputs

N/A Trigger sent 25 times per

second

Trigger

- 452 -

COMPONENTS

Time

Description

The Time primitive will give you any or all of the components of the current system time. The time is

sampled when you trigger the Get input and this time is stored in the component.

Connectors

Inputs Type Outputs Type

Get the current system time

(and store it)

Trigger Weekday. 0= Monday,

1=Tuesday etc.

Int

Day of the month Int

Month. 0=January,

1=February etc.

Int

Year Int

Hour Int

Minute Int

Second Int

Millisecond Int

- 453 -

CHAPTER 2

Timer

Description

The Timer component allows you to schedule a trigger to be sent some time in the future. You specify

a time duration and then start the timer. After the duration has elapsed a trigger will be sent through the

output. The timer will automatically schedule another trigger so that the triggers keep coming every N

milliseconds (where N is the duration).

For a one single shot timer just connect the trigger output to the Stop input.

The component uses a Windows timer and therefore cannot be relied upon to be accurate, particularly

for durations below 15 ms.

IMPORTANT: because of multi-threading you cannot trigger timers in response to MIDI events. This

can cause unexpected behaviour or even crash the software.

Connectors

Inputs Type Outputs

Duration between triggers in

milliseconds

Int Trigger sent every time a

duration’s worth of time

passes

Trigger

Trigger to start the timer Trigger

Trigger to stop the timer Trigger

- 454 -

COMPONENTS

Time Signature

Description

The Time Signature primitive outputs the current songs time signature when your VST plugin is used

within a host. This is represented by a numerator and denominator (for example, numerator=1 &

denominator=4 for time signature of 1/4). For more details see the VST SDK documentation.

Connectors

Inputs Type Outputs Type

N/A Numerator Stream / Float

Denominator Stream / Float

- 455 -

CHAPTER 2

Tooltip Help

Description

The Tooltip Help component allows you to add tooltip help to a module. The help text should be

connected to the String input. Paragraphs can be identified using the new line character ‘\n’ if using a

String component or by starting a new line in a Text component. The first line is assumed to be the

name and is formatted in bold when the tool tip displays.

For example, either of the follow arrangements inside ‘My Module’:

will produce the result shown below:

Connectors

Inputs Type Outputs Type

Tooltip title and text String N/A

- 456 -

COMPONENTS

Translate

Description

Applies a translation transformation to the view. Any GUI components attached to this component are

translated accordingly.

Connectors

Inputs Type Outputs Type

View to translate View The same View as the input,

but anything connected here

is translated according to the

transformation

View

The translation in the x

(horizontal) direction in grid

squares

Float

The translation in the y

(vertical) direction in grid

squares

Float

- 457 -

CHAPTER 2

Triangle

Description

The Triangle primitive produces a Triangle waveform. The phase input can be used for frequency

modulation (phase modulation).

Connectors

Inputs Type Outputs Type

Normalised frequency (0-1) with 1

meaning half sampling rate) of the wave

to be generated.

Stream The generated wave Stream

Phase shift for the generated wave in the

range 0-1 where 1 represents a shift of

2*pi

Stream

Hard sync on transition from false to true Stream

Boolean

- 458 -

COMPONENTS

Trigger Blocker

Description

The Trigger Blocker components prevents a change to a value from propagating through a schematic.

Instead, changes at the input are stored until requested.

This can be useful when values are changing quicker than they are required further down in the

schematic. By inserting a trigger blocker you can increase performance by saving the message flow

into parts of your schematic where the updates are not required.

The component has template connectors which means it can be used with multiple data types

including Floats, Ints, Strings, Booleans, Float/Int/String arrays and Areas. You can right-click on the

connectors at any time to change the type.

Connectors

Inputs Type Outputs Type

Value Template Current value but no trigger

is sent

Template

- 459 -

CHAPTER 2

Trigger Button

Description

The Trigger Button component sends a trigger when its red button is clicked. This component is

incredibly useful and comes in handy in many, many situations.

You can get a Trigger Button using the “Q” shortcut key.

Connectors

Inputs Type Outputs Type

N/A N/A Trigger sent when button

clicked

Trigger

- 460 -

COMPONENTS

Trigger Div

Description

This primitive is used to reduce the rate that triggers pass through. The second input (the divisor)

defines the reduction. If the divisor is one then all triggers pass through. If the divisor is two then only

every other trigger passes through. If the divisor is three then only every third trigger passes through

and so on.

Connectors

Inputs Type Outputs Type

Trigger source Trigger Trigger output Trigger

Divisor Int

- 461 -

CHAPTER 2

Trigger Switch

Description

The trigger switch is used to control the flow of triggers through a schematic. When the boolean input

is True then triggers pass through otherwise they are blocked.

The component has template connectors which means it can be used with multiple data types

including Floats, Ints, Strings, Booleans, Float/Int/String arrays, Triggers and Areas. You can right-click

on the connectors at any time to change the type.

Connectors

Inputs Type Outputs Type

Trigger Template Trigger passing through Template

Whether to let the trigger

through

Boolean

- 462 -

COMPONENTS

Unpack

Description

The Unpack component separates the original 4 Mono streams from a Mono4 stream. The Mono

streams would have previously been packed together using the Pack component to create a Mono4

stream.

Using Unpack (and Pack) can radically increase the efficiency of a Mono section.

Connectors

Inputs Type Outputs Type

First mono stream Mono All 4 mono streams ‘packed’

into one stream

Mono4

Second mono stream Mono

Third mono stream Mono

Fourth mono stream Mono

- 463 -

CHAPTER 2

Video Delay

Description

The Video Delay component will delay the output of a video stream by a fixed number of frames.

All you need is a stream of video images at the first input and an integer number of frames to delay by

at the second input.

Connectors

Inputs Type Outputs Type

Video as a set of streaming

bitmap images

Bitmap Video as a set of streaming

bitmap images

Bitmap

Number of frames to delay

by

Int

- 464 -

COMPONENTS

Video Save

Description

The Video Save component allows you to save to a .AVI movie file.

Connect your source video images to the first input. These will be recorded as they play.

At the Path input you need to supply the full path to the target .avi file that you want to save to.

To specify the codec attach a string with the appropriate 4 character code to the Codec input.

Alternatively you can connect a String with -1 in it and the software will ask you to pick a codec from

the standard dialog box.

The Rate input should be the frame rate in frames per second. If you leave this out then this will

assume the default value of 30 fps.

Recording is started and stopped by triggering the bottom two inputs.

- 465 -

CHAPTER 2

Connectors

Inputs Type Outputs Type

Video as a set of streaming

bitmap images

Bitmap Whether recording is in

progress or not

Boolean

Path to the .avi file you want

to save to

String

4 char codec code or -1 String

Frame rate in frames per

second

Int

Start saving Trigger

Stop saving Trigger

- 466 -

COMPONENTS

Video Stream

Description

This component allows you to stream video from media file locally or across a network.

You must provide a valid URL or file path. Width and Height are optional and default to 640 x 480

pixels.

To begin streaming, trigger the Start input. The video arrives as constant stream of bitmaps. If you

want to control when a frame comes out of the component you can set the Manual input to true and

use the Grab trigger to get a frame exactly when you want it. This is useful if you don't want every

single frame but maybe need them at a particular time interval or on demand.

You can Step through the video frame by frame by triggering the Step input. Note that this is not the

same as manually grabbing a frame. When stepping the streaming is paused between steps whereas

when grabbing frames streaming continues between grabs.

To resume play after stepping trigger the Pause/Play input. This can also be used to pause playback.

Triggering the Stop input will end streaming and you can only resume by re-starting from the

beginning.

Most popular image formats are supported including AVI, MPEG, MP4, M4V, WMV, MOV.

- 467 -

CHAPTER 2

Connectors

Inputs Type Outputs Type

URL or file path for the

source video

String Video as a set of streaming

bitmap images

Bitmap

Width of source video in

pixels

Int

Height of source video in

pixels

Int

Start streaming Trigger

Step through one frame at a

time

Trigger

Pause or resume play Trigger

Stop streaming Trigger

Use manual mode Boolean

Grab a frame (manual mode

only)

Trigger

- 468 -

COMPONENTS

View Area

Description

The View Area component will give you the dimensions of a View in the form of an area. This is useful

if you’re trying to draw something exactly within the bounds of a view or if you want to position

elements relative to the size of the view.

Connectors

Inputs Type Outputs Type

Source view View Area defining the size of the

view

Area

- 469 -

CHAPTER 2

View Size

Description

The View Area component will give you the dimensions of a View. This is useful if you’re trying to draw

something exactly within the bounds of a view or if you want to position elements relative to the size of

the view.

Connectors

Inputs Type Outputs Type

Source view View The width of the view in grid

squares

Float

The height of the view in grid

squares

Float

- 470 -

COMPONENTS

Voices to Poly

Description

The Voices to Poly module generates voice managed Poly signals used to control a polyphonic

synthesizer.

Note: Currently there is no reason to use this component on its own, instead you should use the MIDI

to Poly module which combines the MIDI to Voices and Voices to Poly components.

Connectors

Inputs Type Outputs Type

MIDI data MIDI The normalised frequency for each active voice

in range (0-1) where 1 is half sampling rate

Poly

The pitch number (0-127) for the note on each

active voice

Poly

The velocity of the note for each active voice Poly

A gate signal which is true if the note is on and

false if the note is off for each active voice

Poly Boolean

- 471 -

CHAPTER 2

VST Editor Open

Description

The Editor Open primitive will tell you whether the plugin editor window is open in a host. This is very

useful for bypassing calculations that result in visual changes which will not be visible when the editor

window is closed.

When the state of the window changes from open to closed or closed to open this component will send

a trigger immediately so that you can respond to the change.

Connectors

Inputs Type Outputs Type

N/A Whether the editor window

is open

Boolean

- 472 -

COMPONENTS

VST Parameter

Description

The VST Parameter primitive defines a preset parameter that can be automated or store preset data

for each program. All the built in knob modules each contain a single VST Parameter component so

that the knobs can be automated and store preset data in exported exes.

When a VST Parameter component is connected to a Preset Manager component it becomes part of

the preset system. This connection is made through the Preset input connector. When the Preset

Manager changes program the VST Parameter component will respond accordingly.

The VST preset parameter system requires values to be floats in the range 0 to 1 . You must

make sure that you transform any values you want to store into this range before passing them to the

VST Parameter component.

If you want the host to display something other than the 0-1 float value you can create a section of

schematic that processes the float output of the VST Parameter component and connect it to the Disp

input.

Examples

1. You could have switch that you want to show On for 1.0 and Off for 0.

2. You might have a multiplier that you want to show as Level 1, Level 2 or Level 3. You’d convert the

input value to 0-1 by calculating (value-1)/2. This would give you 0,0.5 and 1. When the preset

changes you’d process the result back to a number in the range 1-3, append it onto “Level ” and pass

the result to the Disp input.

- 473 -

CHAPTER 2

You can choose whether the parameter is automatable and also whether it is a preset. For example,

you might want to be able to automate a master volume control but not have it store a different value

for each program.

Connectors

Inputs Type Outputs Type

Connector for

communicating with Preset

Manager or Preset Text File

components

Preset The value of the parameter

for the current program

Float

Set the current value (must

be in range 0-1)

Float Trigger sent just before a

value change occurs

Trigger

Name of the preset

parameter (as it will appear

in the host)

String Trigger sent after a value

change occurs

Trigger

Optional display string to be

used instead of the

parameter value.

String

Optional units string String

Whether the parameter can

be automated

Boolean

Whether the parameter is a

preset

Boolean

The default value for when

the number of presets is

increased

Float

Whether to send automation

recording information to the

host when the value

changes

Boolean

- 474 -

COMPONENTS

VST Parameter Array

Description

The VST Parameter Array primitive defines an array of VST parameters that can be automated or store

preset data for each program. This is a specialised component used for storing preset data for step

sequencers and the like.

When a VST Parameter Array component is connected to a Preset Manager component it becomes

part of the preset system. This connection is made through the Preset input connector. When the

Preset Manager changes program the VST Parameter Array component will respond accordingly.

The VST preset parameter system requires values to be floats in the range 0 to 1 . You must

make sure that you transform any values you want to store into this range before passing them to the

VST Parameter Array component.

If you want the host to display something other than the 0-1 float value you can create a section of

schematic that processes the float output of the VST Parameter component and connect it to the Disp

input.

- 475 -

CHAPTER 2

Examples

1. You could have switch that you want to show On for 1.0 and Off for 0.

2. You might have a multiplier that you want to show as Level 1, Level 2 or Level 3. You’d convert

the input value to 0-1 by calculating (value-1)/2. This would give you 0,0.5 and 1. When the preset

changes you’d process the result back to a number in the range 1-3, append it onto “Level ” and

pass the result to the Disp input.

You can choose whether the parameters in the array are automatable and also whether the array is a

preset. If the array data applies globally and is large in size for example you may not want to maintain

copies for each program so switching the Preset option off would save on memory.

- 476 -

COMPONENTS

Connectors

Inputs Type Outputs Type

Connector for

communicating with Preset

Manager or Preset Text File

Preset The array for the current

program

Float Array

Number of entries in the

array

Int The value of the parameter

for current program & index

Float

The current array index Int The current array index Int

Set the current value for the

above array index (must be

in range 0-1)

Float Trigger sent just before a

value change occurs

Trigger

Name of the preset

parameter (for host)

String Trigger sent after a value

change occurs

Trigger

Optional display string to be

used instead of the

parameter value.

String

Optional units string String

Whether the parameter can

be automated

Boolean

Whether the parameter is a

preset

Boolean

The default value for when

the number of presets is

increased

Float

Set the whole array for the

current program

Float Array

Trigger to reset the array for

the current program to the

default value for each entry

Trigger

Whether to send automation

recording information to the

host when the value

changes

Boolean

- 477 -

CHAPTER 2

VST Plugin Info

Description

The VST Plugin Info primitive allows you to provide default VST plugin information for a module. This is

optional but is helpful if you want to use the same information every time you export a plugin. Any data

not provided will use the global setting.

In order to use the component just drop it somewhere inside your VST plugin module.

Connectors

Inputs Type Outputs Type

Type of plugin, 0 = effect,

1= instrument

Int N/A

Plugin name String

Vendor name String

Version number Int

Path to the folder where the exported plugin DLL

should go

Four character plugin id String

Whether to save support for all SSE types (improves

loading speed but increases export time)

Boolean

- 478 -

COMPONENTS

VST Preset String

Description

The VST Preset String primitive defines a VST parameter string that can be stored for each program.

This works in a very similar way to the VST Parameter component except that this is string data not a

number and so it can't be automated.

When a VST Preset String component is connected to a Preset Manager component it becomes part

of the preset system. This connection is made through the Preset input connector. When the Preset

Manager changes program the VST Preset String component will respond accordingly.

VST Preset Strings can be used for storing file paths or filenames for loading a particular sample but

they could be used to store any other kinds of data, really anything that can be represented as a string.

Connectors

Inputs Type Outputs Type

Connector for

communicating with Preset

Manager or Preset Text File

components

Preset The string for the current

program

String

Set the string for the current

program

String Trigger sent just before a

value change occurs

Trigger

Name of the parameter

(must be unique)

String Trigger sent after a value

change occurs

Trigger

Default string for when the

number of presets changes

String

- 479 -

CHAPTER 2

Wave Array Read

Description

This component will read data from a wave array at sample rate. There are two indexes, one to select

the wave from the array and one for the current sample(s) within the selected wave. The outputs are

the current samples for the left and right channels in the selected wave. If the selected wave is mono

both outputs will give the same value.

Connectors

Inputs Type Outputs Type

Array of waves Wave Array Left channel data Stream

Index of the required wave

in the array

Stream Right channel data Stream

Index of the required sample

in the selected wave

Stream

- 480 -

COMPONENTS

Wave File

Description

The Wave File component loads a wave file from your hard disk. You supply the complete path to the

file then trigger the Load input. The wave file is loaded and stored. You can access the data using a

Wave Read component.

The very last output on the component indicates the current state of the component using a flag. The

possible flags are as follows:

0 Empty The wave buffer is currently empty

1 Loading The component is loading a file

2 Loaded The component has loaded a file successfully

3 Bad File The file does not exist

4 Bad Format The format of the file is incorrect

- 481 -

CHAPTER 2

Connectors

Inputs Type Outputs Type

Full path to wave file String Wave file data in a buffer Mem

Trigger to load the file Trigger Sampling rate in samples

per second

Int

Trigger to delete the wave

data

Trigger Number of channels Int

Number of samples in each

channel

Int

Flag indicating the result of

loading (see above)

Int

- 482 -

COMPONENTS

Wave File Array

Description

The Wave File Array component allows you to construct a wave array by loading in individual wave

files one at a time. You specify a size for the array first and trigger the Resize input to create it.

To load in a file you need to specify an array index to say where it will go and then the complete path to

the file. The Load trigger will then load the file.

By default all waves are stored in stereo format. If you are only using mono waves then you can set

the Mono input to True and save some memory. If you set the Mono input when you have stereo wave

files loaded they will be converted permanently to mono.

- 483 -

CHAPTER 2

Connectors

Inputs Type Outputs Type

Required size of the array Int Array of waves Wave Array

Trigger to resize the array.

Note that if you make the

wave smaller it will be

irreversibly truncated

Trigger Array containing the sample

rates for each wave in the

array

Int Array

Trigger to clear the wave at

the specified index

Trigger Array containing the number

of samples per channel for

each wave in the array

Int Array

Index of the wave to be

loaded or deleted

Int The number of channels

(2 for stereo waves, 1 for

mono).

Int

Full path to wave file String

Trigger to load the file Trigger

Whether to store waves as

mono files

Boolean

Clear the array Trigger

Whether to ignore the wave

files in the array when

saving

Boolean

- 484 -

COMPONENTS

Wave Read

Description

The Wave Read component will read data from a memory buffer at sample rate. The index input

specifies which sample to read. For stereo buffers the samples for the left and right channels at the

given index are sent to the two outputs. For mono buffers the same sample is sent to both outputs.

Connectors

Inputs Type Outputs Type

Memory buffer containing

the wave data

Mem Left channel data Stream

Index of the required sample

in the wave

Stream Right channel data Stream

- 485 -

CHAPTER 2

Wave Read Hop

Description

The Wave Read Hop component will read data from a memory buffer at sample rate. The index input

specifies which sample to read. For stereo buffers the samples for the left and right channels at the

given index are sent to the two outputs. For mono buffers the same sample is sent to both outputs.

This component is identical to the Wave Read except that, for efficiency, it allows you to provide a Hop.

This saves cpu by only performing the lookup every 'Hop' number of samples.

The Hop is specified as a power of 2 so 1=lookup every sample, 2=lookup every 4 samples, 3= every

8 samples and so on.

Connectors

Inputs Type Outputs Type

Memory buffer containing

the wave data

Mem Left channel data Stream

Index of the required sample

in the wave

Stream Right channel data Stream

Hop value as power of 2 Int

- 486 -

COMPONENTS

Wave Table

Description

The Wave Table component will take any 256 sample wave and create a bandlimited wavetable. This

allows you to define your own waveform and turn it into a playable sound source which does not alias.

The component uses FFT analysis to remove unwanted frequencies from the wave and creates 256

bandlimited tables which can be read using the Wave Table Read component.

Connectors

Inputs Type Outputs Type

Array of 256 samples

defining the waveform

Float Array 256*256 sample bandlimited

wave table

Mem

Trigger to create the wave

table

Trigger Trigger when the wave table

has been calculated

Trigger

- 487 -

CHAPTER 2

Wave Table Read

Description

The Wave Table Read component is used to read wave data created by the Wave Table component. It

works very much like the low-level oscillator components. You supply a frequency (in range 0-1, where

1 is nyquist) and a wave table and the component will read the data from the appropriate section of the

table.

- 488 -

COMPONENTS

Web Cam

Description

This component allows you to capture an image from the default connected web cam.

Connectors

Inputs Type Outputs Type

Id of the camera you want to

use. Leave this blank or zero

to use the default camera

Trigger The captured image Bitmap

Trigger to Open the web

cam

Trigger

Trigger to Close the web

cam

Trigger

Trigger to grab a frame from

the web cam

Trigger

Whether to flip the image

horizontally to create a

mirror image

Boolean

- 489 -

CHAPTER 2

Web URL

Description

The Web URL component allows you to open a web link by opening a web browser.

Connectors

Inputs Type Outputs Type

The required web URL String N/A

Trigger to launch the web

link

Trigger

- 490 -

COMPONENTS

Wii Nunchuck

Description

The Wii Nunchuk component allows you to receive input data from a Nunchuk controller attached to a

Nintendo Wiimote.

The Wiimote input must be connected to the Wiimote output of a Wiimote component in order to work.

Obviously that Wiimote component must also be associated with the relevant hardware.

- 491 -

CHAPTER 2

Connectors

Inputs Type Outputs Type

Wiimote component

reference

Int Whether the component is

connected to applicable

hardware

Boolean

Is the C button pressed Boolean

Is the Z button pressed Boolean

The thumb stick X position

(-1 to 1)

Float

The thumb stick Y position

(-1 to 1)

Float

Pitch angle (-90 to 90 deg) Float

Roll angle (-90 to 90 deg) Float

Raw acceleration data in the

X-axis

Float

Raw acceleration data in the

Y-axis

Float

Raw acceleration data in the

Z-axis

Float

- 492 -

COMPONENTS

Wiimote

Description

The Wiimote component allows you to receive input data from a Nintendo Wiimote that has been

paired with your PC via Bluetooth.

To pair a Wiimote in Windows 7:

1. Hold 1 and 2 buttons on the Wiimote

2. Go to Devices and Printers under the Control Panel and click Add a Device

3. Select Nintendo RVL-CNT-01 and click Next

4. Select Pair Without Using Code

The process may be different for other operating systems.

Once the Wiimote is paired you can pick it up by triggering the Connect input to the component. The

first Boolean output will change to True when the connection has been established.

- 493 -

CHAPTER 2

Connectors

Inputs Type Outputs Type

Trigger to connect to a

Wiimote paired with the PC

Trigger Whether the component is

connected to a Wiimote

Boolean

Switch LED1 on or off Boolean Is the A button pressed Boolean

Switch LED2 on or off Boolean Is the B button pressed Boolean

Switch LED3 on or off Boolean Is the Up button pressed Boolean

Switch LED4 on or off Boolean Is the Down button pressed Boolean

Switch rumble on or off Boolean Is the Left button pressed Boolean

Is the Right button pressed Boolean

Is the minus button pressed Boolean

Is the plus button pressed Boolean

Is the Home button pressed Boolean

Is the '1' button pressed Boolean

Is the '2' button pressed Boolean

Pitch angle (-90 to 90 deg) Float

Roll angle (-90 to 90 deg) Float

Raw acceleration data in the

X-axis

Float

Raw acceleration data in the

Y-axis

Float

Raw acceleration data in the

Z-axis

Float

- 494 -

COMPONENTS

Wiimote IR

Description

The Wiimote IR component allows you to receive input data from the IR camera of a Nintendo

Wiimote.

The Wiimote input must be connected to the Wiimote output of a Wiimote component in order to work.

That Wiimote component must also be connected to a Wiimote that is paired with your PC.

The infra red camera at the front of the Wiimote can detect and track up to 4 IR points or dots. The

visibility state and position of these dots is returned by this component.

- 495 -

CHAPTER 2

Connectors

Inputs Type Outputs Type

Wiimote component

reference

Int Whether the component is

connected to a wiimote

Boolean

Whether dot 1 is visible Boolean

X position of dot 1 (0-1) Float

Y position of dot 1 (0-1) Float

Whether dot 2 is visible Boolean

X position of dot 2 (0-1) Float

Y position of dot 2 (0-1) Float

Whether dot 3 is visible Boolean

X position of dot 3 (0-1) Float

Y position of dot 3 (0-1) Float

Whether dot 4 is visible Boolean

X position of dot 4 (0-1) Float

Y position of dot 4 (0-1) Float

- 496 -

COMPONENTS

Wireless Input

Description

The Wireless Input and Wireless Output primitives provide two ends of a wireless link. Wireless links

provide a mechanism for passing data through the module hierarchy without having to create any

physical link.

The components have single Template input or output connectors. To change the type either right-click

on the connector and choose a type from the pop-up menu or create a link from the connector to

another component and the template will pick up the type.

A connection is established between a Wireless Output and a Wireless Input only if the following three

conditions are met:

1. The Wireless Input must appear in a module below the Wireless Output in the hierarchy

2. The Wireless Input and Output must have the same label

3. The Wireless Input and Output must have the same connector type

When a link is established the connection indicators on the Wireless Input and Output will light up.

- 497 -

CHAPTER 2

Wireless links only work down the module hierarchy, you can’t link back upwards. Also, the range of a

wireless output only extends as far as the next wireless output below it which has the same label and

connector type.

The same wireless output can connect to multiple wireless inputs and vice-versa so long as they

conform to the 3 criteria described above.

Connectors

Inputs Type Outputs Type

N/A N/A Template connector which

must be set to the type you

want for the wireless link

Template

- 498 -

COMPONENTS

Wireless Output

Description

The Wireless Output and Wireless Input primitives provide two ends of a wireless link. Wireless links

provide a mechanism for passing data through the module hierarchy without having to create any

physical link.

The components have single Template input or output connectors. To change the type either right-click

on the connector and choose a type from the pop-up menu or create a link from the connector to

another component and the template will pick up the type.

A connection is established between a Wireless Output and a Wireless Input only if the following three

conditions are met:

4. The Wireless Input must appear in a module below the Wireless Output in the hierarchy

5. The Wireless Input and Output must have the same label

6. The Wireless Input and Output must have the same connector type

When a link is established the connection indicators on the Wireless Input and Output will light up.

- 499 -

CHAPTER 2

Wireless links only work down the module hierarchy, you can’t link back upwards. Also, the range of a

wireless output only extends as far as the next wireless output below it which has the same label and

connector type.

The same wireless output can connect to multiple wireless inputs and vice-versa so long as they

conform to the 3 criteria described above.

Connectors

Inputs Type Outputs Type

Template connector which

must be set to the type you

want for the wireless link

Template N/A N/A

- 500 -

COMPONENTS

X Drag Accumulate

Description

The X Drag Accumulate component allows you to control a parameter by horizontal mouse drag

operations on a mouse area. You define the minimum and maximum limits for the parameter then

when a user drags horizontally on a mouse area the parameter will change between the limits

accordingly.

You can define the scale at which the changes apply. A scale of 1 will move the parameter by 1 unit per

grid square moved by the mouse. A scale of 0.1 will move the parameter by 0.1 units per grid square

moved by the mouse.

The most common use of this component would be in slider type controls.

- 501 -

CHAPTER 2

X10 Active Home

Description

The X10 Active Home component allows you to control and receive input data from a X10 home

automation modules.

You must have an X10 computer interface connected to your PC.

X10 commands are sent as text. Simply connect a valid command string to the first input then trigger

the Send input to send it.

An example X10 command string would be “sendplc A3 on”.

Data received from X10 modules like PIRs (passive infra red) are sent out through the “In” output.

Any errors that occur are sent through the Error output.

Connectors

Inputs Type Outputs Type

X10 command string String Received strings from other

X10 modules

String

Trigger to send the

command

Trigger Trigger when a command

has been sent out

Trigger

Any X10 error messages

received

String

- 502 -

COMPONENTS

XBox 360

Description

The XBox 360 component allows you to receive input data from a connected XBox 360 controller.

To use this you must have an XBox 360 controller attached to your PC. If you trigger the Connect input

on the component it will pick up the controller and you can then use the outputs to respond to

controller input.

- 503 -

CHAPTER 2

Connectors

Inputs Type Outputs Type

Trigger to connect to a

connected XBox controller

Trigger Whether the component is

connected to a controller

Boolean

Set left rumble level (0-1) Float Is the A button pressed Boolean

Set right rumble level (0-1) Float Is the B button pressed Boolean

Is the X button pressed Boolean

Is the Y button pressed Boolean

Is the Up button pressed Boolean

Is the Down button pressed Boolean

Is the Left button pressed Boolean

Is the Right button pressed Boolean

Is Left Shoulder button pressed Boolean

Is Right Shoulder button pressed Boolean

Is the Start button pressed Boolean

Is the Back button pressed Float

Is Left Thumb stick pressed Float

Is Right Thumb stick pressed Float

Left Thumb Stick X (-1 to 1) Float

Left Thumb Stick Y (-1 to 1) Float

Right Thumb Stick X (-1 to 1) Float

Right Thumb Stick Y (-1 to 1) Float

Left trigger position (0-1) Float

Right trigger position (0-1) Float

Connectors

Inputs Type Outputs Type

Mouse messages from a Mouse The current value of the Float

- 504 -

COMPONENTS

Mouse Area component parameter

Minimum value of the

parameter

Float Trigger sent before the

parameter is about to

change

Trigger

Maximum value of the

parameter

Float Trigger sent after the

parameter has just changed

Trigger

Amount to move the

parameter per grid square

mouse movement

Float Trigger sent when the drag

operation ends (i.e. On

mouse button release)

Trigger

Set the current value of the

parameter

Float Whether a drag operation is

in progress

Boolean

Whether to hide the cursor

during dragging (0=show,

1=hide and hold, 2=hide)

Int

- 505 -

CHAPTER 2

XY Drag Accumulate

Description

The XY Drag Accumulate component allows you to control a pair of parameters by mouse drag

operations on a mouse area. You define the minimum and maximum limits for the parameters then

when a user drags on a mouse area the parameters will change between the limits accordingly.

You can define the scales at which the changes apply. A scale of 1 will move the parameter by 1 unit

per grid square moved by the mouse. A scale of 0.1 will move the parameter by 0.1 units per grid

square moved by the mouse.

Use this component for controls where elements need to be moved around the display.

Connectors

Inputs Type Outputs Type

Mouse messages from a

Mouse Area component

Mouse The current value of the

horizontal parameter

Float

Minimum value of the

parameter controlled by

horizontal movement

Float The current value of the

vertical parameter

Float

Maximum value of the

parameter controlled by

horizontal movement

Float Trigger sent before the

parameter is about to

change

Trigger

- 506 -

COMPONENTS

Amount to move the

horizontal parameter per

grid square mouse

movement

Float Trigger sent after the

parameter has just changed

Trigger

Set the current value of the

horizontal parameter

Float Trigger sent when the drag

operation ends (i.e. On

mouse button release)

Trigger

Minimum value of the

parameter controlled by

vertical movement

Float The current value of the

vertical parameter

Float

Maximum value of the

parameter controlled by

vertical movement

Float Trigger sent before the

parameter is about to

change

Trigger

Amount to move the vertical

parameter per grid square

mouse movement

Float Trigger sent after the

parameter has just changed

Trigger

Set the current value of the

vertical parameter

Float Trigger sent when the drag

operation ends (i.e. On

mouse button release)

Trigger

Whether to hide the cursor

during dragging (0=show,

1=hide and hold, 2=hide)

Int Whether a drag operation is

in progress

Boolean

- 507 -

CHAPTER 2

Y Drag Accumulate

Description

The X Drag Accumulate component allows you to control a parameter by vertical mouse drag

operations on a mouse area. You define the minimum and maximum limits for the parameter then

when a user drags horizontally on a mouse area the parameter will change between the limits

accordingly.

You can define the scale at which the changes apply. A scale of 1 will move the parameter by 1 unit per

grid square moved by the mouse. A scale of 0.1 will move the parameter by 0.1 units per grid square

moved by the mouse.

The most common use of this component would be in slider type controls or knobs.

- 508 -

COMPONENTS

Connectors

Inputs Type Outputs Type

Mouse messages from a

Mouse Area component

Mouse The current value of the

parameter

Float

Minimum value of the

parameter

Float Trigger sent before the

parameter is about to

change

Trigger

Maximum value of the

parameter

Float Trigger sent after the

parameter has just changed

Trigger

Amount to move the

parameter per grid square

mouse movement

Float Trigger sent when the drag

operation ends (i.e. On

mouse button release)

Trigger

Set the current value of the

parameter

Float Whether a drag operation is

in progress

Boolean

Whether to hide the cursor

during dragging (0=show,

1=hide and hold, 2=hide)

Int

- 509 -

	1 	Introduction
	About This Guide
	Other Information

	2 	Components
	Add
	Description
	Connectors

	Add to Float Array
	Description
	Connectors

	After Duplicate
	Description
	Connectors

	After Load
	Description
	Connectors

	Append Array
	Description
	Connectors

	Arc
	Description
	Connectors
	Example

	Area to Float
	Description
	Connectors

	Area Union
	Description
	Connectors
	Example

	Array Builder
	Description
	Connectors

	ASCII to String
	Description
	Connectors

	ASIO In
	Description
	Connectors
	Other Features

	ASIO Out
	Description
	Connectors
	Other Features

	Assembler
	Description
	Connectors

	Audio Devices
	Description
	Connectors

	Audio Select
	Description
	Connectors

	Audio Stream
	Description
	Connectors

	Bar Start Pos
	Description
	Connectors

	Binary to Hex
	Description
	Connectors

	Biquad Filter
	Description
	Connectors

	Biquad Filter Coeff
	Description
	Connectors

	Bitmap
	Description
	Connectors
	Example

	Bitmap Area
	Description
	Connectors
	Example

	Bitmap Array from Bitmap
	Description
	Connectors

	Bitmap Array from File
	Description
	Connectors

	Bitmap Create
	Description
	Connectors

	Bitmap Draw
	Description
	Connectors

	Bitmap Draw Transform
	Description
	Connectors

	Bitmap Get At
	Description
	Connectors

	Bitmap Resize
	Description
	Connectors

	Bitmap Sample and Hold
	Description
	Connectors

	Bitmap Save
	Description
	Connectors

	Bitmap Size
	Description
	Connectors

	Bool to False	
	Description
	Connectors

	Bool to True	
	Description
	Connectors

	Boolean
	Description
	Connectors

	Boolean And
	Description
	Connectors

	Boolean Or
	Description
	Connectors

	Boolean XOr
	Description
	Connectors

	Bus Create
	Description
	Connectors

	Bus Extract
	Description
	Connectors

	CamShift Tracker
	Description
	Connectors

	Canny Edge Detection
	Description
	Connectors

	Changed
	Description
	Connectors

	Clear Audio
	Description
	Connectors

	Clip
	Description
	Connectors

	Colour
	Description
	Connectors

	Colour Detect
	Description
	Connectors

	Colour Dialog
	Description
	Connectors

	Colour Matrix
	Description
	Connectors

	Colour Matrix Set
	Description
	Connectors

	Colour to HSV
	Description
	Connectors

	Colour to Int
	Description
	Connectors

	COM Port
	Description
	Connectors

	Cos
	Description
	Connectors

	Cos Inverse
	Description
	Connectors

	Cosh
	Description
	Connectors

	Counter
	Description
	Connectors

	Counter Advanced
	Description

	De-zipper
	Description
	Connectors

	Decibel
	Description
	Connectors

	Delay
	Description
	Connectors

	Delay by One Sample
	Description
	Connectors

	Delay Compensation
	Description
	Connectors

	Direct Sound In
	Description
	Connectors
	Other Features

	Direct Sound In Devices
	Description
	Connectors

	Direct Sound In Select
	Description
	Connectors

	Direct Sound Out
	Description
	Connectors
	Other Features

	Divide
	Description
	Connectors

	Double Round Nearest
	Description
	Connectors

	Double Stream Add
	Description
	Connectors

	Double Stream Multiply
	Description
	Connectors

	Double Stream Subtract
	Description
	Connectors

	Double to Stream
	Description
	Connectors

	Draw Loop
	Description
	Connectors

	Draw to Bitmap
	Description
	Connectors

	Drop List Control
	Description
	Connectors

	DSP Code
	Description
	Connectors

	Edit Control
	Description
	Connectors

	Ellipse
	Description
	Connectors

	Envelope Control
	Description
	Connectors

	Equals
	Description
	Connectors

	EXE Background Colour
	Description
	Connectors

	EXE Full Screen
	Description
	Connectors

	EXE Quit
	Description
	Connectors

	EXE Zoom
	Description
	Connectors

	FFT
	Description
	Connectors

	File Dialog
	Description
	Connectors

	Filled Ellipse
	Description
	Connectors

	Filled Rectangle
	Description
	Connectors

	Filled Round Rectangle
	Description
	Connectors

	Filter Coefficients
	Description
	Connectors

	Find Files
	Description
	Connectors

	Float
	Description
	Connectors

	Float Abs
	Description
	Connectors

	Float Array
	Description
	Connectors

	Float Array Abs
	Description
	Connectors

	Float Array Draw
	Description
	Connectors

	Float Array Get At
	Description
	Connectors

	Float Array Resample
	Description
	Connectors

	Float Array Sample and Hold
	Description
	Connectors

	Float Array Section
	Description
	Connectors

	Float Array to Mem
	Description
	Connectors

	Float Array to Poly
	Description
	Connectors

	Float Inverse
	Description
	Connectors

	Float Invert
	Description
	Connectors

	Float Power
	Description
	Connectors

	Float Queue
	Description
	Connectors

	Float Stack
	Description
	Connectors

	Float to Area
	Description
	Connectors

	FlowBoard
	Description
	Connectors

	FlowBoard GSM
	Description
	Connectors

	Font
	Description
	Connectors

	Format String
	Description
	Connectors

	Frame Sync
	Description
	Connectors

	Frame to Mono
	Description
	Connectors

	Full Screen
	Description
	Connectors

	Get Pixel
	Description
	Connectors

	Graph Dots
	Description
	Connectors

	Graph FFT
	Description
	Connectors

	Graph Lines
	Description
	Connectors

	Graph to Point Array
	Description
	Connectors

	Greater Than
	Description
	Connectors

	Greater Than or Equal To
	Description
	Connectors

	Grid to Pixel
	Description
	Connectors

	Haar Face Detect
	Description
	Connectors

	Hard Disk Serial
	Description
	Connectors

	Hex to Binary
	Description
	Connectors

	Hex to Int
	Description
	Connectors

	Hex to String
	Description
	Connectors

	HSV to Colour	
	Description
	Connectors

	HTTP Post	
	Description
	Connectors

	iFFT
	Description
	Connectors

	If Then Else
	Description
	Connectors

	Image Download
	Description
	Connectors

	Impulse
	Description
	Connectors

	Index Selector
	Description
	Connectors

	Int
	Description
	Connectors

	Int Abs
	Description
	Connectors

	Int And
	Description
	Connectors

	Int Array
	Description
	Connectors

	Int Array Get At
	Description
	Connectors

	Int Array Sample and Hold
	Description
	Connectors

	Int Array to Mem
	Description
	Connectors

	Int Inverse
	Description
	Connectors

	Int Loop
	Description
	Connectors

	Int Modulus
	Description
	Connectors

	Int Not
	Description
	Connectors

	Int Or
	Description
	Connectors

	Int Queue
	Description
	Connectors

	Int Shift Left
	Description
	Connectors

	Int Shift Right
	Description
	Connectors

	Int Stack
	Description
	Connectors

	Int to Colour	
	Description
	Connectors

	Int to Hex
	Description
	Connectors

	Int Transition
	Description
	Connectors

	Int XOr
	Description
	Connectors

	Is Key Pressed
	Description
	Connectors

	Is Playing
	Description
	Connectors

	LabJackU3-HV
	Description
	Connectors

	LabJackU3-LV
	Description
	Connectors

	Last Switch
	Description
	Connectors

	Less Than
	Description
	Connectors

	Less Than or Equal to
	Description
	Connectors

	Line
	Description
	Connectors

	Linear Gradient
	Description
	Connectors

	Log10
	Description
	Connectors

	MAC Address
	Description
	Connectors

	Magnitude/Phase to Real/Img
	Description
	Connectors

	Max
	Description
	Connectors

	Max Float Array
	Description
	Connectors

	MCC-1208FS
	Description

	MCC-1608FS
	Description
	Connectors

	Measure Text
	Description
	Connectors

	Mem Create
	Description
	Connectors

	Mem to Float Array
	Description
	Connectors

	Mem to Float Array Min/Max
	Description
	Connectors

	Message Box
	Description
	Connectors

	MIDI Aftertouch
	Description
	Connectors

	MIDI Control Change
	Description
	Connectors

	MIDI Event
	Description
	Connectors

	MIDI In
	Description
	Connectors
	Other Features

	MIDI In Devices
	Description
	Connectors

	MIDI In Select
	Description
	Connectors

	MIDI Mono
	Description
	Connectors

	MIDI Out
	Description
	Connectors

	MIDI Out Devices
	Description
	Connectors

	MIDI Out Select
	Description
	Connectors

	MIDI Pitch Bend
	Description
	Connectors

	MIDI Splitter
	Description
	Connectors

	MIDI to Multi Voice
	Description
	Connectors

	MIDI to Voices
	Description
	Connectors

	Min
	Description
	Connectors

	Min Float Array
	Description
	Connectors

	Module
	Description

	Module GUI
	Description
	Connectors

	Module Input
	Description
	Connectors

	Module Output
	Description
	Connectors

	Module Properties GUI
	Description
	Connectors

	Module Wireless Output
	Description
	Connectors

	Mono Boolean Readout
	Description
	Connectors

	Mono to Float
	Description
	Connectors

	Mono to Frame
	Description
	Connectors

	Mono to Frame
	Description
	Connectors

	Mono to Graph
	Description
	Connectors

	Motion Detect
	Description
	Connectors

	Mouse Area
	Description
	Connectors

	Mouse Drag
	Description
	Connectors

	Mouse LDbl-click
	Description
	Connectors

	Mouse LDown
	Description
	Connectors

	Mouse LUp
	Description
	Connectors

	Mouse Move
	Description
	Connectors

	Mouse Over
	Description
	Connectors

	Mouse RDbl-click
	Description
	Connectors

	Mouse RDown
	Description
	Connectors

	Mouse RUp
	Description
	Connectors

	Multiplexer
	Description
	Connectors

	Multiply
	Description
	Connectors

	Multiply Float Array
	Description
	Connectors

	Multiply Float Array Pair
	Description
	Connectors

	Netvox Alarm Security
	Description
	Connectors

	Netvox Light Sensor
	Description
	Connectors

	Netvox Mains Power Outlet
	Description
	Connectors

	Netvox Temperature Sensor
	Description
	Connectors

	Netvox USB
	Description
	Connectors

	Network Client
	Description
	Connectors

	Network Server
	Description
	Connectors

	New Line
	Description
	Connectors

	Norm
	Description
	Connectors

	Not
	Description
	Connectors

	Note Equal
	Description
	Connectors

	Note Event
	Description
	Connectors

	Note to Int
	Description
	Connectors

	Note to Int
	Description
	Connectors

	Offline Mode
	Description
	Connectors

	Open ASIO Settings
	Description
	Connectors

	OWL Energy Monitor
	Description
	Connectors

	Pack
	Description
	Connectors

	Pen
	Description
	Connectors

	Phidgets 0/0/4
	Description
	Connectors

	Phidgets 0/0/8
	Description
	Connectors

	Phidgets 0/0/16
	Description
	Connectors

	Phidgets 2/2/2
	Description
	Connectors

	Phidgets 8/8/8
	Description
	Connectors

	Phidgets Accelerometer
	Description
	Connectors

	Phidgets Analog
	Description
	Connectors

	Phidgets Bridge
	Description
	Connectors

	Phidgets Encoder
	Description
	Connectors

	Phidgets Frequency Counter
	Description
	Connectors

	Phidgets GPS
	Description
	Connectors

	Phidgets IR Transmit and Receive
	Description
	Connectors

	Phidgets LED 64
	Description
	Connectors

	Phidgets Motor Control
	Description
	Connectors

	Phidgets RFID
	Description
	Connectors

	Phidgets Servo Advanced
	Description
	Connectors

	Phidgets Spacial
	Description
	Connectors

	Phidgets Stepper Controller
	Description
	Connectors

	Phidgets Temperature
	Description
	Connectors

	Phidgets Text LCD
	Description
	Connectors

	Phidgets Touch Linear/Circular
	Description
	Connectors

	Pitch to Frequency
	Description
	Connectors

	Pixel to Grid
	Description
	Connectors

	Plugin Folder
	Description
	Connectors

	Point Array Lines
	Description
	Connectors

	Poly to Graph
	Description
	Connectors

	Poly to Mono
	Description
	Connectors

	Poly to PolyInt
	Description
	Connectors

	PolyInt to Poly
	Description
	Connectors

	Popup List Control
	Description
	Connectors

	PPQ Pos
	Description
	Connectors

	Preset Manager
	Description
	Connectors

	Preset Manager (module)
	Description
	Connectors
	Preset Text Files
	Properties

	Preset Text File
	Description
	Connectors
	File Format

	PS2 Lynxmotion Controller
	Description
	Connectors

	Ramp
	Description
	Connectors

	Random Number
	Description
	Connectors

	Rectangle
	Description
	Connectors

	Redraw
	Description
	Connectors

	Redraw Area
	Description
	Connectors

	Redraw Limiter
	Description
	Connectors

	Rotate
	Description
	Connectors

	Round Rectangle
	Description
	Connectors

	Ruby
	Description
	Connectors

	Sample and Hold
	Description
	Connectors

	Sample Position
	Description
	Connectors

	Sample Rate
	Description
	Connectors

	Save Wave
	Description
	Connectors

	Sawtooth
	Description
	Connectors

	Select
	Description
	Connectors

	Selector
	Description
	Connectors

	Set Pixel
	Description
	Connectors

	Set Sample Rate
	Description
	Connectors

	SFZ
	Description
	Connectors

	Shell Execute
	Description
	Connectors

	Shift Float Array
	Description
	Connectors

	Show Cursor
	Description
	Connectors

	Signal Analyser
	Description
	Connectors

	Sin
	Description
	Connectors

	Sin Inverse
	Description
	Connectors

	Sine
	Description

	Sinh
	Description
	Connectors
	Connectors

	Slide
	Description
	Connectors

	Smooth
	Description
	Connectors

	Sort Float Array
	Description
	Connectors

	Sort String Array
	Description
	Connectors

	Stream Add
	Description
	Connectors

	Stream Divide
	Description
	Connectors

	Stream Greater Than
	Description
	Connectors

	Stream Greater Than or Equal to
	Description
	Connectors

	Stream Less Than
	Description
	Connectors

	Stream Less Than or Equal to
	Description
	Connectors

	Stream Max
	Description
	Connectors

	Stream Min
	Description
	Connectors

	Stream Multiply
	Description
	Connectors

	Stream Subtract
	Description
	Connectors

	Stream to Double
	Description
	Connectors

	String
	Description
	Connectors

	String Array
	Description
	Connectors

	String Array Find
	Description
	Connectors

	String Array Get At
	Description
	Connectors

	String Array Split
	Description
	Connectors

	String Array to String
	Description
	Connectors

	String Array to String
	Description
	Connectors

	String Extract
	Description
	Connectors

	String Find
	Description
	Connectors

	String Length
	Description
	Connectors

	String Queue
	Description
	Connectors

	String Replace
	Description
	Connectors

	String Split
	Description
	Connectors

	String Stack
	Description
	Connectors

	String to ASCII
	Description
	Connectors

	String to Hex
	Description
	Connectors

	String to String Array
	Description
	Connectors

	String to String Array
	Description
	Connectors

	String to Sysex
	Description

	String Format
	Description
	Connectors
	Connectors

	Subtract
	Description
	Connectors

	Subtract from Float Array
	Description
	Connectors

	Sum Float Array
	Description
	Connectors

	Sunburst Gradient
	Description
	Connectors

	Sysex to String
	Description
	Connectors

	System Folders
	Description
	Connectors

	System Fonts
	Description
	Connectors

	Tan
	Description
	Connectors

	Tan Inverse
	Description
	Connectors

	Tanh
	Description
	Connectors

	Tempo
	Description
	Connectors

	Text
	Description
	Connectors

	Text Draw
	Description
	Connectors

	Text Load
	Description
	Connectors

	Text Save
	Description
	Connectors

	Ticker 100
	Description
	Connectors

	Ticker 25
	Description
	Connectors

	Time
	Description
	Connectors

	Timer
	Description
	Connectors

	Time Signature
	Description
	Connectors

	Tooltip Help
	Description
	Connectors

	Translate
	Description
	Connectors

	Triangle
	Description
	Connectors

	Trigger Blocker
	Description
	Connectors

	Trigger Button
	Description
	Connectors

	Trigger Div
	Description
	Connectors

	Trigger Switch
	Description
	Connectors

	Unpack
	Description
	Connectors

	Video Delay
	Description
	Connectors

	Video Save
	Description
	Connectors

	Video Stream
	Description
	Connectors

	View Area
	Description
	Connectors

	View Size
	Description
	Connectors

	Voices to Poly
	Description
	Connectors

	VST Editor Open
	Description
	Connectors

	VST Parameter
	Description
	Connectors

	VST Parameter Array
	Description
	Connectors

	VST Plugin Info
	Description
	Connectors

	VST Preset String
	Description
	Connectors

	Wave Array Read
	Description
	Connectors

	Wave File
	Description
	Connectors

	Wave File Array
	Description
	Connectors

	Wave Read
	Description
	Connectors

	Wave Read Hop
	Description
	Connectors

	Wave Table
	Description
	Connectors

	Wave Table Read
	Description

	Web Cam
	Description
	Connectors

	Web URL
	Description
	Connectors

	Wii Nunchuck
	Description
	Connectors

	Wiimote
	Description
	Connectors

	Wiimote IR
	Description
	Connectors

	Wireless Input
	Description
	Connectors

	Wireless Output
	Description
	Connectors

	X Drag Accumulate
	Description

	X10 Active Home
	Description
	Connectors

	XBox 360
	Description
	Connectors
	Connectors

	XY Drag Accumulate
	Description
	Connectors

	Y Drag Accumulate
	Description
	Connectors

