

DRS-0101/DRS-0201

User Manual

CONTENT

1. Safety Instructions	
1-1. Meaning of Symbols	03p
1–2. Operating Precautions	03p
1–3. Safe Battery Handling	04p
1-4. Safe Storage	04p
T - Gale Glorage	υ -
2. Introduction	
2–1. Parts List	05p
2–2. Product Overview	06p
2-3. Specification	09p
3. Assembly Instructions	
3-1. Joint Assembly	10p
3-2. Joint Assembly(Optional Bracket and Bolt Required)	12p
3-3. Connector Pin & System Assembly	17p
4. Operation	
4–1. Communication Protocol	18p
4–2. Register Map	21p
5. Command Set	
5–1. [To Servo Module] – Request Packet	40p
5-2. [To Controller(ACK)] - ACK Packet	40p
5-3. CMD(Command) Details	40p 41p
	4τρ
6. Command Examples	40.0
o, communa Exampleo	42p

Referenace

1. Safety Instructions

Thank you for purchasing our HerkuleX,

For your safety, please read the instruction manual before using the HerkuleX with particular attention to the safety instructions below.

1-1. Meaning of Symbols

Any sections within the manual with the following symbols require special attention to safety.

Danger

Ignoring the instructions with this symbol can lead to serious bodily injury or death to the user and to those near by and high possibility of damage to the property and equipment.

Warning

Ignoring the instructions with this symbol can lead to possible bodily injury and death to the user and to those near by and high possibility of damage to the property and equipment.

Caution

Ignoring instructions with this symbol may risk bodily injury.

1-2. Operating Precautions

Caution

Do not disassemble or modify the servo.

Do not use power sources other than the recommended battery.

Do not touch the servo casing immediately after the operation.

Keep away from water, sand, and dust.

Do not use the servo for purposes other than installation in the indoor robot,

Do not use overt force to turn the servo horn,

Servo should not be left if locked position.

1-3. Safe Battery Handling

Warning

Alwasy use the appropriate battery charger to charge the battery pack.

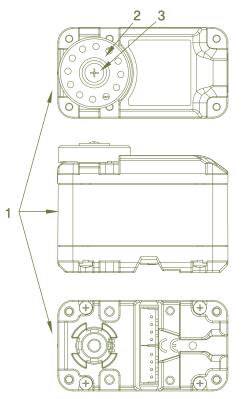
Do not connect the battery packs in parallel configuration.

Never disassemble or modify the battery pack.

Do not use the battery pack with apparent external damage.

1-4. Safe Storage

Caution


To prevent accidents and damage, do not store the servo under the conditions listed below


- Location with temperatures above 60 degree celsius or below 20 degree celsius.
- Location with direct sunlight.
- Location with high humidity.
- Area with vibration.
- Dusty area.
- Area with possible electrostatic electricity,
- Area within easy reach of children.

2. Introduction

2-1. Parts List

13

1 Servo

2 Horn

3 Horn Bolt(BHT 2.6X8)

4 Wheel Horn Bushing

5 Wheel Horn Washer

6 Wheel Horn Bolt(PHM 3X8)

7 Cable Guard

8 I—type Joint

9 L-type Joint

10 L-type Joint(Single Nut)

Bracket Bolt(PHT 2X5)

12 Joint Bolt(PHM 2X5)

Wire Harness (200mm)

: 1ea

: 1ea

: 1ea

: 1ea

: 1ea

: 1ea

: 2ea

: 2ea

- <u>__</u>___

: 2ea

: 4ea

: 4ea (* DRS-0201 replaced by PHM 2X5)

: 12ea

: 1ea

2–2. Product Overview

Smart Servo

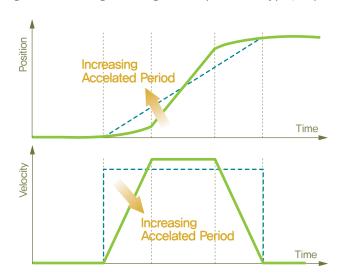
DRS-0101 and DRS-0201 are state of the art modular smart servos incorporating motor, gear reducer, control circutry and communications capability in one single package. Both servos are capable of detecting and responding to internal changes in termerature and voltage supply.

Simple Assembly and Wiring

Small, light, and easy to assemble structure. Ours sevos make joint assembly an easy job with an added advantage of simple wiring. Two connectors attached to each servo allows serial connection as well as parallel connection if required.

Highest Stall Torque in relation to Size and Power

In relation to size, weight, and power requirement, our servos have the highest stall torque in its class.


Versatility from Two Different Models

By introducing two different models of the same size but with different torque and speed, our customers have the choice to choose and mix and match the servos to assemble custom joints.

- DRS-0101: Stall Torque 12kgf,cm @7.4DCV [166.8 ozf,in.], Speed 0.166s/60°@7.4DCV
- DRS-0201: Stall Torque 24kgf,cm @7.4DCV [333.6 ozf,in.], Speed 0.147s/60°@7.4DCV

Smooth Movement

Once the servo receives a movement command, it automatically creates a trapezoidal type speed profile like the diagram below to control the position. With the servo operating according to the acceleration/deceleration profile, it suppresses vibrations caused by the sudden acceleration and deceleration as found in the square type speed profile and increases the energy efficiency while leading to smoother movement. The servo chooses the trapezoidal type speed profile as a default but profile could be changed according to usage to trapezoidal type, square type or triangle type.

Durability

Manufactured using Super Engineering Plastic, our servos are highly durable, impact resistant and designed to withstand even the high torque stress levels that go beyond the tolerance specs of Engineering Plastic Gears.

Communication

Using Multi Drop TTL Full Duplex UART Serial communications protocol with maxium speed of 0.667Mbps, single command can set the speed, position, LED, operational compliance, stop and operational status of up to 254 servos simultaneoulsy at once.

54 Operating Parameters

Operational parameters such as speed, calibration, compliance to external force, LED could be set by writing directly to the register, by using the Servo Manager downloaded from the web site or by using the Servo Manager Kit sold separately.

Resolution

0,325 degrees resolution provides very accurate smooth control and minimal vibration.

Maximum Operating Angle

- Position Control Mode: $0 \sim 320^\circ$ possible but recommended range is within $0 \sim 300^\circ$
- Speed Control Mode: Continuous rotation possible with rotation speed control

Compliance Control

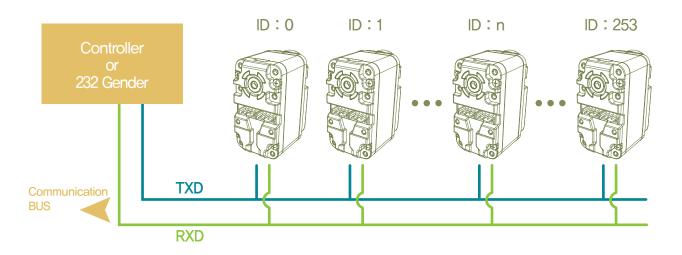
By controlling the torque according to the discrepancy between the goal position and the actual position, Compliance Control provides certain measure of elasticity to absorb the shock from the external force.

Data Feedback

Data feedback from the internal temperature, position, and overload sensors.

Protection Features

- Internal temperature sensor monitors the motor and the circuit temperature and issues Overheating
 Protection Error if the temperature moves beyond set value.
- Overload Protection Error is issued when the load stress on the servo goes beyond the set value. These safety features protec the sevo from the potential damage and prolongs the servo life.


Self Diagnosis

Servos are capable of diagnosing seven different types of errors which are then indicated by the LED. Servo UI is used to set the function and timing of the Overload Protection.

(protects the servo when the overload occurs by releasing the torque)

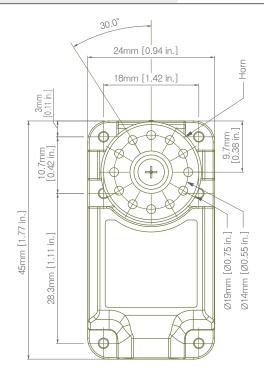
Multi Drop Network

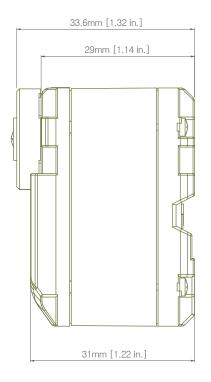
Expandable Multi Drop type Network with 1:n configuration. (single controller connected to multiple "n" number of servos).

Multi Function LED

User has direct control the three independently controlled LEDs Red/Green/Blue which are used for diagnostics and decorative purposes, LED commands are sent together with the Operation command.

* In case of an error, diagnostics function ignores all LED commands and the Red LED starts to blink periodically according to the setting.


Metal Ball Bearing (DRS-0201)

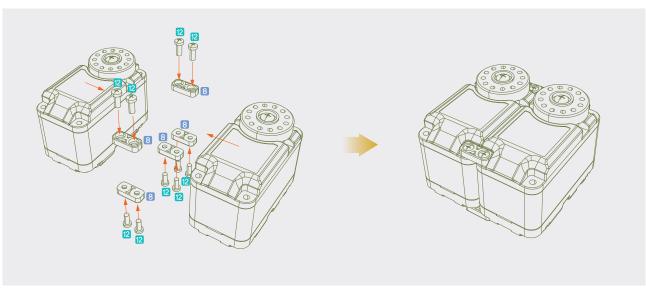

Ball bearing installed on the 4th gear shaft will prevent wear, sloping and provide protection from external shocks that can bend the shaft or throw the gear out of mesh.

** DRS-0101 : Plastic Bushing** DRS-0201 : Metal Ball Bearing

2-3. Specification

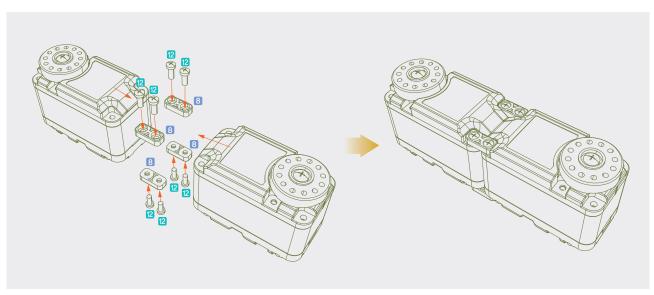
Dimension / Weight	45mm(W) x 24.0mm(D) x 31mm(H) / 45g [1.59 oz] 45mm(W) x 24.0mm(D) x 31mm(H) / 60g [2.12 oz] (DRS-0201) [1.77 in.(W) x 0.94 in.(D) x 1.22 in.(H)]
Reduction Ratio Gear Material	1:266 Super Engineering Plastic, Heavy Duty Metal (DRS-0201)
Input Voltage Rated Current Motor	7~12VDC(Optimized 7.4V) 450mA @ 7.4V: 1.7kgf.cm, 670mA @ 7.4V: 2.2kgf.cm (DRS-0201) Carbon Brush Cored DC, Metal Brush Coreless DC (DRS-0201)
Stall Torque / Maximum Speed	12kgf.cm [166.8 ozf.in.] / 0.166s/60 ° @7.4V 24kgf.cm [333.6 ozf.in.] / 0.147s/60 ° @7.4V (DRS-0201)
Resolution	0.325 °
Operating Angle Temperature	320 $^{\circ}$, Continuous Rotation 0 \sim 85 $^{\circ}$ [32 $^{\circ}$ F \sim 185 $^{\circ}$]
Communication Link ID, Maximum Baud Rate	Full Duplex Asynchronous Serial(TTL Level), Binary Packet, Multi Drop 0 \sim 253, 254(Broadcast only) 0.67Mbps
Feedback	Position, Speed, Temperature, Load, Voltage etc.
Control Algorithm	PID, Feedforward, Trapezoidal Velocity Profile, Velocity Override, Torque Saturator & Offset, Overload Protection, Neutral Calibration, Dead Zone 54 Selectable Setting Parameters(* Servo Manager Kit Required)

* Refer to Pages 51 and 52 for connector specs.

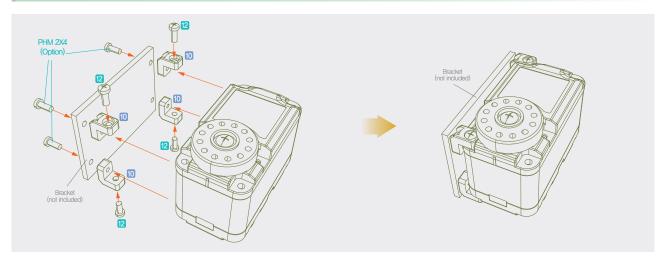


3. Assembly Instructions

3-1. Joint Assembly

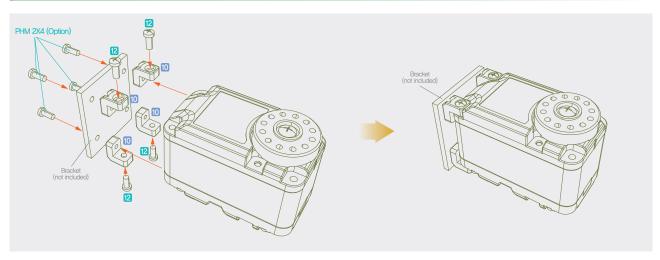

TYPE 1

Assembly Diagram

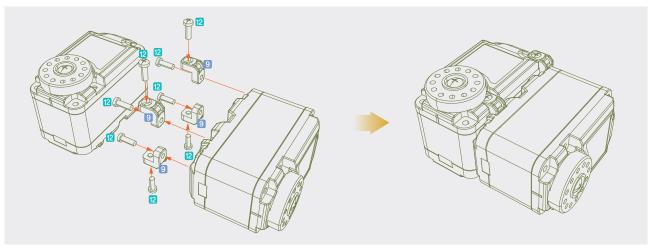

Assembled Unit

TYPE 2

Assembly Diagram

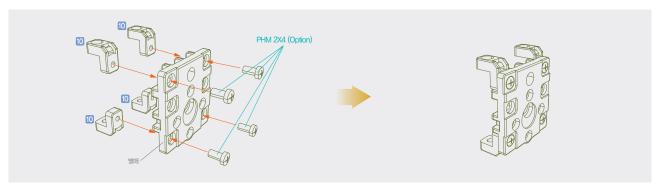

Assembled Unit

Assembly Diagram

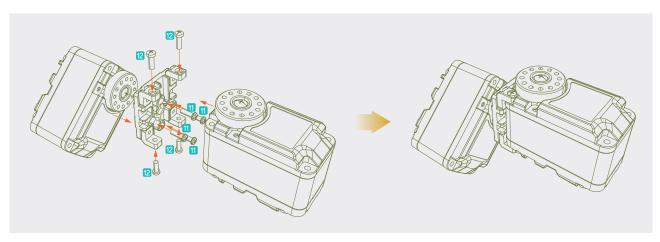

Assembled Unit

TYPE 4

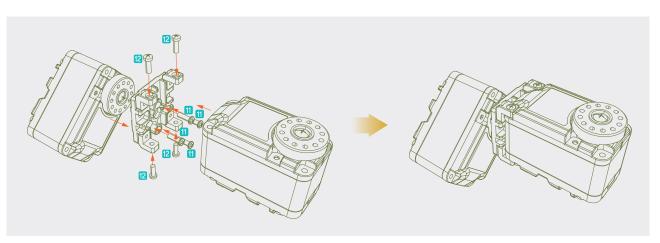
Assembly Diagram


Assembled Unit

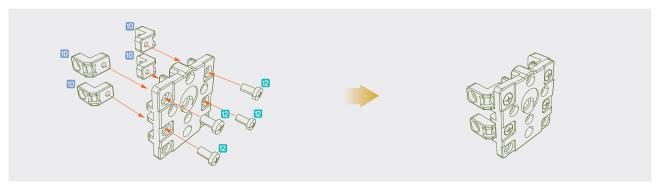
Assembly Diagram


Assembled Unit

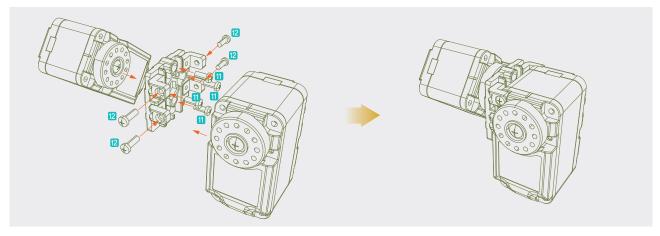
3-2. Joint Assembly (Optional Broket and Bolt Required)


Assembly Diagram

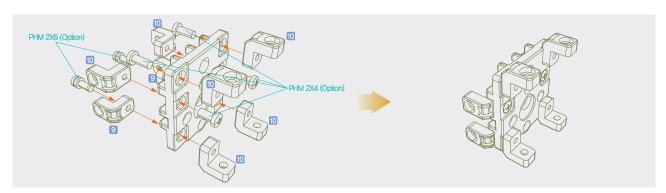
Assembled Unit


Assembly Diagram

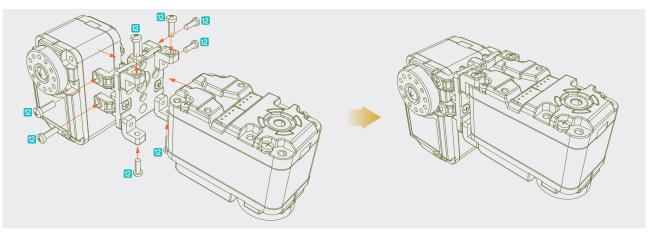
Assembled Unit


Assembly Diagram

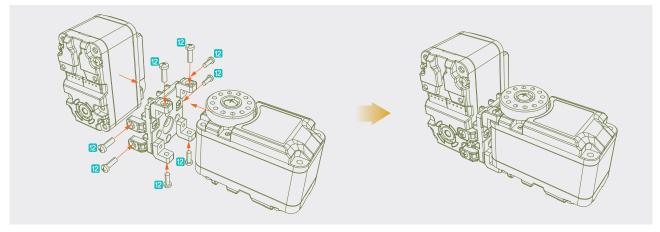
Assembled Unit


Assembly Diagram

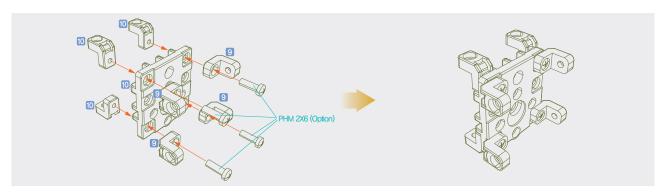
Assembled Unit


Assembly Diagram

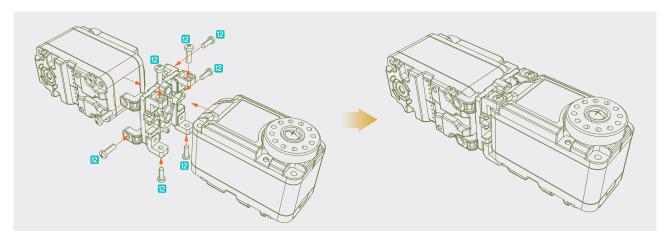
Assembled Unit


Assembly Diagram

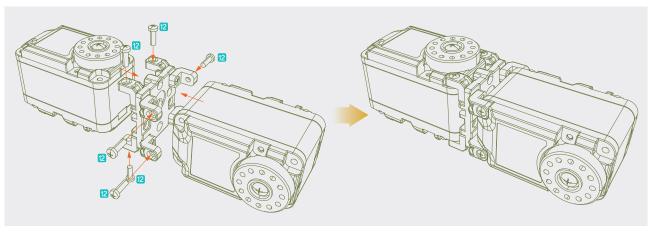
Assembled Unit


Assembly Diagram

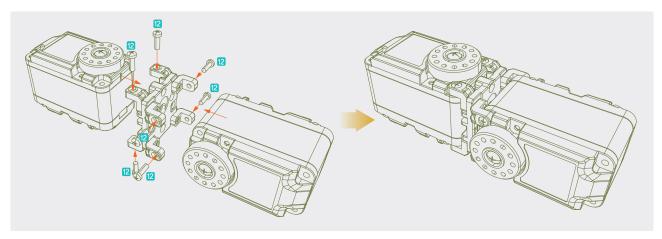
Assembled Unit


Assembly Diagram

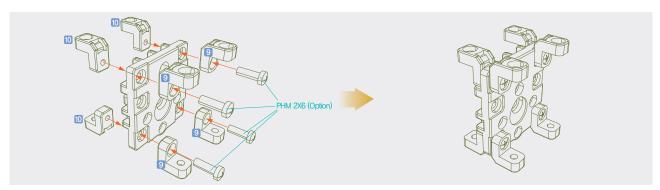
Assembled Unit


Assembly Diagram

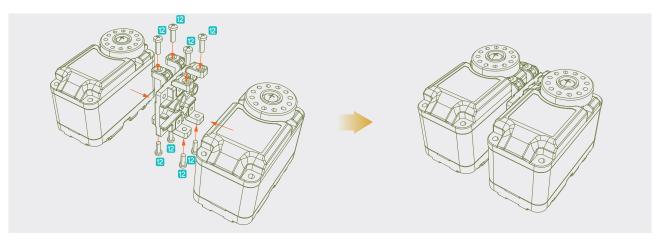
Assembled Unit


Assembly Diagram

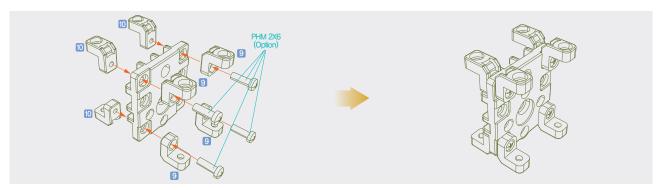
Assembled Unit


Assembly Diagram

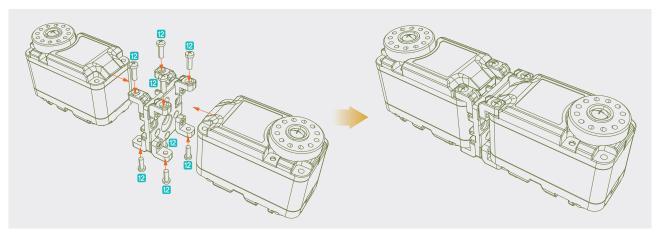
Assembled Unit


Assembly Diagram

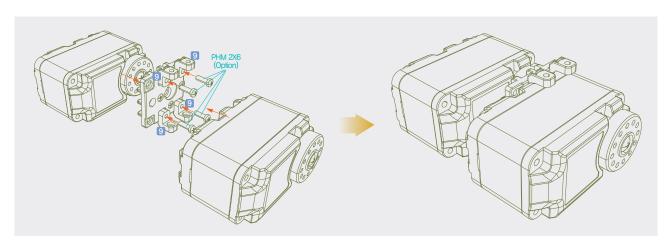
Assembled Unit


Assembly Diagram

Assembled Unit


Assembly Diagram

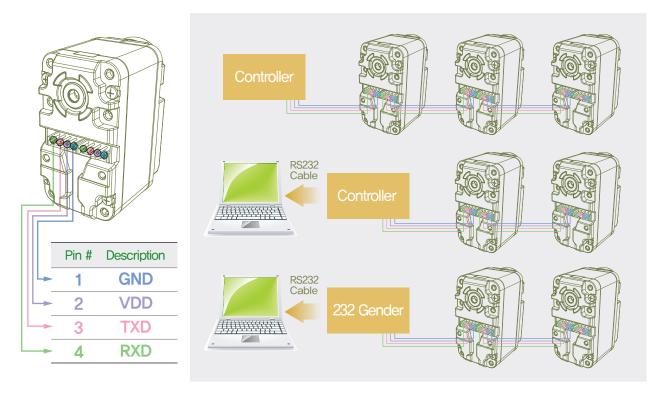
Assembled Unit


Assembly Diagram

Assembled Unit

Assembly Diagram

Assembled Unit



Assembly Diagram

Assembled Unit

3-3. Connector Pin & System Assembly

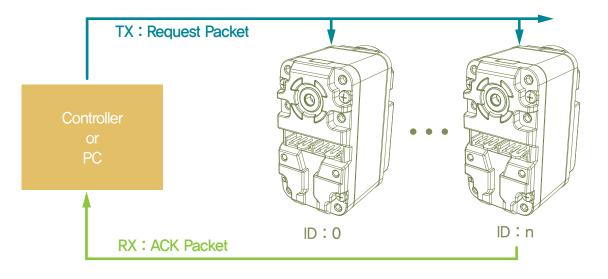
All the Servo to Servo connectors have same Pin assingment as the diagram below. Multi Drop Network makes expansion easy.

Caution

Servos must be cross connected to the PC or Motion Controller, Examples of cross connection would be Servo TXD to PC or Motion Controller RXD, Servo RXD to PC or Motion Controller TXD.

Caution

Do not connect the servo directly to the PC without using the Motion Controller or Signal Converter. Even though both PC and the servo uses serial protocol (TXD, RXD) they are not directly compatible due to electrical difference.


If using custom made Wire Harness, make sure to check that connector pin assingments are in correct order. Servo LED will blink once if it is receiving power properly. If the LED does not blink, check the connector pin assignment and the power supply Voltage and Amp.

4. Operation

4-1. Communications Protocol

Introduction

Servo Controller communicates with the servos in the network by sending a Request Packet and receiving ACK Packet back from the servo. The example below shows the controller sending a Request Packet to the Servo n and receiving ACK packet back from the Servo n. Regardless of the number of servos in the network, only the servo with correct ID (n) will acknowledge the Request Packet and send the ACK Packet to the controller.

Communication Protocol

Data Bit: 8
Stop Bit: 1
Parity: None
Flow Control: None

Baud Rate: 57,600 / 115,200 / 0.2M / 0.25M / 0.4M / 0.5M / 0.667M

** The communications speed of the PC communication ports or USB to Serial Cable can be limited by the hardware or by the device driver. If problem occurs, check the Baud Rate of the involved port of peripheral to make sure it supports 115,200bps. If the supported Baud Rate can not found, set the Baud Rate to 115,200bps or 57,600bps and try again. The default factory setting for DRS-0101 and DRS-0201 is 115,200bps.

Packet

Type	Hea	ader	Packet Size	plD	CMD	Check Sum1	Check Sum2	Data[n]
Value	0xFF	0xFF	7~223	0~0xFE	1~9	Refer to Detail	Refer to Detail	Refer to Detail
Byte	1	1	1	1	1	1	1	MAX 216

▶ Header

Indicates start of the Packet.

Type	Hea	nder
Value	0xFF	0xFF
Byte	1	1

▶ Packet Size

Refers to total Packe size (in Bytes) from Header to Data. The maximum Packet Size 233, if the packet size is larger than 223 Bytes, packet may not be recognized. Minimum packet size is 7 which is packet without any data.

▶ pID

Unique pID value can range from 0 \sim 253 which is total number of servos in the network. Care must be taken when using pID value of "0xFE" which is a special value that affects all the servos in the network.

* To avoid confusion with Servo ID, ID within the packet is deonoted pID

Type	pID
Value	$0\sim 0$ xFE
Byte	1

► CMD

CMD is actual instructions for the servo to perfom when packet is received. There are 9 types of CMD in Request Packet EEP_WRITE(0x01), EEP_READ(0x02), RAM_WRITE(0x03), RAM_READ(0x04), I_JOG(0x05), S_JOG(0x06), STAT(0x07), ROLLBACK(0x08), REBOOT(0x09). ACK Packet also has equivalent set of CMD, but to distinguish from the Request CMD, ACK Packet adds 0x40. For example, ACK Packet CMD for Request Packet EEP_WRITE(0x01)would be 0x41.

Type	CMD
Value	0x01 \sim 0x09 : Request Packet 0x41 \sim 0x49 : ACK Packet
Byte	1

► Check Sum1

Check Sum1 is used to check for errors in the Packet. Check Sum1 is calculated as follows, Check Sum1 = (PacketSize ^ pID ^ CMD ^ Data[0] ^ Data[1] ^ ^ Data[n]) & 0xFE. Header, Check Sum1, Check Sum2 are not included in the calculation.

* 'A ^ B': Bit Exclusive OR Operator, A is different from B 1(True), same 0(False)

Type	Check Sum1
Value	(PacketSize ^ pID ^ CMD ^ Data[0] ^ Data[1] ^ ····· ^ Data[n])&0xFE
Byte	1

► Check Sum2

Checksum2 is also used to check for errors in the Packet, Check sum2 is calculated as follows, Check Sum2 = (\sim CheckSum1) & 0xFE

 $\times \sim$ A': Bit Not Operator, A = 0 1(True), A = 1 0(False)

Туре	Check Sum2					
Value	(~CheckSum1) & 0xFE					
Byte	1					

▶ Data[n]

Number of Data depends on CMD and some CMD may not have Data field. Refer to CMD for details.

Туре	Data
Value	Refer to CMD for details
Byte	Max216

4-2. Register Map

Register Map are values residing within the Servo and contain data pertaining to current servo status and operation. Registers are either Non-Volatile or Volatile.

Users are able to control the servos by using Request Packet and ACK Packet to either check or change the data in the Register Map.

Non-Volatile Register Map

Non-Volatile memory retains data without power. Once the power is turned on, data in the Non-Volataile memory in EEP Register are copied to the RAM Register which is Volatile memory. Data in the Non-Volatile memory does not have direct affect on the operation of the servo once it has been copied to the RAM Register. Rebooting the servo will again copy the data from EEP Register to the RAM Register.

▶ Address

Address refers to the address of the Register. To Read/Write to the Register, Register address must be included in the Packet.

▶ Default

Factory Default Value, Rollback Protocol is used to return all values to Factory Default Value.

▶ Valid Range

Range of valid data values servo can have. Input of data beyond the Valid Range will possibly result in unpredictable servo behavior.

► RO(Read Only), RW (Read Write)

RO refers to read only Registers. Writing to RO Register will result in error.

RO Registers hold fixed values such as Model #, Version or sensor values used for feedback. RW refers to Registers which be both read and written to.

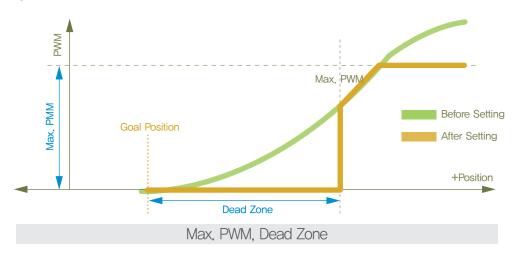
e (Reg_Name): Refers to Reg_Name in EEP Register.

* r (Reg_Name) : Refers to Reg_Name in RAM Register.

ADDRESS	Type	Bytes	Default	Valid Range	RW	Description
0	Model No1	1	0x01	_	RO	Shows DRS-0101 model #
1	Model No2	1	0x01	_	RO	(* For DRS-0201, Model No1 is 0x02)
2	Version1	1	0x00	_	RO	Firmware Version
3	Version2	1	0x90	_	RO	- Firmware Version

4 Baud Rate 1 0x10 Refer to Pg 26 RW Communication Speed 5 Reserved 1 0x00 − − Reserved 6 ID 1 0xFD 0x00 ∼ 0xFD RW Serve D0xFE: Can be used as Broadcarding ID, not assignable) 7 ACK Policy 1 0x01 0x00 ∼ 0x2 RW Refer to Pg 33 8 Alarm LED Policy 1 0x7F 0x00 ∼ 0x7F RW Activates atem LED according to poloy 9 Torque Policy 1 0x35 0x00 ∼ 0x7F RW Refer to Pg 33 10 Reserved 1 − − − Reserved 11 Max, Temperature 1 0x0E 0x00 ∼ 0xFE RW Maximum aboved templ0xCF: £5°C) 12 Min, Voltage 1 0x5B 0x00 ∼ 0xFE RW Maximum aboved velope(0x8F: £740x0) 13 Max, Voltage 1 0x89 0x00 ∼ 0xFE RW Maximum aboved velope(0x8F: £740x0) 14 Acceleration Ratio 1 0x19 0x00 ∼ 0xFE RW Maximum aboved velope(0x8F: £740x0) 15 Max, Acceleration Time 1 0x2D 0x00 ∼ 0xFE RW Maximum aboved velope(0x8F: £740x0) 16 Dead Zone 1 0x00 0x00 ∼ 0xFE RW Oxide control/sensor range 17 Saturator Offset 1 0x00 0x00 ∼ 0xFE RW Oxide control/sensor range 18 Saturator Stope 2 0x0000 0x000 0x0FF RW Refer to Pg 36 18 Saturator Stope 2 0x0000 0x000 0x00 ∼ 0xFE RW Refer to Pg 36 19 Max, Pwillon 1 0x00 0x00 ∼ 0xFFF RW Refer to Pg 36 10 Max, Pwillon 2 0x03FF 0x0000 0x000 0x0FF RW Refer to Pg 36 20 PWM Offset 1 0x00 0x00 0x00 0x0FFF RW Refer to Pg 36 21 Min, PWM 1 0x00 0x00 0x00 0xFFF RW Refer to Pg 36 22 Max PWM 2 0x03FF 0x0000 0x000 0x0FFF RW Refer to Pg 36 23 Position Kg 2 0x000 0x0000 0x000 0x	ADDRESS	Type	Bytes	Default	Valid Range	RW	Description
6 D 1 0xFD 0x00 ~ 0xFD RVM Servo D10xFE : Can be used as Broadcasing D. D not assignable) 7 ACK Policy 1 0x01 0x00 ~ 0x2 RVM Refer to Pg 33 8 Alarm LED Policy 1 0x7F 0x00 ~ 0x7F RVM Advales asim LED according to policy 9 Torque Policy 1 0x35 0x00 ~ 0x7F RVM Releases torque according to policy 10 Reserved 1 -	4	Baud Rate	1	0x10	Refer to Pg 26	RW	Communication Speed
6	5	Reserved	1	0x00	_	_	Reserved
8 Alarm LED Policy 1 0x7F 0x00 ~ 0x7F RW Activates alarm LED according to policy 9 Torque Policy 1 0x35 0x00 ~ 0x7F RW Releases torque according to policy 10 Reserved 1 − − − Reserved 11 Max. Temperature 1 0xDE 0x00 ~ 0xFE RW Maximum altowed temp(0x0F:85°C) 12 Min, Voltage 1 0x5B 0x00 ~ 0xFE RW Minimum altowed voltage(0x85:100x) 13 Max, Voltage 1 0x89 0x00 ~ 0xFE RW Minimum altowed voltage(0x85:100x) 14 Acceleration Ratio 1 0x19 0x00 ~ 0x6E RW Maximum altowed voltage(0x85:100x) 15 Max, Acceleration Time 1 0x2D 0x00 ~ 0xFE RW Maximum altowed voltage(0x85:100x) 16 Dead Zone 1 0x00 0x00 ~ 0xFE RW Outside control/sensor range 17 Saturator Offset 1 0x00 0x00 ~ 0xFE RW Outside control/sensor range 18 Saturator Slope 2 0x0000 0x000 ~ 0xFF RW Refer to Pg.36 18 Saturator Slope 2 0x0000 0x000 ~ 0xFF RW Refer to Pg.36 20 PWM Offset 1 0x00 0x00 ~ 0xFF RW Refer to Pg.36 21 Min, PWM 1 0x00 0x00 ~ 0xFF RW Refer to Pg.36 22 Max. PWM 2 0x03FF 0x0000 ~ 0x03FF RW Refer to Pg.37 23 Min, Position 2 0x03FF 0x0000 ~ 0x03FF RW Refer to Pg.37 24 Overload PWM 2 0x03FF 0x0000 ~ 0x03FF RW Refer to Pg.37 25 Max. Position 2 0x03FB 0x0000 ~ 0x03FF RW Refer to Pg.37 26 Min, Position 2 0x03FB 0x0000 ~ 0x03FF RW Refer to Pg.37 38 Max. Position 2 0x03FB 0x0000 ~ 0x03FF RW Refer to Pg.37 39 Position Kp 2 0x015B 0x0000 ~ 0x03FF RW Refer to Pg.35 30 Position Kp 2 0x015B 0x0000 ~ 0x03FF RW Refer to Pg.35 31 Position Kp 2 0x016B 0x0000 ~ 0x07FFF RW Proportional Gain, 32 Position Kp 2 0x016B 0x0000 ~ 0x07FFF RW Proportional Gain, 34 Position Kp 2 0x016B 0x0000 ~ 0x07FFF RW Refer to Pg.35 36 Position Feed Ioward 2 0x0000 0x0000 ~ 0x07FFF RW Refer to Pg.35 37 Position Feed Ioward 2 0x0000 0x0000 ~ 0x07FFF RW Refer to Pg.35 38 Position Feed Ioward 2 0x0000 0x0000 ~ 0x07FFF RW Refer to Pg.35 39 Position Feed Ioward 2 0x0000 0x0000 ~ 0x07FFF RW Refer to Pg.35 40 Reserved 2 − − − Reserved 41 LED Blink Period 1 0x2D 0x000 0x000 ~ 0xFFF RW Refer to Pg.35 41 Defertion Position Index Period 1 0x12 0x000 0x000 0x000 ~ 0xFFF RW Refer to Pg.35 42 Position Period	6	ID	1	0xFD	0 x $00\sim0$ xFD	RW	
9 Torque Policy 1 0x35 0x00 ~ 0x7F RW Releases larque according to policy 10 Reserved 1 — — — Reserved 11 Max, Temperature 1 0xDE 0x00 ~ 0xFE RW Maximum alowed vollege(0x9F :85°C) 12 Min, Voltage 1 0x58 0x00 ~ 0xFE RW Minimum alowed vollege(0x9F :80°C) 13 Max, Voltage 1 0x69 0x00 ~ 0xFE RW Maximum alowed vollege(0x9F :100°C) 14 Acceleration Retio 1 0x19 0x00 ~ 0x68(50) RW Release position to acceleration or decoeleration or 0x00 0x00 ~ 0xFE RW Maximum alowed vollege(0x9F :100°C) 15 Max, Acceleration Time 1 0x2D 0x00 ~ 0xFE RW Maximum alowed vollege(0x9F :100°C) 16 Dead Zone 1 0x00 0x00 ~ 0xFE RW Outside control/sensor range 17 Saturator Offset 1 0x00 0x00 ~ 0xFE RW Refer to Pg 36 18 Saturator Stope 2 0x0000 0x000 ~ 0x7FF RW Refer to Pg 36 19 Saturator Stope 2 0x0000 0x000 ~ 0xFF RW Refer to Pg 37 21 Min, PWM 1 0x00 0x00 ~ 0xFF RW Refer to Pg 37 22 Max, PWM 2 0x03FF 0x0000 ~ 0x03FF RW Refer to Pg 37 23 Min, Postition 2 0x03FF 0x0000 ~ 0x03FF RW Refer to Pg 37 24 Overload PWM 2 0x03FF 0x0000 ~ 0x03FF RW Refer to Pg 37 26 Min, Position 2 0x03FE 0x0000 ~ 0x03FF RW Refer to Pg 37 27 RW Refer to Pg 37 28 Max, Position 2 0x03FF 0x0000 ~ 0x03FF RW Refer to Pg 37 29 Position Kp 2 0x03FE 0x0000 ~ 0x03FF RW Maximum position value(0~1023) 10 Position Kp 2 0x0158 0x0000 ~ 0x03FF RW Refer to Pg 37 11 Saturator Deptitor Refer to Pg 37 12 Position Kp 2 0x0188 0x0000 ~ 0x07FF RW Refer to Pg 35 13 Position Feed forward 2 0x0000 0x0000 ~ 0x7FFF RW Peier to Pg 35 14 Position Ki 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 14 Position Feed forward 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 14 Position Feed forward 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 14 Position Feed forward 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 14 Position Feed forward 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 14 Position Feed forward 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 14 Position Feed forward 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 15 Gain Prosition Feed forward 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 15 Gain Prosition Feed forward 2 0x000	7	ACK Policy	1	0x01	0 x 0 0 \sim 0 x 2	RW	Refer to Pg 33
10 Reserved 1	8	Alarm LED Policy	1	0x7F	0 x 0 0 \sim 0 x 7 F	RW	Activates alarm LED according to policy
11 Max, Temperature 1	9	Torque Policy	1	0x35	0 x $00\sim0$ x 7 F	RW	Releases torque according to policy
12 Min, Voltage 1 0x5B 0x00 ~ 0xFE RW Mrimum allowed voltage(0x5B : 67/MDCV) 13 Max, Voltage 1 0x89 0x00 ~ 0xFE RW Meximum allowed voltage(0x5B : 67/MDCV) 14 Acceleration Ratio 1 0x19 0x00 ~ 0x32(50) RW Patro of time to reach goal position 15 Max Acceleration Time 1 0x2D 0x00 ~ 0xFE RW Max acceleration or decceleration 16 Dead Zone 1 0x00 0x00 ~ 0xFE RW Patro for the conforting Acceleration (1x2D : 504ms) 16 Dead Zone 1 0x00 0x00 ~ 0xFE RW Patro for 9 36 17 Saturator Offset 1 0x00 0x00 ~ 0xFE RW Patro for 9 36 18 Saturator Slope 2 0x0000 0x0000 ~ 0x7FFF RW Patro for 9 36 20 PWM Offset 1 0x00 0x00 ~ 0xFF RW Patro for 9 36 21 Min, PWM 1 0x00 0x00 ~ 0xFF RW Patro for 9 36 22 Max, PWM 2 0x03FF 0x0000 ~ 0x03FF RW Patro for 9 37 23 Max, PWM 2 0x03FF 0x0000 ~ 0x03FF RW Patro for 9 37 24 Overload PWM 2 0x03FF 0x0000 ~ 0x03FF RW Patro for 9 37 25 Sets maximum PWM value Patro for 9 37 26 Min, Position 2 0x03FF 0x0000 ~ 0x03FF RW Patro for 9 34 27 Max, Position 2 0x03FA 0x0000 ~ 0x03FF RW Minimum position value(0x1023) 28 Max, Position 2 0x03BA 0x0000 ~ 0x03FF RW Maximum position value(0x1023) 30 Position Kp 2 0x01BB 0x0000 ~ 0x7FFF RW Proportional Gain, 31 Position Feed forward 1st Gain 2 0x0000 0x0000 ~ 0x7FFF RW Patro for 9 35 38 Position Feed forward 2 0x0000 0x0000 ~ 0x7FFF RW Patro for 9 35 39 Position Feed forward 2 0x0000 0x0000 ~ 0x7FFF RW Patro for 9 35 30 Position Feed forward 2 0x0000 0x0000 ~ 0x7FFF RW Patro for 9 35 30 Position Feed forward 2 0x0000 0x0000 ~ 0x7FFF RW Patro for 9 35 30 Position Feed forward 2 0x0000 0x0000 ~ 0x7FFF RW Patro for 9 35 30 Position Feed forward 2 0x0000 0x0000 ~ 0x7FFF RW Patro for 9 35 30 Position Feed forward 2 0x0000 0x0000 ~ 0x7FFF RW Patro for 9 35 30 Position Feed forward 2 0x0000 0x0000 ~ 0x7FFF RW Patro for 9 35 30 Position Feed forward 2 0x0000 0x0000 ~ 0x7FFF RW Patro for 9 35 30 Position Feed forward 2 0x0000 0x0000 ~ 0x0000 ~ 0x7FFF RW Patro for 9 35 30 Position Feed forward 2 0x0000 0x0000 ~ 0x	10	Reserved	1	_	_	_	Reserved
13 Max, Voltage 1 0x89 0x00 ~ 0xFE RW Maximum alowed voltage(0x9:1000V) 14 Acceleration Ratio 1 0x19 0x00 ~ 0x32(50) RW Ratio of time to reach goal position to acceleration or decoleration Time 1 0x20 0x00 ~ 0xFE RW Acceleration from the transition of decoleration or decoleration Time 12ms interval Acceleration (0x20:504ms) 16 Dead Zone 1 0x00 0x00 ~ 0xFE RW Acceleration (0x20:504ms) 17 Saturator Offset 1 0x00 0x00 ~ 0xFE RW Refer to Pg 36 18 Saturator Slope 2 0x0000 0x0000 ~ 0xFFF RW Refer to Pg 36 19 Saturator Slope 2 0x0000 0x0000 ~ 0xFFF RW Refer to Pg 36 10 PWM Offset 1 0x00 −128 ~ 127 RW Refer to Pg 37 21 Min, PWM 1 0x00 0x00 ~ 0xFF RW Refer to Pg 37 22 Max, PWM 2 0x03FF 0x0000 ~ 0x03FF RW Refer to Pg 37 24 Overload PWM 2 0x03FF 0x0000 ~ 0x07FF RW Refer to Pg 37 24 Overload PWM 2 0x03FF 0x0000 ~ 0x07FF RW Refer to Pg 37 25 Set s minimum PWM value Refer to Pg 37 26 Min, Position 2 0x03FF 0x0000 ~ 0x07FF RW Refer to Pg 37 28 Max, Position 2 0x0015 0x0000 ~ 0x07FF RW Minimum position value(0~1023) 28 Max, Position 2 0x03FA 0x0000 ~ 0x07FF RW Proportional Gain, 30 Position Kip 2 0x01B8 0x0000 ~ 0x07FF RW Proportional Gain, 31 Position Feed forward 1st Gain 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 38 Position Feed forward 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 39 Position Feed forward 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 40 Reserved 2 - - - Reserved 2 Reserved 2 Reserved 3 Reserved 3 Reserved 3 Reserved 3 Res	11	Max. Temperature	1	0xDE	0 x 0 0 \sim 0 xFE	RW	Maximum allowed temp(0xDF: 85°C)
14 Acceleration Ratio 1 0x19 0x00 ~ 0x32(50) RW Ratio of time to reach goal position to acceleration to the deceleration 1 to acceleration time. 11 0x2D 0x00 ~ 0xFE RW Ratio Pd Receleration Ratio 1 0x2D 0x00 ~ 0xFE RW Outside control/sensor range 1 0x00 0x00 ~ 0xFE RW Outside control/sensor range 1 0x00 0x00 ~ 0xFE RW Refer to Pg 36 PWM Offset 1 0x00 0x000 ~ 0x7FFF RW Refer to Pg 36 PWM Offset 1 0x00 0x000 ~ 0x7FFF RW Refer to Pg 36 PWM Offset 1 0x00 0x00 ~ 0xFF RW Refer to Pg 36 PWM Offset 1 0x00 0x00 ~ 0xFF RW Refer to Pg 37 Sets minimum PVM value Refer to Pg 37 PWM Offset value Refer to Pg 36 PW	12	Min. Voltage	1	0x5B	0 x 0 0 \sim 0 xFE	RW	Minimum allowed voltage(0x5B: 6,714DCV)
14	13	Max. Voltage	1	0x89	0 x 0 0 \sim 0 xFE	RW	Maximum allowed voltage(0x89 : 10DCV)
15 Max, Acceleration Ime 1 Ox2D Ox00 ~ OxFE RW Acceleration(0x2D : 504ms) 16	14	Acceleration Ratio	1	0x19	0x00 ~ 0x32(50)	RW	
17 Saturator Offset 1 0x00 0x00 ~ 0xFE RW Refer to Pg 36 18 Saturator Stope 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 36 20 PWM Offset 1 0x00 −128 ~ 127 RW Refer to Pg 37 21 Min. PWM 1 0x00 0x00 ~ 0xFE RW Refer to Pg 37 22 Max. PWM 2 0x03FF 0x0000 ~ 0x03FF RW Refer to Pg 37 24 Overload PWM 2 0x03FE 0x0000 ~ 0x07FF RW Refer to Pg 37 25 Min. Position 2 0x03FE 0x0000 ~ 0x03FF RW Refer to Pg 37 26 Min. Position 2 0x03FE 0x0000 ~ 0x03FF RW Refer to Pg 37 28 Max. Position 2 0x03FE 0x0000 ~ 0x03FF RW Refer to Pg 37 28 Max. Position 2 0x0015 0x0000 ~ 0x03FF RW Refer to Pg 37 29 Max. Position 2 0x0015 0x0000 ~ 0x03FF RW Refer to Pg 37 20 Min. Position 2 0x0015 0x0000 ~ 0x03FF RW Refer to Pg 37 21 Min. Position 2 0x0015 0x0000 ~ 0x03FF RW Refer to Pg 37 22 Max. Position 2 0x0015 0x0000 ~ 0x03FF RW Refer to Pg 37 23 Max. Position 2 0x0016 0x0000 ~ 0x03FF RW Refer to Pg 37 24 Derivative Gain, Prosition Feed forward 1st Gain 2 0x0000 0x0000 ~ 0x7FFF RW Proportional Gain, Position Feed forward 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 24 Desition Feed forward 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 25 Position Feed forward 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 26 Position Feed forward 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 27 Position Feed forward 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 28 Position Feed forward 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 29 Position Feed forward 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 20 Position Feed forward 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 20 Position Feed forward 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 20 Position Feed forward 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 20 Position Feed forward 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 20 Position Feed forward 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 20 Position Feed forward 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 20 Position Feed forward 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 20 Position Feed forward 2 0x0000	15	Max. Acceleration Time	1	0x2D	0 x 0 0 \sim 0 xFE	RW	· · · · · · · · · · · · · · · · · · ·
18	16	Dead Zone	1	0x00	0 x 0 0 \sim 0 xFE	RW	Outside control/sensor range
20 PWM Offset 1 0x00 −128 ~ 127 RW Refer to Pg 37 21 Min, PWM 1 0x00 0x00 ~ 0x0FE RW Refer to Pg 37 22 Max, PWM 2 0x03FF 0x0000 ~ 0x03FF RW Refer to Pg 37 24 Overload PWM 2 0x03FE 0x0000 ~ 0x03FF RW Refer to Pg 37 25 Sets maximum PWM value Refer to Pg 37 26 Min, Position 2 0x03FE 0x0000 ~ 0x03FF RW Refer to Pg 34 26 Min, Position 2 0x0015 0x0000 ~ 0x03FF RW Minimum position value(0~1023) 28 Max, Position 2 0x03EA 0x0000 ~ 0x03FF RW Maximum position value(0~1023) 30 Position Kp 2 0x01B8 0x0000 ~ 0x7FFF RW Proportional Gain, 32 Position Kd 2 0x1F40 0x0000 ~ 0x7FFF RW Derivative Gain, 34 Position Feed forward 1st Gain 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 38 Position Feed forward 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 40 Reserved 2 − − − Reserved 41 LED Blink Period 1 0x2D 0x00 ~ 0xFF RW Alarm LED blink period accoring to policy, 11,2ms/Tick, 0x2D : 504ms 46 Packet Garbage Check Period 1 0x12 0x00 ~ 0xFF RW Packet Error check period, 11,2ms/Tick, 0x2D : 504ms 47 Stop Detection Position 1 0x18 0x00 ~ 0xFF RW Stop detection check period, 11,2ms/Tick, 0x12 : 20tms	17	Saturator Offset	1	0x00	0 x 0 0 \sim 0 xFE	RW	Refer to Pg 36
20	18	Saturator Slope	2	0x0000	0x0000 ~ 0x7FFF	RW	Refer to Pg 36
21 Min, PWM 1 0x00 0x00 ~ 0xFE RW Refer to Pg 37	20	PWM Offset	1	0x00	−128 ~ 127	RW	
22 Max, PWM 2 0x03FF 0x0000 ~ 0x03FF RW Refer to Pg 37 24 Overload PWM 2 0x03FE 0x0000 ~ 0x7FFE RW Refer to Pg 37 25 Min, Position 2 0x0015 0x0000 ~ 0x03FF RW Minimum position value(0~1023) 28 Max, Position 2 0x03EA 0x0000 ~ 0x03FF RW Maximum position value(0~1023) 30 Position Kp 2 0x01B8 0x0000 ~ 0x7FFF RW Proportional Gain, 32 Position Kd 2 0x1F40 0x0000 ~ 0x7FFF RW Derivative Gain, 34 Position Feed forward 2 0x0000 0x0000 ~ 0x7FFF RW Integral Gain, 36 Position Feed forward 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 38 Position Feedforward 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 40 Reserved 2 Reserved 41 LED Blink Period 1 0x2D 0x00 ~ 0xFE RW 112ms/Tick, 0x2D : 504ms 45 ADC Fault Check Period 1 0x12 0x00 ~ 0xFE RW 112ms/Tick, 0x2D : 504ms 46 Packet Garbage Check Period 1 0x12 0x00 ~ 0xFE RW 112ms/Tick, 0x2D : 504ms 47 Stop Detection Period 1 0x1B 0x00 ~ 0xFE RW Stop detection check period, 12 0x1B 0x00 ~ 0xFE RW 112ms/Tick, 0x2D : 504ms	21	Min. PWM	1	0x00	0 x 0 0 \sim 0 xFE	RW	
Threshold 2	22	Max. PWM	2	0x03FF	0x0000 ~ 0x03FF	RW	
26 Min, Position 2 0x0015 0x0000 ~ 0x03FF RW Minimum position value(0~1023) 28 Max, Position 2 0x03EA 0x0000 ~ 0x03FF RW Maximum position value(0~1023) 30 Position Kp 2 0x01B8 0x0000 ~ 0x7FFF RW Proportional Gain, 32 Position Kd 2 0x1F40 0x0000 ~ 0x7FFF RW Derivative Gain, 34 Position Feed forward 1st Gain 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 38 Position Feed forward 2nd Gain 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 40 Reserved 2 - - - Reserved 42 Reserved 2 - - - Reserved 44 LED Blink Period 1 0x2D 0x00 ~ 0xFE RW Alarm LED blink period accoring to policy, 11,2ms/Tick, 0x2D : 504ms 45 ADC Fault Check Period 1 0x2D 0x00 ~ 0xFE RW Tempo/voltage error check period,	24		2	0x03FE	0x0000 ~ 0x7FFE	RW	
30 Position Kp 2 0x01B8 0x0000 ~ 0x7FFF RW Proportional Gain, 32 Position Kd 2 0x1F40 0x0000 ~ 0x7FFF RW Derivative Gain, 34 Position Ki 2 0x0000 0x0000 ~ 0x7FFF RW Integral Gain, 36 Position Feed forward 1st Gain 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 38 Position Feedforward 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 40 Reserved 2 Reserved 42 Reserved 2 Reserved 44 LED Blink Period 1 0x2D 0x00 ~ 0xFE RW Alarm LED blink period accoring to policy, 11,2ms/Tick, 0x2D : 504ms 45 ADC Fault Check Period 1 0x2D 0x00 ~ 0xFE RW Temp/voltage error check period, 11,2ms/Tick, 0x2D : 504ms 46 Packet Garbage 1 0x12 0x00 ~ 0xFE RW Stop detection check period, 12,2ms/Tick, 0x12 : 201ms 47 Stop Detection Period 1 0x1B 0x00 ~ 0xFE RW Stop detection check period, 11,2ms/Tick, 0x12 : 201ms	26		2	0x0015	0 x00000 \sim 0x03FF	RW	Minimum position value(0~1023)
Position Kd 2 0x1F40 0x0000 ~ 0x7FFF RW Derivative Gain, 34 Position Ki 2 0x0000 0x0000 ~ 0x7FFF RW Integral Gain, 36 Position Feed forward 1st Gain 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 38 Position Feedforward 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 40 Reserved 2 Reserved 42 Reserved 2 Reserved 44 LED Blink Period 1 0x2D 0x00 ~ 0xFE RW Alarm LED blink period according to policy, 11,2ms/Tick, 0x2D : 504ms 45 ADC Fault Check Period 1 0x2D 0x00 ~ 0xFE RW Temp/voltage error check period, 11,2ms/Tick, 0x2D : 504ms 46 Packet Garbage 1 0x12 0x00 ~ 0xFE RW Packet Error check period, 11,2ms/Tick, 0x12 : 201ms 47 Step Potagotion Poriod 1 0x1B 0x00 ~ 0xFE RW Stop detection check period, 11,2ms/Tick, 0x12 : 201ms	28	Max. Position	2	0x03EA	0x0000 \sim 0x03FF	RW	Maximum position value(0~1023)
34 Position Ki 2 0x0000 0x0000 ~ 0x7FFF RW Integral Gain, 36 Position Feed forward 1st Gain 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 38 Position Feedforward 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 40 Reserved 2 — — — Reserved 42 Reserved 2 — — — Reserved 44 LED Blink Period 1 0x2D 0x00 ~ 0xFE RW Alarm LED blink period accoring to policy, 11,2ms/Tick, 0x2D : 504ms 45 ADC Fault Check Period 1 0x2D 0x00 ~ 0xFE RW Temp/voltage error check period, 11,2ms/Tick, 0x2D : 504ms 46 Packet Garbage Check Period 1 0x12 0x00 ~ 0xFE RW Packet Error check period, 11,2ms/Tick, 0x12 : 201ms 5 top Detection Period 1 0x1B 0x00 ~ 0xFE RW Stop detection check period, 11,2ms/Tick, 0x12 : 201ms	30	Position Kp	2	0x01B8	0x0000 \sim 0x7FFF	RW	Proportional Gain,
36 Position Feed forward 1st Gain 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 38 Position Feedforward 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 40 Reserved 2 − − − Reserved 42 Reserved 2 − − − Reserved 44 LED Blink Period 1 0x2D 0x00 ~ 0xFE RW Alarm LED blink period accoring to policy, 11,2ms/Tick, 0x2D : 504ms 45 ADC Fault Check Period 1 0x2D 0x00 ~ 0xFE RW Temp/voltage error check period, 11,2ms/Tick, 0x2D : 504ms 46 Packet Garbage 1 0x12 0x00 ~ 0xFE RW Packet Error check period, 11,2ms/Tick, 0x12 : 201ms 47 Stop Detection Period 1 0x1B 0x00 ~ 0xFE PW Stop detection check period,	32	Position Kd	2	0x1F40	0x0000 \sim 0x7FFF	RW	Derivative Gain,
1st Gain 2	34	Position Ki	2	0x0000	0x0000 \sim 0x7FFF	RW	Integral Gain,
Position Feedforward 2 0x0000 0x0000 ~ 0x7FFF RW Refer to Pg 35 40 Reserved 2 Reserved 42 Reserved 2 Reserved 44 LED Blink Period 1 0x2D 0x00 ~ 0xFE RW Alarm LED blink period accoring to policy, 11,2ms/Tick, 0x2D : 504ms 45 ADC Fault Check Period 1 0x2D 0x00 ~ 0xFE RW Temp/voltage error check period, 11,2ms/Tick, 0x2D : 504ms 46 Packet Garbage Check Period 1 0x12 0x00 ~ 0xFE RW Packet Error check period, 11,2ms/Tick, 0x12 : 201ms 47 Stap Potagtian Pariod 1 0x1B 0x00 ~ 0xFE RW Stop detection check period,	36		2	0x0000	0x0000 \sim 0x7FFF	RW	Refer to Pg 35
40 Reserved 2 Reserved 42 Reserved 2 Reserved 44 LED Blink Period 1 0x2D 0x00 ~ 0xFE RW Alarm LED blink period accoring to policy, 11,2ms/Tick, 0x2D : 504ms 45 ADC Fault Check Period 1 0x2D 0x00 ~ 0xFE RW Temp/voltage error check period, 11,2ms/Tick, 0x2D : 504ms 46 Packet Garbage 1 0x12 0x00 ~ 0xFE RW 11,2ms/Tick, 0x2D : 504ms 47 Stap Potagtian Pariod 1 0x1B 0x00 ~ 0xFE RW Stop detection check period, 11,2ms/Tick, 0x12 : 201ms	38	Position Feedforward	2	0x0000	0x0000 \sim 0x7FFF	RW	Refer to Pg 35
44 LED Blink Period 1 0x2D 0x00 ~ 0xFE RW Alarm LED blink period accoring to policy, 11,2ms/Tick, 0x2D : 504ms 45 ADC Fault Check Period 1 0x2D 0x00 ~ 0xFE RW Temp/voltage error check period, 11,2ms/Tick, 0x2D : 504ms 46 Packet Garbage 1 0x12 0x00 ~ 0xFE RW Packet Error check period, 11,2ms/Tick, 0x12 : 201ms 47 Stap Potagtion Period 1 0x1B 0x00 ~ 0xFE RW Stop detection check period,	40		2	_	_	_	Reserved
45 ADC Fault Check Period 1 0x2D 0x00 ~ 0xFE RW 11,2ms/Tick, 0x2D : 504ms 45 ADC Fault Check Period 1 0x2D 0x00 ~ 0xFE RW Temp/voltage error check period, 11,2ms/Tick, 0x2D : 504ms 46 Packet Garbage 1 0x12 0x00 ~ 0xFE RW Packet Error check period, 11,2ms/Tick, 0x12 : 201ms 47 Stap Potagtion Poriod 1 0x1B 0x00 ~ 0xFE RW Stop detection check period,	42	Reserved	2	_	_	_	Reserved
45 ADC Fault Check Period 1 0x2D 0x00 ~ 0xFE RW Temp/voltage error check period, 11,2ms/Tick, 0x2D : 504ms 46 Packet Garbage 1 0x12 0x00 ~ 0xFE RW Packet Error check period, 11,2ms/Tick, 0x12 : 201ms 47 Stap Potagtion Poriod 1 0x1B 0x00 ~ 0xFE RW Stop detection check period,	44	LED Blink Period	1	0x2D	0 x $00\sim0$ xFE	RW	
Packet Garbage 1 0x12 0x00 ~ 0xFE RW Packet Error check period, 11.2ms/Tick, 0x12 : 201ms 17 Stap Potagtion Pariod 1 0x1B 0x00 ~ 0xFE PW Stop detection check period,	45	ADC Fault Check Period	1	0x2D	0 x $00\sim0$ xFE	RW	Temp/voltage error check period,
47 Stop Detaction Pariod 1 0v1B 0x00 ~ 0xFF DW Stop detection check period,	46		1	0x12	0 x $00\sim0$ xFE	RW	
	47		1	0x1B	0 x 0 0 \sim 0 xFE	RW	

22


HerkuleX

ADDRESS	Type	Bytes	Default	Valid Range	RW	Description
48	Overload Detection Period	1	0x96	0 x 0 0 \sim 0xFE	RW	Overload Check Interval 11,2ms/Tick, 0x96: 1,68s
49	Stop Threshold	1	0x03	$0\mathrm{x}00\sim0\mathrm{xFE}$	RW	Stop Threshold
50	Inposition Margin	1	0x03	0 x $00\sim0$ xFE	RW	Offset Threshold
51	Reserved	1	_	_	_	Reserved
52	Reserved	1	_	_	_	Reserved
53	Calibration Difference	1	0	$-$ 128 \sim 127	RW	Servo Compensation

^{** 2} Byte Variable Byte Order: (Little Endian) Most significant byte is stored int the higher address.
[Example]: e(Position Kp) Address is 30~31. To store 0x1234(4460), store the least significant first Address(30)= 0x34, and most significant digit last Address(31)=0x12

▶ Max, PMW, Dead Zone

- PWM is the value representing engergy input to the Servo. When the energy is increased, servo torque or speed increases.
- Max. PWM: Limits maximum PWM, In other words, limits the maximum energy supplied to the Servo. Energy use is optimized by limiting the maximum torque or speed of the servo.
- Dead Zone: Servo moves to reach the exact Goal Position. When the difference (Error) between the current position and the goal position becomes 0, the force drops to 0 and the servo stops.Dead Zone provides flexibility to the servo operation by increasing the range where the force drops to 0.If the difference (Error) is less than the Dead Zone, servo assumes it has reached the goal position and stops.
- * "What does operational flexibility" mean? In the graph below, green line is the PWM level without the Max. PWM and Dead Zone set. The yellow line is the PWM level with the Max.PWM and the Dead Zone set. The yellow line shows the PWM dropping to 0 within the Dead Zone even though Goal Position has not been reached. Looking at the right side of the graph, even though the green line is above (larger) than the Max.PWM, actual PWM value (yellow line) is within the Max.PWM.
- * Setting the Dead Zone too large will increase the discontinuous PWM section and lead to decreased controllability. Recommended Dead Zone value is below 10.

^{*} Intel & Alpha Processesors use Little Endian, whereas most of the RISC Processers & Mortorola Processors use Big Endian.

Volatile Register(RAM Register) MAP

Volatile Memory has direct affect on the operation of the Servo and reverts to default (EEP Register) value when the Servo is reboot even though RAM register value has been changed to change the servo operating parameters. Read/Write has to be performed to RAM Register value to operate the Servo, change the operating parameters or to check servo status.

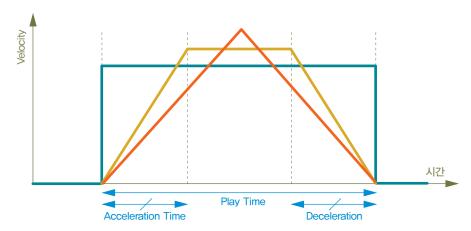
ADDDECC	2 T	Didaa	Valid Dense	DW	Description
ADDRESS	S Type	Bytes	Valid Range	RW	Description
0	ID	1	0 x $00\sim0$ xFD	RW	Servo ID(0xFE: Can be used as Broadcasting ID, ID not assignable)
1	ACK Policy	1	0 x $00 \sim 0$ x 2	RW	Refer to Pg 33
2	Alarm LED Policy	1	0 x $00\sim0$ x 7 F	RW	Activates alarm LED according to Policy
3	Torque Policy	1	0x00 ~ 0x7F	RW	Releases Torque according to Plolicy
4	Reserved	1	_	_	Reserved
5	Max. Temperature	1	0 x $00\sim0$ xFE	RW	Maximum allowed temp(0xDF:85°C)
6	Min. Voltage	1	0 x $00\sim0$ xFE	RW	Minimum allowed voltage(0x5B: 6,714VDC
7	Max. Voltage	1	0 x $00\sim0$ xFE	RW	Maximum allowed voltage(0x89:10VDC)
8	Acceleration Ratio	1	0 x 0 0 \sim 0x 3 2 (50)	RW	Ratio of time to reach goal position to acceleration or decceleration
9	Max. Acceleration	1	0 x $00\sim0$ xFE	RW	Max acceleration time, 11,2ms interval Acceleration(0x2D: 504ms)
10	Dead Zone	1	0 x $00\sim0$ xFE	RW	Outside control range
11	Saturator Offset	1	0 x $00\sim0$ xFE	RW	Refer to Pg 36
12	Saturator Slope	2	0x0000 \sim 0x7FFF	RW	Refer to Pg 36
14	PWM Offset	1	−128 ~ 127	RW	PWM Offset value Refer to Pg 37
15	Min. PWM	1	0 x $00\sim0$ xFE	RW	Set minimum PWM value Refer to Pg 37
16	Max. PWM	2	0x0000 \sim 0x03FF	RW	Set maximum PWM value Refer to Pg 37
18	Overload PWM Threshold	2	0x0000 \sim 0x7FFE	RW	Set PWM Overload treshold range Refer to Pg 34
20	Min. Position	2	0x0000 ~ 0x03FF	RW	Minimum position value(0~1023)
22	Max. Position	2	0x0000 ~ 0x03FF	RW	Maximum position value (0~1023)
24	Position Kp	2	0x0000 ~ 0x7FFF	RW	Proportional Gain
26	Position Kd	2	0x0000 ~ 0x7FFF	RW	Derivative Gain
28	Position Ki	2	0x0000 \sim 0x7FFF	RW	Integral Gain
30	Position Feedforward 1st Gain	2	0x0000 \sim 0x7FFF	RW	Refer to Pg 35
32	Position Feedforward 2nd Gain	2	0x0000 ~ 0x7FFF	RW	Refer to Pg 35
34	Reserved	2	_	_	Reserved
36	Reserved	2	_	_	Reserved
38	LED Blink Period	1	0 x 0 0 \sim 0xFE	RW	Alarm LED blink period according to Policy 11,2ms/Tick, 0x2D: 504ms

ADDRESS	Type	Bytes	Valid Range	RW	Description
39	ADC Fault Detection Period	1	0 x $00\sim0$ xFE	RW	Temp/Voltage error check interval 11,2ms/Tick, 0x2D: 504ms
40	Packet Garbage Detection Period	1	0 x $00\sim0$ xFE	RW	Packet Error check interval, 11,2ms/Tick, 0x12: 201ms
41	Stop Detection Period	1	0 x0000 \sim 0x7FFF	RW	Stop detection check interval, 11,2ms/Tick, 0x1B: 302ms
42	Overload Detection Period	1	0 x $00\sim0$ xFE	RW	Overload check interval, 11,2ms/Tick, 0x96: 1,68s
43	Stop Threshold	1	0 x $00\sim0$ xFE	RW	Stop Threshold
44	Inposition Margin	1	0 x $00\sim0$ xFE	RW	Offset Threshold
45	Reserved	1	_	_	Reserved
46	Reserved	1	_	_	Reserved
47	Calibration Difference	1	−128 ~ 127	RW	Servo compersation
48	Status Error	1	0x00 ~ 0x7F	RW	Refer to Pg 39
49	Status Detail	1	0x00 ~ 0x7F	RW	Refer to Pg 39
50	Reserved	1	_	_	Reserved
51	Reserved	2	_	_	Reserved
52	Torque Control	1	MASK: 0x60	RW	Torque enable states (Refer to Pg 28)
53	LED Control	1	0 x $00 \sim 0$ x 07	RW	0x01:Green, 0x02:Blue, 0x04:Red
54	Voltage	2	0 x $00\sim0$ xFE	RO	Input voltage Raw Data, 8Bit (Refer to detail in Pg 31)
55	Temperature	2	0 x $00\sim0$ xFE	RO	Current temp Raw Data, 8Bit (Refer to detail in Pg 31)
56	Current Control Mode	2	0 ~ 1	RO	0 : Position Control, 1 : Turn / Velocity Control
57	Tick	2	0 x $00\sim0$ xFF	RO	11,2ms/Tick
58	Calibrated Position	2	_	RO	Calbrated current position Raw Data 10Bit(0~1023)
60	Absolute Position	2	_	RO	Uncalibrated absolute position Raw Data
62	Differential Position	2	_	RO	Position change/11,2ms
64	PWM	2	_	RO	Torque Raw Data
66	Reserved	2	_	_	Reserved
68	Absolute Goal Position	2	_	RO	Uncalibrated goal position Raw Data
70	Absolute Desired Trajectory Position	2	_	RO	Current intermediate goal position in trajectory
72	Desired Velocity	1	_	RO	Desired speed based on speed profile Raw Data

Register Detail

NO	Type	Bytes	EEP ADDR	RAM ADDR	RW	Description
1	Model No1	1	0	_		
2	Model No2	1	1	_	- RO	Servo Model Name
3	Version1	1	2	_		Firmware Version
4	Version2	1	3	_	- RO	(* for DRS-0201, Model No1 is 0x02)
5	Baud Rate	1	4	_	RW	Default Baud Rate is 115,200bps • 0x02 : 666,666bps • 0x03 : 500,000bps • 0x04 : 400,000bps • 0x07 : 250,000bps • 0x09 : 200,000bps • 0x10 : 115,200bps • 0x22 : 57,600bps **Baud Rate error within 3%
6	Reserved	1	5	_	_	Reserved
7	ID	1	6	0	RW	 Servo ID, Error when same ID exists within the same network. Range 0 ~ 253 * pID up to 254 Servo ID maximum 253
8	ACK Policy	1	7	1	RW	Sets ACK packet reply policy when Request packet received 0: No reply 1: Only reply to Read CMD 2: Reply to all Request Packet When CMD is STAT, ACK packe will be sent regardless of r(ACK Policy) When pID(Boradcast pID)is 254 no reply (Exception when CMD is STAT)
9	Alarm LED Policy	1	8	2	RW	Sets Alarm LED policy when error, r(LED Policy) & r(Status Error) TRUE > LED blink LED blink period set by r(LED Blink Period) When error LED blink > Ignore r(LED Control) value Resolve r(Status Error) Error to make r(LED Control) function normally
10	Torque Policy	1	9	3	RW	r(Servo Policy) & r(Status Error) TRUE > Torque release(Torque Off) When Torque released, by errorTorque On not possible regardless of value in r(Torque Control) Servo does not automatically revert to Torque On even after r(Status Error) has been resolved Enable Toque On using r(Torque Control) after r(Status Error) has been resolved
11	Reserved	1	10	4	_	Reserved
12	Max, Temperature	1	11	5	RW	Maximum operational temperature • When r(Temperature) is greater than r(Max, Temperature) r(Slatus Error) "Exceed Temperature Limit" activated
13	Min. Voltage	1	12	6	RW	Minimum operational voltage • When Servo input voltage r(Vollage) is below r(Min, Voltage), r(Status Error) "Exceed Voltage Limit" activated • Voltage = 0.074 X ADC
14	Max. Voltage	1	13	7	RW	Maximum operational voltage • When Servo input voltage r(Voltage) is greather than r(Max, Voltage), r(Status Error) "Exceed Voltage Limit" activated • Voltage = 0.074 X ADC

NO	구분	Bytes	EEP ADDR	RAM ADDR	RW	Description
15	Acceleration Ratio	1	14	8	RW	Acceleration ratio regarding velocity Profile Ratio of operation time of Motion command (LJOG, S_JOG), % Acceleration ratio is same as decceleration ratio Maximum r(Acceleration Ratio) value is 50 Ex) When operating time is 100ms and r(Acceleration Ratio) is 20: Acceleration time is 100 X 0.2 = 20ms When r(Acceleration Ratio)is 0, speed profile is rectangle When r(Acceleration Ratio) is below 50, velocity profile is triangle
16	Max, Acceleration Time	1	15	9	RW	Maximum acceleration time(1:11,2ms) • When maximum acceleration time r(Max, Acceleration Time) is 254 = 2,844sec ** When r(Max, Acceleration Time) is 0 velocity profile is rectangle
17	Dead Zone	1	16	10	RW	Outside control range Dead Zone only funtions within position control
18	Saturatior Offset	1	17	11	RW	Select Offset at Saturator curve Not applicapable in nfinite Turn (continuous turn)
19	Saturator Slope	2	18	12	RW	Saturator does not work when r(Staturation Slop)=0 Actual Saturator Slop = r(Saturator Slop) / 256 Not applicapable infinite Turn Mode (continuous turn)
20	PWM Offset	1	20	14	RW	PWM Offset value • PWM increases by r(PWM Offset) amount * When PWM is at maximum value, Servo at current load outputs maximum Torque and speed * When PWM is 0, Servo stopped * Maximum PWM value 1023 * Not applicapable innfinite Turn(continuous turn)
21	Min. PWM	1	21	15	RW	Minimum PWM = Sets Minimum Torque * When PWM is at maximum value, Servo at current load outputs maximum Torque and speed * When PWM is 0, Servo stopped * Maximum PWM value 1023
22	Max, PWM	2	22	16	RW	Maximum PWM = Sets Maximum Torque * Smaler this value, Maximum Servo Torque decreases * When PWM is at maximum value, Servo at current load outputs maximum Torque and speed * When PWM is 0, Servo stopped * Maximum PWM value 1023
23	Overload PWM Threshold	2	24	18	RW	Sets overload activation point • External force divided into 0~1023 steps, Overload error when force > r(Overload PWM Threshold) is exerted for period longer than r(Overload Detection Period) • Not activated when This value is > 1023
24	Min. Position	2	26	20	RW	Minimum operational angle When requested position angle is less than r(Min, Position), "Exceed Allowed POT Limit" activated, Actual operation is limited to r(Min, Position)
25	Max, Position	2	28	22	RW	Maximum operational angle When requested position angle is greater than r(Max, Position), "Exceed Allowed POT Limit" activated, Actual operation is limited to r(Max, Position)


NO	Туре	Bytes	EEP ADDR	RAM ADDR	RW	Description
26	Position Kp	2	30	24	RW	Proportional Gain
27	Position Kd	2	32	26	RW	Derivative Gain
28	Position Ki	2	34	28	RW	Integral Gain
29	Position Feedforward 1st Gain	2	36	30	RW	Refer to Pg 35
30	Position Feedforward 2nd Gain	2	38	32	RW	Refer to Pg 35
31	Reserved	2	40	34	_	Reserved
32	Reserved	2	42	36	_	Reserved
33	LED Blink Period	1	44	38	RW	Alarm LED blink period according to policy 11,2ms
34	ADC Fault Check Period	1	45	39	RW	Temp/Voltage error check interval 1 = 11,2ms Error activated if Temp/V error lasts longer than the check interval
35	Packet Garbage Check Period	1	46	40	RW	Incomplete packet error check interval 1 = 11,2ms Incomplete packet is deleted if it reamains longer than the error check interval
36	Stop Detection Period	1	47	41	RW	Time limit to determine if the servo has stopped • 1 = 11,2ms • Servo confirmed Stopped if stoppage lasts past set time limit
37	Overload Detection Period	1	48	42	RW	Overload error check interval
38	Stop Threshold	1	49	43	RW	When position change is less than r(Stop Threshold), Servo seen as having stopped
39	Inposition Margin	1	50	44	RW	Standard value to determine if goal position reached. • If deviation from goal position is less than r(Inposition Margin) recognized as goal position reached
40	Reserved	1	51	45	_	Reserved
41	Reserved	2	52	46	_	Reserved
42	Calibration Difference	1	53	47	RW	Used to calibrate Newtral point(POS, : 512) Absolute position = Calibrated position + r(Calibration Difference) r(Calibration Difference) = Absolute position - Newtral point(512)
43	Status Error	1	_	48	RW	Shows 7 different status Refer to Pg 39
44	Status Detail	1	_	49	RW	Shows 7 different status Refer to Pg 39
45	Reserved	1	_	50	_	Reserved
46	Reserved	1	_	51	_	Reserved
47	Torque Control	1	_	52	RW	Torque enable states 0x40: Break On, 0x60: Torque On 0x00: Torque Free When Torque enabled, Mode depends on r(Current Control Mode) before Torque On, ** r(Current Control Mode) defaults to Position Control(0) when servo powered on ** Torque On: Operation possible state ** Break On: Operation command (I_JOG, S_JOG) not possible ** Torque Free: Similar to Break On, Joints manually movable,

NO	Type	Bytes	EEP ADDR	RAM ADDR	RW	Description
48	LED Control	1	_	53	RW	Servo LED control • When corresponding Bit value 1 = On, 0 = Off (0x01: Green, 0x02: Blue, 0x04: Red) * When alarm LED activated by r(Status Error) and r(Alarm LED Policy). r(Led Control) Write value ignored
49	Voltage	1	_	54	RO	Input Voltage = 0.074 X ADC
50	Temperature	1	_	55	RO	Internal Servo Temperature
51	Current Control Mode	1	_	56	RO	Current time Servo control mode • I_JOG / S_JOG CMD Packet used to change control mode • When Torque On using r(Torque Control), Servo refers to r(Current Control Mode) 0 : Position Control 1 : Turn/Velocity Control
52	Tick	1	_	57	RO	• Servo operating time, Max setting 2,8672sec • 0 \sim 255, 1 = 11,2ms
53	Calibrated Position	2	-	56	RO	Calibrated position Raw Data Refer to r(Calibration Difference)
54	Absolute Position	2	_	58	RO	Absolute position Raw Data Angle = r(Absolute Position) X 0,325
55	Differential Position	2	_	60	RO	Shows speed measurement, interval 11,2ms r(Diff Position)1 = 29,09deg/sec
56	PWM	2	_	62	RO	Current Torque, 1023 = Max Torque
57	Reserved	2	_	64	_	Reserved
58	Absolute Goal Position	2	_	66	RO	Absolute Goal position Raw Data User selected Goal Position Uncalibrated value
59	Absolute Desired Trajectory Position	2	_	68	RO	Current Intermediate goal position based on velocity Profile, Raw Data r(Absolute Desired Trajectory Position) is current goal position
60	Desired Velocity	2	_	70	RO	Current intermediate goal speed based on velocity Profile, Raw Data r(Desired Velocity) velocity required at current time.

► Acceleration Ratio(RAM Register Address 8)

Acceleration Ratio is controlled by changing the parameter value and any change in the acceleration ratio is applied to the decceleration ratio by exactly the same amount. The default Acceleration Ratio parameter shows a trapezoidal type speed profile.

** Increasing the acceleration ratio will lead to sudden change in speed accompanied by vibration as shows in blue rectangle graph. Decreasing the ratio will show slow increase in speed with smooth movement as in green triangle graph.

► Maximum Acceleration Time(RAM Register Address 9)

Controls maximum acceleration time, 1 is equaivalent to 11.2ms.

Maximum acceleration time r(Maximum Acceleration Time) 254 is equivalent to 2.844sec.

* When r(Maximum Acceleration Time) is 0, velocity Profile is rectangle.

► Torque Control(RAM Register Address 52)

- Controls Torque eanable states
- 0x40 : Break On
- 0x60 : Torque On
- 0x00 : Torque Free
- When the torque is enabled, it's mode depends on "Current Control Mode". If the servo was on Position Control Mode when Torque ON is enabled, it will remain in that mode.
- * r(Current Control Mode) defaults to Position Control(0) when servo is first powered on
- * Control commands will only function when Torque On is enabled (I_JOG, S_JOG)
- * Control commands will not function when Break On is enabled (I_JOG, S_JOG)
- * Joints can be manually manipulated when Torque Free is enabled

► LED Control(RAM Address 53)

Controls the LEDs.

- When Bit value below is 1 = On, 0 = Off
- 0x01 : Green

• 0x02 : Blue

0x04 : Red

Whe Alarm LED is activated by the r(Status Error)or r(Alarm LED Policy), value in r(LED Control) is ignored.

► Voltage(RAM Register Address 54)

Shows the ADC(Analog Digital Conversion) value of the input voltage in raw data. The conversion formula to actual voltage is shown below. Refer to the voltage ADC conversion table in page 49. Voltage = 0,074 X ADC

► Temperature(RAM Register Address 55)

Shows the ADC(Analog Digital Conversion) value of the current temperature in raw data. Refer to temperature ADC conversion table in page 51.

► Current Control Mode(RAM Register Address 56)

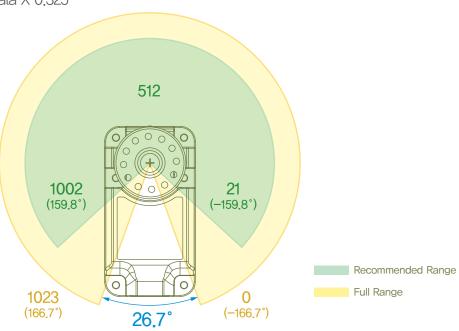
Shows the current control mode of the servo, I_JOG / S_JOG CMD Packet is used to change the mode.

- When r(Torque Control) is used to change the servo state to Torque On, servo first refers to r(Current Control Mode). For example, dafault mode of the servo when it is first powered up is "Position Control Mode" and when the servo state is changed to Torque On, mode remains at "Position Control Mode". Servo has to be at Off state to change the control mode to "Turn/Velocity Control Mode". With Torque Off, use I_JOG / S_JOG CMD to switch to "Turn/Velocity Control Mode". After the switch, use r(Torque Control) to to turn Torque On and the mode will have switched to "Turn/Velocity Control Mode".
- 0 : Position Control
- 1: Turn / Velocity Control
- ** Turn / Velocity Control: Infinite Turn(Continuous Rotation) Mode.

▶ Tick(RAM Register Address 57)

Shows actual length of the servo tick time. Tick time can be changed from $0\sim255$, tick time reverts back to 0 after 255. 1 is equivalent to 11.2ms, 255 is equivalent to 2.856sec.

Calibrated Position(RAM Register Address 58)


Shows Calibrated Position in raw data, The relationship between Calibrated Position and Absolute Position is as follows,

- Calibrated Position = Absolute Position r(Calibration Difference, 47 Address)
- Degree = Position Raw Data X 0,325

► Absolute Position(RAM Register Address 60)

Shows uncalibrated current position in raw data, Relationshop between Raw Data and actual degree is as follows.

Degree = Position Raw Data X 0,325

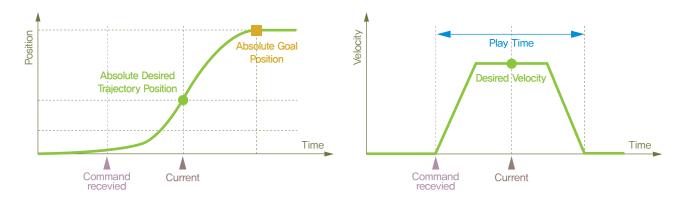
▶ Diff Position(RAM Register Address 60)

Shows velocity measurement, velocity is measured in 11.2ms intervals.

 \times r(Diff Position) 1 = 29.09deg/sec

► PWM(RAM Register Address 62)

Shows current Torque in raw data, maximum value is 1023.


► Absolute Goal Position(RAM Register Address 66)

Shows uncalibrated goal position in raw data.

► Absolute Desired Trajectory Position(RAM Register Address 68)

• Uncalibrated current goal position in Raw Data. To arrive at user designated absolute goal position, servo automatically plans out the trajectory to the goal position using the velocity profile. Absolute Desired Trajectory Position is a "current" goal position or intermediate goal position to be reached on the way to final goal position.

Refer to the diagram to see the relationship between Absolute Goal Position and the Absolute Desired Trajectory Position.

► ACK Policy(RAM Register Address 1)

Sets ACK Packet reply policy when Request Packet is received.

- 0 : No reply to any Request Packet
- 1: Only reply to Read CMD
- 2: Reply to all Request Packet
- * When the CMD is "STAT" ACK Packet will be sent regardless of r(ACK Policy).
- ** There is no reply when the pID in Request Packet is 254(Broadcast pID) with an exception of "STAT" CMD in which case reply will be sent.

Alarm LED Policy(RAM Register Address 2)

Sets Alarm LED policy when Error is detected.

- When (r(LED Policy) & r(Status Error)) is TRUE, Alarm LED starts to blink, Alarm LED blink period is set by r(LED Blink Period).
- When (r(LED Policy) & r(Status Error))is TRUE, Any values written to r(LED Control) will be ignored to prevent confusion with Error state.
- Error status r(Status Error) must be resloved first for r(LED Control) to function properly.
- * 'A&B': Bit And Operator, 1(True) only whe A and B are both (True)

► Torque Policy(RAM Register Address 3)

Sets Torque Off policy when Error is detected.

When (r(Servo Policy) & r(Status Error))is TRUE, Torque is released (Torque Off). Under the Error condition, servo will not return to Torque ON state regardless of the value written to r(Torque Control).

33

- Servo does not automatically revert to Torque On state even after r(Status Error)has been resolved. Enable Torque On using r(Torque Control) after r(Status Error) has been resloved.
- * 'A&B': Bit And Operator, 1(True) only whe A and B are both (True)

► Maximum Temperature(RAM Register Address 5)

Maximum operational temperature shown in Raw Data,

- When internal servo temperature r(Temperature) exceeds r(Max Temperature), "Exceeded Temperature Limit" in r(Status Error) becomes active.
- Resulting Alarm LED and Torque status can be changed using r(LED Policy), r(Servo Policy).
- Default value is 0xDF(approximatley 85°C). Refer to conversion chart (Pg 51) for actual temerature.
- * 'A&B': 1(True) only whe A and B are both (True)

Minimum Voltage(RAM Register Address 6)

Mininmum input voltage shown in Raw Data.

- When servo input voltage r(Voltage) is below r(Min Voltage), "Exceeded Voltage Limit" in r(Status Error) becomes active. Resulting Alarm LED and Torque status can be changed using r(LED Policy), r(Servo Policy).
- Default value is 0x5B(approximately 6.74V). Refer to conversion chart (Pg 49) for actual voltage.

► Maximum Voltage(RAM Register의 Address 7)

Maximum input voltage shown in Raw Data.

- When servo input voltage r(Voltage) is exceeds r(Max Voltage), "Exceeded Voltage Limit" in r(Status Error) becomes active. Resulting Alarm LED and Torque status can be changed using r(LED Policy), r(Servo Policy).
- Default value is 0x89(approximately 10,14V). Refer to conversion chart (Pg 49) for actual voltage.

Overload PWM Threshold(RAM Register Address 18)

Sets overload activation point. The overload point from external force can set from 0~1023.

- Overload activates when external force is greater them r(Overload PWM Threshold).
- Overload does not activate when the given value is greater than 1023

▶ Minimum Position(RAM Register Address 20)

Minimum operational angle in Raw Data,

- When requested position angle is less than r(Min Position), "Exceed Allowed POT Limit" in r(Min Position) becomes active and the operation is limited to r(Min Position).
- Default value is 0x15(approximately -159.8°). Refer to conversi on charge in (Pg 53) for actual angle.

► Maximum Position(RAM Register Address 22)

Maximum operational angle in Raw Data.

- When requested position angle is greater than r(Max Position), "Exceed Allowed POT Limit" in r(Max Position) becomes active and the operation is limited to r(Max Position).
- Default value is 0x3EA(approximately 159,8°). Refer to conversion chart in (Pg 53) for actual angle.

▶ Position Kp(RAM Register Address 24)

Shows the Proportional Gain. Increasing the Position Kp increases, the response time but over response (vibration, overshoot) will result if the increase is too large.

▶ Position Kd(RAM Register Address 26)

Shows the Derivative Gain. Increasing the Position Kd will suppress the over response (vibration, overshoot) from Position Kp but unstability may result if the increase is too large.

▶ Position Ki(RAM Register Address 28)

Shows the Intergral Gain. Applied to correct small offset in Steady State. May result in response lag if the increase is too large.

▶ Position Feedforward Kd(RAM Register Address 30)

Shows Position Feedforward 1st Gain, Applied to increase Servo response time,

▶ Position Feedforward Kdd(RAM Register Address 32)

Shows Position Feedforward 2nd Gain, applied to increase Servo response time,

► LED Blink Period(RAM Register Address 38)

Shows the Alarm LED blink period set by the LED Policy when error occurs, 1 is equivalent to 11,2ms, Default value is 0x2D(Approximately 504ms).

▶ ADC Fault Check Period(RAM Register Address 39)

Temperature / Input voltage error check interval, 1 is equivalent to 11,2ms. Error activated if the Temerature / Input voltage error lasts longer than the check interval.

Default value is 0x2D(Approximately 504ms).

▶ Packet Garbage Check Period(RAM Register Address 40)

Incomplete Packet error check interval, 1 is equivalent to 11,2ms. Incomplete Packet is deleted if it remains longer than the check interval. Default value is 0x12(Approximately 201ms)

► Stop Detection Period(RAM Register Address 41)

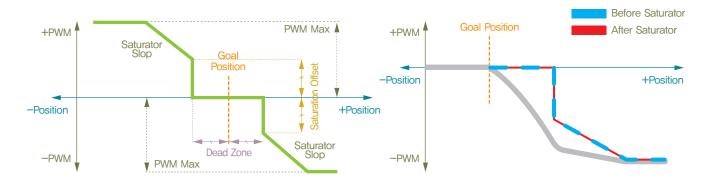
Set time limit by which the servo stoppage is measured to determine if it has stopped, 1 is equivalent to 11,ms. If the servo stoppage lasts beyond the time limit, it is determined to be stopped. Default value is 0x1B (Approximately 302ms)

Overload Detection Period(RAM Register Address 42)

Set time limit by which the servo overload is measured to determine if the overload has occured. If the overload period lasts beyond the time limit, it is determined to be overloaded. Default value is 0x96 (Approximately 1,68s)

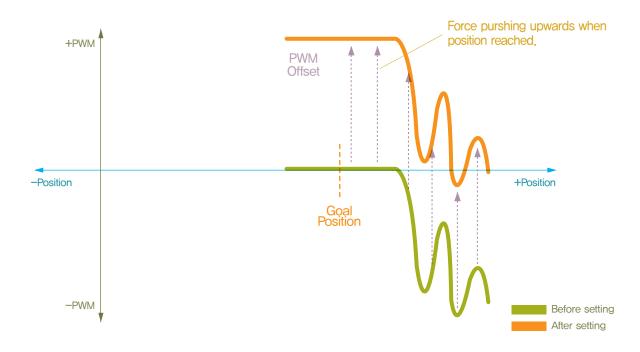
▶ Stop Threshold(RAM Register Address 43)

The servo is seen as not moving (stopped) when the position movement of the servo is less than the r(Stop Threshold). The servo is determined to be stopped if the stoppage lasts longer than the r(Stop Detection Period).


▶ Inposition Margin(RAM Register Address 44)

Standard value to determine if the goal position has been reached.

Goal position is judged to have been reached if the deviation is less than r(Inposition Margin).

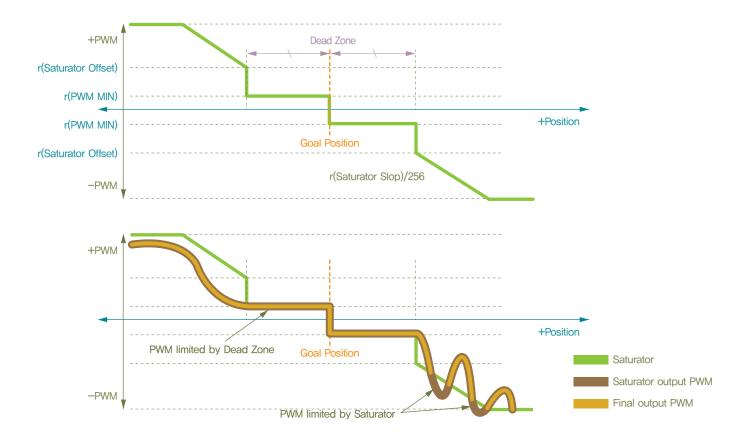

► Saturator Offset, Saturator Slope(RAM Register Address 11, 12)

Saturation Offset and Saturation Slope work in similar manner to the PWM. However, by controlling the limit per given section, accurate Saturator can be designed to provide flexible and elastic response to the external force. The garph below shows the PWM with several settings. The thick grey line show the PWM without the Saturator Offset and Slope settings. The red line shows the actual PWM output with the Saturator Offset & Slope set. The blue dotted line shows the boundary of the force restrained by the Saturator. The restrain by the Saturator on PWM value increases when near the goal position and decreases when further away from the goal position. The effect on PWM is smiliar to having a spring installed near the goal position, resulting in low strength near the goal position and strength increasing with distance. Assuming the servo is stopped at the goal position, Saturator allows flexible response to external force, and provides assistance when trying to hold delicate object.

► PWM Offset(RAM Address 14)

When the 0 point of the PWM is moved, PWM will increase output by the amount of the Offset. This output could be used to act as a compensator in a system where load is on one side (Ex: Gravity). By moving the 0 point, constant force directed towards 0 pont can applied.

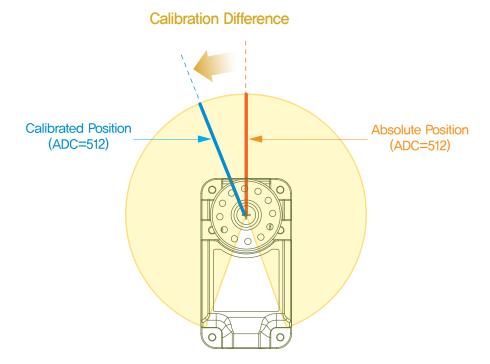
► Minimum PWM(RAM Register Address 15)


PWM output value does not fall below the r(Min, PWM). Minimum PWM is used when there is jerky movement due to tight fitting or friction in the servo application system but assigning Minimum PWM that is too large may lead to unstable system.

► Maximum PWM(RAM Register Address 16)

PWM output value does not exceed r(Max, PWM). Battery life could be increased by limiting the Maximum PWM but it will also decrease the maximum servo torque.

▶ Relationship between Saturator & PWM


PWM results in servo output. As seen in the graph below, there are several parameters controlling the servo output. These parameters can be manipulated to build optimum servo system. To see the characteristics of each parameter, refer to the detailed explanation section in the manual.

► Calibration Difference(RAM Register Address 47)

Used to calibrate newtral point(standard). Used to make adjustments to compensate for assembly variations when servos are used to build a system. Calibrated Difference is calculated by following formula

Calibrated Position= Absolute Position – Calibration Difference

Status

REG (Status Error)

Bits 7 6 5 4 3 2 1 0

Bits	Value	Comment
0	0X01	Exceed Input Voltage limit
1	0X02	Exceed allowed POT limit
2	0X04	Exceed Temperature limit
3	0X08	Invalid Packet
4	0X10	Overload detected
5	0X20	Driver fault detected
6	0X40	EEP REG distorted
7	0X80	reserved

Ж	LED	Policy.	Servo	Policy:	Same	as	above

- ** LED Policy: When Check bit error occurs, LED(RED) blinks consistently
- ※ Servo Policy: When Check bit error occurs, Torque is released to Freerun state

REG (Status Error)								
7	6	5	4	3	2	1	\cap	

Bits	Value	Comment
0	0X01	Moving flag
1	0X02	Inposition flag
2	0X04	Checksum Error
3	0X08	Unknown Command
4	0X10	Exceed REG range
5	0X20	Garbage detected
6	0X40	MOTOR_ON flag
7	0X80	reserved

- When Invalid Packet occurs, detailed information is record in Status Detail Register
- ** Moving/Inposition/MOTOR_ON flag are Read only.
- * MOTOR_ON : Torque ON
- Yellow lines above points to error detail when Status Error shows Invalid Packet(0x08).
- Invalid Packet can be divided into 5 different causes, 4 shows in the Status Detail and other.
- Portions of Status Detail are Read only but can be Written to by the Protocol.
 Read only values are just ignored not actually Written to.

5. Command Set

To control the Servo, CMD is sent to the servo from the Controller in Binary format. Our servos are controlled by 9 different CMDs. Once the Servo receives Request Packet with included CMD, Servo performs requested operation and returns the result to the Controller by ACK Packet.

5-1. [To Servo Module] - Request Packet

Type	CMD	Explanation
EEP_WRITE	0x01	Write Length number of values to EEP Register Address
EEP_READ	0x02	Request Length number of values from EEP Register AddressMay not reply, depending on r(ACK Policy)
RAM_WRITE	0x03	Write Length number of values to RAM Register Address
RAM_READ	0x04	Request Lenght number of values from RAM Register AddressMay not reply, depending on r(ACK Policy)
I_JOG	0x05	 Able to send JOG command to maximum 43 servos. I_JOG can set the operation timing of individual Servo I_JOG Refer to Pg 48 for details
S_JOG	0x06	 Able to send JOG command to maximum 53 servos. S_JOG All the Servos operate simultaneously at same time S_JOG Refer to Pg 48 for details
STAT	0x07	Status Error, Status Detail requestAlways send reply reagardless of r(ACK Policy)
ROLLBACK	0x08	 Change all EEP Regsters to Factory Default value Apply changes after power reset ID, and Baud Rate maybe exempt from Factory Default depending on ID Skip and Baud Skip setting.
REBOOT	0x09	Request Reboot

5-2. [To Controller(ACK)] - ACK Packet

Type	CMD	Meaning
EEP_WRITE	0x41	CMD(0x01) Reply PacketDefault is no reply, Reply possible by changing r(ACK Policy) setting
EEP_READ	0x42	Repy with "n" number of values from EEP Register AddressMay not reply depending on r(ACK Policy) setting

Type	CMD	Explanation
RAM_WRITE	0x43	CMD(0x03) Reply PacketDefault is no reply, reply possible by changing r(ACK Policy) setting
RAM_READ	0x44	CMD(0x04) Reply PacketMay not reply depending on r(ACK Policy) setting.
I_JOG	0x45	CMD(0x05) Reply PacketDefault is no reply, reply possible by changing r(ACK Policy) setting
S_JOG	0x46	CMD(0x06) Reply PacketDefault is no reply, reply possible by changing r(ACK Policy) setting
STAT	0x47	r(Status Error, Status Detail) Reply, Always Reply regadless of r(Ack Policy)
ROLLBACK	0x48	CMD(0x08) Reply PacketDefault is no reply, reply possible by changing r(ACK Policy) setting
REBOOT	0x49	CMD(0x09) Reply PacketDefault is no reply, reply possible by changing r(ACK Policy) setting

^{*} ACK option changeable by using r(ACK Policy)

5-3. CMD(Command) Detailed Explanation

CMD	Explanation
EEP_READ	Request to read Length # of values from EEG Register AddressOptional Data length is 2
RAM_READ	 Request to read Length # of values from RAM Register Address Optional Data length is 2
EEP_WRITE	 Request to write Length # of values to EEG Register Address Optional Data length is Address & Length 1 Byte each + Length Byte
RAM_WRITE	 Request to write Length # of values to RAM Register Address Optional Data length is Address & Length 1 Byte each + Length Byte
I_JOG	 Send instructions to multiple servos simultaneously, able to set position/time to each servo independently. Able to set goal position time arrival time to each independently I_Jog requires 5Bytes of data for each servo. Optional Data length of 50Bytes required if sending instructions to 10 servos simultaneously
S_JOG	 Able to send instructions to multiple servos simultaneousy, All servos have same operational timing. All servos arrive at goal position at same time. S_Jog rquires 1byte for Playtime and 4Bytes for each servo. Optional Data length of 41Bytes required if sending instructions to 10 servos simultaneously
STAT	Request Servo Status r(Status Error, Status Detail) STAT Packet always receive reply
ROLLBACK	Change all values in EEP_Register to Factory default value,ID and Baud Rate maybe exempted from Factory Default by using ID Skip, Baud Skip Byte
REBOOT	Reboot Servo

^{**} ACK Packet CMD is Request Packet CMD + 0x40

^{*} Last 2 Bytes of the ACK Packet includes r(Status Error, Status Detail)

6. Command Examples

5-1. EEP_READ

Request 4 Bytes of information from EEP Register 0x1E Address of Servo ID(253), 4 Bytes from EEP Register 0x1E Address are e(Position Kp)and e(Position Kd).

	Hea	der	Packet Size	plD	CMD
EEP_READ	0	1	2	3	4
	0xFF	0xFF	9	Servo ID	0x02
Example1	0xFF	0xFF	0x09(9)	0xFD	0x02
	Check	Sum1	Check Sum2	Da	ata
EEP_READ		5	6	7	8
	(Refer to Check	ksum formula)	Data[0] (Address)	Data[1] (Length)
Example1	0XEC		0X12	0x1E	0x04

EEP READ

Request to read Length # of values from EEP Register Address. Data length is 2Bytes (Address 1Byte + Length 1Byte)

Packet Size	plD	EEP READ CMD
7(Standad Size)+2(Data length)	Servo ID 0xFD(253)	0x02 (Refer to Pg 40)

CHECKSUM1 Formula

DATA[0]

Refers to starting address of EEP Register being Read, 0x1E(30) in the example is starting address of Position Kp.

DATA[1]

Data[1], Refers to number of Bytes to be READ from the starting address, 0x04 in the example means 4Bytes will be read. In other words, 4Bytes from Position Kp starting address will be read, Position Kp(2Bytes variable) and Position Kd(2Bytes variable) will be read.

ACK Packet

EEP READ	Hea	der	Packet Size	plD	CMD	Check Sum1	Check Sum2
	0	1	2	3	4	5	6
ACK of Example1	0xFF	0xFF	0x0F	0xFD	0x42	0x4C	0xB2
	Data						
7	8	9	10	11	1	2 13	14
Data[0] (Address)	Data[1] (Length)	Data[2]	Data[3]	Data[4]	Dat	Data[4] (Status Erro	Data[5] r) (Status Detail)
0x1E	0x04	0xB8	0x01	0x40	0)	(1F 0x00	0x00

CMD: Request Packet CMD(0x02) + 0x40, Reply with 0x42

e(Position Kp): 440(0x1B8)Position Kd: 8000(0x1F40)

Last 2Bytes of all ACK Packet contain Status Error(1Byte) and Status Detail (1Byte)

6-2. EEP_WRITE

ID(253), e(Position Kp) / Kd(Address 0x1E=30, 4Bytes Register) Kp = 200(0x00C8), Kd = 1000(0x03E8) Write

	Head	ler	Packet Size	plD	CMD	Check Sum1	Check Sum2
EEP_WRITE	0	1	2	3	4	5	6
	0xFF (0xFF	7+(2+Length)	Servo ID	0x01	(Refer to Chec	ksum Formula)
Example1	0xFF (0xFF	0x0D(13)	0xFD	0x01	0XC8	0X36
	Data						
7	8		9	11		12	13
Data[0] (Address)	Data[(Lengt		Data[2]	Data	[3]	Data[4]	Data[5]
0x1E	0x04	4	0XC8	0X0	0	0XE8	0X03

Data[2] ~ Data[5]

Data[2], Data[3] will be changed to e(Position Kp) and Data[4], Data[5] will be changed to e(Position Kp). You must input Byte in reverse order by Little Endian rule.

* Refer to Pages 23 for Little Endian.

EEP Register

To apply changed EEP Register value, Servo has to be reboot first.

6-3. RAM_WRITE

Example 1

ID(253), r(LED Control), Address(0x35(53)) Request Green LED On.

Example 2

ID(253), r(Status Error, Status Detail), Request to Clear Address(0x30(48)) to "0".

Example 3

ID(253), r(Torque Control), Request to write 0x60 to Address(0x34(52)) for Torque On.

* Make sure to haveTorque On before (I_JOG, S_JOG) command to avoid error.

	Hea	ader	Packet Size	plD	CMD	Check Sum1	Check Sum2
RAM_WRITE	0	1	2	3	4	5	6
	0xFF	0xFF	7+(2+Length)	Servo ID	0x03	(Refer to Chec	ksum Formula)
Example1	0xFF	0xFF	0x0A(10)	0xFD	0x03	0xC0	0x3E
Example2	0xFF	0xFF	0x0B(11)	0xFD	0x03	0xC6	0x38
Example3	0xFF	0xFF	0x0A(10)	0xFD	0x03	0xA0	0x5E

Optional Data							
7	8	9	10				
Data[0] (Address)	Data[1] (Length)	Data[2]	Data[3]				
0x35	0x01	0x01	_				
0x30	0x02	0x00	0x00				
0x34	0x01	0x60	_				

6-4. RAM_READ

Example 1

ID(253), Read 1 Byte from Address 0x35(53), Addressed Register is r(LED Control)

44

RAM_READ ACK

Reply to RAM_READ(CMD 0x04)with Packet, reply CMD is 0x44, last 2Bytes of All ACK Packet contain r(Status Error) and r(Status Detail). ACK Packet reply option can be changed by r(ACK Policy)

Data[2]

0x01 is r(LED Control) value, it means Green LED is on.

Data[3]

Data[3] is Status Error: No Error, Data[4] 0x42 means Torque On and Inposition, Arrived at goal position.

	Header	Packet Size	plD	CMD	Check Sum1	Check Sum2
RAM_READ	0 1	2	3	4	5	6
	0xFF 0xF	F 7+(2+Length)	Servo ID	0x03	(Refer to Chec	ksum Formula)
Example1	0xFF 0xF	F 0x09(9)	0xFD	0x04	0xC4	0x3A
RAM_READ ACK	0xFF 0xF	F 0x0C(12)	0xFD	0x44	0xC2	0x3C
		Optional	Data			
7	8	9	10		11	
Data[0] (Address)	Data[1] (Length)	Data[2]	Data	[3]	Data[4]	_
0x35	0x01	_	_		_	_
0x35	0x01	0x01	0x0	0	0x42	_

6-5. I_JOG

Example 1

ID(253), Position Control, Position Goal 512, Green LED On, Operating Time(60:672ms)

Example 2

ID(253), Continuous Rotation, Goal Speed 320, Blue LED On, Operating Time(60: 672ms)

	Header	Packet Size	pID	CMD	Check Sum1	Check Sum2	
I_JOG	0 1	2	3	4	5	6	
	0xFF 0xFF	7+(5XI_JOG)	Servo ID	0x05	(Refer to Chec	ksum Formula)	
Example1	0xFF 0xFF	0x0C(12)	0xFD	0x05	0x32	0xCC	
Example2	0xFF 0xFF	0x0C(12)	0xFD	0x05	0x7E	0x80	
	Optional Data						
7	8	9	10		11		
		I_JOG_S	(0)				
JOG(LSB)	JOG(MSB)	SET	ID		playtime	_	
0x00	0x02	0x04	0xFC)	0x3C	_	
40	0x01	0x0A	0x0A	A	0x3C		

- Refer to Packet structure below for explanation of each Bit in I_JOG
- Able to use Structure as below for convenience
- LSB(Least Significant Bit) first for Bit value
- Example1 SET(0x04) is Position Control, Green LED On

```
typedef struct
        int
                                  iJogData
                                                            : 15;
        unsigned int
                                  uiReserved1
                                                            : 1;
                                  uiStop
                                                            : 1;
        unsigned int
        unsigned int
                                  uiMode
                                                           : 1; //0 : Position Control
                                  uiLED
                                                           : 3; //Green, Blue, Red
        unsigned int
                                  uiJoglnvalid
                                                           : 1;
        unsigned int
        unsigned int
                                  uiReserved2
                                                            : 2;
        unsigned int
                                  uclD
                                                            : 8;
        unsigned char ucJogTime_ms;
} IJOG_TAG
```

** Bit Variable size or bit field may vary depending on the compiler or compiler setting, The above example uses 16 bit variable. The structure byte alignment of the process may vary as well. The above example uses 1byte alignment as standard.

6-6. S_JOG

Example 1

ID(253), Position Control, Goal Position 512, Red LED On, Operating Time(60: 672ms)

Example 2

ID(253), Continuous Rotation, Goal Speed 704, Blue LED On, Operating Time(60: 672ms)

	Hea	der	Packet Size	plD	CMD	Check Sum1	Check Sum2
S_JOG	0	1	2	3	4	5	6
	0xFF	0xFF	7+(5XI_JOG #)	Servo ID	0x06	(Refer to Chec	ksum Formula)
Example1	0xFF	0xFF	0x0C(12)	0xFD	0x06	0x30	0xCE
Example2	0xFF	0xFF	0x0C(12)	0xFD	0x06	0xFE	0x00
			Optional D	Data			
7	8		9	1	0	11	
PLAY TIME			S_JOG_S	6(0)			
PLAT HIVE	JOG(L	_SB)	JOG(MSB)	S	ET	ID	
0x3C(60)	OxC	00	0x02	0:	×04	0xFD	
0x3C(60)	40)	0x01	Ox	«ОА	0x0A	

- Refer to Packet structure below for explanation of each Bit in S_JOG
- Able to use Structure as below for convenience
- LSB(Least Significant Bit) first for Bit value
- Example1 SET(0x04) is Position Control, Green LED On

```
typedef struct
                                 iJogData
                                                          : 15;
                                 uiReserved1
                                                          : 1;
        unsigned int
        unsigned int
                                 uiStop
                                                          : 1;
                                uiMode
                                                          : 1; //1 : Speed Control
        unsigned int
                                uiLED
                                                          : 3; //Green, Blue, Red
        unsigned int
                                uiJoglnvalid
        unsigned int
                                                         : 1;
        unsigned int
                                uiReserved2
                                                          : 2;
        unsigned int
                                 uclD
                                                          : 8;
} SJOG_TAG
```

** Bit Variable size or bit field may vary depending on the compiler or compiler setting, The above example uses 16 bit variable. The structure byte alignment of the process may vary as well. The above example uses 1byte alignment as standard.

47

▶ I_JOG, S_JOG Packet Structure

		I_JOG_	TAG			S_JO	G_TAG
Type	Informa	ation	Comments	Type	Inform	ation	Comments
1)00	Bytes	Bits	Commente	1,00	Bytes	Bits	Commente
		0	Case) JOG			0	Case) JOG
		1	Desired Goal POS			1	Desired Goal POS
		2	(Calibration applied)			2	(Calibration applied)
		3	Case) Infinite turn			3	Case) Infinite turn
		4	Desired PWM			4	Desired PWM
		5	Infinite turn Sign:			5	
		6	0X4000 MEMS Negative			6	0X4000 MEMS Negative
JOG	2	/ 		JOG	2		
		9			-	9	
		10				10	
		11				11	
		12				12	
		13				13	
		14	Sig@Infinite turn			14	Sig@Infinite turn
		15	Reserved=0			15	Reserved=0
		0	Stop flag			0	Stop flag
		1	MODE			1	MODE
		2	LED GREEN			2	LED GREEN
SET	1	3	LED BLUE	SET	1	3	LED BLUE
	•	4	LED RED	32.		4	LED RED
		5	JOG Invalid(No Action)			5	JOG Invalid(No Action)
		<u>6</u> 7	Reserved=0 Reserved=0			6 	Reserved=0 Reserved=0
ID	1	/	Valid Range: 0~0XFE	ID	1	/	Valid Range: 0~0XFE
Playtime	1		Valid Range : 0~0XFE		·		

MODE	Comments			
0	Position Control JOG			
1	Infinite turn (Continuous Rotation)			

6-7. STAT

ID(253) Resquest Status

ACK Packet Data[0] refers to Status Error and means no Error

Data[1] refers to Status Detail 0x40 Torque On

* Refer to Page 39 for detailed information on Status Error and Status Detail.

	Hea	ader	Packet Size	plD	CMD	Check Sum1	Check Sum2
STAT	0	1	2	3	4	5	6
	0xFF	0xFF	7	Servo ID	0x07	(Refer to	Pg 20)
Example2	0xFF	0xFF	0x07	0xFD	0x07	0xFC	0x02
STAT ACK	0xFF	0xFF	0x09	0xFD	0x47	0xF2	0x0C
Optio	Optional Data						
7		8					
Data[0]		Data[1]					
0x00		0x40					

6-8. ROLLBACK

0x00

ID(253) ROLLBACK(Factory Default), ID and Baud Rate excepted

0x40

ROLLBACK ACK

When r(ACK Policy) is set to "2" meaning "Always Reply" Send ACK Packet

	Hea	der	Packet Size	plD	CMD	Check Sum1	Check Sum2
ROLLBACK	0	1	2	3	4	5	6
	0xFF	0xFF	9	Servo ID	0x08	(Refer to	Pg 20)
Example1	0xFF	0xFF	0x09	0xFD	0x08	0xFC	0x02
ROLLBACK ACK	0xFF	0xFF	0x09	0xFD	0x48	0xFC	0x02

Optional Data					
7	8				
Data[0]	Data[1]				
ID Skip	Band Skip				
1	1				
00	0x40				

6-9. REBOOT

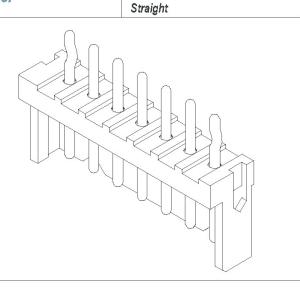
ID(254) Reboot

REBOOT ACK

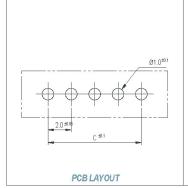
When r(ACK Policy) is set to "2" meaning "Always Reply" Send ACK Packet

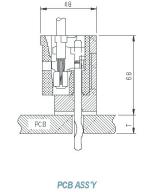
	Hea	der	Packet Size	plD	CMD	Check Sum1	Check Sum2
REBOOT	0	1	2	3	4	5	6
	0xFF	0xFF	7	Servo ID	0x09	(Refer to	Pg 20)
Example1	0xFF	0xFF	0x07	0xFD	0x09	0xF2	0x0C
REBOOT ACK	0xFF	0xFF	0x09	0xFD	0x49	0xBC	0x42

Optional Data						
7 8						
Data[0]	Data[1]					
_	_					
0x00	0x00					


Reference

2.00mm (0.079") PITCH CONNECTOR




Wire-to-Board	
Wafer	

YW200 Series

+ + + + + + + + + + + + + + + + + + + 	
20 (ATCH) 20 6 C	36
	28

Material

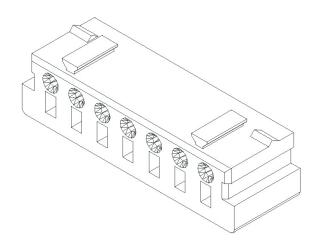
I/NO	DESCRIPTION	TITLE	MATERIAL
1	WAFER	YW200	PA66, UL 94V Grade
2	PIN		Brass, Tin plated

Available Pin

PARTS NO.	A	В	С
YW200-02	5.9	5.1	2.0
YW200-03	7.9	7.1	4.0
YW200-04	9.9	9.1	6.0
YW200-05	11.9	11.1	8.0
YW200-06	13.9	13.1	10.0
YW200-07	15.9	15.1	12.0
YW200-08	17.9	17.1	14.0
YW200-09	19.9	19.1	16.0
YW200-10	21.9	21.1	18.0
YW200-11	23.9	23.1	20.0
YW200-12	25.9	25.1	22.0
YW200-13	27.9	27.1	24.0
YW200-14	29.9	29.1	26.0
YW200-15	31.9	31.1	28.0

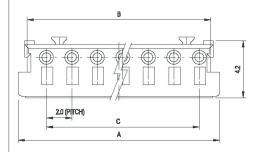
Specification

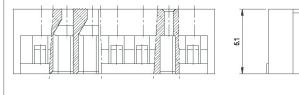
ITEM	SPEC
Voltage Rating	AC/DC 125V
Current Rating	AC/DC 3A
Operating Temperature	-25°C~+85°C
Contact Resistance	30mΩ MAX
Withstanding Voltage	AC1000V/1min
Insulation Resistance	1000MΩ MIN
Applicable Wire	-
Applicable P.C.B	1.2~1.6mm
Applicable FPC/FFC	-
Solder Height	-
Crimp Tensile Strength	-
UL FILE NO	E108706

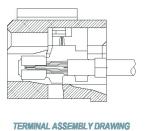

2.00mm (0.079") PITCH CONNECTOR

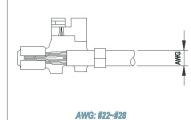
Wire-to-Board Housing

YH200 Series


Material


1	HOUSING	YH200	PA66, UL 94V Grade	
I/NO	DESCRIPTION	TITLE	MATERIAL	




Available Pin

PARTS NO.	A	В	C
YH200-02	5.8	4.4	2.0
YH200-03	7.8	6.4	4.0
YH200-04	9.8	8.4	6.0
YH200-05	11.8	10.4	8.0
YH200-06	13.8	12.4	10.0
YH200-07	15.8	14.4	12.0
YH200-08	17.8	16.4	14.0
YH200-09	19.8	18.4	16.0
YH200-10	21.8	20.4	18.0
YH200-11	23.8	22.4	20.0
YH200-12	25.8	24.4	22.0
YH200-13	27.8	26.4	24.0
YH200-14	29.8	28.4	26.0
YH200-15	31.8	30.4	28.0

Specification

ITEM	SPEC
Voltage Rating	AC/DC 125V
Current Rating	AC/DC 3A
Operating Temperature	-25℃~+85℃
Contact Resistance	30mΩ MAX
Withstanding Voltage	AC1000V/1min
Insulation Resistance	1000MΩ MIN
Applicable Wire	AWG #24~#28
Applicable P.C.B	-
Applicable FPC/FFC	-
Solder Height	-
Crimp Tensile Strength	-
UL FILE NO	E108706

Application Terminal: YT200 (119 page)

ADC Voltage Coversion Chart

ADO	<u> </u>	VIN	ADO	C	- VIN	ADO	2	- VIN	ADO	2	VIN
Decimal	HEX	VIIN	Decimal	HEX	VIIN	Decimal	HEX	- VIIN	Decimal	HEX	VIIN
0	0	0.000	64	40	4,741	128	80	9,481	192	C0	14.222
1	11	0.074	65	41	4,815	129	81	9,556	193	C1	14,296
2	2	0.148	66	42	4.889	130	82	9,630	194	C2	14,370
3	3	0.222	67	43	4,963	131	83	9.704	195	C3	14.444
4	4	0.296	68	44	5.037	132	84	9.778	196	C4	14.519
5	5	0.370	69	45	5,111	133	85	9,852	197	C5	14,593
<u>6</u> 7	<u>6</u> 7	0.444	70	<u>46</u> 47	5,185 5,259	<u>134</u>	86 87	9,926	198 199	C6 C7	14.667
8	8	0.593	71 72	48	5,239	135 136	88	10.000	200	C8	14.741 14.815
9	9	0.595	73	49	5.407	137	89	10.148	201	C9	14.889
10	A	0.741	74	4A	5.481	138	8A	10,222	202	CA	14.963
11	В	0.815	75	4B	5,556	139	8B	10.296	203	CB	15,037
12	C	0.889	76	4C	5,630	140	8C	10,370	204	CC	15,111
13	D	0.963	77	4D	5.704	141	8D	10.444	205	CD	15,185
14	Е	1,037	78	4E	5.778	142	8E	10.519	206	CE	15,259
15	F	1,111	79	4F	5.852	143	8F	10.593	207	CF	15,333
16	10	1,185	80	50	5.926	144	90	10.667	208	D0	15.407
17	11	1,259	81	51	6,000	145	91	10.741	209	D1	15,481
18	12	1,333	82	52	6.074	146	92	10,815	210	D2	15,556
19	13	1,407	83	53	6.148	147	93	10,889	211	D3	15,630
20	14	1,481	84	54	6,222	148	94	10.963	212	D4	15.704
21	15	1.556	85	55	6,296	149	95	11.037	213	D5	15.778
22	16	1.630	86	56	6.370	150	96	11,111	214	D6	15.852
23	17	1,704	87	57	6,444	151	97	11,185	215	D7	15,926
<u>24</u> 25	18 19	1,778 1,852	<u>88</u> 89	58 59	6.519 6.593	<u>152</u> 153	98 99	11,259 11,333	216 217	D8 D9	16.000 16.074
26	1A	1,926	90	59 5A	6,667	153 154	99 9A	11,407	218	DA DA	16.148
27	1B	2,000	91	5B	6.741	155	9B	11,481	219	DB	16,222
28	1C	2,074	92	5C	6,815	156	9C	11,556	220	DC	16,296
29	1D	2.148	93	5D	6,889	157	9D	11,630	221	DD	16,370
30	1E	2,222	94	5E	6,963	158	9E	11,704	222	DE	16.444
31	1F	2,296	95	5F	7.037	159	9F	11,778	223	DF	16.519
32	20	2.370	96	60	7.111	160	A0	11.852	224	E0	16.593
33	21	2,444	97	61	7,185	161	A1	11,926	225	E1	16,667
34	22	2,519	98	62	7,259	162	A2	12.000	226	E2	16,741
35	23	2,593	99	63	7,333	163	A3	12,074	227	E3	16.815
36	24	2,667	100	64	7.407	164	A4	12,148	228	<u>E4</u>	16,889
37 38	25 26	2,741	101	65 66	7.481	<u>165</u> 166	A5 A6	12,222 12,296	229	E5	16,963
39	27	2,815 2,889	102	67	7.556 7.630	167	A6 A7	12,370	230	E6 E7	17.037 17.111
40	28	2,963	104	68	7,704	168	A8	12,444	232	E8	17.185
41	29	3.037	105	69	7,778	169	A9	12,519	233	E9	17,259
42	2A	3,111	106	6A	7.852	170	AA	12,593	234	EA	17,333
43	2B	3,185	107	6B	7.926	171	AB	12,667	235	EB	17.407
44	2C	3.259	108	6C	8.000	172	AC	12,741	236	EC	17.481
45	2D	3,333	109	6D	8.074	173	AD	12,815	237	ED	17.556
46	2E	3.407	110	6E	8.148	174	AE	12,889	238	EE	17.630
47	2F	3,481	111	6F	8,222	175	AF	12,963	239	EF	17.704
48	30	3,556	112	70	8,296	176	В0	13,037	240	F0	17.778
49	31	3,630	113	71	8,370	177	B1	13,111	241	F1	17.852
50	32	3.704	114	72	8.444	178	B2	13.185	242	F2	17.926
51	33	3.778	115	73	8,519	179	B3	13,259	243	F3	18,000
52	34	3,852	116	74	8.593	180	B4	13,333	244	F4	18.074
<u>53</u> 54	35 36	3,926 4,000	<u>117</u> 118	75 76	8.667 8.741	<u>181</u> 182	B5 B6	13,407 13,481	245 246	F5 F6	18,148 18,222
55	36	4,000	119	77	8,741	<u>182</u>	B6	13,481	240	F7	18,222
56	38	4.148	120	78	8,889	184	B8	13,630	248	F8	18,370
57	39	4,140	121	79	8,963	185	B9	13,704	249	F9	18,444
58	3A	4.296	122	7A	9.037	186	BA	13,778	250	FA	18,519
59	3B	4.370	123	7B	9,111	187	BB	13.852	251	FB	18.593
60	3C	4.444	124	7C	9.185	188	BC	13.926	252	FC	18,667
61	3D	4.519	125	7D	9,259	189	BD	14.000	253	FD	18.741
62	3E	4.593	126	7E	9,333	190	BE	14.074	254	FE	18,815
63	3F	4.667	127	7F	9,407	191	BF	14,148	255	FF	18,889

ADC Temperature Coversion Chart

ADO	0-	
Decimal		- °C
0	0	-79.47
1	1	-79.47 -71.78
2		-63,20
3	2	-57.81
4	4	-53,80
5	5	-50,58
6	6	-47.86
7	7	-45,49
8	8	-43.40
9	9	-41,51
10	Α	-39.79
11	В	-38,20
12	С	-36.73
13	D	-35.35
14	Е	-34.06
15	F 10	-32,83
16		-31,67
17	11	-30.57
18	12	-29,51
19	13	-28,50
20	14	-27,53
21	15	-26,59
22	16	-25,69
23	17	-24.82
24 25	18	-23,97 -23,15
	19	-23,15
26	1A 1B	-22,36
27 28	1C	-21.59 -20.83
29	1D	-20.03
30	1E	-19.38
31	1F	-18.68
32	20	-18.00
33	21	-17,33
34	22	-16.67
35	23	-16.03
36	24	-15,39
37	25	-14.77
38	26	-14.77 -14.17
39	27	-13.57
40	28	-12,98
41	29	-12,40
42	2A	-11,83
43	2B	-11,26
44	2C	-10,71
45	2D	-10.16
46	2E	-9.62
47	2F	<u>-9.09</u>
48	30	-8.56
49	31	-8.04
50	32	-7.53
51	33	-7.02 -6.52
<u>52</u> 53	34 35	-6.52 -6.02
54	36	-6.02 -5.53
55	37	-5.04
56	38	<u>-3.04</u> <u>-4.56</u>
57	39	-4.08
58	3A	-3.61
59	3B	-3,14
60	3C	-2,67
61	3D	-2,21
62	3E	-1.75
63	3F	-1,29
64	40	-0.84
65	41	-0.39
66	42	0.05
67	43	0.49
68	44	0.93

C Decimal HEX	ADO		
69 45 1,37 70 46 1,81 71 47 2,24 72 48 2,67 73 49 3,10 74 4A 3,52 75 4B 3,94 76 4C 4,37 77 4D 4,78 78 4E 5,20 79 4F 5,62 80 50 6,03 81 51 6,44 82 52 6,86 83 53 7,27 84 54 7,67 85 55 8,08 86 56 8,49 87 57 8,89 88 58 9,29 89 59 9,70 90 5A 10,10 91 5B 10,50 92 5C 10,90 93 5D 11,30 94 5E 11,70 95 5F 12,09 96 60 12,49 97 61 12,89 98 62 13,28 99 63 13,68 100 64 14,07 101 65 14,47 102 66 14,86 103 67 15,26 104 68 15,65 105 69 16,05 106 6A 16,44 107 6B 16,84 108 6C 17,23 109 6D 17,62 110 6E 18,02 111 6F 18,41 112 70 18,81 113 71 19,20 114 72 19,60 115 73 19,99 116 74 20,39 117 75 20,79 118 76 21,19 119 77 21,58 120 78 21,98 121 79 22,38 122 7A 22,78 123 7B 23,18 113 71 19,20 114 72 19,60 115 73 19,99 116 74 20,39 117 75 20,79 118 76 21,19 119 77 21,58 120 78 21,98 121 79 22,38 122 7A 22,78 123 7B 23,18 124 7C 23,59 125 7D 23,99 126 7E 24,39 127 7F 24,80 128 80 25,20 129 81 25,61 130 82 26,02 131 83 26,43 132 84 26,84 133 85 27,25 134 86 27,66 135 87 28,08 136 88 28,50			- °C
70			1.07
71			
72			
73			
74			3 10
75			3.52
76	75	4B	
78	76	4C	4.37
79			4.78
80 50 6.03 81 51 6.44 82 52 6.86 83 53 7.27 84 54 7.67 85 55 8.08 86 56 8.49 87 57 8.89 88 58 9.29 89 59 9.70 90 5A 10.10 91 5B 10.50 92 5C 10.90 93 5D 11.30 94 5E 11.70 95 5F 12.09 96 60 12.49 97 61 12.89 98 62 13.28 99 63 13.68 100 64 14.07 101 65 14.47 102 66 14.86 103 67 15.26 104 68 15.65 105 69 16.05 106 6A 16.44 107 6B 16.84 108 6C 17.23 109 6D 17.62 110 6E 18.02 111 6F 18.41 112 70 18.81 113 71 19.20 114 72 19.60 115 73 19.99 116 74 20.39 117 75 20.79 118 76 21.19 119 77 21.58 120 78 21.98 122 7A 22.78 123 7B 23.18 124 7C 23.59 125 7D 23.99 126 7E 24.39 127 7F 24.80 128 80 25.20 129 81 25.61 130 82 26.02 131 83 26.43 132 84 26.84 133 85 27.25 134 86 27.66 135 87 28.08 136 88 28.50		4E	
81 51 6.44 82 52 6.86 83 53 7.27 84 54 7.67 85 55 8.08 86 56 8.49 87 57 8.89 88 58 9.29 89 59 9.70 90 5A 10.10 91 5B 10.50 92 5C 10.90 93 5D 11.30 94 5E 11.70 95 5F 12.09 96 60 12.49 97 61 12.89 98 62 13.28 99 63 13.68 100 64 14.07 101 65 14.47 102 66 14.86 103 67 15.26 104 68 15.65 105 69 16.05 <td></td> <td></td> <td></td>			
82 52 6.86 83 53 7.27 84 54 7.67 85 55 8.08 86 56 8.49 87 57 8.89 88 58 9.29 89 59 9.70 90 5A 10.10 91 5B 10.50 92 5C 10.90 93 5D 11.30 94 5E 11.70 95 5F 12.09 96 60 12.49 97 61 12.89 98 62 13.28 99 63 13.68 100 64 14.07 101 65 14.47 102 66 14.86 103 67 15.26 104 68 15.65 105 69 16.05 106 6A 16.44 107 6B 16.84 107 6B 16.84 108 6C 17.23 109 6D 17.62 110 6E 18.02 111 6F 18.41 112 70 18.81 113 71 19.20 114 72 19.60 115 73 19.99 116 74 20.39 117 75 20.79 118 76 21.19 119 77 21.58 120 78 21.98 121 79 22.38 122 7A 22.78 123 7B 23.18 124 7C 23.59 125 7D 23.99 126 7E 24.39 127 7F 24.80 128 80 25.20 129 81 25.61 130 82 26.02 131 83 26.43 132 84 26.84 133 85 27.25 134 86 27.66 135 87 28.08 136 88 28.50			
83 53 7,27 84 54 7,67 85 55 8,08 86 56 8,49 87 57 8,89 88 58 9,29 89 59 9,70 90 5A 10,10 91 5B 10,50 92 5C 10,90 93 5D 11,30 94 5E 11,70 95 5F 12,09 96 60 12,49 97 61 12,89 98 62 13,28 99 63 13,68 100 64 14,07 101 65 14,47 102 66 14,86 103 67 15,26 104 68 15,65 105 69 16,05 106 6A 16,44 107 6B 16,84 108 6C 17,23 109 6D 17,62 110 6E 18,02 111 6F 18,41 112 70 18,81 113 71 19,20 114 72 19,60 115 73 19,99 116 74 20,39 117 75 20,79 118 76 21,19 119 77 21,58 120 78 21,98 121 79 22,38 122 7A 22,78 123 7B 23,18 124 7C 23,59 126 7E 24,39 127 7F 24,80 128 80 25,20 129 81 25,61 130 82 26,02 131 83 26,43 132 84 26,84 133 85 27,25 134 86 27,66 135 87 28,08 136 88 28,50			
84 54 7,67 85 55 8,08 86 56 8,49 87 57 8,89 88 58 9,29 89 59 9,70 90 5A 10,10 91 5B 10,50 92 5C 10,90 93 5D 11,30 94 5E 11,70 95 5F 12,09 96 60 12,49 97 61 12,89 98 62 13,28 99 63 13,68 100 64 14,07 101 65 14,47 102 66 14,86 103 67 15,26 104 68 15,65 105 69 16,05 106 6A 16,44 107 6B 16,84 108 6C 17,23		52	0.86
85 55 8.08 86 56 8.49 87 57 8.89 88 58 9.29 89 59 9.70 90 5A 10.10 91 5B 10.50 92 5C 10.90 93 5D 11.30 94 5E 11.70 95 5F 12.09 96 60 12.49 97 61 12.89 98 62 13.28 99 63 13.68 100 64 14.07 101 65 14.47 102 66 14.86 103 67 15.26 104 68 15.65 105 69 16.05 106 6A 16.44 107 6B 16.84 108 6C 17.23 109 6D 17.62			
86 56 8.49 87 57 8.89 88 58 9.29 89 59 9.70 90 5A 10.10 91 5B 10.50 92 5C 10.90 93 5D 11.30 94 5E 11.70 95 5F 12.09 96 60 12.49 97 61 12.89 98 62 13.28 99 63 13.68 100 64 14.07 101 65 14.47 102 66 14.86 103 67 15.26 104 68 15.65 105 69 16.05 106 6A 16.44 107 6B 16.84 108 6C 17.23 109 6D 17.62 110 6E 18.02 <td></td> <td></td> <td></td>			
87 57 8.89 88 58 9.29 89 59 9.70 90 5A 10.10 91 5B 10.50 92 5C 10.90 93 5D 11.30 94 5E 11.70 95 5F 12.09 96 60 12.49 97 61 12.89 98 62 13.28 99 63 13.68 100 64 14.07 101 65 14.47 102 66 14.86 103 67 15.26 104 68 15.65 105 69 16.05 106 6A 16.44 107 6B 16.84 108 6C 17.23 109 6D 17.62 110 6E 18.02 111 6F 18.41 112 70 18.81 113 71 19.20 114 72 19.60 115 73 19.99 116 74 20.39 117 75 20.79 118 76 21.19 119 77 21.58 120 78 21.98 122 7A 22.78 123 7B 23.18 124 7C 23.59 125 7D 23.99 126 7E 24.39 127 7F 24.80 128 80 25.20 129 81 25.61 130 82 26.02 131 83 26.43 133 85 27.25 134 86 27.66 135 87 28.08 136 88 28.50			
88 58 9.29 89 59 9.70 90 5A 10,10 91 5B 10,50 92 5C 10,90 93 5D 11,30 94 5E 11,70 95 5F 12,09 96 60 12,49 97 61 12,89 98 62 13,28 99 63 13,68 100 64 14,07 101 65 14,47 102 66 14,86 103 67 15,26 104 68 15,65 105 69 16,05 106 6A 16,44 107 6B 16,84 108 6C 17,23 109 6D 17,62 110 6E 18,02 111 6F 18,41 112 70 18,81 113 71 19,20 114 72 19,60 115 73 19,99 116 74 20,39 117 75 20,79 118 76 21,19 119 77 21,58 120 78 21,98 121 79 22,38 122 7A 22,78 123 7B 23,18 124 7C 23,59 125 7D 23,99 126 7E 24,39 127 7F 24,80 128 80 25,20 129 81 25,61 130 82 26,02 131 83 26,43 132 84 26,84 133 85 27,25 134 86 27,66 135 87 28,08 136 88 28,50		57	8.89
89 59 9.70 90 5A 10.10 91 5B 10.50 92 5C 10.90 93 5D 11.30 94 5E 11.70 95 5F 12.09 96 60 12.49 97 61 12.89 98 62 13.28 99 63 13.68 100 64 14.07 101 65 14.47 102 66 14.86 103 67 15.26 104 68 15.65 105 69 16.05 106 6A 16.44 107 6B 16.84 108 6C 17.23 109 6D 17.62 110 6E 18.02 111 6F 18.41 112 70 18.81 113 71 19			
90 5A 10.10 91 5B 10.50 92 5C 10.90 93 5D 11.30 94 5E 11.70 95 5F 12.09 96 60 12.49 97 61 12.89 98 62 13.28 99 63 13.68 100 64 14.07 101 65 14.47 102 66 14.86 103 67 15.26 104 68 15.65 105 69 16.05 106 6A 16.44 107 6B 16.84 108 6C 17.23 109 6D 17.62 110 6E 18.02 111 6F 18.41 112 70 18.81 113 71 19.20 114 72 19.60 115 73 19.99 116 74 20.39 117 75 20.79 118 76 21.19 119 77 21.58 120 78 21.98 121 79 22.38 122 7A 22.78 123 7B 23.18 124 7C 23.59 125 7D 23.99 126 7E 24.39 127 7F 24.80 128 80 25.20 129 81 25.61 130 82 26.02 131 83 26.43 133 85 27.25 134 86 27.66 135 87 28.08 136 88 28.50			9.70
91 5B 10,50 92 5C 10,90 93 5D 11,30 94 5E 11,70 95 5F 12,09 96 60 12,49 97 61 12,89 98 62 13,28 99 63 13,68 100 64 14,07 101 65 14,47 102 66 14,86 103 67 15,26 104 68 15,65 105 69 16,05 106 6A 16,44 107 6B 16,84 108 6C 17,23 109 6D 17,62 110 6E 18,02 111 6F 18,41 112 70 18,81 113 71 19,20 114 72 19,60 115 73 19,99 116 74 20,39 117 75 20,79 118 76 21,19 119 77 21,58 120 78 21,98 121 79 22,38 122 7A 22,78 123 7B 23,18 124 7C 23,59 125 7D 23,99 126 7E 24,39 127 7F 24,80 128 80 25,20 129 81 25,61 130 82 26,02 131 83 26,43 132 84 26,84 133 85 27,25 134 86 27,66 135 87 28,08	90		10.10
93 5D 11.30 94 5E 11.70 95 5F 12.09 96 60 12.49 97 61 12.89 98 62 13.28 99 63 13.68 100 64 14.07 101 65 14.47 102 66 14.86 103 67 15.26 104 68 15.65 105 69 16.05 106 6A 16.44 107 6B 16.84 108 6C 17.23 109 6D 17.62 110 6E 18.02 111 6F 18.41 112 70 18.81 113 71 19.20 114 72 19.60 115 73 19.99 116 74 20.39 117 75 20.79 118 76 21.19 119 77 21.58 120 78 21.98 121 79 22.38 122 7A 22.78 123 7B 23.18 124 7C 23.59 125 7D 23.99 126 7E 24.39 127 7F 24.80 128 80 25.20 129 81 25.61 130 82 26.02 131 83 26.43 133 85 27.25 134 86 27.66 135 87 28.08 136 88 28.50	91	5B	10.50
94 5E 11,70 95 5F 12,09 96 60 12,49 97 61 12,89 98 62 13,28 99 63 13,68 100 64 14,07 101 65 14,47 102 66 14,86 103 67 15,26 104 68 15,65 105 69 16,05 106 6A 16,44 107 6B 16,84 108 6C 17,23 109 6D 17,62 110 6E 18,02 111 6F 18,41 112 70 18,81 113 71 19,20 114 72 19,60 115 73 19,99 116 74 20,39 117 75 20,79 118 76 21,19 119 77 21,58 120 78 21,98 121 79 22,38 122 7A 22,78 123 7B 23,18 124 7C 23,59 125 7D 23,99 126 7E 24,39 127 7F 24,80 128 80 25,20 129 81 25,61 130 82 26,02 131 83 26,43 132 84 26,84 133 85 27,25 134 86 27,66 135 87 28,08 136 88 28,50			10.90
95 5F 12,09 96 60 12,49 97 61 12,89 98 62 13,28 99 63 13,68 100 64 14,07 101 65 14,47 102 66 14,86 103 67 15,26 104 68 15,65 105 69 16,05 106 6A 16,44 107 6B 16,84 108 6C 17,23 109 6D 17,62 110 6E 18,02 111 6F 18,41 112 70 18,81 113 71 19,20 114 72 19,60 115 73 19,99 116 74 20,39 117 75 20,79 118 76 21,19 119 77 21,58 120 78 21,98 121 79 22,38 122 7A 22,78 123 7B 23,18 124 7C 23,59 125 7D 23,99 126 7E 24,39 127 7F 24,80 128 80 25,20 129 81 25,61 130 82 26,02 131 83 26,43 132 84 26,84 133 85 27,25 134 86 27,66 135 87 28,08 136 88 28,50		5D	
96 60 12,49 97 61 12,89 98 62 13,28 99 63 13,68 100 64 14,07 101 65 14,47 102 66 14,86 103 67 15,26 104 68 15,65 105 69 16,05 106 6A 16,44 107 6B 16,84 108 6C 17,23 109 6D 17,62 110 6E 18,02 111 6F 18,41 112 70 18,81 113 71 19,20 114 72 19,60 115 73 19,99 116 74 20,39 117 75 20,79 118 76 21,19 119 77 21,58 120 78 21,98 121 79 22,38 122 7A 22,78 123 7B 23,18 124 7C 23,59 125 7D 23,99 126 7E 24,39 127 7F 24,80 128 80 25,20 129 81 25,61 130 82 26,02 131 83 26,43 132 84 26,84 133 85 27,25 134 86 27,66 135 87 28,08 136 88 28,50			
97 61 12.89 98 62 13.28 99 63 13.68 100 64 14.07 101 65 14.47 102 66 14.86 103 67 15.26 104 68 15.65 105 69 16.05 106 6A 16.44 107 6B 16.84 108 6C 17.23 109 6D 17.62 110 6E 18.02 111 6F 18.41 112 70 18.81 113 71 19.20 114 72 19.60 115 73 19.99 116 74 20.39 117 75 20.79 118 76 21.19 119 77 21.58 120 78 21.98 121 79 22.38 122 7A 22.78 123 7B 23.18 124 7C 23.59 125 7D 23.99 126 7E 24.39 127 7F 24.80 128 80 25.20 129 81 25.61 130 82 26.02 131 83 26.43 132 84 26.84 133 85 27.25 134 86 27.66 135 87 28.08 136 88 28.50			
98 62 13.28 99 63 13.68 100 64 14.07 101 65 14.47 102 66 14.86 103 67 15.26 104 68 15.65 105 69 16.05 106 6A 16.44 107 6B 16.84 108 6C 17.23 109 6D 17.62 110 6E 18.02 111 6F 18.41 112 70 18.81 113 71 19.20 114 72 19.60 115 73 19.99 116 74 20.39 117 75 20.79 118 76 21.19 119 77 21.58 120 78 21.98 121 79 22.38 122 7A 22.78 123 7B 23.18 124 7C 23.59 125 7D 23.99 126 7E 24.39 127 7F 24.80 128 80 25.20 129 81 25.61 130 82 26.02 131 83 26.43 132 84 26.84 133 85 27.25 134 86 27.66 135 87 28.08 136 88 28.50			
99 63 13,68 100 64 14,07 101 65 14,47 102 66 14,86 103 67 15,26 104 68 15,65 105 69 16,05 106 6A 16,44 107 6B 16,84 108 6C 17,23 109 6D 17,62 110 6E 18,02 111 6F 18,41 112 70 18,81 113 71 19,20 114 72 19,60 115 73 19,99 116 74 20,39 117 75 20,79 118 76 21,19 119 77 21,58 120 78 21,98 121 79 22,38 122 7A 22,78 123 7B 23,18 124 7C 23,59 125 7D 23,99 126 7E 24,39 127 7F 24,80 128 80 25,20 129 81 25,61 130 82 26,02 131 83 26,43 132 84 26,84 133 85 27,25 134 86 27,66 135 87 28,08 136 88 28,50			
100 64 14,07 101 65 14,47 102 66 14,86 103 67 15,26 104 68 15,65 105 69 16,05 106 6A 16,44 107 6B 16,84 108 6C 17,23 109 6D 17,62 110 6E 18,02 111 6F 18,41 112 70 18,81 113 71 19,20 114 72 19,60 115 73 19,99 116 74 20,39 117 75 20,79 118 76 21,19 119 77 21,58 120 78 21,98 121 79 22,38 122 7A 22,78 123 7B 23,18 124 7C			
101 65 14,47 102 66 14,86 103 67 15,26 104 68 15,65 105 69 16,05 106 6A 16,44 107 6B 16,84 108 6C 17,23 109 6D 17,62 110 6E 18,02 111 6F 18,41 112 70 18,81 113 71 19,20 114 72 19,60 115 73 19,99 116 74 20,39 117 75 20,79 118 76 21,19 119 77 21,58 120 78 21,98 121 79 22,38 122 7A 22,78 123 7B 23,18 124 7C 23,59 125 7D			
102 66 14,86 103 67 15,26 104 68 15,65 105 69 16,05 106 6A 16,44 107 6B 16,84 108 6C 17,23 109 6D 17,62 110 6E 18,02 111 6F 18,41 112 70 18,81 113 71 19,20 114 72 19,60 115 73 19,99 116 74 20,39 117 75 20,79 118 76 21,19 119 77 21,58 120 78 21,98 121 79 22,38 122 7A 22,78 123 7B 23,18 124 7C 23,59 125 7D 23,99 126 7E			
103 67 15.26 104 68 15.65 105 69 16.05 106 6A 16.44 107 6B 16.84 108 6C 17.23 109 6D 17.62 110 6E 18.02 111 6F 18.41 112 70 18.81 113 71 19.20 114 72 19.60 115 73 19.99 116 74 20.39 117 75 20.79 118 76 21.19 119 77 21.58 120 78 21.98 121 79 22.38 122 7A 22.78 123 7B 23.18 124 7C 23.59 125 7D 23.99 126 7E 24.39 127 7F 24.80 128 80 25.20 129 81 25.61 130 82 26.02 131 83 26.43 132 84 26.84 133 85 27.25 134 86 27.66 135 87 28.08 136 88 28.50			
104 68 15.65 105 69 16.05 106 6A 16.44 107 6B 16.84 108 6C 17.23 109 6D 17.62 110 6E 18.02 111 6F 18.41 112 70 18.81 113 71 19.20 114 72 19.60 115 73 19.99 116 74 20.39 117 75 20.79 118 76 21.19 119 77 21.58 120 78 21.98 121 79 22.38 122 7A 22.78 123 7B 23.18 124 7C 23.59 125 7D 23.99 126 7E 24.39 127 7F 24.80 128 80			
105 69 16.05 106 6A 16.44 107 6B 16.84 108 6C 17.23 109 6D 17.62 110 6E 18.02 111 6F 18.41 112 70 18.81 113 71 19.20 114 72 19.60 115 73 19.99 116 74 20.39 117 75 20.79 118 76 21.19 119 77 21.58 120 78 21.98 121 79 22.38 122 7A 22.78 123 7B 23.18 124 7C 23.59 125 7D 23.99 126 7E 24.39 127 7F 24.80 128 80 25.20 129 81			
107 6B 16.84 108 6C 17.23 109 6D 17.62 110 6E 18.02 111 6F 18.41 112 70 18.81 113 71 19.20 114 72 19.60 115 73 19.99 116 74 20.39 117 75 20.79 118 76 21.19 119 77 21.58 120 78 21.98 121 79 22.38 122 7A 22.78 123 7B 23.18 124 7C 23.59 125 7D 23.99 126 7E 24.39 127 7F 24.80 128 80 25.20 129 81 25.61 130 82 26.02 131 83	105	69	
108 6C 17,23 109 6D 17,62 110 6E 18,02 111 6F 18,41 112 70 18,81 113 71 19,20 114 72 19,60 115 73 19,99 116 74 20,39 117 75 20,79 118 76 21,19 119 77 21,58 120 78 21,98 121 79 22,38 122 7A 22,78 123 7B 23,18 124 7C 23,59 125 7D 23,99 126 7E 24,39 127 7F 24,80 128 80 25,20 129 81 25,61 130 82 26,02 131 83 26,43 132 84	106	6A	16.44
109 6D 17.62 110 6E 18.02 111 6F 18.41 112 70 18.81 113 71 19.20 114 72 19.60 115 73 19.99 116 74 20.39 117 75 20.79 118 76 21.19 119 77 21.58 120 78 21.98 121 79 22.38 122 7A 22.78 123 7B 23.18 124 7C 23.59 125 7D 23.99 126 7E 24.39 127 7F 24.80 128 80 25.20 129 81 25.61 130 82 26.02 131 83 26.43 132 84 26.84 133 85			
110 6E 18.02 111 6F 18.41 112 70 18.81 113 71 19.20 114 72 19.60 115 73 19.99 116 74 20.39 117 75 20.79 118 76 21.19 119 77 21.58 120 78 21.98 121 79 22.38 122 7A 22.78 123 7B 23.18 124 7C 23.59 125 7D 23.99 126 7E 24.39 127 7F 24.80 128 80 25.20 129 81 25.61 130 82 26.02 131 83 26.43 132 84 26.84 133 85 27.25 134 86			
111 6F 18,41 112 70 18,81 113 71 19,20 114 72 19,60 115 73 19,99 116 74 20,39 117 75 20,79 118 76 21,19 119 77 21,58 120 78 21,98 121 79 22,38 122 7A 22,78 123 7B 23,18 124 7C 23,59 125 7D 23,99 126 7E 24,39 127 7F 24,80 128 80 25,20 129 81 25,61 130 82 26,02 131 83 26,43 132 84 26,84 133 85 27,25 134 86 27,66 135 87			
112 70 18.81 113 71 19.20 114 72 19.60 115 73 19.99 116 74 20.39 117 75 20.79 118 76 21.19 119 77 21.58 120 78 21.98 121 79 22.38 122 7A 22.78 123 7B 23.18 124 7C 23.59 125 7D 23.99 126 7E 24.39 127 7F 24.80 128 80 25.20 129 81 25.61 130 82 26.02 131 83 26.43 132 84 26.84 133 85 27.25 134 86 27.66 135 87 28.08 136 88			
113 71 19.20 114 72 19.60 115 73 19.99 116 74 20.39 117 75 20.79 118 76 21.19 119 77 21.58 120 78 21.98 121 79 22.38 122 7A 22.78 123 7B 23.18 124 7C 23.59 125 7D 23.99 126 7E 24.39 127 7F 24.80 128 80 25.20 129 81 25.61 130 82 26.02 131 83 26.43 132 84 26.84 133 85 27.25 134 86 27.66 135 87 28.08 136 88 28.50			
114 72 19.60 115 73 19.99 116 74 20.39 117 75 20.79 118 76 21.19 119 77 21.58 120 78 21.98 121 79 22.38 122 7A 22.78 123 7B 23.18 124 7C 23.59 125 7D 23.99 126 7E 24.39 127 7F 24.80 128 80 25.20 129 81 25.61 130 82 26.02 131 83 26.43 132 84 26.84 133 85 27.25 134 86 27.66 135 87 28.08 136 88 28.50			10,01
115 73 19.99 116 74 20.39 117 75 20.79 118 76 21.19 119 77 21.58 120 78 21.98 121 79 22.38 122 7A 22.78 123 7B 23.18 124 7C 23.59 125 7D 23.99 126 7E 24.39 127 7F 24.80 128 80 25.20 129 81 25.61 130 82 26.02 131 83 26.43 132 84 26.84 133 85 27.25 134 86 27.66 135 87 28.08 136 88 28.50		77	
116 74 20,39 117 75 20,79 118 76 21,19 119 77 21,58 120 78 21,98 121 79 22,38 122 7A 22,78 123 7B 23,18 124 7C 23,59 125 7D 23,99 126 7E 24,39 127 7F 24,80 128 80 25,20 129 81 25,61 130 82 26,02 131 83 26,43 132 84 26,84 133 85 27,25 134 86 27,66 135 87 28,08 136 88 28,50		73	
117 75 20.79 118 76 21.19 119 77 21.58 120 78 21.98 121 79 22.38 122 7A 22.78 123 7B 23.18 124 7C 23.59 125 7D 23.99 126 7E 24.39 127 7F 24.80 128 80 25.20 129 81 25.61 130 82 26.02 131 83 26.43 132 84 26.84 133 85 27.25 134 86 27.66 135 87 28.08 136 88 28.50		74	20.39
118 76 21,19 119 77 21,58 120 78 21,98 121 79 22,38 122 7A 22,78 123 7B 23,18 124 7C 23,59 125 7D 23,99 126 7E 24,39 127 7F 24.80 128 80 25,20 129 81 25,61 130 82 26,02 131 83 26,43 132 84 26,84 133 85 27,25 134 86 27,66 135 87 28,08 136 88 28,50	117		
119 77 21.58 120 78 21.98 121 79 22.38 122 7A 22.78 123 7B 23.18 124 7C 23.59 125 7D 23.99 126 7E 24.39 127 7F 24.80 128 80 25.20 129 81 25.61 130 82 26.02 131 83 26.43 132 84 26.84 133 85 27.25 134 86 27.66 135 87 28.08 136 88 28.50			
120 78 21,98 121 79 22,38 122 7A 22,78 123 7B 23,18 124 7C 23,59 125 7D 23,99 126 7E 24,39 127 7F 24,80 128 80 25,20 129 81 25,61 130 82 26,02 131 83 26,43 132 84 26,84 133 85 27,25 134 86 27,66 135 87 28,08 136 88 28,50		77	
122 7A 22,78 123 7B 23,18 124 7C 23,59 125 7D 23,99 126 7E 24,39 127 7F 24,80 128 80 25,20 129 81 25,61 130 82 26,02 131 83 26,43 132 84 26,84 133 85 27,25 134 86 27,66 135 87 28,08 136 88 28,50	120		21.98
123 7B 23.18 124 7C 23.59 125 7D 23.99 126 7E 24.39 127 7F 24.80 128 80 25.20 129 81 25.61 130 82 26.02 131 83 26.43 132 84 26.84 133 85 27.25 134 86 27.66 135 87 28.08 136 88 28.50			22,38
124 7C 23.59 125 7D 23.99 126 7E 24.39 127 7F 24.80 128 80 25.20 129 81 25.61 130 82 26.02 131 83 26.43 132 84 26.84 133 85 27.25 134 86 27.66 135 87 28.08 136 88 28.50			22,78
125 7D 23.99 126 7E 24.39 127 7F 24.80 128 80 25.20 129 81 25.61 130 82 26.02 131 83 26.43 132 84 26.84 133 85 27.25 134 86 27.66 135 87 28.08 136 88 28.50		7B	23,18
126 7E 24.39 127 7F 24.80 128 80 25.20 129 81 25.61 130 82 26.02 131 83 26.43 132 84 26.84 133 85 27.25 134 86 27.66 135 87 28.08 136 88 28.50		/C	
127 7F 24.80 128 80 25.20 129 81 25.61 130 82 26.02 131 83 26.43 132 84 26.84 133 85 27.25 134 86 27.66 135 87 28.08 136 88 28.50			
128 80 25.20 129 81 25.61 130 82 26.02 131 83 26.43 132 84 26.84 133 85 27.25 134 86 27.66 135 87 28.08 136 88 28.50		7E	24,39
129 81 25.61 130 82 26.02 131 83 26.43 132 84 26.84 133 85 27.25 134 86 27.66 135 87 28.08 136 88 28.50			25 20
130 82 26.02 131 83 26.43 132 84 26.84 133 85 27.25 134 86 27.66 135 87 28.08 136 88 28.50			
131 83 26,43 132 84 26,84 133 85 27,25 134 86 27,66 135 87 28,08 136 88 28,50			
132 84 26,84 133 85 27,25 134 86 27,66 135 87 28,08 136 88 28,50	131		
133 85 27,25 134 86 27.66 135 87 28.08 136 88 28.50			26.84
134 86 27.66 135 87 28.08 136 88 28.50	133		27.25
136 88 28.50			27.66
13/ 89 28,91			
	13/	89	28,91

ADC		- °C	ADO	ADC			
ecimal	HEX	- 0	Decimal	HEX	- °C		
138	8A	29,33	207	CF	68,32		
139	8B	29.76	208	D0	69.20		
140	8C	30.18	209	D1	70,10		
141	8D	30.60	210	D2	71.02		
142	8E	31.03	211	D3	4.137		
143	8F		212	D3	4.157		
144	90	31.46 31.89	213	D5	4,137		
	91	31,08	214				
145		32,32		D6	4,196		
146	92	32,76	215	D7	4,216		
147	93	33,20	216	D8	4,235		
148	94	33.64	217	D9	4,255		
149	95	34.08	218	DA	4,275		
150	96	34.53	219	DB	4.294		
151	97	34.97	220	DC	4.314		
152	98	35,42	221	DD	4,333		
153	99	35,88	222	DE	4,353		
154	9A	36.33	223	DF	4,373		
155	9B	36.79	224	E0	4,392		
156	9C	37.25	225	E1	4.412		
157	9D	37.72	226	E2	4,431		
158	9E	38.18	227	E3	4,451		
159	9F	38,66	228	E4	4,471		
160	A0	39.13	229	E5	4.490		
161	A1	39.61	230	E6	4,510		
162	A2	40.09	231	E7	4,529		
163	A3	40.57	232	E8	4,549		
164	A4	41.06	233	E9	4,569		
165	A5	41.56	234	EA	4,588		
166	A6	42,05	235	EB	4,608		
167	A7	42,56	236	EC	4,627		
168	A8	43.06	237	ED	4.647		
169	A9	43.57	238	EE	4.667		
170	AA	44.09	239	EF	4.686		
171	AB	44.61	240	F0	4.706		
172	AC	45.13	240	F1	4,700		
173	AD	45.66	242	F2	4.725		
174	AE AE		243	F3			
	AE AF	46.19	243		4,765		
175		46.73		F4	4,784		
176	B0	47.28	245	F5	4.804		
177	B1	47.83	246	F6	4.824		
178	B2	48.39	247	F7	4,843		
179	B3	48.95	248	F8	4,863		
180	B4	49.52	249	F9	4,882		
181	B5	50.09	250	FA	4,902		
182	B6	50,68	251	FB	4.922		
183	B7	51,27	252	FC	4.941		
184	B8	51,86	253	FD	4,961		
185	B9	52,47	254	FE	4.980		
186	BA	53.08	255	FF	5.000		
187	BB	53.70					
188	BC	54.33					
189	BD	54.96					
190	BE	55.61					
191	BF	56.26					
192	C0	56.93					
193	C1	57.60					
194	C2	58.28					
195	C3	58.98					

C1 C2 C3 C4 C5

C6 C7 C8

C9

CA

CB CC

CD CE

58,98 59.68

60.40

61,13

61.87

62,63

63,39

64.17

64.97 65.78

66,61

67.46

194 195

196 197

199

200

201

202

203 204

205 206

ADC Position Coversion Chart

AD	С	dograa	ADC		doore	AD	ADC		AD	С	dograd
Decimal	HEX	degree	Decimal	HEX	degree	Decimal	HEX	degree	Decimal	HEX	degree
0	0	-166,650	69	45	-144,169	138	8A	-121,689	207	CF	-99.208
1	1	-166,324	70	46	-143,844	139	8B	-121,363	208	D0	-98.882
2	2	-165,998	71	47	-143.518	140	8C	-121.037	209	D1	-98.556
3	3	-165,673	72	48	-143,192	141	8D	-120,711	210	D2	-98,231
4	4	-165,347	73	49	-142,866	142	8E	-120,385	211	D3	-97.905
5	5	-165.021	74	4A	-142,540	143	8F	-120,060	212	D4	-97.579
6	6	-164,695	75	4B	-142,215	144	90	-119.734	213	D5	-97.253
7	7	-164,369	<u>76</u>	4C	-141,889	145	91	-119.408	214	D6	-96.927
8	8	-164.044	<u>77</u> 78	4D	-141,563	146	92	-119,082 -118,756	215	D7	-96,602 -96,276
9 10	9 A	-163,718		4E 4F	-141,237	147	93		<u>216</u> 217	D8	
11	B	-163,392 -163,066		50	-140,911 -140,585	149	94 95	-118.431 -118.105	218	D9 DA	-95.950 -95.624
12	C	-162,740	81	51	-140,363 -140,260	150	96	-117.779	219	DB	-95.298
13	D	-162,415	82	52	-139.934	151	97	-117,453	220	DC	-94.973
14	E	-162,089	83	53	-139,608	152	98	-117,127	221	DD	-94.647
15	F	-161,763	84	54	-139,282	153	99	-116,802	222	DE	-94.321
16	10	-161,437	85	55	-138,956	154	9A	-116,476	223	DF	-93,995
17	11	-161,111	86	56	-138,631	155	9B	-116,150	224	E0	-93,669
18	12	-160,785	87	57	-138,305	156	9C	-115,824	225	E1	-93.344
19	13	-160,460	88	58	-137,979	157	9D	-115,498	226	E2	-93.018
20	14	-160,134	89	59	-137,653	158	9E	-115.173	227	E3	-92,692
21	15	-159.808	90	5A	-137.327	159	9F	-114.847	228	E4	-92,366
22	16	-159.482	91	5B	-137.002	160	A0	-114.521	229	E5	-92.040
23	17	-159,156	92	5C	-136,676	161	A1	-114,195	230	E6	<u>-91,715</u>
24 25	18	-158,831	93	5D 5E	-136,350 -136,024	162	A2	<u>-113.869</u>	231 232	E7	<u>-91,389</u>
26	19 1A	-158,505 -158,179	95	5F	-135,698	163 164	A3 A4	-113.544 -113.218	233	E8 E9	<u>-91.063</u> <u>-90.737</u>
27	1B	-156,179 -157,853	95 96	60	-135,373	165	A4 A5	-112 <u>.</u> 892	234	EA	<u>-90.737</u> <u>-90.411</u>
28	1C	-157,527	97	61	-135.047	166	A6	-112,566	235	EB	-90.085
29	1D	-157.202	98	62	-134.721	167	A7	-112,240	236	EC	-89.760
30	1E	-156,876	99	63	-134,395	168	A8	-111,915	237	ED	-89.434
31	1F	-156,550	100	64	-134,069	169	A9	-111,589	238	EE	-89,108
32	20	-156,224	101	65	-133,744	170	AA	-111,263	239	EF	-88.782
33	21	-155 <u>.</u> 898	102	66	-133 <u>.</u> 418	171	AB	-110,937	240	F0	-88.456
34	22	-155,573	103	67	-133,092	172	AC	-110,611	241	F1	-88,131
35	23	-155,247	104	68	-132,766	173	AD	-110,285	242	F2	-87,805
36	24	-154 <u>.</u> 921	105	69	-132,440	174	AE	-109.960	243	F3	-87.479
37	25	-154.595	106	6A	-132,115	175	AF	-109.634	244	F4	-87.153
38	26	-154,269	107	6B	-131,789	176	B0	-109,308	245	F5	-86.827
39 40	27 28	-153,944 -153,618	108	6C 6D	-131,463 -131,137	177 178	B1 B2	-108,982 -108,656	246 247	F6 F7	-86,502 -86,176
41	29	-153,016 -153,292	110	6E	-130,811	179	B3	-108,331	248	F8	-85 .850
42	29 2A	-152 <u>.</u> 966	111	6F	-130,811 -130,485	180	B3	-108.005	249	F9	-85.524
43	2B	-152,640	112	70	-130 <u>.</u> 160	181	B5	-107.679	250	FA	-85.198
44	2C	-152,315	113	71	-129,834	182	B6	-107,353	251	FB	-84,873
45	2D	-151,989	114	72	-129,508	183	B7	-107,027	252	FC	-84,547
46	2E	-151,663	115	73	-129,182	184	B8	-106,702	253	FD	-84,221
47	2F	-151,337	116	74	-128,856	185	В9	-106,376	254	FE	-83.895
48	30	-151,011	117	75	-128,531	186	BA	-106.050	255	FF	-83,569
49	31	-150,685	118	76	-128,205	187	BB	-105,724	256	100	-83.244
50	32	-150.360	119	77	-127 .879	188	BC	-105.398	257	101	-82,918
51	33	-150.034	120	78	-127,553	189	BD	-105.073	258	102	-82.592
52	34 35	-149,708 -149,382	121 122	79 7A	-127 <u>.</u> 227	190 191	BE BF	-104,747	259	103	-82,266 -81,040
<u>53</u> 54	36	-149,362 -149,056	123	7A 7B	-126,902 -126,576	192	C0	-104,421 -104,095	<u>260</u> 261	104 105	-81 <u>.940</u> -81 <u>.615</u>
55	37	-149,036 -148,731	124	7C	-126,376 -126,250	193	C1	-104.095 -103.769	262	106	-81,289
56	38	-148,405	125	7D	-125 <u>.</u> 250 -125 <u>.</u> 924	194	C2	-103,769 -103,444	263	107	-81,289 -80,963
57	39	-148,079	126	7E	-125 <u>.</u> 524	195	C3	-103 <u>.</u> 444	264	108	-80.637
58	3A	-147,753	127	7F	-125 <u>.</u> 273	196	C4	-102,792	265	109	-80,311
59	3B	-147,427	128	80	-124 <u>.</u> 947	197	C5	-102.466	266	10A	-79.985
60	3C	-147.102	129	81	-124,621	198	C6	-102,140	267	10B	-79,660
61	3D	-146,776	130	82	-124.295	199	C7	-101.815	268	10C	-79.334
62	3E	-146.450	131	83	-123,969	200	C8	-101.489	269	10D	-79.008
63	3F	-146,124	132	84	-123,644	201	C9	-101,163	270	10E	-78.682
64	40	-145.798	133	85	-123,318	202	CA	-100.837	271	10F	-78.356
65	41	-145.473	134	86	-122,992	203	CB	-100.511	272	110	-78.031
66	42	-145.147	135	87	-122,666	204	CC	-100,185	273	111	-77.705
67	43	-144.821 -144.405	136	88 89	-122 <u>.</u> 340	205	CD	<u>-99.860</u>	274	112	-77.379 -77.053
68	44	-144.495	137	09	-122,015	206	CE	-99.534	275	113	-77.053

ADC		dograd	ADC		dograd	AD	ADC		ADC		dograd
Decimal	HEX	degree	Decimal	HEX	degree Decim	Decimal	HEX	degree	Decimal	HEX	degree
276	114	-76,727	350	15E	-52,618	424	1A8	-5.376	498	1F2	-4.398
277	115	-76.402	351	15F	-52 <u>.</u> 292	425	1A9	-5.050	499	1F3	-4.073
278	116	-76.076	352	160	-51.966	426	1AA	-4.724	500	1F4	-3.747
279 280	117 118	-75,750 -75,424	353 354	161 162	-51,640 -51,315	427 428	1AB 1AC	-28,508 -28,182	501 502	1F5 1F6	-3.421 -3.095
281	119	-75.424 -75.098	355	163	-50,989	429	1AD	-27.856	503	1F7	-2.769
282	11A	-74.773	356	164	-50,663	430	1AE	-27.531	504	1F8	-2.444
283	11B	-74.447	357	165	-50,337	431	1AF	-27,205	505	1F9	-2.118
284	11C	-74,121	358	166	-50,011	432	1B0	-26,879	506	1FA	-1.792
285	11D	-73.795	359	167	-49.685	433	1B1	-26.553	507	1FB	-1.466
<u>286</u> 287	11E 11F	-73.469	360	168 169	-49 <u>.</u> 360	434	1B2 1B3	-26,227	508 509	1FC 1FD	<u>-1.140</u>
288	120	-73.144 -72.818	361 362	16A	-49.034 -48.708	435 436	1B4	-25,902 -25,576	510	1FE	-0.815 -0.489
289	121	-72.492	363	16B	-48,382	437	1B5	-25,250	511	1FF	-0.163
290	122	-72,166	364	16C	-48.056	438	1B6	-24.924	512	200	0,163
291	123	-71.840	365	16D	-47,731	439	1B7	-24.598	513	201	0.489
292	124	-71.515	366	16E	-47.405	440	1B8	-24.273	514	202	0.815
293 294	125 126	-71,189 -70,863	367 368	16F 170	-47.079 -46.753	441 442	1B9 1BA	-23,947 -23,621	<u>515</u> 516	203 204	1.140 1.466
295	127	-70,565 -70,537	369	170	-46.427	443	1BB	-23.295	517	205	1,792
296	128	-70,211	370	172	-46.102	444	1BC	-22,969	518	206	2,118
297	129	-69.885	371	173	-45.776	445	1BD	-22.644	519	207	2.444
298	12A	-69,560	372	174	-45.450	446	1BE	-22,318	520	208	2,769
299	12B	-69.234	373	175	-45,124	447	1BF	-21.992	521	209	3.095
300	12C 12D	-68.908 -68.582	374 375	176 177	-44.798 -44.473	448	1C0 1C1	-21,666 -21,340	522 523	20A 20B	3.421 3.747
302	12E	-68,256	376	178	<u>-44.473</u> -44.147	450	1C2	-21.015	524	20C	4.073
303	12F	-67.931	377	179	-43.821	451	1C3	-20.689	525	20D	4.398
304	130	-67.605	378	17A	-43.495	452	1C4	-20,363	526	20E	4.724
305	131	-67,279	379	17B	-43,169	453	1C5	-20.037	527	20F	5.050
306	132	-66.953	380	17C	-42.844	454	1C6	-19.711	528	210	5.376
307	133 134	-66,627 -66,302	381 382	17D 17E	-42,518 -42,192	455 456	1C7 1C8	-19.385 -19.060	529 530	211 212	5.702 6.027
309	135	-65,976	383	17E	-42.192 -41.866	457	1C9	-19.060 -18.734	531	213	6,353
310	136	-65,650	384	180	-41.540	458	1CA	-18.408	532	214	6.679
311	137	-65.324	385	181	-41,215	459	1CB	-18,082	533	215	7.005
312	138	-64.998	386	182	-40.889	460	1CC	-17.756	534	216	7,331
313	139	-64.673	387	183	-40.563	461	1CD	-17.431	535	217	7.656
314 315	13A 13B	-64,347 -64,021	388 389	184 185	-40,237 -39,911	462 463	1CE 1CF	-17,105 -16,779	<u>536</u> 537	218 219	7,982 8,308
316	13C	-63,695	390	186	-39,585	464	1D0	-16.453	538	21A	8.634
317	13D	-63,369	391	187	-39.260	465	1D1	-16,127	539	21B	8,960
318	13E	-63.044	392	188	-38.934	466	1D2	-15.802	540	21C	9,285
319	13F	-62,718	393	189	-38,608	467	1D3	-15.476	541	21D	9,611
320	140	-62.392	394	18A	-38,282	468	1D4	-15,150	542	21E	9.937
321 322	141 142	-62,066 -61,740	395 396	18B 18C	-37,956 -37,631	469 470	1D5 1D6	-14.824 -14.498	543 544	21F 220	10,263 10,589
323	143	-61,415	397	18D	-37,305	471	1D7	-14.173	545	221	10,915
324	144	-61,089	398	18E	-36.979	472	1D8	-13.847	546	222	11,240
325	145	-60,763	399	18F	-36,653	473	1D9	-13.521	547	223	11,566
326	146	-60.437	400	190	-36,327	474	1DA	-13.195	548	224	11,892
327 328	147 148	-60,111 -59,785	401 402	191 192	-36.002 -35.676	475 476	1DB 1DC	-12,869 -12,544	549 550	225 226	12,218 12,544
329	149		402	193	-35,676 -35,350	477	1DD	-12,544 -12,218	551	227	12,344
330	14A	-59,134	404	194	-35,024	478	1DE	-11,892	552	228	13,195
331	14B	-58.808	405	195	-34.698	479	1DF	-11,566	553	229	13,521
332	14C	-58.482	406	196	-34.373	480	1E0	-11.240	554	22A	13.847
333	14D	<u>-58,156</u>	407	197	-34.047	481	1E1	-10.915	555	22B	14.173
334	14E 14F	-57.831 -7.505	408	198	-33,721	482	1E2	-10.589	556	22C 22D	14.498
335	150	-57,505 -57,179	409 410	199 19A	-33,395 -33,069	483 484	1E3 1E4	-10,263 -9,937	557 558	22E	14.824 15.150
337	151	-56.853	411	19B	-32,744	485	1E5	<u>-9.611</u>	559	22F	15,476
338	152	- 56.527	412	19C	-32,418	486	1E6	-9.285	560	230	15.802
339	153	-56,202	413	19D	-32.092	487	1E7	-8.960	561	231	16.127
340	154	<u>-55.876</u>	414	19E	-31,766	488	1E8	-8.634	562	232	16.453
341	155	-55,550 -55,224	415	19F	-31,440 -31,115	489	1E9	-8.308 -7.002	563	233	16,779
342	156 157	-55,224 -54,898	<u>416</u> 417	1A0 1A1	-31,115 -30,789	490 491	1EA 1EB	-7.982 -7.656	564 565	234 235	17.105 17.431
343	158	-54.573	417	1A2	-30,769 -30,463	492	1EC	-7.000 -7.331	566	236	17,756
345	159	-54.247	419	1A3	-30,137	493	1ED	-7.005	567	237	18.082
346	15A	-53.921	420	1A4	-29 <u>.</u> 811	494	1EE	-6.679	568	238	18.408
347	15B	-53.595	421	1A5	-29.485	495	1EF	-6.353	569	239	18,734
348	15C	-53,269	422	1A6	-29.160	496	1F0	-6.027	570	23A	19.060
349	15D	<u>-52,944</u>	423	1A7	-28.834	497	1F1	-5.702	571	23B	19,385

ADC		dograd	ADC		docura	AD	ADC		ADC		dograd
Decimal	HEX	degree	Decimal	al HEX	Decimal	HEX	degree	Decimal	HEX	degree	
572	23C	19.711	646	286	43,821	720	2D0	67.931	794	31A	92.040
573	23D	20.037	647	287	44.147	721	2D1	68,256	795	31B	92.366
<u>574</u> 575	23E 23F	20,363 20,689	648 649	288 289	44,473 44,798	722 723	2D2 2D3	68,582 68,908	<u>796</u> 797	31C 31D	92,692 93,018
576	240	21,015	650	289 28A	44.798	723 724	2D3 2D4	69,234	797	31E	93,018
577	241	21,340	651	28B	45.450	725	2D5	69.560	799	31F	93.669
578	242	21,666	652	28C	45.776	726	2D6	69,885	800	320	93,995
579	243	21,992	653	28D	46.102	727	2D7	70,211	801	321	94.321
580	244	22,318	654	28E	46.427	728	2D8	70.537	802	322	94.647
<u>581</u> 582	245 246	22,644 22,969	655 656	28F 290	46.753 47.079	729 730	2D9 2DA	70,863 71,189	803 804	323 324	94.973 95.298
583	247	23,295	657	291	47.405	731	2DB	71,109	805	325	95,624
584	248	23,621	658	292	47,731	732	2DC	71.840	806	326	95.950
585	249	23,947	659	293	48.056	733	2DD	72,166	807	327	96,276
586	24A	24,273	660	294	48.382	734	2DE	72,492	808	328	96,602
587	24B	24,598	661	295	48,708	735	2DF	72,818	809	329	96,927
<u>588</u> 589	24C 24D	24 <u>.</u> 924 25 <u>.</u> 250	662 663	296 297	49.034 49.360	736 737	2E0 2E1	73.144 73.469	<u>810</u> 811	32A 32B	97.253 97.579
590	24E	25.576	664	298	49.685	738	2E2	73.795	812	32C	97.905
591	24F	25,902	665	299	50,011	739	2E3	74,121	813	32D	98,231
592	250	26,227	666	29A	50,337	740	2E4	74.447	814	32E	98,556
593	251	26,553	667	29B	50,663	741	2E5	74.773	815	32F	98.882
594	252	26,879	668	29C	50.989	742	2E6	75.098	816	330	99.208
<u>595</u> 596	253 254	27,205 27,531	669 670	29D 29E	51,315 51,640	743 744	2E7 2E8	75.424 75.750	817 818	331 332	99,534 99,860
597	255	27,856	671	29F	51,966	745	2E9	76,076	819	333	100.185
598	256	28,182	672	2A0	52,292	746	2EA	76,402	820	334	100,511
599	257	28,508	673	2A1	52,618	747	2EB	76.727	821	335	100.837
600	258	28,834	674	2A2	52,944	748	2EC	77.053	822	336	101,163
601	259	29,160	675	2A3	53,269	749	2ED	77.379	823	337	101,489
602	25A 25B	29,485 29,811	676 677	2A4 2A5	53,595 53,921	750 751	2EE 2EF	77,705 78,031	824 825	338 339	101,815 102,140
604	25C	30,137	678	2A3 2A6	54,247	752	2F0	78,356	826	33A	102,466
605	25D	30.463	679	2A7	54,573	753	2F1	78,682	827	33B	102,792
606	25E	30,789	680	2A8	54.898	754	2F2	79.008	828	33C	103,118
607	25F	31,115	681	2A9	55.224	755	2F3	79,334	829	33D	103,444
608	260	31.440	682	2AA	55.550	756	2F4	79.660	830	33E	103,769
609	261 262	31,766 32,092	683 	2AB 2AC	55.876 56.202	757 758	2F5 2F6	79,985 80,311	831 832	33F 340	104.095 104.421
611	263	32,418	685	2AD	56,527	759	2F7	80,637	833	341	104,421
612	264	32,744	686	2AE	56,853	760	2F8	80,963	834	342	105,073
613	265	33,069	687	2AF	57.179	761	2F9	81,289	835	343	105,398
614	266	33,395	688	2B0	57,505	762	2FA	81,615	836	344	105.724
615	267 268	33,721	689	2B1 2B2	57,831	763	2FB	81,940	837	345	106.050
616 617	269	34.047 34.373	690 691	2B3	58.156 58.482	764 765	2FC 2FD	82,266 82,592	838 839	346 347	106,376 106,702
618	26A	34.698	692	2B4	58.808	766	2FE	82,918	840	348	107,027
619	26B	35.024	693	2B5	59.134	767	2FF	83.244	841	349	107,353
620	26C	35,350	694	2B6	59.460	768	300	83,569	842	34A	107,679
621	26D	35.676	695	2B7	59.785	769	301	83.895	843	34B	108,005
622 623	26E 26F	36.002 36.327	696 697	2B8 2B9	60,111 60,437	770 771	302	84,221 84,547	844 845	34C 34D	108,331 108,656
624	270	36,653	698	2B9 2BA	60,763	772	303	84.873	846	34E	108,982
625	271	36,979	699	2BB	61,089	773	305	85,198	847	34F	109,308
626	272	37.305	700	2BC	61,415	774	306	85.524	848	350	109,634
627	273	37.631	701	2BD	61.740	775	307	85.850	849	351	109.960
628	274	37,956	702	2BE	62,066	776	308	86,176	850	352	110,285
629 630	275 276	38,282 38,608	703 704	2BF 2C0	62,392 62,718	777 778	309 30A	86,502 86,827	851 852	353 354	110,611 110,937
631	277	38,934	704	2C1	63.044	779	30B	87,153	853	355	111,263
632	278	39.260	706	2C2	63.369	780	30C	87.479	854	356	111,589
633	279	39,585	707	2C3	63,695	781	30D	87,805	855	357	111.915
634	27A	39,911	708	2C4	64.021	782	30E	88,131	856	358	112,240
635	27B	40,237	709	2C5	64.347	783	30F	88.456	857	359	112,566
636 637	27C 27D	40.563 40.889	710 711	2C6 2C7	64,673 64,998	784 785	310 311	88,782 89,108	858 859	35A 35B	112,892 113,218
638	27E	41,215	712	2C8	65,324	786	312	89,434	860	35C	113.544
639	27F	41.540	713	2C9	65,650	787	313	89.760	861	35D	113,869
640	280	41.866	714	2CA	65.976	788	314	90.085	862	35E	114.195
641	281	42.192	715	2CB	66,302	789	315	90.411	863	35F	114.521
642	282	42.518	716	2CC	66,627	790	316	90,737	864	360	114.847
643 644	283 284	42.844 43.169	717 718	2CD 2CE	66.953 67.279	791 792	317 318	91,063 91,389	865 866	361 362	115,173 115,498
645	285	43,495	719	2CF	67,605	793	319	91.715	867	363	115,824
040	200	70,700	110	201	07,000	100	010	01,710	- 001	505	110,024

AD	C	degree	AD	al a service	
Decimal	ecimal HEX		Decimal	HEX	degree
868	364	116,150	942	3AE	140.260
869	365	116,476	943	3AF	140,585
870	366	116,802	944	3B0	140,911
871	367	117,127	945	3B1	141,237
872	368	117.453	946	3B2	141.563
873	369	117.779	947	3B3	141.889
874	36A	118,105	948	3B4	142,215
875	36B	118,431	949	3B5	142.540
876	36C	118.756	950	3B6	142.866
877	36D	119.082	951	3B7	143,192
878	36E	119.408	952	3B8	143,518
879	36F	119,734	953	3B9	143.844
880 881	370 371	120.060	954 955	3BA 3BB	144,169 144,495
882	372	120 <u>.</u> 385 120 <u>.</u> 711	956	3BC	144,821
883	373	121,037	957	3BD	145.147
884	374	121,363	958	3BE	145,473
885	375	121,689	959	3BF	145,798
886	376	122,015	960	3C0	146,124
887	377	122,340	961	3C1	146,450
888	378	122,666	962	3C2	146,776
889	379	122,992	963	3C3	147,102
890	37A	123,318	964	3C4	147.427
891	37B	123,644	965	3C5	147,753
892	37C	123,969	966	3C6	148.079
893	37D	124,295	967	3C7	148.405
894	37E	124.621	968	3C8	148,731
895	37F	124.947	969	3C9	149.056
896	380	125,273	970	3CA	149.382
897	381	125.598	971	3CB	149,708
898	382	125,924	972	3CC	150.034
899	383	126,250	973	3CD	150,360
900	384	126,576	974	3CE	150.685
901 902	385 386	126,902 127,227	975 976	3CF 3D0	151.011 151.337
903	387	127,553	977	3D0	151,663
904	388	127,879	978	3D2	151,989
905	389	128,205	979	3D3	152,315
906	38A	128,531	980	3D4	152,640
907	38B	128,856	981	3D5	152,966
908	38C	129,182	982	3D6	153,292
909	38D	129,508	983	3D7	153,618
910	38E	129,834	984	3D8	153,944
911	38F	130,160	985	3D9	154,269
912	390	130,485	986	3DA	154,595
913	391	130,811	987	3DB	154,921
914	392	131,137	988	3DC	155.247
915	393	131,463	989	3DD	155,573
916	394	131,789	990	3DE	155.898
917	395	132,115	991	3DF	156,224
918 919	396 397	132,440	992	3E0 3E1	156,550 156,876
920	398	133,092	993	3E2	157,202
921	399	133.418	995	3E3	157,527
922	39A	133,744	996	3E4	157,853
923	39B	134,069	997	3E5	158,179
924	39C	134,395	998	3E6	158,505
925	39D	134,721	999	3E7	158,831
926	39E	135,047	1000	3E8	159,156
927	39F	135,373	1001	3E9	159,482
928	3A0	135,698	1002	3EA	159,808
929	3A1	136.024	1003	3EB	160,134
930	3A2	136,350	1004	3EC	160.460
931	3A3	136.676	1005	3ED	160.785
932	3A4	137,002	1006	3EE	161,111
933	3A5	137,327	1007	3EF	161,437
934	3A6	137,653	1008	3F0	161,763
935	3A7	137,979	1009	3F1	162,089
936	3A8	138,305	1010	3F2	162,415
937	3A9	138,631	1011	3F3	162,740
938 939	3AA 3AB	138.956	1012 1013	3F4 3F5	163,066 163,392
939	3AB 3AC	139,282	1013	3F6	163,718
940	3AD	139,934	1014	3F7	164,044
<i>3</i> 41		100,004	1010	JI 1	104,044

AD	degree			
Decimal	HEX	acgice		
1016	3F8	164,369		
1017	3F9	164,695		
1018	3FA	165,021		
1019	3FB	165.347		
1020	3FC	165.673		
1021	3FD	165,998		
1022	3FE	166.324		
1023	3FF	166,650		