25 Valleywood Drive, Unit 20
Markham, Ontario, L3R 5L9, Canada

O
{ ‘- 4 o Tel: (905) 943-9572 Fax: (905) 943-9197
D;E} Lr noDot

WiRobot SDK Application Programming
Interface (API) Reference Manual

- (For MS Windouws)

o

-

ir FoDoD:

(

Version: 1.3
JUN. 2007

Table of Contents

V.

V.

Lo 3 1YY 3 oY R 2
WIRODOt SDK OVEIVIOWcoeeiieeeeerieersirrsesseessmessems s e s s e sssse s smesssenssssssnesssmesssmesssmsssseessssssnsnsssensn 3
WiRobot SDK API Reference for PMSS5005.......c..ccommmmsmimmmnmmssssssssssss ssmsssssssssssssssssns 5
11.1. SENSOr PEAPREIAIS ... 5
I.1.1. Batch Sensor Data Updating AP ... 5
I.1.2. Range and Distance Sensors
111.1.3. Human Sensors........coeevreeerennene
NG, Tilt AN ACCEIErAtION SENSON ..ovuuuruerrreeeeeesssssssessessssssssssssssessess
111.1.5. T EMPEratUre SENSOMS ...ttt et a bbbt an e e be e nean
11.1.6. Infrared Remote Control Handling ... sessssesssnens 12
11.1.7. Battery Voltage MONItors. ...t s e se e se e nnn 13
111.1.8. Potentiometer POSItiON SENSOMS ... s 4
111.1.9. Motor Current Sensors
111.1.10. Encoder.... e
111.1.11. Custom Analog and Digital Inputs and Outputs
1.2. MOTION CONEIOL ... e bR b s et e e ennp s nanan
1.2.1. [T\, o (o ol @e] o o ISR
I.2.2. RC SErvO Motor CONLIOL ..ot se e ss e nnens 31
11.3. [V L0 1Ty Y=Y E= T @] o | PO TSRS 33
1.3.1. LCD DiSPIAU weerereeeeerereeeesesesesesesesesssseseseesesesesesesesssessssssssssssssssssssesssessssssasssssensnssssssesssessssesanen 33
IILL, EVNES etuuurreeeessseeeesssssseseeesssssesessssss s s8R AR R R R 34
WiRobot SDK API Reference for PMB5010.........coeomiirmrsrrereeesese e sssees s esssessessssmessnns 35
V.1 [L0 1Ty Y=Y E= T @] o | PO TSRS
IV.1.1. Audio Input and Output
IV.l.2. gy E= o Lo @Yo (U T OSSPSR
IV.1.3. G B 1= o1 = U SOOI
v.e. 7= o TSP PS
WiRobot DRK6E000/8000 SPecific APIS....c..cevevureerrrssemssessssssssesssenssesesesesssesssesssesesssessemsanes 39
V.1. LOW LEVEI ProteCHION ..ccveeeieecceceecreres et ses ettt st 39

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com

-1-

l. Convention

Data Type
int: 16 bit signed interger
UWordl6: 16 bit unsigned interger
short: 16 bit signed interger
Syntax

Syntax under each API reference is based on the C/C++ calling convention. Corresponding Visual
Basic calling convention can be found in relevant VB reference book, or from the WiRobot VB code
examples.

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com
-2-

Il. WiRobot SDK Overview

WiRobot Software Development Kit (SDK) is a part of the WiRobot development system. Being a PC-
based software framework for robotic system development, the SDK contains the facilities for
memory management, system communication and user interface, and the utilities for audio, video
input/output, sensor data acquisition and motion control. Please refer to the WiRobot PMS5005,
PMB5010, or DRK6000O/8000 User Manuals for the detailed information on the SDK architecture,
organization and system programming.

Under the WiRobot system architecture, all the controllers are connected in a chain. Programs
developed using WiRobot SDK runs on the Host as the central controller of each chain. All the
embedded controllers have at least two SCI ports for the system communications: upper-reach port
and lower-reach port, with the direction respect to the central controller. The WiRobot system
controller-level connection architecture is shown as Figure Il.1.

HOST ROBOT
Host WiRobot Embedded
Controller
(e.g. PC,DF;PG:]cessor or (PMBS010 or
PMS5005)
Serial Cable V //1
(R5232) Board-to-Board
Connection or Cable
erial Cablg
Cammunication r Wireless Cormmunication] Upper Reach SCI
Module (Required for Module
Wireless Connection) s Lower Reach SCI
\
F-
HOST ROBOT
Cable F74)
Host WiRobot Embedded WiRobot Embedded
(e.q. PC, Processor or Controller Controller
DSP) {PMB5010) A (PMS5005)
Serial Cable V A
(RS232) Board-to-Board
Connection or Cable
erial Cablg
Communication ul W'rele“[\ R m Upper Reach SCI
Module {Required for .
Wireless Connection) 1 Module m Lower Reach SCI

A8

Figure 1.1 WiRobot System Architecture

The APIs described in this manual are the interface between the application-level software and the
WiRobot hardware system. Programs developed using WiRobot SDK runs on the PC sending and
receiving data to and from the WiRobot hardware via wire or wireless connection. The firmware on
the embedded controllers take care of all the low level operations of the system functional modules,
such as data acquisition, fast-loop low level motion control, image and audio capture and compression,
audio playback and wireless communication. They are transparent to the high level software system
running on the central PC controller. All the system software development can be carried on solely
under user-friendly PC system. WiRobot SDK for Windows is available for MS Visual C++ and MS
Visual Basic environment.

API exists as a MS ActiveX component, called “WiRobot SDK ActiveX Module". User program uses
this component in VB or VC++ program to communicate with the WIRobot PMS5005 or/and

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com
-3-

PMB5010 controllers. Data in between WiRobot hardware and the “WiRobot SDK ActiveX Module”
is managed and transferred by the supplied WiRobot Gateway Program (WiRobotGateway.exe) with
the shared memory as shown in Figure Il.2.

PC Software Programming Framework

High-level Programs High-level Programs
*Al T Al

* Applications * Applications

* Navigation * Navigation

* and more * and more

High-level Programs
* Al

* Applications

* Navigation

* and more

| WiRobot™ System Shared Memory |

g
U

Wire/Wireless

(” WiRobot Rebot System

11

Controller
Firmware & Low-
level Driver

| _

Figure 1.2 WiRobot Software Architecture

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com
4

I1l. WiRobot SDK API Reference for PMS5005

WiRobot SDK APIs for PMS5005 are grouped under the categories of Sensor Peripherals, Motion
Control, Multimedia Control and Events.

I1l.l. Sensor Peripherals

This section contains the APIs for the operations of different sensor peripherals.

[11.1.1. Batch Sensor Data Updating API

Standard Sensors: Sonar, human, infrared range, tilt/acceleration, temperature, battery voltage and
infrared remote control receiver

Motor Sensors: Potentiometers, current feedback sensors and encoders.
Custom Sensors: Custom expansion A/D inputs and digital inputs.

1 void SystemMotorSensorRequest(int PacketNumber);

2 void SystemStandardSensorRequest(int PacketNumber);

3 void SystemCustomSensorRequest(int PacketNumber);

4 void SystemAllSensorRequest(int PacketNumber);

Description:

SystemMotorSensorRequest sends a request command to the WiRobot Sensing and
Motion Controller (PMS5005) in order to get the sensor data related to motor control.

SystemStandardSensorRequest sends a request command to the WiRobot Sensing and
Motion Controller (PMS5005) in order to get all the WiRobot standard sensor data.

SystemCustomSensorRequest sends a request command to the WiRobot Sensing and
Motion Controller (PMS5005) in order to get all custom-sensor data,

SystemAllSensorRequest sends a request command to the WiRobot Sensing and Motion
Controller (PMS5005) in order to get all the sensor data.

Syntax: SystemMotorSensorRequest (PacketNumber); // motor related sensors
SystemStandardSensorRequest (PacketNumber); // standard sensors
SystemCustomSensorRequest (PacketNumber); // custom sensors
SystemAllSensorRequest (PacketNumber); // all the sensors

Parameter: short PacketNumber;

The meanings of PacketNumber as follows:

Parameter Action Requested

PacketNumber =0 Stop sending the sensor data packets

PacketNumber = -1 Send sensor data packet continuously until being asked to
stop

PacketNumber >0 Send n = PacketNumber packet(s) of sensor data and then
stop sending

Return value: void

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com
-5-

0o N O U

10
1
12

Remarks:

1. The default update rate is 20Hz. User can set up the data refresh rate according
to real system requirements.

2. System is default to continuously sending all data when bootup.

See Also: SetSysMotorSensorPeriod, SetSysStandardSensorPeriod,
SetSysCustomSensorPeriod, SetSysAllSensorPeriod.

void EnableMotorSensorSending ();
void EnableStandardSensorSending ();
void EnableCustomSensorSending ();
void EnableAllSensorSending ();

Description:
EnableMotorSensorSending enables batch updating motor-related sensor packets.

EnableStandardSensorSending enables batch updating standard sensor packets.
EnableCustomSensorSending enables batch updating custom sensor packets.

EnableAllSensorSending enables batch updating all the sensor packets.

Syntax: EnableMotorSensorSending(); // motor related sensors
EnableStandardSensorSending (); // standard sensors
EnableCustomSensorSending (); // custom sensors
EnableAllSensorSending (); // all the sensors

Parameter: void

Return value: void

Remarks:
1. The latest request setting of the packet number and the update rate are used.
2. Buydefault, “all sensor data sending” is enabled.

3. Please refer to the remarks under SystemMotorSensorRequest,
SystemSatndardSensorRequest, SystemCustomSensorRequest,
SystemAllSensorRequest

void DisableMotorSensorSending ();
void DisableStandardSensorSending ();
void DisableCustomSensorSending ();
void DisableAllSensorSending ();

Description:
DisableMotorSensorSending disables batch updating motor-related sensor packets.
DisableStandardSensorSending disables batch updating standard sensor packets.

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com
- 6 -

13
14
15
16

DisableCustomSensorSending disables batch updating custom sensor packets.
DisableAllSensorSending disables batch updating all the sensor packets.

Syntax: DisableMotorSensorSending(); // motor related sensors
DisableStandardSensorSending (); // standard sensors
DisableCustomSensorSending (); // custom sensors
DisableAllSensorSending (); // all the sensors

Parameter: void

Return value: void

See Alao: SystemMotorSensorRequest, SystemStandardSensorRequest,
SystemCustomSensorRequest, SystemAllSensorRequest.

void SetSysMotorSensorPeriod(short PeriodTime) ;
void SetSysStandardSensorPeriod(short PeriodTime);
void SetSysCustomSensorPeriod(short PeriodTime) ;
void SetSysAllSensorPeriod(short PeriodTime) ;

Description:

SetSysMotorSensorPeriod sets refresh rate of batch updating motor-related sensor
packets.

SetSysStandardSensorPeriod sets refresh rate of batch updating standard sensor
packets.

SetSysCustomSensorPeriod sets refresh rate of batch updating custom sensor packets.
SetSysAllSensorPeriod sets refresh rate of batch updating all the sensor packets.

Syntax: SetSysMotorSensorPeriod (); // motor related sensors
SetSysStandardSensorPeriod (); // standard sensors
SetSysCustomSensorPeriod (); // custom sensors
SetSysAllSensorPeriod (); // all the sensors

Parameter: short PeriodTime; /* Update period (in ms) for batch sensing

packets to PC central controller */

Return value: void

Remarks:

The default PeriodTime = 50 (ms), i.e. update rate is 20Hz. PeriodTime should be bigger
than 50 (ms), i.e. the system data fastest refresh rate is 20Hz.

See Also: SystemMotorSensorRequest, SystemStandardSensorRequest,
SystemCustomSensorRequest, SystemAllSensorRequest.

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com
-7-

[11.1.2. Range and Distance Sensors
17 short GetSensorSonarl ();
18 short GetSensorSonar2 ();
19 short GetSensorSonar3 ();
20 short GetSensorSonarl ();
21l short GetSensorSonar5 ();
22 short GetSensorSonar6 ();
23 short GetSensorSonar (short channel);

Description:

GetSonarSensorX returns the current distance value between the relevant ultrasonic
range sensor module (DUR5200) and the object in front of it. The unit is cm.

Syntax: ival = GetSensorSonarl (); // Sonar #1

ival = GetSensorSonare (); // Sonar #2

ival = GetSensorSonar3 (); // Sonar #3

ival = GetSensorSonarld (); // Sonar #4

ival = GetSensorSonar5 (); // Sonar #5

ival = GetSensorSonar6 (); // Sonar #6

ival = GetSensorSonar (short channel); // Sonar#1,2,3,4,5,0r 6
Parameter: void

short channel; //0,1,2,3,4,0r5 for Sonar #1, 2,3,U,5,6

Return value: short ival;

Return data interpretation:

Return Value Distance to Object
U OtoUYcm

U4 to 254 U to 254 cm

255 255 cm or longer

24 short GetSensorlRRange ();

Description:

GetSensorlRRange returns the current distance measurement value between the infrared
range sensor and the object in front of it.

Syntax: ival = GetSensorlRRange ();
Parameter: void
Return value: short ival;

Return data interpretation when using Sharp GP2YOA2LYK:

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com
-8-

1.1.3.
25
26

Return Value Distance to Object

<=585 80 cm or longer
585 to 3446 80to8cm
>=3446 Oto8cm

Remarks:

The relationship between the return data and the distance is not linear. Please refer to the
sensor’s datasheet for distance-voltage curve. The data returned is the raw data of the
analog to digital converter. The output voltage of the sensor can be calculated from the
following equation:

Sensor output voltage = (ival) * 3.0 / 4095 (V)

(e.g. Sharp GP2YOAR2L1YK
“http://sharp-world.com/products/device/lineup/data/pdf/datasheet/gp2yOa_d_e.pdf")

Human Sensors
short GetSensorHumanAlarml ();
short GetSensorHumanAlarme ();

Description:

GetSensorHumanAlarm returns the current human alarm data from DHM5150 Human
Motion Sensor Module. Please refer to the DHM5150 hardware manual for detailed
information.

Syntax: ival = GetSensorHumanAlarml(); //1" human alarm
ival = GetSensorHumanAlarme (); // 2" human alarm

Parameter: void

Return value: short ival;

Return data interpretation:

The return data is the raw value of the analog to digital converter indicating the amplified (x
5 times) output voltage of the sensor device. The data range is between O and 40O95. When
there is no human present, the module output voltage is about 1.5 V and return value is
about 20U47.

Remarks:

To detect human presence, the application should compare the difference of two samples
(to detect the change from “absence” to “presence”), and also compare the sample data to a
user defined threshold (to determine whether to report an alarm or not). The threshold
determines the sensitivity of sensor. The higher the threshold is the lower the sensitivity
will be.

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com
-g.-

27
28

LY.
29
30

short GetSensorHumanMotionl ();
short GetSensorHumanMotione2 ();

Description:

GetSensorHumanMotion returns the current human motion value from DHM5150 Human
Motion Sensor Module. Please refer to the DHM5150 hardware manual for detailed
information.

Syntax: ival = GetSensorHumanMotionl (); // Human direction data #1

ival = GetSensorHumanMotione2 (); // Human direction data #2

Parameter: void

Return value: short ival;

Return data interpretation:

The return data is the un-amplified raw value of the analog to digital converter indicating
the output voltage of the sensor device. The data range is between O and 4095.

Remarks:

To detect human motion direction, the application should compare the difference of two
samples of each sensor module’s output (to detect the change from “absence” to
“presence”), and then compare the sample data of the two sensor modules. For a single
source of human motion, the different patterns of the two sensor modules manifest the
directions of the motion. The relationship can be obtained from the experiments.

Tilt and Acceleration Sensor
short GetSensorTiltingX ();
short GetSensorTiltingY ();

Description:

GetSensorTiltingX, GetSensorTiltingY, return the current tilt angle values in the relevant
directions from DTAS510¢2 Tilting and Acceleration Sensor Module.

Syntax: ival = GetSensorTiltingX (); // X direction
ival = GetSensorTiltingY (); // Y direction
Parameter: void

Return value: short ival;

Return data interpretation:

Tilting Angle = ArcSin ((ival- ZeroGValue) / abs(90DegreeGValue-ZeroGValue));
Remarks:

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com
-10 -

[11.1.5.
31
32

33

Where S0DegreeGValue and ZeroGValue are module-specific values that can be measured
by experiment:

1. Place the sensor level, so that the gravity vector is perpendicular to the measured
sensor axis

Take the measurement and this value would be the ZeroGValue
Rotate the sensor so that the gravity vector is parallel with the measured axis

Take the measurement and this value would be the SODegreeGValue

v oE W

Repeat this step for the other direction

Typical value of ZeroGValue is about 2048 and abs(90DegreeGValue-ZeroGValue) is
about 1250.

Temperature Sensors
short GetSensorOverheatADl ();
short GetSensorOverheatAD2 ();

Description:

GetSensorOverheatADX returns the current air temperature values near the relevant DC
motor drive modules (MDM5253), which could be used for monitoring whether the motor
drivers are overheating or not. This situation usually occurs if the motor currents are kept
high (but still lower than the current limit of the motor driver module) for significant amount
of time, which may result from some unfavorable inner or external system conditions and is
not recommended for regular system operations.

Syntax: ival = GetSensorOverheatAD1(); //1” overheating sensor
ival = GetSensorOverheatAD2(); //2" overheating sensor

Parameter: void

Return value: short ival;

Return data interpretation:

The return data is the raw value of the analog to digital converter indicating the output
voltage of the sensor. The data range of the return value is between O and U095. The
output voltage of the sensor can be calculated from the following equation:

Temperature (°C) =100- (ival - 980) /11.6

short GetSensorTemperature ();
Description:

GetSensorTemperature returns the current temperature value from DAT5280 Ambient
Temperature Sensor Module.

Syntax: ival = GetSensorTemperature ();

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com
-11 -

111.1.6.

34
35
36
37

38

Parameter: void

Return value: short ival;

Return data interpretation:
Temperature (°C) = (ival - 1256) / 34.8

Infrared Remote Control Handling
short GetSensorlRCodel();
short GetSensorlRCode2();
short GetSensorlRCode3();
short GetSensorlRCodel();

Description:

GetSensorlRCodeX returns the four parts of a two-16-bit-code infrared remote control
command captured by the Sensing and Motion Controller (PMS5005) through the Infrared
Remote Controller Module (MIR5500).

Syntax: ival = GetSensorlRCodel (); // the first code
ival = GetSensorlRCode2 (); // the second code
ival = GetSensorlRCode3 (); // the third code
ival = GetSensorlRCodelt (); // the fourth code

Parameter: void

Return value: short ival

Return data interpretation:
The recovered infrared remote control command (4 bytes code) is as follows:

Key Code: [the third byte] [the second byte] [the first byte]
Repeat Code: [the fourth byte]

where the repeat code would be 255 if button is pressed continuously.

void SetInfraredControlOutput (UWordl6 LowWord, UWord16 HighWord);

Description:

SetinfraredControlOutput sends two 16-bit words infrared communication output data to
the Sensing and Motion Controller (PMS5005). The PMS5005 will then send the data out
through the infrared Remote Controller Module (MIR5500). In the case of being used for
infrared remote control, the output data serves as the remote control command.

Syntax: SetlnfraredControlOutput (LowWord, HighWord);

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com
-12 -

.1.7.

39
40
41

Parameter: UWordl6 LowWord; // 1" word
UWordl6 HighWord; // 2" word

Return value: void

Remarks:

1. Ininfrared communication application, the data format and the interpretation can
be defined by the user at the application level.

2. Ininfrared remote control application, the control command should be compatible
to the device to which the command is sent.

3. This API function is under development and will be available shortly.

Battery Voltage Monitors

short GetSensorBatteryADL ();
short GetSensorBatteryADR2 ();
short GetSensorBatteryAD3 ();

Description:

GetSensorBatteryADX returns the current value of the relevant power supply voltage if
the battery voltage monitor is enabled (default), or returns the relevant custom A/D inputs,
if the custom A/D input is enabled which is configured by the jumpers on PMS5005. Please
refer to PMS5005 Robot Sensing and Motion Controller User Manual for detailed
information on hardware setting.

Syntax: ival = GetSensorBatteryAD1(); /* for battery of DSP circuits,
or custom A/D channel #1 */
ival = GetSensorBatteryAD2(); /* for battery of DC motors,
or custom A/D channel #2 */
ival = GetSensorBatteryAD3(); /* battery for servo motors,

or custom A/D channel #3 */

Parameter: void

Return value: short ival;

Return data interpretation:

The return data is the raw value of the analog to digital converter indicating the output
voltage of the monitor. The data range is between O and 4095.

When monitoring the voltage of the power supply, following equations can be used to
calculate the real voltage values.

(1) Power supply voltage of DSP circuits = (ival / 4U095) * 9 (V)
(2) Power supply voltage of DC motors = (ival / H4095) * 2U (V)
(3) Power supply voltage of servo motors = (ival / H095) * 9 (V)

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com
-13 -

42 short GetSensorRefVoltage ();
43 short GetSensorPotVoltage ();

Description:

GetSensorRefVoltage returns the current value of the reference voltage of the A/D
converter of the controller DSP.

GetSensorPotVoltage returns the current value of the power supply voltage of the
potentiometer position sensors.

Syntax: ival = GetSensorRefVoltage ();
ival = GetSensorPotVoltage ();

Parameter: void

Return value: short ival;

Return data interpretation:

The return data is the raw value of the analog to digital converter indicating the output
voltage of the monitor. The data range is between O and Y095. The following equation can
be used to calculate the real voltage values.

Voltage = (ival / U095) * 6 (V)

111.1.8. Potentiometer Position Sensors
44 short GetSensorPotl ();
45 short GetSensorPot2 ();
46 short GetSensorPot3 ();
47 short GetSensorPotl ();
48 short GetSensorPot5 ();
49 short GetSensorPot6 ();
50 short GetSensorPot (short channel);

Description:
GetSensorPotX returns the current value of the relevant potentiometer position sensors.

GetSensorPot (short channel) returns the current value of the specified potentiometer
position sensor.

Syntax: ival = GetSensorPotl (); // Potentiometer sensor #1
ival = GetSensorPot2 (); // Potentiometer sensor #2
ival = GetSensorPot3 (); // Potentiometer sensor #3
ival = GetSensorPotY (); // Potentiometer sensor #U4
ival = GetSensorPot5 (); // Potentiometer sensor #5
ival = GetSensorPot6 (); // Potentiometer sensor #6

ival = GetSensorPot (channel); /* Potentiometer sensor
#1,2,3,4,5,0r6*/

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com
14 -

[11.1.9.

51
52
53
54
55
56
57

Parameter: void // for GetSensorPotX

short channel; /*0,1, 2,3, U, or 5 for Potentiometer #
1,2,3U,56%

Return value: short ival;

Return data interpretation & Remark:

1.

The return data is the raw value of the analog to digital converter indicating the output
voltage of the sensor. The data range is between O and H095. The angular position can
be calculated as follows, with the 180° position defined at sensor's physical middle
position. Single sensor or dual sensor can be used for rotation measurement.

Single sensor is mainly used for the control of robot joint with limited rotation range.
The effective mechanical rotation range is 14° to 3U6°, corresponding to the effective
electrical rotation range O° to 332°.

Angle position (°) = (ival - 2048)/4095*333 + 180

Dual-sensor configuration is mainly used for continuous rotating joint control (such as
wheels). The effective rotation range is O° to 360°. Dual sensor configuration is only
available for channel O and 1. By connecting two potentiometers to potentiometer
channel O and channel 5, and specify the sensor type with command
SetDCMotorSensorUsage() to “Dual potentiometer sensor”, the channel O reading
will combine these two sensor readings into 0° to 360° range. For channel 1, you
should connect the two potentiometers to channel 1 and Y.

Angle position (°) = (ival - 2214)/2214*180 + 180

See also: SetDcMotorSensorUsage().

Motor Current Sensors
short GetMotorCurrentl ();
short GetMotorCurrente ();
short GetMotorCurrent3 ();
short GetMotorCurrentd ();
short GetMotorCurrent5 ();
short GetMotorCurrent6 ();
short GetMotorCurrent (short channel);

Description:

GetMotorCurrentX returns the sampling value of motor current sensor.

Syntax: ival = GetMotorCurrentl (); // Current sensor #1
ival = GetMotorCurrent2 (); // Current sensor #2
ival = GetMotorCurrent3 (); // Current sensor #3

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com
-15 -

[11.1.10.
58
59
60
61
62
63

ival = GetMotorCurrentY (); // Current sensor #4
ival = GetMotorCurrent5 (); // Current sensor #5
ival = GetMotorCurrent6 (); // Current sensor #6
ival = GetMotorCurrent (short channel); // Current sensor #1,2,3,4,5,0r 6

Parameter: void // for GetMotorCurrentX
short channel; //0,1,2,3,4,5 for current sensor #1,2,3,4,5,0r 6

Return value: short ival;

Return data interpretation:

The return data is the raw value of the analog to digital converter indicating the motor
current. The data range is between O and UO35. The real current can be calculated with the
following formula:

Motor Current (A) = (ival * 3 *375 / 200 /4095) = ival / 728

Encoder

short GetEncoderDirl();
short GetEncoderDir2();
short GetEncoderPulsel();
short GetEncoderPulse2();
short GetEncoderSpeedl();
short GetEncoderSpeed2();

Description:
GetEncoderDirX returns +1, O or -1 to indicate the direction of rotation.
GetEncoderPulseX returns the current pulse counter to indicate the position of rotation.

GetEncoderSpeedX returns the current speed of rotation.

Syntax: ival = GetEncoderDirl(); // direction of channel #1
ival = GetEncoderDir2(); // direction of channel #2
ival = GetEncoderPulsel(); // pulse counter of channel #1
ival = GetEncoderPulse2(); // pulse counter of channel #2
ival = GetEncoderSpeedl(); // speed of channel #1
ival = GetEncoderSpeed2(); // speed of channel #2

Parameter: void

Return value: short ival;

Return data interpretation:

(1) GetEncoderDirX returns -1, O or 1. 1 stands for positive direction, -1 stands for negative
direction, and O stands for no movement.

(2) GetEncoderPulseX returns pulse counter. It is an integral value to rotation with range
of O ~32767 in cycles.

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com
-16 -

[11.1.11.

64
65
66
67
68
69
70
71

72

(3) GetEncoderSpeedX returns the rotation speed. The unit is defined as pulse change

within 1 second. And it is the absolute value.

See also: SetDcMotorSensorUsage().

Custom Analog and Digital Inputs and Outputs
short GetCustomAD1();

short GetCustomAD2();

short GetCustomAD3();

short GetCustomADU();

short GetCustomAD5();

short GetCustomADG();

short GetCustomAD7();

short GetCustomADS8();

short GetCustomAD (short channel);

Description:

GetCustomADX returns the sampling value of the custom analog to digital input signals. By
default, custom AD1 - AD3 are used as the inputs of power supply voltage monitors for DSP
circuits, DC motors and servo motors. User can change this setting by configuring the
jumpers on PMS5005. Please refer to PMS5005 Robot Sensing and Motion Controller
hardware user’'s manual for detailed information on hardware jumper setting.

Syntax: ival = GetCustomAD1(); /* for battery of DSP circuits,
or custom A/D channel #1 */
ival = GetCustomADe (); /* for battery of DC motors,
or custom A/D channel #2 */
ival = GetCustomAD3(); /* battery for servo motors,
or custom A/D channel #3 */
ival = GetCustomADU(); // custom A/D channel #4
ival = GetCustomAD5(); // custom A/D channel #5
ival = GetCustomADG(); // custom A/D channel #6
ival = GetCustomAD7(); // custom A/D channel #7
ival = GetCustomAD8(); // custom A/D channel #8

ival = GetCustomAD(short channel);

Parameter: void

short channel;

Return value: short ival;

Return data interpretation:

Copyright © 2007, Dr Robot Inc. All Rights Reserved.
-17 -

/* custom A/D channel #1, 2, 3, U,
5,6,7or8*/

/*0,1,2,3,14,5,6 0or 7 for

channel #1, 2, 3,4,5,6,7,8 */

www.DrRobot.com

73

74

The return data is the raw value of the analog to digital converter indicating the input
voltage levels. The data range is between O and U095. The voltage levels can be calculated
from the following equation:

Sensor output voltage = (ival) * 3.0 / 4095 (V)

See also: GetSensorBatteryAD1~3

short GetCustomDIN();

Description:

GetCustomDIN returns a value with lower 8-bits corresponding to the 8-channel custom
digital inputs.

Syntax: ival = GetCustomDIN ();

Parameter: void

Return value: short ival;

Remarks:
Only lower 8-bit is valid and reflects the 8 input channel states. The MSB of the lower byte
represents channel #8 and LSB of the lower byte represents channel #1.

void SetCustomDOUT(short ival);

Description:
SetCustomDOUT sets the 8-channel custom digital outputs.

Syntax: SetCustomDOUT (ival);

Parameter: short ival;

Return value: void

Remarks:

Only the lower 8-bit is valid and can change the corresponding outputs of the 8 channels.
The MSB of the lower byte represents channel #8 and LSB of the lower byte represents
channel #1.

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com
-18-

Il.2.

Motion Control

This section contains the APlIs for the operations of DC motors and standard RC servo motors.

The digital controlled DC motor system is depicted as the following diagram.

Controller DC Motor

v

m
+
m
c
4

Potentiometer

In the case of PID control, the transfer function of the PID controller looks like as:

U(s)/E(s)=K, + K S+K, /S

When using potentiometers (optical encoder and etc.) as the rotational position feedback, you have to
set the motor polarity properly using "WiRobotSDK”" ActiveX control APl “SetMotorPolarityX" so
that the negative feedback is achieved. See “SetMotorPolarity X" for detail.

The control of the standard RC servo motors is carried out by the built-in analog PID controller.

.2.1.
75
76
77
78
79
80
81

DC Motor Control

void SetMotorPolarityl (short polarity);

void SetMotorPolarity2 (short polarity);

void SetMotorPolarity3 (short polarity);

void SetMotorPolarityl4 (short polarity);

void SetMotorPolarity5 (short polarity);

void SetMotorPolarity6 (short polarity);

void SetMotorPolarity (short channel, short polarity);

Description:
SetMotorPolarityX set the motor polarity to 1 or -1 for each motor channel.

1. When the motor is running in positive direction, the potentiometer value is also
increasing; motor polarity should be set to 1 which is default.

2. When the motor is running in positive direction, the potentiometer value is decreasing,
motor polarity should be set to -1 or change the sensor mounting so that the
potentiometer value increases.

Syntax: ival = SetMotorPolarityl (short polarity); // Motor #1
ival = SetMotorPolarity2 (short polarity); // Motor #2

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com
-19-

82
83

84
85

86
87

ival = SetMotorPolarity3 (short polarity); // Motor #3
ival = SetMotorPolarityl (short polarity); // Motor #4
ival = SetMotorPolarity5 (short polarity); // Motor #5
ival = SetMotorPolarity6 (short polarity); // Motor #6
ival = SetMotorPolarity (short channel, short polarity);
// motor#1,2,3,4,5,0r 6

Parameter: short polarity; //lor-1
short channel; //0,1,2 3,4, or5for Sonar #1,2,3,4,5,6
Return value: void ival;

void EnableDcMotor (short channel);
void DisableDcMotor (short channel);

Description:

These functions are obsolete. Please see function ResumeDcMotor(short channel) and
SuspendDcMotor(short channel).

void ResumeDcMotor (short channel);
void SuspendDcMotor (short channel);

Description:
ResumeDcMotor resumes the specified DC motor control channel.
SuspendDcMotor suspends the specified DC motor control channel. PWM output is all low.

Syntax: ResumeDcMotor (channel);
SuspendDcMotor (channel);

Parameter: short channel; //0,1,2,3,4,0r5
Return value: void

Remarks:

1. All motor control channels are initially suspended when the system boot-up.

void SetDcMotorPositionControlPID (short channel, short Kp, short Kd, short Ki_x100);
void SetDcMotorVelocityControlPID (short channel, short Kp, short Kd, short Ki_x100);

Description:

SetDcMotorPositionControlPID sets up the PID control parameters of the specified DC
motor channel for position control.

SetDcMotorVelocityControlPID sets up the PID control parameters of the specified DC
motor control channel for velocity.

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com
-20-

88

89

20

Syntax: SetDcMotorPositionControlPID (channel, K, K, K, _x100);
SetDcMotorVelocityControlPID (channel, K, K, K _x100);

Parameter: short channel; //0,1,2,3,4,0r5
short K ; // Proportional gain
short K ; // Derivative gain
short K,_x100; // 100 times K (the desired Integral gain), when

K_x100 =100, the actual integral control term is K|
=1, K, _x100 with range of O ~ 25599

Return value: void

Remarks:
1. Whensetting K, = O, that means NO integral control
2. System default value for position control: K, =50; K, = 5; K _x100 = O.
3. Suystem default value for velocity control: K, =50; K = 5; K _x100 = 0.

See Also: SetDcMotorControlMode

void SetDcMotorTrajectoryPlan (short channel, short TrajPlanMthod);

Description:

This function is obsolete.

void SetDcMotorSensorFilter (short channel, short FilterMethod);

Description:

This filtering feature is still under development. All data will be treated as raw data.

void SetDcMotorSensorUsage (short channel, short SensorType);

Description:

SetDcMotorSensorUsage sets the sensor type for the specified DC motor control channel
on the Sensing and Motion Controller (PMS5005). The available sensor types are single
potentiometer, dual potentiometers, and quadrature encoder. The single potentiometer
sensor is for the control of robot joint with limited rotation range (0O° to 332°). The dual
potentiometers and the quadrature sensor are for continuous rotating joint (like wheels)
control.

Syntax: SetDcMotorSensorUsage (channel, SensorType)

Parameter: short channel; // 0,1, 2,3,U, or 5 for single potentiometer sensor

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com
-2] -

o1

9e

// 0,1, or 2 for dual potentiometer sensor
// O or 1 for quadrature encoder
short SensorType; // O -- Single potentiometer sensor
// 1 -- Dual potentiometer sensor
// 2 - Quadrature encoder

Return value: void

Remarks:

1. The electrical angular range of the potentiometer position sensor is O° to 332° and
the corresponding mechanical rotation range is 14° to 346°, when the 180
position is defined at sensor’s physical middle position.

2. Each DC motor channel for dual potentiometer sensor utilizes two potentiometer
channels. DC motor channel O will use potentiometer channel O and 5; DC motor
channel 1 will use potentiometer channel 1 and U; DC motor channel 2 will use
potentiometer channel 2 and 3. Please refer to the relevant application note for
the use of dual potentiometers.

3. Quadrature encoder will only use DC motor channel O and 1.

U, System's default setting for sensor usage is single potentiometer.

See also: GetSensorPot

void SetDcMotorControlMode (short channel, short controlMode);

Description:

SetDcMotorControlMode sets the control mode of the specified DC motor control channel
on the Sensing and Motion Controller (PMS5005). The available control modes are open-
loop PWM control, closed-loop position control, closed-loop velocity control.

Syntax: SetDcMotorControlMode (channel, controlMode)
Parameter: short channel; //0,1,2,3,U,0r5
short controlMode; // O - Open-loop PWM Control

// 1 - Closed-loop Position Control
// 2 — Closed-loop Velocity Control

Return value: void

Remarks:
System’s default setting for control mode is Open-loop PWM Control.

See also: SetDcMotorPositionControlPID, SetDcMotorVelocityControlPID

void DcMotorPositionTimeCtr (short channel, short cmdValue, short timePeriod);

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com
-22 -

93

Description:

DcMotorPositionTimeCtr sends the position control command to the specified motion
control channel on the Sensing and Motion Controller (PMS5005). The command includes
the target position and the target time period to execute the command. The current
trajectory planning method with time control is linear.

Syntax: DcMotorPositionTimeCtr (channel, cmdValue, timePeriod);
Parameter: short channel; //0,1,2,3,4,0r5

short cmdValue; // Target position value

short timePeriod; // Executing time in milliseconds

Return value: void

Remarks:
1. Motor will be enabled automatically by the system when this command is received.

2. Target position value is in the A/D sampling data range O to 4095 when using
single potentiometer, 0-4428 when using dual potentiometers.

3. Please refer to the description of GetSensorPot for data converting between
angular values and the A/D sampling data values.

U. When using encoder as sensor input, the target position value is the pulse count in
the range of O- 32767.

See also: GetSensorPot

void DcMotorPositionNonTimeCtr(short channel, short cmdValue);

Description:

DcMotorPositionNonTimeCtr sends the position control command to the specified motion
control channel on the Sensing and Motion Controller (PMS5005). The command includes
the target position but no time period specified to execute the command. The motion
controller will drive the motor to the target position at the maximum speed.

Syntax: DcMotorPositionNonTimeCtr (channel, cmdValue);
Parameter: short channel; //0,1,2,3,4,0r5
short cmdValue; // Target position value

Return value: void

Remarks:
1. Motor will be enabled automatically by the system when this command is received.

2. Target position value is in the A/D sampling data range O to 4095 when using
single potentiometer, 0-4428 when using dual potentiometers.

3. Please refer to the description of GetSensorPot for data converting between
angular values and the A/D sampling data values.

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com
-23-

94

95

U. When using encoder as sensor input, the target position value is the pulse count in
the range of O- 32767.

See also: DcMotorPositionTimeCtr, GetSensorPot

void DcMotorVelocityTimeCtr(short channel, short cmdValue, short timePeriods);

Description:

DcMotorVelocityTimeCtr sends the velocity control command to the specified motion
control channel on the Sensing and Motion Controller (PMS5005). The command includes
the target velocity and the time period to execute the command. The current trajectory
planning method for time control is linear.

Syntax: DcMotorVelocityTimeCtr (channel, cmdValue, timePeriod);
Parameter: short channel; //0,1,2,3,4,0r5

short cmdValue; // Target velocity value

short timePeriod; // Executing time in milliseconds

Return value: void

Remarks:
1. Motor will be enabled automatically by the system when this command is received
2. No velocity is available for motor channel using single potentiometer sensor

3. The unit of the velocity is (Position change in A/D sampling data) / second when
using dual potentiometer sensor for rotational position measurement and pulse/
second when using quadrature encoder.

U. Please refer to the description of GetSensorPot for data conversion between
angular values and the A/D sampling data values.

See also: GetSensorPot

void DcMotorVelocityNonTimeCtr(short channel, short cmdValue);

Description:

DcMotorVelocityNonTimeCtr sends the velocity control command to the specified motion
control channel on the Sensing and Motion Controller (PMS5005). The command includes
the target velocity but no time period specified to execute the command. The motion
controller will drive the motor to achieve the target velocity with maximum effort.

Syntax: DcMotorVelocityNonTimeCtr (channel, cmdValue);
Parameter: short channel; //0,1,2,3,4,0r5
short cmdValue; // Target velocity value

Return value: void

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com
-2Y -

96

97

Remarks:
1. Motor will be enabled automatically by the system when this command is received
2. No velocity is available for motor channel using single potentiometer sensor

3. The unit of the velocity is (Position change in A/D sampling data) / second when
using dual potentiometer sensor for rotational position measurement and pulse/
second when using quadrature encoder.

U. Please refer to the description of GetSensorPot for data conversion between
angular values and the A/D sampling data values.

See also: DcMotorVelocityTimeCtr, GetSensorPot

void DcMotorPwmTimeCtr(short channel, short cmdValue, short timePeriod);

Description:

DcMotorPwmTimeCtr sends the PWM control command to the specified motion control
channel on the Sensing and Motion Controller (PMS5005). The command includes the
target pulse width value and the time period to execute the command. The current
trajectory planning method for time control is linear.

Syntax: DcMotorPwmTimeCtr (channel, cmdValue, timePeriod);
Parameter: short channel; //0,1,2,3,4,0r5
short cmdValue; // Target pulse width value
short timePeriod; // Executing time in milliseconds

Return value: void

Remarks:

1. The specified channel (motor) will be enabled automatically by the system when
this command is received

2. Target pulse width value range is O to 32767 (Ox7FFF), corresponding to the duty
cycle of O to 100% linearly.

3. A pulse width value of 16363 means 50% duty cycle, putting motor in “Stop” stage.
Any value in between 1636U - 32767 will put the motor to turn clockwise (facing
the front side of the motor) and any value in between O - 16362 will put the motor
to turn counter-clockwise.

void DcMotorPwmNonTimeCtr(short channel, short emdValue);

Description:

DcMotorPwumNonTimeCtr sends the PWM control command to the specified motion
control channel on the Sensing and Motion Controller (PMS5005). The command includes
the target pulse width value without specific execution time period. The motion controller
will set the PWM output of this channel to the target value immediately.

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com
-25-

98

Syntax: DcMotorPwmNonTimeCtr (channel, cmdValue);

Parameter: short channel; //0,1,2,3,4,0r5
short cmdValue; // Target pulse width value
Return value: void

Remarks:

1. The specified channel (motor) will be enabled automatically by the system when
this command is received

2. Target pulse width value range is O to 32767 (Ox7FFF), corresponding to the duty
cycle of O to 100% linearly.

3. A pulse width value of 16363 means 50% duty cycle, putting motor in “Stop” stage.
Any value in between 16364 - 32767 will put the motor to turn clockwise (facing
the front side of the motor) and any value in between O - 16362 will put the motor
to turn counter-clockwise.

See also: DcMotorPwmTimeCtr

void DcMotorPositionTimeCtrAll(short cmdl, short cmd2, short cmd3, short cmdU,
short cmd5, short cmd6, short timePeriod);

Description:

DcMotorPositionTimeCtrAll sends the position control command to all 6 DC motor control
channels on the sensing and motion controller (PMS5005) at the same time. The command
includes the target positions and the time period to execute the command. The current
trajectory planning method for time control is linear.

Syntax: DcMotorPositionTimeCtrAll (cmdl, cmd2, cmd3, cmdY4, cmd5, cmds,
timePeriod);
Parameter: short cmdl; // Target position for channel #1
short cmd2; // Target position for channel #2
short cmd3; // Target position for channel #3
short cmd4; // Target position for channel #4
short cmd5; // Target position for channel #5
short cmd6; // Target position for channel #6
short timePeriod; // Executing time in milliseconds

Return value: void

Remarks:

1. All DC Motors will be enabled automatically by the system when this command is
received.

2. Target position value is in the A/D sampling data range O to 4095 when using
single potentiometer, 0-4428 when using dual potentiometers.

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com
-26 -

99

Please refer to the description of GetSensorPot for data converting between
angular values and the A/D sampling data values.

When using encoder as sensor input, the target position value is the pulse count in
the range of O- 32767.

When some motors are not under controlled, their command values should be set
as -32768 (0x8000). That means NO_CONTROL.

See also: DcMotorPositionTimeCtr,

void DcMotorPositionNonTimeCtrAll(short cmdl, short cmd2, short cmd3,

short cmd4, short cmd5, short cmd6);

Description:

DcMotorPositionNonTimeCtrAll sends the position control command to all 6 DC motor
control channels on the Sensing and Motion Controller (PMS5005) at the same time. The
command includes the target positions without specific execution time period. The motion
controller will drive the motor to reach the target position with maximum effort.

Syntax: DcMotorPositionNonTimeCtrAll(cmdl, cmd2, cmd3, cmdY4, cmd5, cmd6);
Parameter: short cmdl; // Target position for channel #1

short cmd2; // Target position for channel #2

short cmd3; // Target position for channel #3

short cmdl; // Target position for channel #4

short cmd5; // Target position for channel #5

short cmd6; // Target position for channel #6

Return value: void

Remarks:

1. All DC motors will be enabled automatically by the system when this command is
received.

2. Target position value is in the A/D sampling data range O to 4095 when using
single potentiometer, 0-4428 when using dual potentiometers.

3. Please refer to the description of GetSensorPot for data converting between
angular values and the A/D sampling data values.

U. When using encoder as sensor input, the target position value is the pulse count in
the range of O- 32767.

5. When some motors are not under controlled, their command values should be set

as -32768 (0x8000). That means NO_CONTROL.

See also: DcMotorPositionNonTimeCtr

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com

-27 -

100 void DcMotorVelocityTimeCtrAll(short cmdl, short cmd2, short cmd3, short cmd4,
short cmd5, short cmd6, short timePeriods);

Description:

DcMotorVelocityTimeCtrAll sends the velocity control command to all 6 DC motor control
channels on the Sensing and Motion Controller (PMS5005) at the same time. The
command includes the target velocities and the time period to execute the command. The
trajectory planning method for time control is linear.

Syntax: DcMotorVelocityTimeCtrAll (cmdl, cmd2, cmd3, cmdY4, cmd5, cmds,

timePeriods);

Parameter: short cmdl; // Target velocity for channel #1
short cmd2; // Target velocity for channel #2
short cmd3; // Target velocity for channel #3
short cmd4; // Target velocity for channel #4
short cmd5; // Target velocity for channel #5
short cmd6; // Target velocity for channel #6
short timePeriod; // Executing time in milliseconds

Return value: void

Remarks:
1. Motor will be enabled automatically by the system when this command is received
2. No velocity is available for motor channel using single potentiometer sensor

3. The unit of the velocity is (Position change in A/D sampling data) / second when
using dual potentiometer sensor for rotational position measurement and pulse/
second when using quadrature encoder.

U. Please refer to the description of GetSensorPot for data conversion between
angular values and the A/D sampling data values.

5. When some motors are not under controlled, their command values should be set
as -32768 (0x8000). That means NO_CONTROL.

See also: DcMotorVelocityTimeCtr

101 void DcMotorVelocityNonTimeCtrAll(short cmdl, short cmd2, short cmd3,
short cmdW, short cmd5, short cmd6);

Description:

DcMotorVelocityNonTimeCtrAll sends the velocity control command to all 6 DC motor
control channels on the Sensing and Motion Controller (PMS5005) at the same time. The
command includes the target velocities without specific execution time period. The motion
controller will drive the motor to achieve the target velocity with maximum effort.

Syntax: DcMotorVelocityNonTimeCtrAll (cmdl, cmd2, cmd3, cmdY4, cmd5, cmd6);

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com
-28-

Parameter: short cmdl; // Target velocity for channel #1

short cmd2; // Target velocity for channel #2
short cmd3; // Target velocity for channel #3
short cmdl; // Target velocity for channel #4
short cmd5; // Target velocity for channel #5
short cmd6; // Target velocity for channel #6

Return value: void

Remarks:
1. Motor will be enabled automatically by the system when this command is received
2. No velocity is available for motor channel using single potentiometer sensor

3. The unit of the velocity is (Position change in A/D sampling data) / second when
using dual potentiometer sensor for rotational position measurement and pulse/
second when using quadrature encoder.

U. Please refer to the description of GetSensorPot for data conversion between
angular values and the A/D sampling data values.

5. When some motors are not under controlled, their command values should be set
as -32768 (0x8000). That means NO_CONTROL.

See also: DcMotorVelocityNonTimeCtr

102 void DcMotorPwmTimeCtrAll(short cmdl, short cmd2, short cmd3, short cmdy,

short cmd5, short cmd6, short timePeriods);
Description:

DcMotorPwmTimeCtrAll sends the PWM control command to all 6 DC motor control
channels on the Sensing and Motion Controller (PMS5005) at the same time. The
command includes the target PWM values and the time period to execute the command.
The current trajectory planning method for time control is linear.

Syntax: DcMotorPwmTimeCtrAll (cmdl, cmd2, cmd3, cmdY4, cmd5, cmd6,

timePeriods);

Parameter: short cmdl; // Target PWM value for channel #1
short cmd2; // Target PWM value for channel #2
short cmd3; // Target PWM value for channel #3
short cmdY; // Target PWM value for channel #4
short cmd5; // Target PWM value for channel #5
short cmd6; // Target PWM value for channel #6
short timePeriod; // Executing time in milliseconds

Return value: void

Remarks:

1. All channel (motors) will be enabled automatically by the system when this
command is received

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com
-29-

103

Target pulse width value range is O to 32767 (Ox7FFF), corresponding to the duty
cycle of O to 100% linearly.

A pulse width value of 16363 means 50% duty cycle, putting motor in “Stop” stage.
Any value in between 1636U - 32767 will put the motor to turn clockwise (facing
the front side of the motor) and any value in between O — 16362 will put the motor
to turn counter-clockwise.

When some motors are not under controlled, their command values should be set
as -32768 (0x8000). That means NO_CONTROL.

See also: DcMotorPwmTimeCtr

void DcMotorPwmNonTimeCtrAll(short cmdl, short cmd2, short cmd3, short cmdU,

short cmd5, short cmd6);

Description:

DcMotorPwmNonTimeCtrAll sends the PWM control command to all 6 DC motor control
channels on the Sensing and Motion Controller (PMS5005) at the same time. The
command includes the target PWM values without specific execution time period. The
motion controller Send the desired PWM pulse width right away.

Syntax: DcMotorPwmNonTimeCtrAll (cmd), cmd2, cmd3, cmdY4, cmd5, cmd6);
Parameter: short cmdl; // Target PWM value for channel #1

short cmd2; // Target PWM value for channel #2

short cmd3; // Target PWM value for channel #3

short cmdY; // Target PWM value for channel #4

short cmd5; // Target PWM value for channel #5

short cmd6; // Target PWM value for channel #6

Return value: void

Remarks:

1.

c.

All channel (motors) will be enabled automatically by the system when this
command is received

Target pulse width value range is O to 32767 (Ox7FFF), corresponding to the duty
cycle of O to 100% linearly.

A pulse width value of 16363 means 50% duty cycle, putting motor in “Stop” stage.
Any value in between 16364 - 32767 will put the motor to turn clockwise (facing
the front side of the motor) and any value in between O - 16362 will put the motor
to turn counter-clockwise.

When some motors are not under controlled, their command values should be set
as -32768 (0x8000). That means NO_CONTROL.

See also: DcMotorPwumNonTimeCtr

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com

-30-

I11.2.2. RC Servo Motor Control
104 void EnableServo (short channel);
105 void DisableServo (short channel);

Description:
EnableServo enables the specified servo motor control channel.

DisableServo disables the specified servo motor control channel.

Syntax: EnableServo (channel);

DisableServo (channel);

Parameter: short channel; //0,1,2,3,4,0r5
Return value: void

Remarks:

All servo motor channels are disabled initially at system startup. They need to be enabled
explicitly before use.

106 void SetServoTrajectoryPlan(short channel, short TrajPlanMthod);

Description:

This function is obsolete.

107 void ServoTimeCtr(short channel, short cmdValue, short timePeriods);

Description:

ServoTimeCtr sends the position control command to the specified servo motor control
channel on the Sensing and Motion Controller (PMS5005). The command includes the
target position command and the time period to execute the command. The current
trajectory planning method for time control is linear.

Syntax: ServoTimeCtr (channel, cmdValue, timePeriod);

Parameter; short channel; //0,1,2,3,4,0r5
short cmdValue; // Target Pulse Width (ms) * 2250
short timePeriod; // Executing time in milliseconds

Return value: void

Remarks:
1. Target position value for cmdValue = (Pulse width in millisecond) * 2250.

2. Usually, a standard remote control servo motor expects to get the specified pulse
width in every 20 milliseconds in order to hold the corresponding angle position.
The pulse width value in millisecond for 0°, 90° and 180° are servo manufacturer

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com
-3]1-

and model dependant, they are around 1ms, 1.5ms and 2.0ms respectively for most
common servos. Experiments are required to obtain the exact value which varies
for different servo motors.

108 void ServoNonTimeCtr(short channel, short cmdValue);

Description:

ServoNonTimeCtr sends the position control command to the specified servo motor
control channel on the Sensing and Motion Controller (PMS5005). The command includes
the target position command without specific execution time period. The motion controller
will send the desired pulse width to the servo motor right away.

Syntax: ServoNonTimeCtr (channel, cmdValue);
Parameter: short channel; //0,1,2,3,U,0r5
short cmdValue; // Target Pulse Width (ms) * 2250

Return value: void

Remarks:

Please refer to the remarks under ServoTimeCtr.

See also: ServoTimeCtr

109 void ServoTimeCtrAll(short cmdl, short cmd2, short cmd3, short cmdl,
short cmd5, short cmd6, short timePeriod);

Description:

ServoTimeCtrAll sends the position control command to all 6 servo motor control channels
on the Sensing and Motion Controller (PMS5005) at the same time. The command includes
the target position commands and the time period to execute the command. The current
trajectory planning method for time control is linear.

Syntax: ServoTimeCtrAll (cmdl, cmd2, cmd3, cmdY4, cmd5, cmd6, timePeriod);
Parameter: short cmdl; // Target position for channel #1

short cmdz; // Target position for channel #2

short cmd3; // Target position for channel #3

short cmdY; // Target position for channel #4

short cmd5; // Target position for channel #5

short cmd6; // Target position for channel #6

short timePeriod; // Executing time in milliseconds

Return value: void

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com
-32 -

Remarks:
1. Please refer to the remarks under ServoTimeCtr.

2. When some servo motors are not under controlled, their command values should be
set as -32768 (0Ox8000). That means NO_CONTROL.

See also: ServoTimeCtr

110 void ServoNonTimeCtrAll (short cmdl, short cmd2, short cmd3, short cmdU,

I1.3.

.3.1.
11

short cmd5, short cmd6);

Description:

ServoNonTimeCtrAll sends the position control command to all 6 servo motor control
channels on the Sensing and Motion Controller (PMS5005) at the same time. The command
includes the target position commands without specific execution time period. The motion
controller send the desired pulse width to the servo motor right away.

Syntax: ServoNonTimeCtrAll(cmdl, cmd2, cmd3, cmdY4, cmd5S, cmd6);

Parameter: short cmdl; // Target position for channel #1
short cmdg; // Target position for channel #2
short cmd3; // Target position for channel #3
short cmd4; // Target position for channel #4
short cmd5; // Target position for channel #5
short cmd6; // Target position for channel #6

Return value: void

Remarks:
1. Please refer to the remarks under ServoTimeCtr

2. When some motors are not under controlled, their command values should be set
as -32768 (0x8000). That means NO_CONTROL.

See Also: ServoTimeCtr

Multimedia Control

LCD Display
void LcdDisplayPMS(LPCTSTR bmpFileName);

Description:

LcdDisplayPMS displays the image data in the file bmpFileName (BMP format) on the
graphic LCD connected to the Sensing and Motion Controller (PMS5005).

Syntax: LcdDisplayPMS (bmpFileName);

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com
-33-

Y.

Parameter: LPCTSTR bmpFileName; // Full path of the BMP file for displaying

Return value: void

Remarks:
The graphic LCD display is mono with dimension of 128 pixels by 64 pixels. The bmp image
must be 128x64 pixels in mono.

Events

This section documents the four Event mechanisms. When the relevant data arrive from the WiRobot
PMS5005 system, relevant event will be fired, user could write his / her periodic data processing
routine in the relevant event call back function.

112

113

114

StandardSensorEvent

Description:
When the standard sensor data arrive, this event will be triggered.

CustomSensorEvent

Description:
When the custom expansion sensor (AD and Input) data arrive, this event will be triggered.

MotorSensorEvent

Description:

When the motor control related sensor data arrive, this event will be triggered. The motor
control data includes all the motor rotational sensor data such as potentiometer, encoder
and motor current data.

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com
-34-

IV.

WiRobot SDK API Reference for PMB5010

WiRobot SDK APIs for PMB5010 supports advanced Multimedia Control features.

IV.1.

Multimedia Control

This section contains the APlIs for the operations of audio input and output, image capturing and LCD

display.

IV.1.1.
115

116

117

Audio Input and Output
void PlayAudioFile(LPCTSTR fileName);

Description:

PlayAudioFile sends an audio file (.wav format) to the Multimedia Controller (PMB5010).
The file will be played back on the speaker.

Syntax: PlayAudioFile (FileName);

Parameter: LPCTSTR FileName; //the file name with full path

Return value: void

Remarks:

The .wav audio file should contain 16-bit sound wave data sampled at 8 kHz with PCM raw
data format using mono channel. Other supplied wave file format will still be played by the
robot but may have undesired result.

void StopAudioPlay ();

Description:
StopAudioPlay stops a playing audio on the Multimedia Controller (PMB5010).

Syntax: StopAudioPlay ();
Return value: void
Remarks:

There will be no effect if no audio is playing.

long GetVoiceSegment();

Description:

GetVoiceSegment returns the pointer to current voice data (recorded from robot
microphone) in memory.

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com
-35-

118

119

120

Syntax: IpVal = GetVoiceSegment();

Parameter: void
Return value: long IpVal; // pointer to current voice data.
Remark:
(1) You should use method GetVoiceSeglLength() to get the length of the Voice
segment.

(2) Voice datais in PCM raw data format with 16bit, 8KHz sampling rate.

long GetVoiceSeglLength();

Description:

GetVoiceSegl ength returns the length of current voice data in memory.
Syntax: voicelLength = GetVoiceSeglLength ();

Parameter: void

Return value: long voicelength; // Length of current voice data.

See Also: GetVoiceSegment

void StartRecord(short voiceSegment);

Description:

StartRecord sends start-recording command to the Multimedia Controller (PMB5010).
The recorded voice data in length specified by voiceSegment will be stored in the shared
memory segment.

Syntax: StartRecord(voiceSegment);

Parameter: short voiceSegment; // segment number for voice data, range 1 -10

Return value: void

Remarks:

The parameter voiceSegment specify the time of voice segment, unit is 256 millisecond
(about /U4 sec). Value could be 1- 10. For example, if voiceSegment is U, 1.024 second
voice will be recorded. VoiceSegmentEventevent will fired when the data is ready.

void StopRecord();

Description:

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com
-36-

IV.l.2.
121

122

StopRecord sends stop-recording command to the Multimedia Controller (PMB5010).
SDK will not send recorded voice data to PC any more.

Syntax: StopRecord();

Parameter: void

Return value: void

Remarks:

There will be no effect if the Multimedia Controller is not recording.

Image Capturing
void TakePhoto();

Description:

TakePhoto sends image capturing command to the Multimedia Controller (PMB5010).
The Multimedia Controller will send back the latest frame of the image data to the WiRobot
shared memory after receiving TakePhoto command. Use SavePhotoAsBMP to obtain the
image.

Syntax: TakePhoto();

Parameter: void

Return value: void

Remarks:

Each TakePhoto command will get one frame of image.

BOOL SavePhotoAsBMP(LPCTSTR FileName);

Description:
SavePhotoAsBMP saves current frame of image data into BMP format file FileName.

Syntax: bVal = SavePhotoAsBMP (FileName);

Parameter: LPCTSTR FileName; // the file name with full path, for saving image
data in bmp format.
Return value: BOOL bVal; // True: success

// False: failure to save.

Remarks:

1. Before calling SavePhotoAsBMP, the TakePhoto command needs to be called to
request image taken.

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com
-37 -

IV.1.3.
123

IvV.2.

2. When the image data arrive, the call back event “ImageEvent” will be fired

3. The cause of “failure to save” could be caused because the TakePhoto command
was not sent or the file name / path is invalid.

LCD Display
void LcdDisplayPMB(LPCTSTR bmpFileName);

Description:

LcdDisplayPMB displays the image data in the file bmpFileName (BMP format) on the
graphic LCD connected to the Multimedia Controller (PMB5010).

Syntax: LcdDisplayPMB (bmpFileName);

Parameter: LPCTSTR bmpFileName;// Full path of the BMP file for displaying

Return value: void

Remarks:

The graphic LCD display is mono with dimension of 128 pixels by 64 pixels. The bmp image
must be 128x6U pixels in mono.

Events

This section documents the two Event mechanisms. When the relevant data arrive from the WiRobot
PMB5010 system, relevant event will be fired, user could write his / her periodic data processing
routine in the relevant event call back function.

124 ImageEvent

125

Description:
When the image data arrive, this event will be triggered.

VoiceSegmentEvent

Description:
When the audio data arrive, this event will be triggered.

Copyright © 2007, Dr Robot Inc. All Rights Reserved. www.DrRobot.com
-38-

V. WiRobot DRK6000/8000 Specific APIs

V.. Low Level Protection

When bumpers (optional) are installed on
WiRobot RDK6000/8000 with the connection
configuration shown on the right, a build-in low-
level bumper collision protection scheme can be
enabled or disabled with the next two
commands. When this bumper protection
feature is enabled:

e The wheels will stop moving forward
when either bumper O or 1 is engaged,
there will be not affect if the wheels are
moving backward.

e The wheels will stop moving backward
when either bumper 2 or 3 is engaged,,
there will be not affect if the wheels are
moving forward.

Bumper_O

Bumper_2

e The bumpers are connected to custom digital I/0 O, 1, 2, and 3.

126 void EnableBumperProtection();

Description: This will enable the low level bumper protection feature.

EnableBumperProtection xxxx.

Syntax: EnableBumperProtection ();

Parameter: void;
Return value: void

Remarks:

By default, the bumper protection feature is disabled when system is booted up.

127 void DisableBumperProtection();

Description: This will disable the low level bumper protection feature.

DisableBumperProtection xxxx.

Syntax: DisableBumperProtection ();

Parameter: void;

Return value: void

Copyright © 2007, Dr Robot Inc. All Rights Reserved.
-39-

www.DrRobot.com

Bumper_1

Bumper_3

