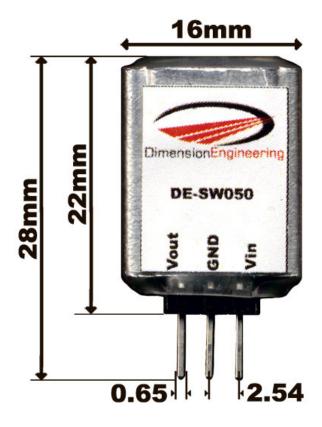


DE-SW0XX Switching Voltage Regulator

General Description

The DE-SW0XX family of switch mode voltage regulators are designed to be the easiest possible way to add the benefits of switch-mode power to a new or existing project. The DE-SW0XX family is Pin-compatible with the common 78XX family of linear voltage regulators. They have integrated decoupling capacitors, so external capacitors are not generally necessary. Available voltages are 3.3, and 5 volts.

The DE-SW0XX family operates over a wide input voltage range, from (Vout+1.3V) to 30v, at up to one amp of continuous output current. Efficiencies are up to 87% (Figure 2) Ripple is less than 2% of output.


The DE-SW0XX family works on a breadboard, making it an ideal solution for prototyping and one-off circuits.

Features

Drop-in replacement for LM78XX
Up to 30V input voltage
1.3V dropout voltage
3.3, 4.2 and 5V output voltages available
1A continuous output current
Efficiency up to 87%
Integrated bypass capacitors
Integrated heat spreader
Weighs only 3.8g
Can drive inductive loads

Applications

Battery powered applications
Robots
Servo power
Small DC motors
Lithium battery charging and maintenance
Point of load voltage regulation
Any application where a 78XX regulator is
dissipating too much heat or a large heatsink is
undesirable

Typical Performance Characteristics

The device can be expected to perform as characterized within these parameters

Characteristic	Min	Typical	Max
Input voltage	Vout+1.3V		30V
Output Current (RMS) ¹	0A		1A
Pulsed Output Current (5 sec)			1.5A
Output Ripple	30mV	70mV	100mV
Efficiency (See Figure 2 and Figure 3)	65%	83%	87%
Transient response in load regulation (0-1A pulses, 1ms, Vp-p)		4%	
Power dissipation	100mW	800mW	1.2W
Power output in still air	0W		5W
Quiescent current draw (Vin = 12V)		16mA	
Thermal Derating in still air	See Figure 4		

¹For input voltages above 25V, an output current of at least 40mA is needed to maintain the regulated output voltage. This can be accomplished by adding a $1k\Omega$ load resistor, or by simply connecting the load you wanted to use anyway.

Absolute Maximum ratings

Operation beyond these parameters may permanently damage the device

Characteristic	Min	Max
Input voltage	0V	35v
Output Current	0A	1.5A
Power dissipation		1.5W
Ambient Temperature	-20C	70C

Figure 2: Efficiency vs. Input Voltage

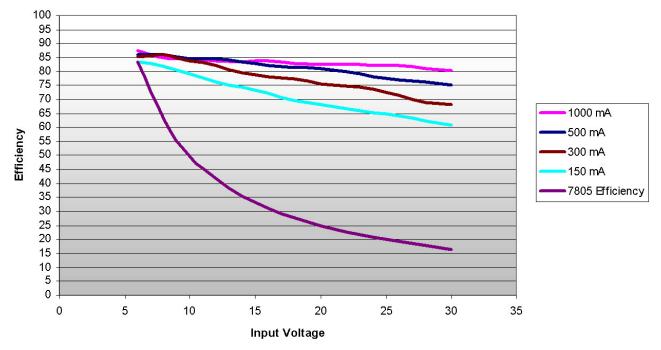


Figure 3: Efficiency vs. Output Current

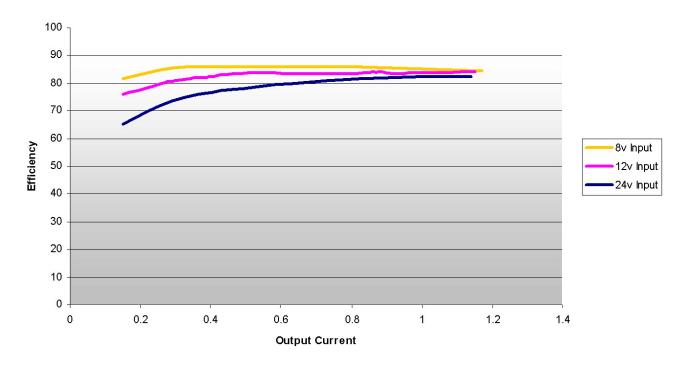
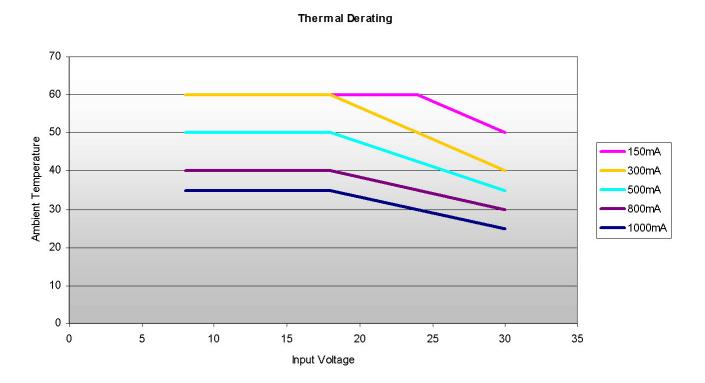
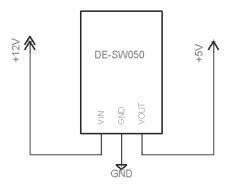
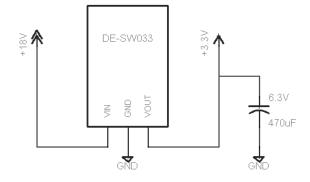
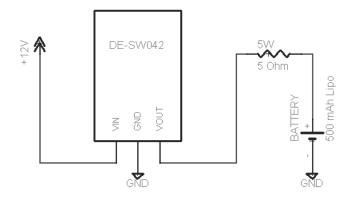




Figure 4: Thermal Derating in Still Air



Typical Applications


General-purpose regulator

Regulator for ripple sensitive devices

Lithium battery maintenance charger

