

User Manual

CONTENT

1. Safety Instructions

1-1. Meaning of Symbols	03p
1–2. Operating Precautions	03p
1–3. Safe Battery Handling	04p
1-4. Safe Storage	04p

2. Introduction

2–1. Parts List	05p
2–2. Product Overview	06p
2–3. Specification	09p

3. Assembly Instructions

3–1. Joint Assembly	10p
3–2. Joint Assembly(Optional Bracket and Bolt Required)	12p
3–3. Connector Pin & System Assembly	17p

4. Operation

4–1. Communication Protocol	18p
4-2. Register Map	21p

5. Command Set

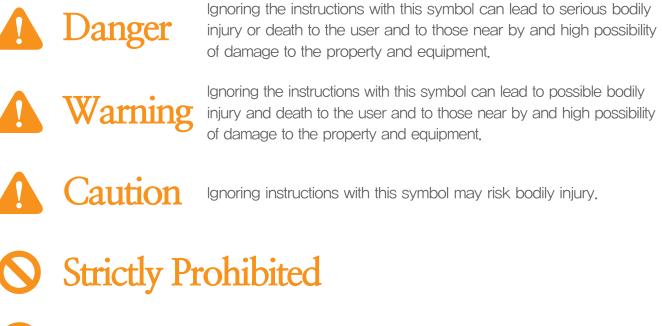
5–1. [To Servo Module] – Request Packet	40p
5–2. [To Controller(ACK)] – ACK Packet	40p
5-3. CMD(Command) Details	41p

6. Command Examples	6.	Command	Examples
---------------------	----	---------	----------

51c

Referenace

HerkuleX


1. Safety Instructions

Thank you for purchasing our HerkuleX.

For your safety, please read the instruction manual before using the HerkuleX with particular attention to the safety instructions below.

1-1. Meaning of Symbols

Any sections within the manual with the following symbols require special attention to safety.

Compulsory requirement

1-2. Operating Precautions

Do not disassemble or modify the servo.

Do not use power sources other than the recommended battery.

Do not touch the servo casing immediately after the operation.

Keep away from water, sand, and dust.

Do not use the servo for purposes other than installation in the indoor robot.

Do not use overt force to turn the servo horn.

Servo should not be left if locked position.

1-3. Safe Battery Handling

Alwasy use the appropriate battery charger to charge the battery pack.

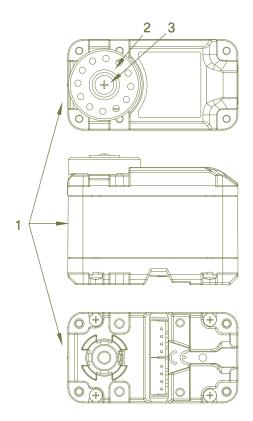
Do not connect the battery packs in parallel configuration.

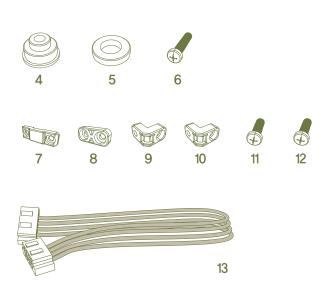
Never disassemble or modify the battery pack.

Do not use the battery pack with apparent external damage.

1-4. Safe Storage

000


To prevent accidents and damage, do not store the servo under the conditions listed below


- Location with temperatures above 60 degree celsius or below 20 degree celsius.
- Location with direct sunlight.
- Location with high humidity.
- Area with vibration.
- Dusty area.
- Area with possible electrostatic electricity,
- Area within easy reach of children.

2. Introduction

2-1. Parts List

- 1 Servo
- 2 Horn
- 3 Horn Bolt(BHT 2.6X8)
- 4 Wheel Horn Bushing
- 5 Wheel Horn Washer
- 6 Wheel Horn Bolt(PHM 3X8)
- 7 Cable Guard
- 8 I-type Joint
- 9 L-type Joint
- 10 L-type Joint(Single Nut)
- 11 Bracket Bolt(PHT 2X5)
- 12 Joint Bolt(PHM 2X5)
- 13 Wire Harness(200mm)

- :1ea
- :1ea
- :1ea
- :1ea
- :1ea
- :1ea
- :2ea
- :2ea
- :2ea
- :4ea
- : 4ea (* DRS-0201 replaced by PHM 2X5)
- :12ea
- :1ea

2-2. Product Overview

Smart Servo

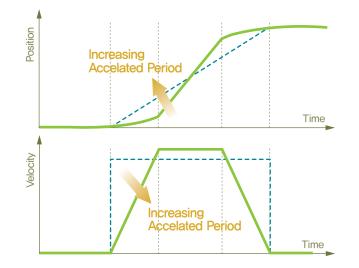
DRS-0101 and DRS-0201 are state of the art modular smart servos incorporating motor, gear reducer, control circutry and communications capability in one single package. Both servos are capable of detecting and responding to internal changes in termerature and voltage supply.

Simple Assembly and Wiring

Small, light, and easy to assemble structure. Ours sevos make joint assembly an easy job with an added advantage of simple wiring. Two connectors attached to each servo allows serial connection as well as parallel connection if required.

Highest Stall Torque in relation to Size and Power

In relation to size, weight, and power requirement, our servos have the highest stall torque in its class.


Versatility from Two Different Models

By introducing two different models of the same size but with different torque and speed, our customers have the choice to choose and mix and match the servos to assemble custom joints.

- DRS-0101 : Stall Torque 1.2N.m @7.4DCV [166.8 ozf.in.], Speed 0.166s/60°@7.4DCV
- DRS-0201 : Stall Torque 2.4N.m @7.4DCV [333.6 ozf.in.], Speed 0.147s/60°@7.4DCV

Smooth Movement

Once the servo receives a movement command, it automatically creates a trapezoidal type speed profile like the diagram below to control the position. With the servo operating according to the acceleration/deceleration profile, it suppresses vibrations caused by the sudden acceleration and deceleration as found in the square type speed profile and increases the energy efficiency while leading to smoother movement. The servo chooses the trapezoidal type speed profile as a default but profile could be changed according to usage to trapezoidal type, square type or triangle type.

Durability

Manufactured using Super Engineering Plastic, our servos are highly durable, impact resistant and designed to withstand even the high torque stress levels that go beyond the tolerance specs of Engineering Plastic Gears.

Communication

Using Multi Drop TTL Full Duplex UART Serial communications protocol with maxium speed of 0.667Mbps, single command can set the speed, position, LED, operational compliance, stop and operational status of up to 254 servos simultaneoulsy at once.

54 Operating Parameters

Operational parameters such as speed, calibration, compliance to external force, LED could be set by writing directly to the register, by using the Servo Manager downloaded from the web site or by using the Servo Manager Kit sold separately.

Resolution

0.325 degrees resolution provides very accurate smooth control and minimal vibration.

Maximum Operating Angle

- Position Control Mode : 0 \sim 320 $^{\circ}$ possible but recommended range is within 0 \sim 300 $^{\circ}$
- Speed Control Mode : Continuous rotation possible with rotation speed control

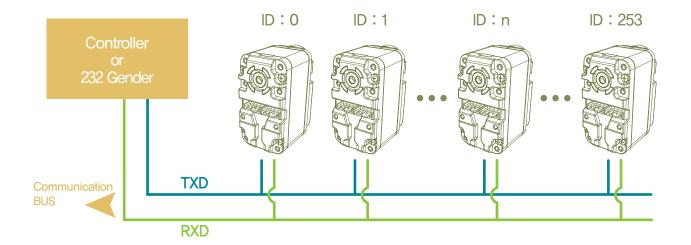
Compliance Control

By controlling the torque according to the discrepancy between the goal position and the actual position, Compliance Control provides certain measure of elasticity to absorb the shock from the external force.

Data Feedback

Data feedback from the internal temperature, position, and overload sensors.

Protection Features


- Internal temperature sensor monitors the motor and the circuit temperature and issues Overheating Protection Error if the temperature moves beyond set value.
- Overload Protection Error is issued when the load stress on the servo goes beyond the set value. These safety features protec the sevo from the potential damage and prolongs the servo life.

Self Diagnosis

Servos are capable of diagnosing seven different types of errors which are then indicated by the LED. Servo UI is used to set the function and timing of the Overload Protection. (protects the servo when the overload occurs by releasing the torque)

Multi Drop Network

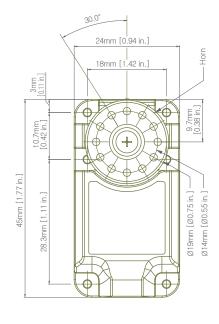
Expandable Multi Drop type Network with 1:n configuration. (single controller connected to multiple "n" number of servos).

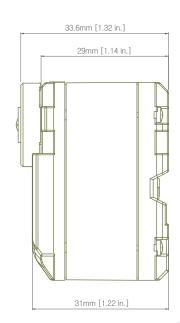
Multi Function LED

User has direct control the three independently controlled LEDs Red/Green/Blue which are used for diagnostics and decorative purposes. LED commands are sent together with the Operation command.

% In case of an error, diagnostics function ignores all LED commands and the Red LED starts to blink periodically according to the setting.

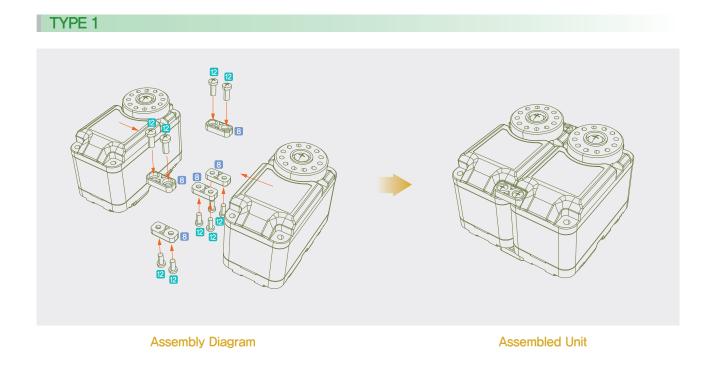
Metal Ball Bearing (DRS-0201)


Ball bearing installed on the 4th gear shaft will prevent wear, sloping and provide protection from external shocks that can bend the shaft or throw the gear out of mesh.

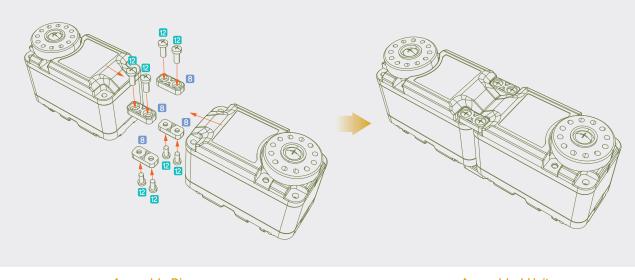

% DRS-0101 : Plastic Bushing% DRS-0201 : Metal Ball Bearing

2–3. Specification

	DRS-0101	DRS-0201	
Dimension	45mm(W) x 24.0mm(D) x 32mm(H)		
Weight	45g	60g	
Reduction Ratio	1:	266	
Gear Material	Super Engineering Plastic	Reinforced Heavy Duty Metal	
Input Voltage	7.4V DC	$7\sim$ 12V DC	
Rated Current	450mA at 7.4V : 0.17N.m (1.7kgf.cm) 670mA at 7.4V : 0.22N.t (2.2kgf.cm)		
Motor	Metal Brush Cored DC Coreless DC		
Stall Torque	1.2N.m (12.0kgf.cm) at 7.4V	2.4N.m (24.0kgf.cm) at 7.4V	
Maximum Speed	0.166sec/60° at 7.4V 0.147sec/60° at 7.		
Resolution	1024 steps (0.325°)		
Operating Angle Temperature	320 ° , Continuous Rotation 0 \sim 85°C [32°F \sim 185°F]		
Communication Link ID, Maximum Baud Rate	Full Duplex Asynchronous Serial(TTL Level), Binary Packet, Multi Drop 0 ~ 253, 254(Broadcast only) 0.67Mbps		
Feedback	Position, Speed, Temperature, Load, Voltage etc.		
Control Algorithm	PID, Feedforward, Trapezoidal Velocity Profile, Velocity Override, Torque Saturator & Offset, Overload Protection, Neutral Calibration, Dead Zone 54 Selectable Setting Parameters (* Servo Manager Kit Required)		

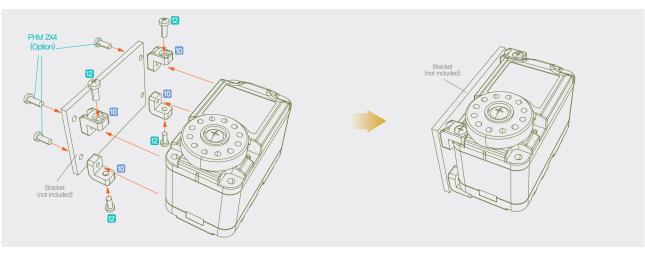


Refer to
 Pages 52 and 53
 for connector specs.



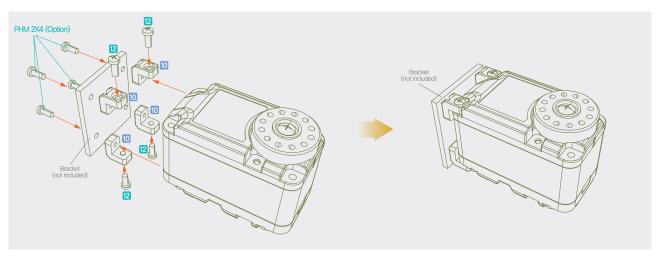
3. Assembly Instructions

3-1. Joint Assembly



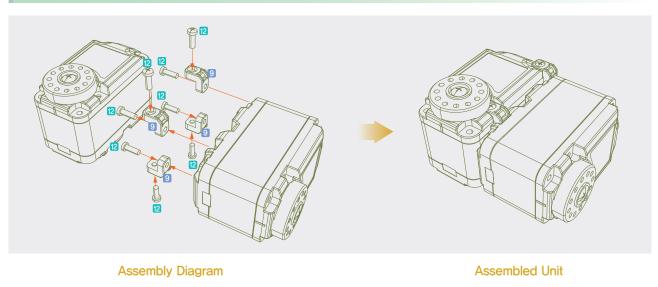
TYPE 2

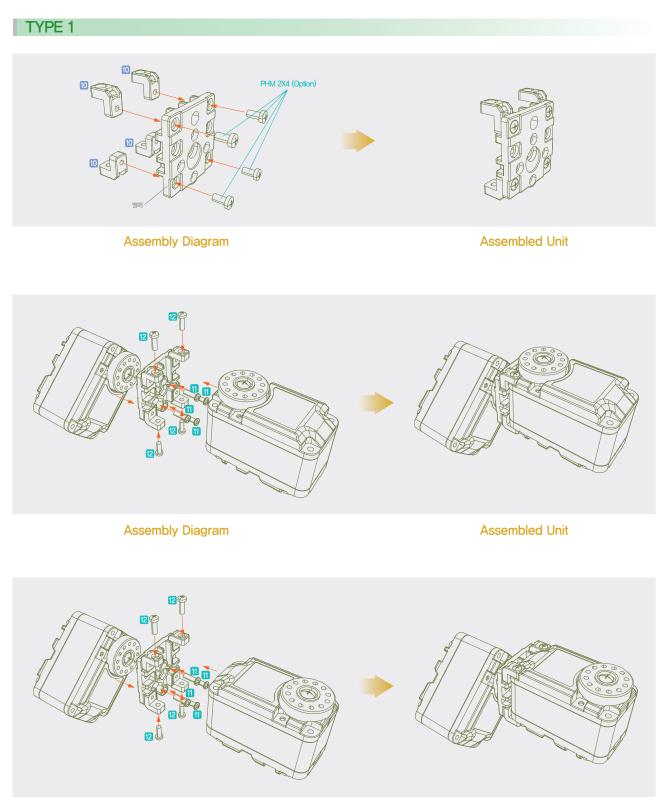
Assembly Diagram


TYPE 3

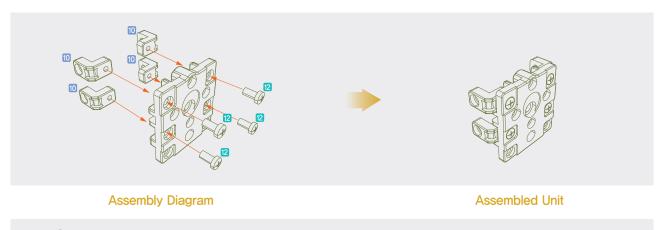
Assembly Diagram

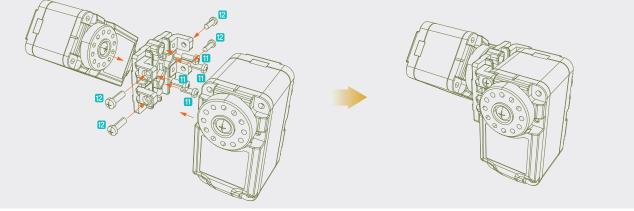
Assembled Unit


TYPE 4


Assembly Diagram

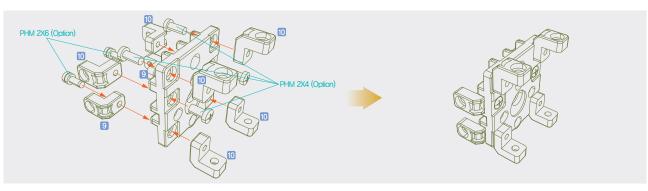
Assembled Unit


TYPE 5

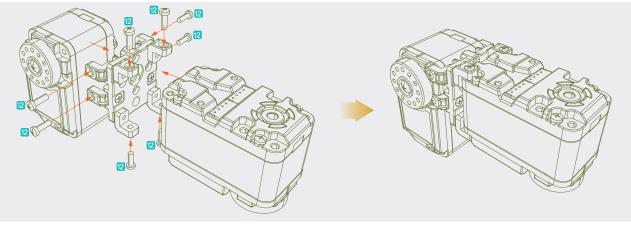


3-2. Joint Assembly (Optional Bracket and Bolt Required)

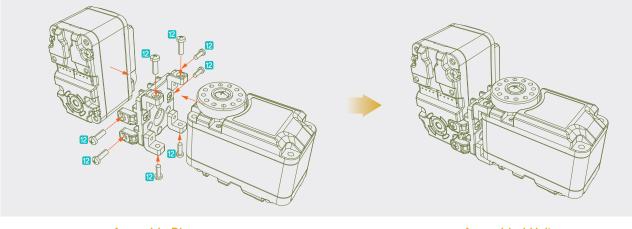
Assembly Diagram



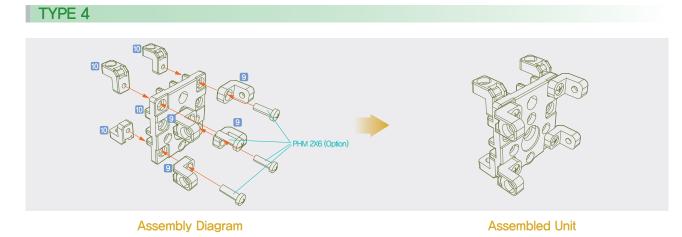
Assembly Diagram

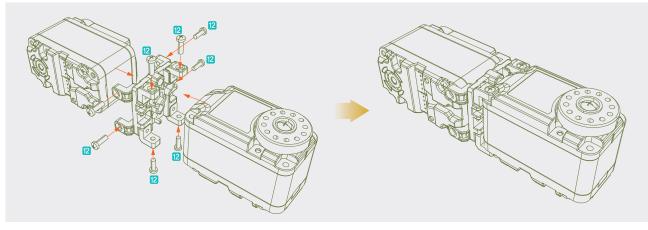

Assembled Unit

TYPE 3

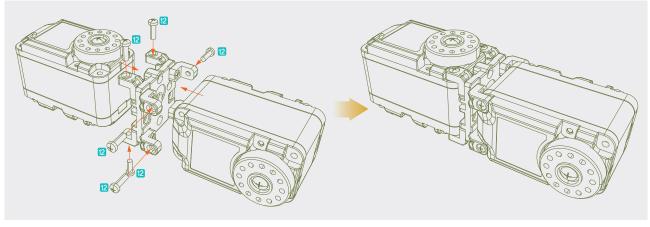

Assembly Diagram

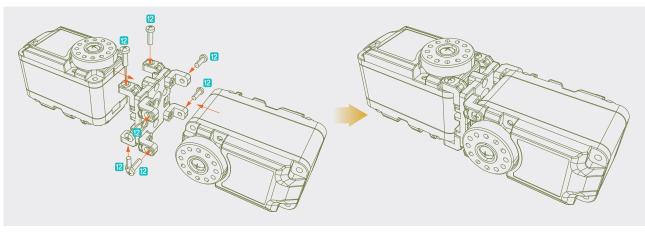
Assembled Unit


Assembly Diagram



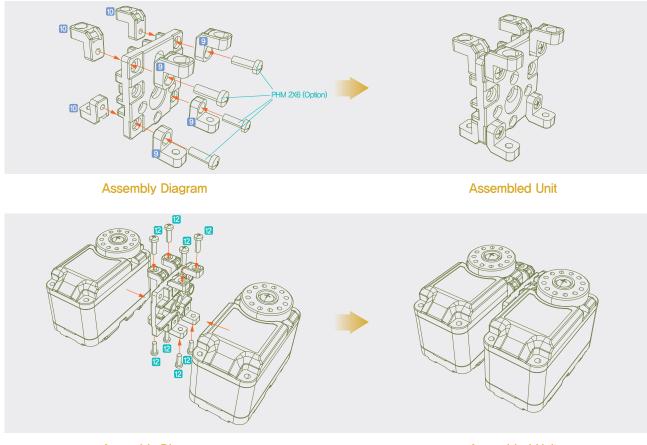
Assembly Diagram


Assembled Unit

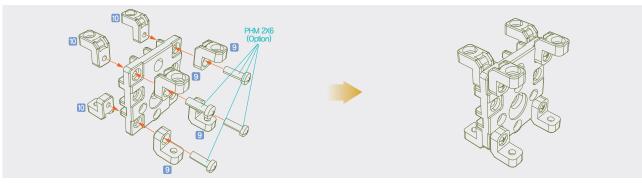

Assembly Diagram

Assembled Unit

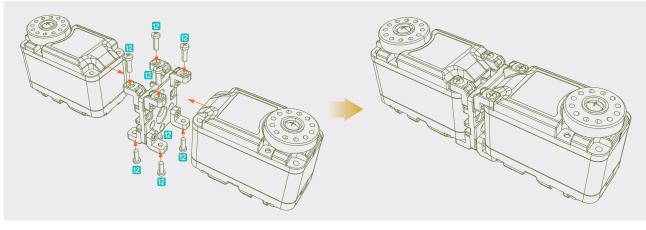
Assembly Diagram



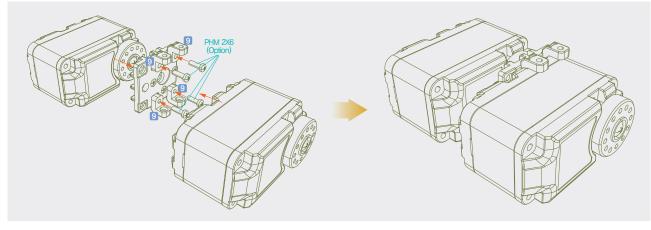
Assembly Diagram


Assembled Unit

TYPE 5

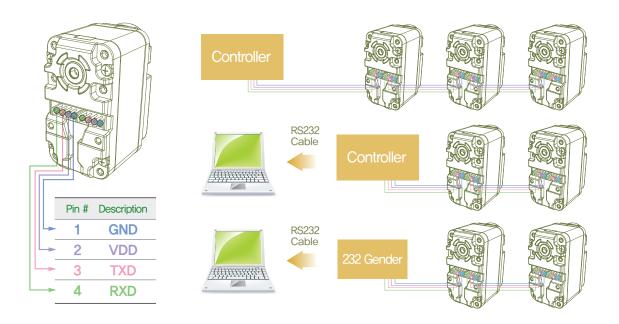

Assembly Diagram

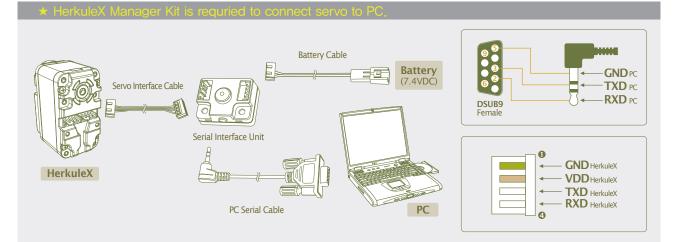
Assembly Diagram



Assembly Diagram

Assembled Unit


TYPE 7



Assembly Diagram

3-3. Connector Pin & System Assembly

All the Servo to Servo connectors have same Pin assingment as the diagram below. Multi Drop Network makes expansion easy.

Caution

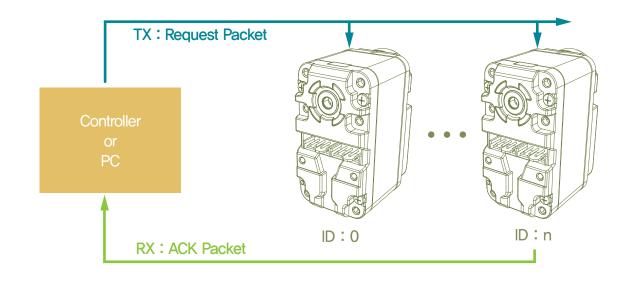
Servos must be cross connected to the PC or Motion Controller. Examples of cross connection would be Servo TXD to PC or Motion Controller RXD, Servo RXD to PC or Motion Controller TXD.

Caution

Do not connect the servo directly to the PC without using the Motion Controller or Signal Converter. Even though both PC and the servo uses serial protocol (TXD, RXD) they are not directly compatible due to electrical difference.

Caution

If using custom made Wire Harness, make sure to check that connector pin assingments are in correct order. Servo LED will blink once if it is receiving power properly. If the LED does not blink, check the connector pin assignment and the power supply Voltage and Amp.


HerkuleX

4. Operation

4-1. Communications Protocol

Introduction

Servo Controller communicates with the servos in the network by sending a Request Packet and receiving ACK Packet back from the servo. The example below shows the controller sending a Request Packet to the Servo n and receiving ACK packet back from the Servo n. Regardless of the number of servos in the network, only the servo with correct ID (n) will acknowledge the Request Packet and send the ACK Packet to the controller.

Communication Protocol	Data Bit : 8 Stop Bit : 1 Parity : None Flow Control : None Baud Rate : 57,600 / 115,200 / 0.2M / 0.25M / 0.4M / 0.5M / 0.667M
---------------------------	--

* The communications speed of the PC communication ports or USB to Serial Cable can be limited by the hardware or by the device driver. If problem occurs, check the Baud Rate of the involved port of peripheral to make sure it supports 115,200bps. If the supported Baud Rate can not found, set the Baud Rate to 115,200bps or 57,600bps and try again. The default factory setting for DRS-0101 and DRS-0201 is 115,200bps.

Packet	t							
Туре	Head	ler	Packet Size	plD	CMD	Check Sum1	Check Sum2	Data[n]
Value	0xFF (DxFF	7~223	0~0xFE	1~9	Refer to Detail	Refer to Detail	Refer to Detail
Byte	1	1	1	1	1	1	1	MAX 216

► Header

Indicates start of the Packet.

Туре	Header	
Value	0xFF	0xFF
Byte	1	1

Packet Size

Refers to total Packe size (in Bytes) from Header to Data. The maximum Packet Size 233, if the packet size is larger than 223 Bytes, packet may not be recognized. Minimum packet size is 7 which is packet without any data.

▶ plD

Unique pID value can range from $0 \sim 253$ which is total number of servos in the network. Care must be taken when using pID value of "0xFE" which is a special value that affects all the servos in the network.

\times To avoid confusion with Servo ID, $\,$ ID within the packet is deonoted pID

Туре	plD	
Value	$0\sim 0 { m xFE}$	
Byte	1	

► CMD

CMD is actual instructions for the servo to perfom when packet is received. There are 9 types of CMD in Request Packet EEP_WRITE(0x01), EEP_READ(0x02), RAM_WRITE(0x03), RAM_READ(0x04), I_JOG(0x05), S_JOG(0x06), STAT(0x07), ROLLBACK(0x08), REBOOT(0x09). ACK Packet also has equivalent set of CMD, but to distinguish from the Request CMD, ACK Packet adds 0x40. For example, ACK Packet CMD for Request Packet EEP_WRITE(0x01),would be 0x41.

Туре	CMD
Value	0x01 \sim 0x09 : Request Packet 0x41 \sim 0x49 : ACK Packet
Byte	1

Check Sum1

Check Sum1 is used to check for errors in the Packet. Check Sum1 is calculated as follows, Check Sum1 = (PacketSize ^ pID ^ CMD ^ Data[0] ^ Data[1] ^ ^ Data[n]) & 0xFE. Header, Check Sum1, Check Sum2 are not included in the calculation.

* 'A ^ B' : Bit Exclusive OR Operator, A is different from B 1(True), same 0(False)

Туре	Check Sum1
Value	(PacketSize ^ plD ^ CMD ^ Data[0] ^ Data[1] ^ ^ Data[n])&0xFE
Byte	1

Check Sum2

Checksum2 is also used to check for errors in the Packet. Check sum2 is calculated as follows, Check Sum2 = (\sim CheckSum1) & 0xFE

$*$ ' \sim A' : Bit I	Not Operator, $A = 0$	1(True), A = 1 O(False)
-------------------------	-----------------------	-------------------------

Туре	Check Sum2						
Value	(~CheckSum1) & 0xFE						
Byte	1						

► Data[n]

Number of Data depends on CMD and some CMD may not have Data field. Refer to CMD for details.

Туре	Data					
Value	Refer to CMD for details					
Byte	Max216					

4-2. Register Map

Register Map are values residing within the Servo and contain data pertaining to current servo status and operation. Registers are either Non–Volatile or Volatile.

Users are able to control the servos by using Request Packet and ACK Packet to either check or change the data in the Register Map.

Non-Volatile Register Map

Non–Volatile memory retains data without power. Once the power is turned on, data in the Non–Volataile memory in EEP Register are copied to the RAM Register which is Volatile memory. Data in the Non–Volatile memory does not have direct affect on the operation of the servo once it has been copied to the RAM Register. Rebooting the servo will again copy the data from EEP Register to the RAM Register.

Address

Address refers to the address of the Register. To Read/Write to the Register, Register address must be included in the Packet.

Default

Factory Default Value, Rollback Protocol is used to return all values to Factory Default Value.

► Valid Range

Range of valid data values servo can have. Input of data beyond the Valid Range will possibly result in unpredictable servo behavior.

▶ RO(Read Only), RW (Read Write)

RO refers to read only Registers. Writing to RO Register will result in error.

RO Registers hold fixed values such as Model #, Version or sensor values used for feedback. RW refers to Registers which be both read and written to.

* e (Reg_Name) : Refers to Reg_Name in EEP Register.

* r (Reg_Name) : Refers to Reg_Name in RAM Register.

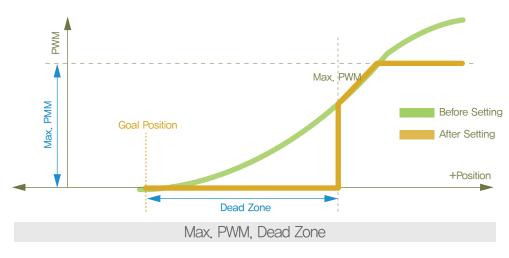
ADDRESS	Туре	Bytes	Default	Valid Range	RW	Description	
0	Model No1	1	0×01	_	RO	Shows DRS-0101 model #	
1	Model No2	1	0x01	_	RO	(* For DRS-0201, Model No1 is 0x02)	
2	Version1	1	0x00	_	RO	— Firmware Version	
3	Version2	1	0x90	_	RO		

ADDRESS	б Туре	Bytes	Default	Valid Range	RW	Description
4	Baud Rate	1	0x10	Refer to Pg 26	RW	Communication Speed
5	Reserved	1	0x00	_	_	Reserved
6	ID	1	0xFD	$0 \mathrm{x} \mathrm{00} \sim \mathrm{0x} \mathrm{FD}$	RW	Servo ID(0xFE : Can be used as Broadcasing ID, ID not assignable)
7	ACK Policy	1	0x01	0 x00 \sim 0x2	RW	Refer to Pg 33
8	Alarm LED Policy	1	0x7F	$0 \mathrm{x} 00 \sim 0 \mathrm{x} 7 \mathrm{F}$	RW	Activates alarm LED according to policy
9	Torque Policy	1	0x35	$0 \mathrm{x} \mathrm{00} \sim \mathrm{0x} \mathrm{7F}$	RW	Releases torque according to policy
10	Reserved	1	_	_	_	Reserved
11	Max. Temperature	1	0xDE	$0 \mathrm{x} \mathrm{00} \sim \mathrm{0x} \mathrm{FE}$	RW	Maximum allowed temp(0xDF : 85°C)
12	Min. Voltage	1	0x5B	$0 \mathrm{x} \mathrm{00} \sim \mathrm{0x} \mathrm{FE}$	RW	Minimum allowed voltage(0x5B : 6,714DCV)
13	Max. Voltage	1	0x89	$0 \times 00 \sim 0 \times \mathrm{FE}$	RW	Maximum allowed voltage(0x89 : 10DCV)
14	Acceleration Ratio	1	0x19	$0 \times 00 \sim 0 \times 32(50)$	RW	Ratio of time to reach goal position to acceleration or decceleration
15	Max. Acceleration Time	1	0x2D	$0 \times 00 \sim 0 \times \mathrm{FE}$	RW	Max acceleration time, 11,2ms interval Acceleration(0x2D : 504ms)
16	Dead Zone	1	0x00	$0 \times 00 \sim 0 \times \mathrm{FE}$	RW	Outside control/sensor range
17	Saturator Offset	1	0x00	$0 \mathrm{x} \mathrm{00} \sim \mathrm{0x} \mathrm{FE}$	RW	Refer to Pg 36
18	Saturator Slope	2	0x0000	$0 \times 0000 \sim 0 \times 7 \text{FFF}$	RW	Refer to Pg 36
20	PWM Offset	1	0x00	$-128 \sim 127$	RW	PWM Offset value Refer to Pg 37
21	Min. PWM	1	0x00	$0 \mathrm{x} \mathrm{00} \sim \mathrm{0x} \mathrm{FE}$	RW	Sets minimum PWM value Refer to Pg 37
22	Max. PWM	2	0x03FF	$0 \times 0000 \sim 0 \times 03 \mathrm{FF}$	RW	Sets maximum PWM value Refer to Pg 37
24	Overload PWM Threshold	2	0x03FE	$0 \times 0000 \sim 0 \times 7 \text{FFE}$	RW	Sets PWM overload treshold range Refer to Pg 34
26	Min. Position	2	0x0015	$0 \times 0000 \sim 0 \times 03 \mathrm{FF}$	RW	Minimum position value(0~1023)
28	Max. Position	2	0x03EA	$0 \times 0000 \sim 0 \times 03 \text{FF}$	RW	Maximum position value(0~1023)
30	Position Kp	2	0x01B8	$0 \times 0000 \sim 0 \times 7 \text{FFF}$	RW	Proportional Gain,
32	Position Kd	2	0x1F40	$0 \times 0000 \sim 0 \times 7 \text{FFF}$	RW	Derivative Gain,
34	Position Ki	2	0x0000	$0 \times 0000 \sim 0 \times 7 \text{FFF}$	RW	Integral Gain,
36	Position Feed forward 1st Gain	2	0x0000	$0 \times 0000 \sim 0 \times 7 \text{FFF}$	RW	Refer to Pg 35
38	Position Feedforward 2nd Gain	2	0x0000	$0 \times 0000 \sim 0 \times 7 \text{FFF}$	RW	Refer to Pg 35
40	Reserved	2	_	_	_	Reserved
42	Reserved	2	_	_	_	Reserved
44	LED Blink Period	1	0x2D	$0 \mathrm{x} \mathrm{00} \sim \mathrm{0x} \mathrm{FE}$	RW	Alarm LED blink period accoring to policy, 11,2ms/Tick, 0x2D : 504ms
45	ADC Fault Check Period	1	0x2D	$0 \mathrm{x} \mathrm{00} \sim \mathrm{0x} \mathrm{FE}$	RW	Temp/voltage error check period, 11,2ms/Tick, 0x2D : 504ms
46	Packet Garbage Check Period	1	0x12	$0 \mathrm{x} \mathrm{00} \sim \mathrm{0x} \mathrm{FE}$	RW	Packet Error check period, 11,2ms/Tick, 0x12 : 201ms
47	Stop Detection Period	1	0x1B	$0 \mathrm{x} \mathrm{00} \sim \mathrm{0x} \mathrm{FE}$	RW	Stop detection check period, 11.2ms/Tick, 0x1B : 302ms

ADDRESS	Туре	Bytes	Default	Valid Range	RW	Description
48	Overload Detection Period	1	0x96	$0 \mathrm{x} 00 \sim 0 \mathrm{x} \mathrm{FE}$	RW	Overload Check Interval 11.2ms/Tick, 0x96 : 1.68s
49	Stop Threshold	1	0x03	$0{\rm x}00\sim 0{\rm xFE}$	RW	Stop Threshold
50	Inposition Margin	1	0x03	$0 \times 00 \sim 0 \times \mathrm{FE}$	RW	Offset Threshold
51	Reserved	1	_	_	_	Reserved
52	Reserved	1	_	_	_	Reserved
53	Calibration Difference	1	0	$-128 \sim 127$	RW	Servo Compensation

2 Byte Variable Byte Order : (Little Endian) Most significant byte is stored int the higher address.
 [Example] : e(Position Kp) Address is 30~31. To store 0x1234(4460), store the least significant first Address(30)= 0x34, and most significant digit last Address(31)=0x12

* Intel & Alpha Processesors use Little Endian, whereas most of the RISC Processers & Mortorola Processors use Big Endian.


Max. PWM, Dead Zone

- PWM is the value representing engergy input to the Servo. When the energy is increased, servo torque or speed increases.
- Max. PWM : Limits maximum PWM, In other words, limits the maximum energy supplied to the Servo. Energy use is optimized by limiting the maximum torque or speed of the servo.
- Dead Zone : Servo moves to reach the exact Goal Position. When the difference (Error) between the current position and the goal position becomes 0, the force drops to 0 and the servo stops.
 Dead Zone provides flexibility to the servo operation by increasing the range where the force drops to 0.
 If the difference (Error) is less than the Dead Zone, servo assumes it has reached the goal position and stops.

* "What does operational flexibility" mean?

In the graph below, green line is the PWM level without the Max. PWM and Dead Zone set. The yellow line is the PWM level with the Max.PWM and the Dead Zone set. The yellow line shows the PWM dropping to 0 within the Dead Zone even though Goal Position has not been reached. Looking at the right side of the graph, even though the green line is above (larger) than the Max.PWM, actual PWM value (yellow line) is within the Max.PWM.

* Setting the Dead Zone too large will increase the discontinuous PWM section and lead to decreased controllability. Recommended Dead Zone value is below 10.

Volatile Register(RAM Register) MAP

Volatile Memory has direct affect on the operation of the Servo and reverts to default (EEP Register) value when the Servo is reboot even though RAM register value has been changed to change the servo operating parameters. Read/Write has to be performed to RAM Register value to operate the Servo, change the operating parameters or to check servo status.

ADDRESS	6 Туре	Bytes	Valid Range	RW	Description
0	ID	1	$0{\rm x}00\sim 0{\rm xFD}$	RW	Servo ID(0xFE : Can be used as Broadcasting ID, ID not assignable)
1	ACK Policy	1	$0x00 \sim 0x2$	RW	Refer to Pg 33
2	Alarm LED Policy	1	$0\mathrm{x}00\sim0\mathrm{x}7\mathrm{F}$	RW	Activates alarm LED according to Policy
3	Torque Policy	1	$0\mathrm{x}00\sim0\mathrm{x}7\mathrm{F}$	RW	Releases Torque according to Plolicy
4	Reserved	1	_	_	Reserved
5	Max. Temperature	1	$0 \mathrm{x} \mathrm{00} \sim \mathrm{0x} \mathrm{FE}$	RW	Maximum allowed temp(0xDF : 85°C)
6	Min. Voltage	1	$0 \mathrm{x} 00 \sim 0 \mathrm{x} \mathrm{FE}$	RW	Minimum allowed voltage(0x5B : 6.714VDC)
7	Max. Voltage	1	$0 \mathrm{x} 00 \sim 0 \mathrm{x} \mathrm{FE}$	RW	Maximum allowed voltage(0x89 : 10VDC)
8	Acceleration Ratio	1	$0 \times 00 \sim 0 \times 32(50)$	RW	Ratio of time to reach goal position to acceleration or decceleration
9	Max. Acceleration	1	$0 \mathrm{x} 00 \sim 0 \mathrm{x} \mathrm{FE}$	RW	Max acceleration time, 11,2ms interval Acceleration(0x2D : 504ms)
10	Dead Zone	1	$0\mathrm{x}00\sim0\mathrm{xFE}$	RW	Outside control range
11	Saturator Offset	1	$0 \mathrm{x} 00 \sim 0 \mathrm{x} \mathrm{FE}$	RW	Refer to Pg 36
12	Saturator Slope	2	$0 \times 0000 \sim 0 \times 7 \text{FFF}$	RW	Refer to Pg 36
14	PWM Offset	1	$-128 \sim 127$	RW	PWM Offset value Refer to Pg 37
15	Min. PWM	1	$0{\rm x}00\sim 0{\rm xFE}$	RW	Set minimum PWM value Refer to Pg 37
16	Max. PWM	2	$0 \times 0000 \sim 0 \times 03 \text{FF}$	RW	Set maximum PWM value Refer to Pg 37
18	Overload PWM Threshold	2	$0 \times 0000 \sim 0 \times 7 \text{FFE}$	RW	Set PWM Overload treshold range Refer to Pg 34
20	Min. Position	2	$0 \times 0000 \sim 0 \times 03 \text{FF}$	RW	Minimum position value(0~1023)
22	Max. Position	2	$0 \times 0000 \sim 0 \times 03 \text{FF}$	RW	Maximum position value (0~1023)
24	Position Kp	2	$0 \times 0000 \sim 0 \times 7 \text{FFF}$	RW	Proportional Gain
26	Position Kd	2	$0 \times 0000 \sim 0 \times 7 \text{FFF}$	RW	Derivative Gain
28	Position Ki	2	$\rm 0x0000 \sim 0x7 FFF$	RW	Integral Gain
30	Position Feedforward 1st Gain	2	$\rm 0x0000 \sim 0x7 FFF$	RW	Refer to Pg 35
32	Position Feedforward 2nd Gain	2	$\rm 0x0000 \sim 0x7 FFF$	RW	Refer to Pg 35
34	Reserved	2	_	_	Reserved
36	Reserved	2	_	_	Reserved
38	LED Blink Period	1	$0 \mathrm{x} 00 \sim 0 \mathrm{x} \mathrm{FE}$	RW	Alarm LED blink period according to Policy 11.2ms/Tick, 0x2D : 504ms

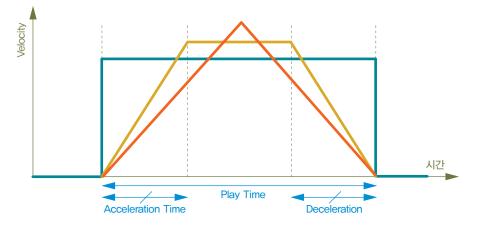
ADDRESS	Туре	Bytes	Valid Range	RW	Description
39	ADC Fault Detection Period	1	$0{\rm x}00\sim 0{\rm xFE}$	RW	Temp/Voltage error check interval 11.2ms/Tick, 0x2D : 504ms
40	Packet Garbage Detection Period	1	$0{\rm x}00\sim 0{\rm xFE}$	RW	Packet Error check interval, 11.2ms/Tick, 0x12 : 201ms
41	Stop Detection Period	1	$0 \mathrm{x} 0 \mathrm{0} \mathrm{0} \mathrm{x} 0 \mathrm{x} \mathrm{7} \mathrm{F} \mathrm{F} \mathrm{F}$	RW	Stop detection check interval, 11.2ms/Tick, 0x1B : 302ms
42	Overload Detection Period	1	$0 \mathrm{x} \mathrm{00} \sim \mathrm{0x} \mathrm{FE}$	RW	Overload check interval, 11.2ms/Tick, 0x96 : 1.68s
43	Stop Threshold	1	$0 \mathrm{x} 00 \sim 0 \mathrm{x} \mathrm{FE}$	RW	Stop Threshold
44	Inposition Margin	1	$0 \mathrm{x} 00 \sim 0 \mathrm{x} \mathrm{FE}$	RW	Offset Threshold
45	Reserved	1	_	_	Reserved
46	Reserved	1	_	_	Reserved
47	Calibration Difference	1	$-128 \sim 127$	RW	Servo compersation
48	Status Error	1	$0 \times 00 \sim 0 \times 7 \mathrm{F}$	RW	Refer to Pg 39
49	Status Detail	1	$0 \times 00 \sim 0 \times 7 \mathrm{F}$	RW	Refer to Pg 39
50	Reserved	1	_	_	Reserved
51	Reserved	2	_	_	Reserved
52	Torque Control	1	MASK : 0x60	RW	Torque enable states (Refer to Pg 28)
53	LED Control	1	$0 \times 00 \sim 0 \times 07$	RW	0x01:Green, 0x02:Blue, 0x04:Red
54	Voltage	2	$0 \mathrm{x} 00 \sim 0 \mathrm{x} \mathrm{FE}$	RO	Input voltage Raw Data, 8Bit (Refer to detail in Pg 31)
55	Temperature	2	$0 \mathrm{x} 00 \sim 0 \mathrm{x} \mathrm{FE}$	RO	Current temp Raw Data, 8Bit (Refer to detail in Pg 31)
56	Current Control Mode	2	$0 \sim 1$	RO	0 : Position Control, 1 : Turn / Velocity Control
57	Tick	2	$0 \mathrm{x} 00 \sim 0 \mathrm{x} \mathrm{F} \mathrm{F}$	RO	11,2ms/Tick
58	Calibrated Position	2	_	RO	Calbrated current position Raw Data 10Bit(0~1023)
60	Absolute Position	2	_	RO	Uncalibrated absolute position Raw Data
62	Differential Position	2	_	RO	Position change/11.2ms
64	PWM	2	_	RO	Torque Raw Data
66	Reserved	2	_	_	Reserved
68	Absolute Goal Position	2	_	RO	Uncalibrated goal position Raw Data
70	Absolute Desired Trajectory Position	2	_	RO	Current intermediate goal position in trajectory
72	Desired Velocity	1	_	RO	Desired speed based on speed profile Raw Data

Register Detail

NO	Туре	Bytes	EEP ADDR	RAM ADDR	RW	Description
1	Model No1	1	0	_		
2	Model No2	1	1	_	- RO	Servo Model Name
3	Version1	1	2	_		Firmware Version
4	Version2	1	3	_	- RO	(* for DRS-0201, Model No1 is 0x02)
5	Baud Rate	1	4	_	RW	Default Baud Rate is 115,200bps • 0x02 : 666,666bps • 0x03 : 500,000bps • 0x04 : 400,000bps • 0x07 : 250,000bps • 0x09 : 200,000bps • 0x10 : 115,200bps • 0x22 : 57,600bps * Baud Rate error within 3%
6	Reserved	1	5	—	_	Reserved
7	ID	1	6	0	RW	 Servo ID, Error when same ID exists within the same network. Range 0 ~ 253 % pID up to 254 Servo ID maximum 253
8	ACK Policy	1	7	1	RW	Sets ACK packet reply policy when Request packet received • 0 : No reply • 1 : Only reply to Read CMD • 2 : Reply to all Request Packet * When CMD is STAT, ACK packe will be sent regardless of r(ACK Policy) * When plD(Boradcast plD)is 254 no reply (Exception when CMD is STAT)
9	Alarm LED Policy	1	8	2	RW	 Sets Alarm LED policy when error, r(LED Policy) & r(Status Error) TRUE > LED blink LED blink period set by r(LED Blink Period) When error LED blink > Ignore r(LED Control) value Resolve r(Status Error) Error to make r(LED Control) function normally
10	Torque Policy	1	9	3	RW	 r(Servo Policy) & r(Status Error) TRUE > Torque release(Torque Off) When Torque released, by errorTorque On not possible regardless of value in r(Torque Control) Servo does not automatically revert to Torque On even after r(Status Error) has been resolved Enable Toque On using r(Torque Control) after r(Status Error) has been resolved
11	Reserved	1	10	4	_	Reserved
12	Max. Temperature	1	11	5	RW	Maximum operational temperature • When r(Temperature) is greater than r(Max, Temperature) r(Status Error) "Exceed Temperature Limit" activated
13	Min. Voltage	1	12	6	RW	Minimum operational voltage • When Servo input voltage r(Voltage) is below r(Min, Voltage), r(Status Error) "Exceed Voltage Limit" activated • Voltage = 0.074 X ADC
14	Max. Voltage	1	13	7	RW	Maximum operational voltage • When Servo input voltage r(Voltage) is greather than r(Max, Voltage), r(Status Error) "Exceed Voltage Limit" activated • Voltage = 0,074 X ADC

NO	구분	Bytes	EEP ADDR	RAM ADDR	RW	Description
15	Acceleration Ratio	1	14	8	RW	 Acceleration ratio regarding velocity Profile Ratio of operation time of Motion command (I_JOG, S_JOG), % Acceleration ratio is same as decceleration ratio Maximum r(Acceleration Ratio) value is 50 Ex) When operating time is 100ms and r(Acceleration Ratio) is 20 : Acceleration time is 100 X 0.2 = 20ms When r(Acceleration Ratio))is 0, speed profile is rectangle When r(Acceleration Ratio) is below 50, velocity profile is triangle
16	Max, Acceleration Time	1	15	9	RW	Maximum acceleration time(1 : 11,2ms) • When maximum acceleration time r(Max, Acceleration Time) is 254 = 2,844sec ※ When r(Max, Acceleration Time) is 0 velocity profile is rectangle
17	Dead Zone	1	16	10	RW	Outside control range Dead Zone only funtions within position control
18	Saturatior Offset	1	17	11	RW	Select Offset at Saturator curve X Not applicapable in nfinite Turn (continuous turn)
19	Saturator Slope	2	18	12	RW	 Saturator does not work when r(Staturation Slop)=0 Actual Saturator Slop = r(Saturator Slop) / 256 % Not applicapable infinite Turn Mode (continuous turn)
20	PWM Offset	1	20	14	RW	PWM Offset value • PWM increases by r(PWM Offset) amount % When PWM is at maximum value, Servo at current load oulputs maximum Torque and speed % When PWM is 0, Servo stopped % Maximum PWM value 1023 % Not applicapable innfinite Turn(continuous turn)
21	Min. PWM	1	21	15	RW	Minimum PWM = Sets Minimum Torque % When PWM is at maximum value, Servo at current load outputs maximum Torque and speed % When PWM is 0, Servo stopped % Maximum PWM value 1023
22	Max, PWM	2	22	16	RW	Maximum PWM = Sets Maximum Torque * Smaller this value, Maximum Servo Torque decreases When PWM is at maximum value, Servo at current load outputs maximum Torque and speed When PWM is 0, Servo stopped Maximum PWM value 1023
23	Overload PWM Threshold	2	24	18	RW	Sets overload activation point • External force divided into 0~1023 steps, Overload error when force > r(Overload PWM Threshold) is exerted for period longer than r(Overload Detection Period) • Not activated when This value is > 1023
24	Min. Position	2	26	20	RW	Minimum operational angle When requested position angle is less than r(Min, Position), "Exceed Allowed POT Limit" activated, Actual operation is limited to r(Min, Position)
25	Max. Position	2	28	22	RW	Maximum operational angle When requested position angle is greater than r(Max, Position), "Exceed Allowed POT Limit" activated, Actual operation is limited to r(Max, Position)

NO	Туре	Bytes	EEP ADDR	RAM ADDR	RW	Description
26	Position Kp	2	30	24	RW	Proportional Gain
27	Position Kd	2	32	26	RW	Derivative Gain
28	Position Ki	2	34	28	RW	Integral Gain
29	Position Feedforward 1st Gain	2	36	30	RW	Refer to Pg 35
30	Position Feedforward 2nd Gain	2	38	32	RW	Refer to Pg 35
31	Reserved	2	40	34	_	Reserved
32	Reserved	2	42	36	_	Reserved
33	LED Blink Period	1	44	38	RW	Alarm LED blink period according to policy 11.2ms
34	ADC Fault Check Period	1	45	39	RW	 Temp/Voltage error check interval 1 = 11.2ms Error activated if Temp/V error lasts longer than the check interval
35	Packet Garbage Check Period	1	46	40	RW	Incomplete packet error check interval • 1 = 11,2ms • Incomplete packet is deleted if it reamains longer than the error check interval
36	Stop Detection Period	1	47	41	RW	Time limit to determine if the servo has stopped • 1 = 11.2ms • Servo confirmed Stopped if stoppage lasts past set time limit
37	Overload Detection Period	1	48	42	RW	Overload error check interval
38	Stop Threshold	1	49	43	RW	When position change is less than r(Stop Threshold), Servo seen as having stopped
39	Inposition Margin	1	50	44	RW	Standard value to determine if goal position reached, If deviation from goal position is less than r(Inposition Margin) recognized as goal position reached
40	Reserved	1	51	45	_	Reserved
41	Reserved	2	52	46	_	Reserved
42	Calibration Difference	1	53	47	RW	Used to calibrate Newtral point(POS, : 512) Absolute position = Calibrated position + r(Calibration Difference) r(Calibration Difference) = Absolute position - Newtral point(512)
43	Status Error	1	_	48	RW	Shows 7 different status Refer to Pg 39
44	Status Detail	1	_	49	RW	Shows 7 different status Refer to Pg 39
45	Reserved	1	_	50	_	Reserved
46	Reserved	1	_	51	_	Reserved
47	Torque Control	1	_	52	RW	 Torque enable states 0x40 : Break On, 0x60 : Torque On 0x00 : Torque Free When Torque enabled, Mode depends on r(Current Control Mode) before Torque On, % r(Current Control Mode) defaults to Position Control(0) when servo powered on % Torque On : Operation possible state % Break On : Operation command (I_JOG, S_JOG) not possible % Torque Free : Similar to Break On, Joints manually movable,



NO	Туре	Bytes	EEP ADDR	RAM ADDR	RW	Description
48	LED Control	1	_	53	RW	Servo LED control • When corresponding Bit value 1 = On, 0 = Off (0x01 : Green, 0x02 : Blue, 0x04 : Red) ※ When alarm LED activated by r(Status Error) and r(Alarm LED Policy). r(Led Control) Write value ignored
49	Voltage	1	_	54	RO	Input Voltage = 0.074 X ADC
50	Temperature	1	_	55	RO	Internal Servo Temperature
51	Current Control Mode	1	_	56	RO	Current time Servo control mode • I_JOG / S_JOG CMD Packet used to change control mode • When Torque On using r(Torque Control), Servo refers to r(Current Control Mode) 0 : Position Control 1 : Turn/Velocity Control(Continuous rotation)
52	Tick	1	_	57	RO	• Servo operating time, Max setting 2,8672sec • $0 \sim 255$, 1 = 11,2ms
53	Calibrated Position	2	_	58	RO	 Calibrated position Raw Data Refer to r(Calibration Difference)
54	Absolute Position	2	_	60	RO	 Absolute position Raw Data Angle = r(Absolute Position) X 0,325
55	Differential Position	2	_	62	RO	 Shows speed measurement, interval 11,2ms r(Diff Position)1 = 29,09deg/sec
56	PWM	2	_	64	RO	Current Torque, 1023 = Max Torque
57	Reserved	2	_	66	_	Reserved
58	Absolute Goal Position	2	_	68	RO	Absolute Goal position Raw Data • User selected Goal Position • Uncalibrated value
59	Absolute Desired Trajectory Position	2	_	70	RO	 Current Intermediate goal position based on velocity Profile, Raw Data r(Absolute Desired Trajectory Position) is current goal position
60	Desired Velocity	2	_	72	RO	 Current intermediate goal speed based on velocity Profile, Raw Data r(Desired Velocity) velocity required at current time,

Acceleration Ratio(RAM Register Address 8)

Acceleration Ratio is controlled by changing the parameter value and any change in the acceleration ratio is applied to the decceleration ratio by exactly the same amount. The default Acceleration Ratio parameter shows a trapezoidal type speed profile.

* Decreasing the acceleration ratio will lead to sudden change in speed accompanied by vibration as shows in blue rectangle graph. Increasing the ratio will show slow increase in speed with smooth movement as in red triangle graph.

Maximum Acceleration Time(RAM Register Address 9)

Controls maximum acceleration time, 1 is equaivalent to11.2ms.

Maximum acceleration time r(Maximum Acceleration Time) 254 is equivalent to 2.844sec.

* When r(Maximum Acceleration Time) is 0, velocity Profile is rectangle.

► Torque Control(RAM Register Address 52)

- Controls Torque eanable states
- 0x40 : Break On
- 0x60 : Torque On
- 0x00 : Torque Free
- When the torque is enabled, it's mode depends on "Current Control Mode". If the servo was on Position Control Mode when Torque ON is enabled, it will remain in that mode.
- * r(Current Control Mode) defaults to Position Control(0) when servo is first powered on
- * Control commands will only function when Torque On is enabled (I_JOG, S_JOG)
- * Control commands will not function when Break On is enabled (I_JOG, S_JOG)
- * Joints can be manually manipulated when Torque Free is enabled

▶ LED Control(RAM Address 53)

Controls the LEDs.

- When Bit value below is 1 = On, 0 = Off
- 0x01 : Green

- 0x02 : Blue
- 0x04 : Red
- ** Whe Alarm LED is activated by the r(Status Error)or r(Alarm LED Policy), value in r(LED Control) is ignored.

Voltage(RAM Register Address 54)

Shows the ADC(Analog Digital Conversion) value of the input voltage in raw data. The conversion formula to actual voltage is shown below. Refer to the voltage ADC conversion table in page 54. Voltage = 0.074 X ADC

Temperature(RAM Register Address 55)

Shows the ADC(Analog Digital Conversion) value of the current temperature in raw data. Refer to temperature ADC conversion table in page 55.

Current Control Mode(RAM Register Address 56)

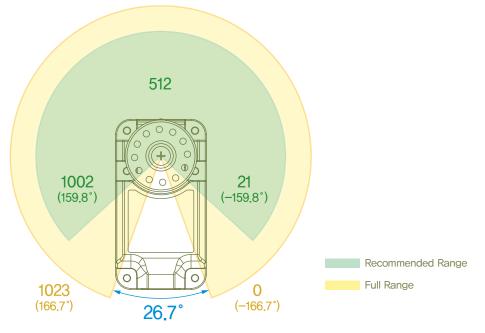
Shows the current control mode of the servo, I_JOG / S_JOG CMD Packet is used to change the mode.

- When r(Torque Control) is used to change the servo state to Torque On, servo first refers to r(Current Control Mode). For example, dafault mode of the servo when it is first powered up is "Position Control Mode" and when the servo state is changed to Torque On, mode remains at "Position Control Mode". Servo has to be at Off state to change the control mode to "Turn/Velocity Control Mode". With Torque Off, use I_JOG / S_JOG CMD to switch to "Turn/Velocity Control Mode". After the switch, use r(Torque Control) to to turn Torque On and the mode will have switched to "Turn/Velocity Control Mode".
- 0 : Position Control
- 1: Turn / Velocity Control
- * Turn / Velocity Control : Infinite Turn(Continuous Rotation) Mode.

► Tick(RAM Register Address 57)

Shows actual length of the servo tick time. Tick time can be changed from $0 \sim 255$, tick time reverts back to 0 after 255. 1 is equivalent to 11.2ms, 255 is equivalent to 2.856sec.

Calibrated Position(RAM Register Address 58)


Shows Calibrated Position in raw data. The relationship between Calibrated Position and Absolute Position is as follows.

- Calibrated Position = Absolute Position r(Calibration Difference, 47 Address)
- Degree = Position Raw Data X 0.325

Absolute Position(RAM Register Address 60)

Shows uncalibrated current position in raw data, Relationshop between Raw Data and actual degree is as follows.

Degree = Position Raw Data X 0.325

► Diff Position(RAM Register Address 62)

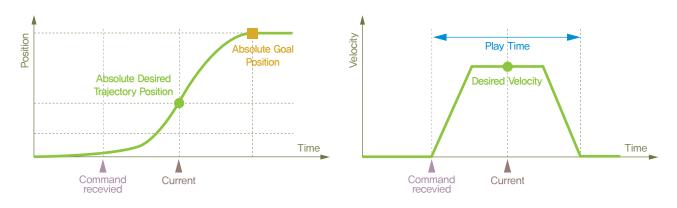
Shows velocity measurement, velocity is measured in 11.2ms intervals.

% r(Diff Position) 1 = 29.09deg/sec

▶ PWM(RAM Register Address 64)

Shows current Torque in raw data, maximum value is 1023.

Absolute Goal Position(RAM Register Address 68)


Shows uncalibrated goal position in raw data.

Absolute Desired Trajectory Position(RAM Register Address 70)

 Uncalibrated current goal position in Raw Data. To arrive at user designated absolute goal position, servo automatically plans out the trajectory to the goal position using the velocity profile. Absolute Desired Trajectory Position is a "current" goal position or intermediate goal position to be reached on the way to final goal position.

Refer to the diagram to see the relationship between Absolute Goal Position and the Absolute Desired Trajectory Position.

► ACK Policy(RAM Register Address 1)

Sets ACK Packet reply policy when Request Packet is received.

- 0 : No reply to any Request Packet
- I : Only reply to Read CMD
- = 2 : Reply to all Request Packet
- * When the CMD is "STAT" ACK Packet will be sent regardless of r(ACK Policy).
- ** There is no reply when the pID in Request Packet is 254(Broadcast pID) with an exception of "STAT" CMD in which case reply will be sent.

Alarm LED Policy(RAM Register Address 2)

Sets Alarm LED policy when Error is detected.

- When (r(LED Policy) & r(Status Error)) is TRUE, Alarm LED starts to blink, Alarm LED blink period is set by r(LED Blink Period).
- When (r(LED Policy) & r(Status Error)) is TRUE, Any values written to r(LED Control) will be ignored to prevent confusion with Error state.
- = Error status r(Status Error) must be resloved first for r(LED Control) to function properly.
- * 'A&B' : Bit And Operator, 1(True) only whe A and B are both (True)

Torque Policy(RAM Register Address 3)

Sets Torque Off policy when Error is detected.

- When (r(Servo Policy) & r(Status Error)) is TRUE, Torque is released (Torque Off). Under the Error condition, servo will not return to Torque ON state regardless of the value written to r(Torque Control).
- Servo does not automatically revert to Torque On state even after r(Status Error)has been resolved. Enable Torque On using r(Torque Control) after r(Status Error) has been resloved.
- * 'A&B' : Bit And Operator, 1(True) only whe A and B are both (True)

Maximum Temperature(RAM Register Address 5)

Maximum operational temperature shown in Raw Data,

- When internal servo temperature r(Temperature) exceeds r(Max Temperature),
 "Exceeded Temperature Limit" in r(Status Error) becomes active.
- Resulting Alarm LED and Torque status can be changed using r(LED Policy), r(Servo Policy).
- = Default value is 0xDF(approximatley 85°C). Refer to conversion chart (Pg 55) for actual temerature.
- * 'A&B' : 1(True) only whe A and B are both (True)

Minimum Voltage(RAM Register Address 6)

Mininmum input voltage shown in Raw Data.

- When servo input voltage r(Voltage) is below r(Min Voltage), "Exceeded Voltage Limit" in r(Status Error) becomes active. Resulting Alarm LED and Torque status can be changed using r(LED Policy), r(Servo Policy).
- Default value is 0x5B(approximately 6.74V). Refer to conversion chart (Pg 54) for actual voltage.

► Maximum Voltage(RAM Register의 Address 7)

Maximum input voltage shown in Raw Data.

- When servo input voltage r(Voltage) is exceeds r(Max Voltage), "Exceeded Voltage Limit" in r(Status Error) becomes active. Resulting Alarm LED and Torque status can be changed using r(LED Policy), r(Servo Policy).
- = Default value is 0x89(approximately 10.14V). Refer to conversion chart (Pg 54) for actual voltage.

Overload PWM Threshold(RAM Register Address 18)

Sets overload activation point. The overload point from external force can set from $0\sim1023$.

- Overload activates when external force is greater them r(Overload PWM Threshold).
- Overload does not activate when the given value is greater than 1023

Minimum Position(RAM Register Address 20)

Minimum operational angle in Raw Data.

- When requested position angle is less than r(Min Position), "Exceed Allowed POT Limit" in r(Min Position) becomes active and the operation is limited to r(Min Position).
- Default value is 0x15(approximately -159.8°). Refer to conversi on charge in (Pg 56) for actual angle.

Maximum Position(RAM Register Address 22)

Maximum operational angle in Raw Data.

- When requested position angle is greater than r(Max Position), "Exceed Allowed POT Limit" in r(Max Position) becomes active and the operation is limited to r(Max Position).
- Default value is 0x3EA(approximately 159.8°). Refer to conversion chart in (Pg 56) for actual angle.

Position Kp(RAM Register Address 24)

Shows the Proportional Gain. Increasing the Position Kp increases, the response time but over response (vibration, overshoot) will result if the increase is too large.

► Position Kd(RAM Register Address 26)

Shows the Derivative Gain. Increasing the Position Kd will suppress the over response (vibration, overshoot) from Position Kp but unstability may result if the increase is too large.

▶ Position Ki(RAM Register Address 28)

Shows the Intergral Gain. Applied to correct small offset in Steady State. May result in response lag if the increase is too large.

Position Feedforward Kd(RAM Register Address 30)

Shows Position Feedforward 1st Gain, Applied to increase Servo response time.

Position Feedforward Kdd(RAM Register Address 32)

Shows Position Feedforward 2nd Gain, applied to increase Servo response time,

► LED Blink Period(RAM Register Address 38)

Shows the Alarm LED blink period set by the LED Policy when error occurs. 1 is equivalent to 11.2ms. Default value is 0x2D(Approximately 504ms).

ADC Fault Check Period(RAM Register Address 39)

Temperature / Input voltage error check interval, 1 is equivalent to 11.2ms. Error activated if the Temerature / Input voltage error lasts longer than the check interval. Default value is 0x2D(Approximately 504ms).

Packet Garbage Check Period(RAM Register Address 40)

Incomplete Packet error check interval, 1 is equivalent to 11.2ms. Incomplete Packet is deleted if it remains longer than the check interval. Default value is 0x12(Approximately 201ms)

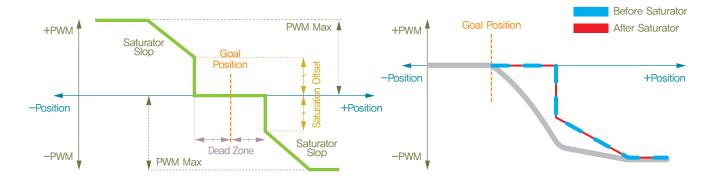
Stop Detection Period(RAM Register Address 41)

Set time limit by which the servo stoppage is measured to determine if it has stopped. 1 is equivalent to 11,ms. If the servo stoppage lasts beyond the time limit, it is determined to be stopped. Default value is 0x1B (Approximately 302ms)

Overload Detection Period(RAM Register Address 42)

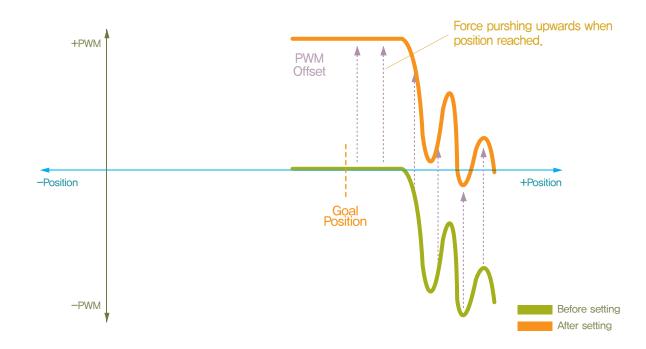
Set time limit by which the servo overload is measured to determine if the overload has occured. If the overload period lasts beyond the time limit, it is determined to be overloaded. Default value is 0x96 (Approximately 1.68s)

Stop Threshold(RAM Register Address 43)


The servo is seen as not moving (stopped) when the position movement of the servo is less than the r(Stop Threshold). The servo is determined to be stopped if the stoppage lasts longer than the r(Stop Detection Period).

Inposition Margin(RAM Register Address 44)

Standard value to determine if the goal position has been reached. Goal position is judged to have been reached if the deviation is less than r(Inposition Margin).


Saturator Offset, Saturator Slope(RAM Register Address 11, 12)

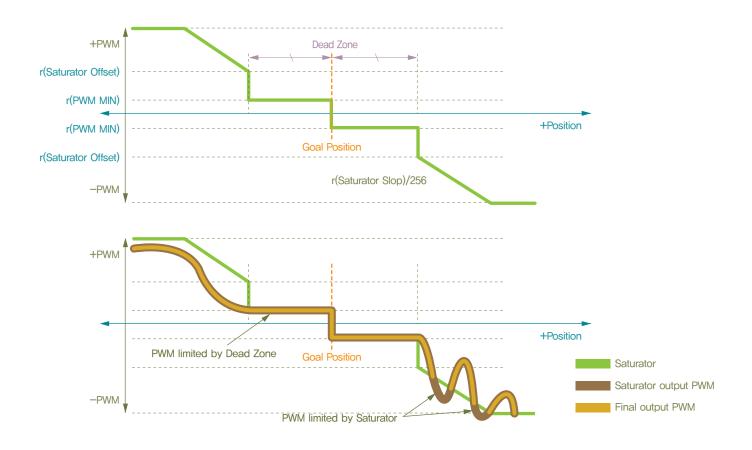
Saturation Offset and Saturation Slope work in similar manner to the PWM. However, by controlling the limit per given section, accurate Saturator can be designed to provide flexible and elastic response to the external force. The garph below shows the PWM with several settings. The thick grey line show the PWM without the Saturator Offset and Slope settings. The red line shows the actual PWM output with the Saturator Offset & Slope set. The blue dotted line shows the boundary of the force restrained by the Saturator. The restrain by the Saturator on PWM value increases when near the goal position and decreases when further away from the goal position. The effect on PWM is smiliar to having a spring installed near the goal position, resulting in low strength near the goal position and strength increasing with distance. Assuming the servo is stopped at the goal position, Saturator allows flexible response to external force, and provides assistance when trying to hold delicate object.

▶ PWM Offset(RAM Address 14)

When the 0 point of the PWM is moved, PWM will increase output by the amount of the Offset. This output could be used to act as a compensator in a system where load is on one side (Ex: Gravity). By moving the 0 point, constant force directed towards 0 pont can applied.

Minimum PWM(RAM Register Address 15)

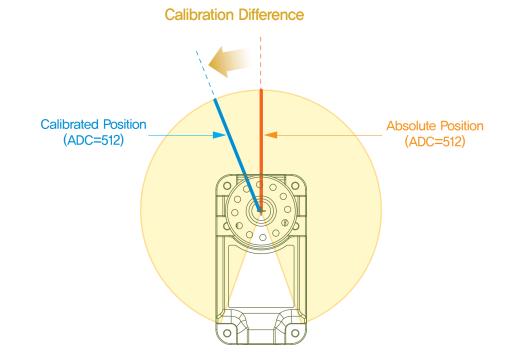
PWM output value does not fall below the r(Min. PWM). Minimum PWM is used when there is jerky movement due to tight fitting or friction in the servo application system but assigning Minimum PWM that is too large may lead to unstable system.


Maximum PWM(RAM Register Address 16)

PWM output value does not exceed r(Max. PWM). Battery life could be increased by limiting the Maximum PWM but it will also decrease the maximum servo torque.

► Relationship between Saturator & PWM

PWM results in servo output. As seen in the graph at next page, there are several parameters controlling the servo output. These parameters can be manipulated to build optimum servo system. To see the characteristics of each parameter, refer to the detailed explanation section in the manual.



► Calibration Difference(RAM Register Address 47)

Used to calibrate newtral point(standard). Used to make adjustments to compensate for assembly variations when servos are used to build a system. Calibrated Difference is calculated by following formula

- Calibrated Position= Absolute Position - Calibration Difference

	REG	(Status Error)			
Bit	s 76	5 4 3 2 1 0			
Bits	Value	Comment			
0	0X01	Exceed Input Voltage limit			
1	0X02	Exceed allowed POT limit			
2	0X04	Exceed Temperature limit			
3	0X08	Invalid Packet			
4	0X10	Overload detected			
5	0X20	Driver fault detected			
6	0X40	EEP REG distorted			
7	0X80	reserved			
LED Policy, Servo Policy : Same as abov LED Policy : When Check bit error occur LED(RED) blinks consistently Servo Policy : When Check bit error occurs Torque is released to Freerun state					

► Status Error, Status Details(RAM Register Address 48, 49)

= Yellow lines above points to error detail when Status Error shows Invalid Packet(0x08).

- Invalid Packet can be divided into 5 different causes, 4 shows in the Status Detail and other.

Portions of Status Detail are Read only but can be Written to by the Protocol.
 Read only values are just ignored not actually Written to.

HerkuleX

5. Command Set

To control the Servo, CMD is sent to the servo from the Controller in Binary format. Our servos are controlled by 9 different CMDs. Once the Servo receives Request Packet with included CMD, Servo performs requested operation and returns the result to the Controller by ACK Packet.

5-1. [To Servo Module] - Request Packet

Туре	CMD	Explanation
EEP_WRITE	0x01	Write Length number of values to EEP Register Address
EEP_READ	0x02	 Request Length number of values from EEP Register Address May not reply, depending on r(ACK Policy)
RAM_WRITE	0x03	Write Length number of values to RAM Register Address
RAM_READ	0x04	 Request Lenght number of values from RAM Register Address May not reply, depending on r(ACK Policy)
I_JOG	0x05	 Able to send JOG command to maximum 43 servos. I_JOG can set the operation timing of individual Servo I_JOG Refer to Pg 48 for details
S_JOG	0x06	 Able to send JOG command to maximum 53 servos. S_JOG All the Servos operate simultaneously at same time S_JOG Refer to Pg 48 for details
STAT	0x07	Status Error, Status Detail requestAlways send reply reagardless of r(ACK Policy)
ROLLBACK	0x08	 Change all EEP Registers to Factory Default value Apply changes after power reset ID, and Baud Rate maybe exempt from Factory Default depending on ID Skip and Baud Skip setting.
REBOOT	0x09	• Request Reboot

5-2. [To Controller(ACK)] - ACK Packet

Туре	CMD	Meaning
EEP_WRITE	0x41	 CMD(0x01) Reply Packet Default is no reply, Reply possible by changing r(ACK Policy) setting
EEP_READ	0x42	 Repy with "n" number of values from EEP Register Address May not reply depending on r(ACK Policy) setting

Туре	CMD	Explanation
RAM_WRITE	0x43	 CMD(0x03) Reply Packet Default is no reply, reply possible by changing r(ACK Policy) setting
RAM_READ	0x44	 CMD(0x04) Reply Packet May not reply depending on r(ACK Policy) setting.
I_JOG	0x45	 CMD(0x05) Reply Packet Default is no reply, reply possible by changing r(ACK Policy) setting
S_JOG	0x46	 CMD(0x06) Reply Packet Default is no reply, reply possible by changing r(ACK Policy) setting
STAT	0x47	• r(Status Error, Status Detail) Reply, Always Reply regadless of r(Ack Policy)
ROLLBACK	0x48	 CMD(0x08) Reply Packet Default is no reply, reply possible by changing r(ACK Policy) setting
REBOOT	0x49	 CMD(0x09) Reply Packet Default is no reply, reply possible by changing r(ACK Policy) setting

* ACK option changeable by using r(ACK Policy)

* ACK Packet CMD is Request Packet CMD + 0x40

* Last 2 Bytes of the ACK Packet includes r(Status Error, Status Detail)

5-3. CMD(Command) Detailed Explanation

CMD	Explanation
EEP_READ	 Request to read Length # of values from EEP Register Address Optional Data length is 2
RAM_READ	 Request to read Length # of values from RAM Register Address Optional Data length is 2
EEP_WRITE	 Request to write Length # of values to EEP Register Address Optional Data length is Address & Length 1 Byte each + Length Byte
RAM_WRITE	 Request to write Length # of values to RAM Register Address Optional Data length is Address & Length 1 Byte each + Length Byte
I_JOG	 Send instructions to multiple servos simultaneously, able to set position/time to each servo independently. Able to set goal position time arrival time to each independently. I_Jog requires 5Bytes of data for each servo. Optional Data length of 50Bytes required if sending instructions to 10 servos simultaneously.
S_JOG	 Able to send instructions to multiple servos simultaneousy, All serovs have same operational timing. All servos arrive at goal position at same time. S_Jog rquires 1byte for Playtime and 4Bytes for each servo. Optional Data length of 41Bytes required if sending instructions to 10 servos simultaneously
STAT	Request Servo Status r(Status Error, Status Detail)STAT Packet always receive reply
ROLLBACK	 Change all values in EEP_Register to Factory default value. ID and Baud Rate maybe exempted from Factory Default by using ID Skip, Baud Skip Byte
REBOOT	• Reboot Servo

HerkuleX

6. Command Examples

6-1. EEP_READ

Request 4 Bytes of information from EEP Register 0x1E Address of Servo ID(253). 4 Bytes from EEP Register 0x1E Address are e(Position Kp)and e(Position Kd).

	Header		Packet Size	plD	CMD
EEP_READ	0	1	2	3	4
	0xFF	OxFF	9	Servo ID	0x02
Example1	0xFF	0xFF	0×09(9)	0xFD	0x02
	Check Sum1		Check Sum2	Data	
EEP_READ		5	6	7	8
	(Refer to Check	ksum formula)	Data[0] (Address)	Data[1] (Length)
Example1	OXEC		0X12	0x1E	0x04

EEP READ

Request to read Length # of values from EEP Register Address. Data length is 2Bytes (Address 1Byte + Length 1Byte)

Packet Size	plD	EEP READ CMD
7(Standad Size)+2(Data length)	Servo ID 0xFD(253)	0x02 (Refer to Pg 40)
CHECKSUM1 Formula		

Checksum1 = (PacketSize ^ pID ^ CMD ^ Data[0] ^ Data[1]) & 0xFE

DATA[0]

Refers to starting address of EEP Register being Read, 0x1E(30) in the example is starting address of Position Kp.

DATA[1]

Data[1], Refers to number of Bytes to be READ from the starting address, 0x04 in the example means 4Bytes will be read. In other words, 4Bytes from Position Kp starting address will be read, Position Kp(2Bytes variable)and Position Kd(2Bytes variable) will be read.

ACK Packet

EEP READ	Hea	ader	Packet Size	pID	CMD	Check Sum1	Check Sum2	
	0	1	2	3	4	5	6	
ACK of Example1	0xFF	0xFF	0x0F	0xFD	0x42	0x4C	0xB2	
Data								
7	8	9	10	11	1	2 13	14	
Data[0] (Address)	Data[1] (Length)	Data[2] Data[3]	Data[4]	Dat	ta[5] Data[4] (Status Erro	Data[5] r) (Status Detail)	
0x1E	0x04	0xB8	0x01	0x40	0	x1F 0x00	0x00	

CMD: Request Packet CMD(0x02) + 0x40, Reply with 0x42

- e(Position Kp) : 440(0x1B8)
- Position Kd : 8000(0x1F40)

Last 2Bytes of all ACK Packet contain Status Error(1Byte) and Status Detail (1Byte)

6-2. EEP_WRITE

ID(253), e(Position Kp / Kd(Address 0x1E=30, 4Bytes Register) Kp = 200(0x00C8), Kd = 1000(0x03E8) Write

	Head	der	Packet Size	pID	CMD	Check Sum1	Check Sum2		
EEP_WRITE	0	1	2	3	4	5	6		
	0xFF	0xFF	7+(2+Length)	Servo ID	0×01	(Refer to Chec	ksum Formula)		
Example1	0xFF	0xFF	0x0D(13)	0xFD	0×01	0XC8	0X36		
	Data								
7	8		9	11		12	13		
Data[0] (Address)	Data[1] (Length)		Data[2]	Data	[3]	Data[4]	Data[5]		
0x1E	0x1E 0x04 0XC8 0XC		0	0XE8	0X03				

Data[2] ~ Data[5]

Data[2], Data[3] will be changed to e(Position Kp) and Data[4], Data[5] will be changed to e(Position Kd). You must input Byte in reverse order by Little Endian rule.

* Refer to Pages 23 for Little Endian.

EEP Register

To apply changed EEP Register value, Servo has to be reboot first.

6-3. RAM_WRITE

Example 1

ID(253), r(LED Control), Address(0x35(53)) Request Green LED On.

Example 2

ID(253), r(Status Error, Status Detail), Request to Clear Address(0x30(48)) to "0".

Example 3

ID(253), r(Torque Control), Request to write 0x60 to Address(0x34(52)) for Torque On.

* Make sure to have Torque On before (I_JOG, S_JOG) command to avoid error.

	Hea	der	Packet Size	plD	CMD	Check Sum1	Check Sum2
RAM_WRITE	0	1	2	3	4	5	6
	0xFF	0xFF	7+(2+Length)	Servo ID	0x03	(Refer to Chec	ksum Formula)
Example1	0xFF	0xFF	0x0A(10)	0xFD	0x03	0xC0	0x3E
Example2	0xFF	0xFF	0x0B(11)	0xFD	0x03	0xC6	0x38
Example3	0xFF	0xFF	0x0A(10)	0xFD	0x03	0xA0	0x5E
7	8	3	9	10			
Data[0] (Address)	Data (Len		Data[2]	Data	[3]	_	
0x35	0×	:01	0×01	_			
0x30	Ox	02	0x00	0x00			
0x34	0x	:01	0x60	_		_	

6-4. RAM_READ

Example 1

ID(253), Read 1 Byte from Address 0x35(53), Addressed Register is r(LED Control)

RAM_READ ACK

Reply to RAM_READ(CMD 0x04)with Packet, reply CMD is 0x44, last 2Bytes of All ACK Packet contain r(Status Error) and r(Status Detail). ACK Packet reply option can be changed by r(ACK Policy)

Data[2]

0x01 is r(LED Control) value, it means Green LED is on.

Data[3]

Data[3] is Status Error: No Error, Data[4] 0x42 means Torque On and Inposition, Arrived at goal position.

	Hea	der	Packet Size	plD	CMD	Check Sum1	Check Sum2			
RAM_READ	0	1	2	3	4	5	6			
	0xFF	0xFF	7+(2+Length)	Servo ID	0x03	(Refer to Chec	ksum Formula)			
Example1	0xFF	0xFF	0x09(9)	0xFD	0x04	0xC4	0x3A			
RAM_READ ACK	OxFF	0xFF	0x0C(12)	0xFD	0x44	0xC2	0x3C			
	Optional Data									
7	7 8		9	10		11				
Data[0] (Address)			Data[2]	Data	[3]	Data[4]	_			
0x35	0x35 0x01			_	_					
0x35	0x	01	0x01	0x0	0	0x42				

6-5. I_JOG

Example 1

ID(253), Position Control, Position Goal 512, Green LED On, Operating Time(60:672ms)

Example 2

ID(253), Continuous Rotation, Goal Speed 320, Blue LED On, Operating Time(60:672ms)

	Header	Packet Size	pID	CMD	Check Sum1	Check Sum2			
I_JOG	0 1	2	3	4	5	6			
	0xFF 0xFl	= 7+(5xl_JOG)	Servo ID	0x05	(Refer to Chec	ksum Formula)			
Example1	0xFF 0xFI	= 0x0C(12)	0xFD	0x05	0x32	0xCC			
Example2	OxFF OxFI	= 0x0C(12)	0xFD	0x05	0x7E	0x80			
	Optional Data								
7	8	9	10		11				
		I_JOG_S	6(0)						
JOG(LSB)	JOG(MSB)	SET	ID		playtime				
0x00	0x02	0x04	0x04 0xFD		0x3C	_			
40	0×01	0x0A	0×0/	4	0x3C				

Refer to Packet structure below for explanation of each Bit in I_JOG

- Able to use Structure as below for convenience
- LSB(Least Significant Bit) first for Bit value
- Example1 SET(0x04) is Position Control, Green LED On

int	iJogData	: 15;
unsigned int	uiReserved1	: 1;
unsigned int	uiStop	: 1;
unsigned int	uiMode	: 1; //0 : Position Control
unsigned int	uiLED	: 3; //Green, Blue, Red
unsigned int	uiJogInvalid	: 1;
unsigned int	uiReserved2	: 2;
unsigned int	ucID	: 8;

※ Bit Variable size or bit field may vary depending on the compiler or compiler setting, The above example uses 16 bit variable. The structure byte alignment of the process may vary as well. The above example uses 1byte alignment as standard.

6-6. S_JOG

Example 1

ID(253), Position Control, Goal Position 512, Red LED On, Operating Time(60:672ms)

Example 2

ID(253), Continuous Rotation, Goal Speed 704, Blue LED On, Operating Time(60:672ms)

	Header	Packet Size	pID CM		Check Sum1	Check Sum2					
S_JOG	0 1	2	2 3 4		5	6					
	0xFF 0xFF	7+(5XI_JOG #)	Servo ID	0x06	(Refer to Chec	ksum Formula)					
Example1	0xFF 0xFF	0x0C(12)	0xFD	0x06	0x30	0xCE					
Example2	0xFF 0xFF	0x0C(12)	0xFD	0x06	OxFE	0x00					
Optional Data											
7	8	9	1	0	11						
PLAY TIME											
PLAT HIME	JOG(LSB)	JOG(MSB)	SI	ET	ID						
0x3C(60)	0x00	0x02	0>	(04	0xFD						
0x3C(60)	40	0x01	0×	:0A	0x0A						

Refer to Packet structure below for explanation of each Bit in S_JOG

- Able to use Structure as below for convenience
- = LSB(Least Significant Bit) first for Bit value
- Example1 SET(0x04) is Position Control, Green LED On

int	iJogData	: 15;
unsigned int	uiReserved1	: 1;
unsigned int	uiStop	: 1;
unsigned int	uiMode	: 1; //1 : Speed Control
unsigned int	uiLED	: 3; //Green, Blue, Red
unsigned int	uiJogInvalid	: 1;
unsigned int	uiReserved2	: 2;
unsigned int	ucID	: 8;
SJOG_TAG		

※ Bit Variable size or bit field may vary depending on the compiler or compiler setting, The above example uses 16 bit variable. The structure byte alignment of the process may vary as well. The above example uses 1byte alignment as standard.

▶ I_JOG, S_JOG Packet Structure

		I_JOG_1	TAG	S_JOG_TAG				
Туре	Informa		Comments	Туре	Inform		Comments	
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Bytes	Bits		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Bytes	Bits		
JOG	2	0 1 2 3 4 5 6 7 8 9 10 11 12	Case) JOG Desired Goal POS (Calibration applied) Case) Infinite turn Desired PWM % Infinite turn Sign : 0X4000 MEMS Negative	JOG	2	0 1 2 3 4 5 6 7 8 9 10 11 12	Case) JOG Desired Goal POS (Calibration applied) Case) Infinite turn Desired PWM % Infinite turn Sign : 0X4000 MEMS Negative	
		13 14 15 0	Sig@Infinite turn Reserved=0 Stop flag			13 14 15 0	Sig@Infinite turn Reserved=0 Stop flag	
SET	1	0 1 2 3 4 5 6 7	MODE LED GREEN LED BLUE LED RED JOG Invalid(No Action) Reserved=0 Reserved=0	SET	1	0 1 2 3 4 5 6 7	MODE LED GREEN LED BLUE LED RED JOG Invalid(No Action) Reserved=0 Reserved=0	
ID	1		Valid Range : 0~0XFE	ID	1		Valid Range : 0~0XFE	
Playtime	1		Valid Range: 0~0XFE					

MODE	Comments
0	Position Control JOG
1	Infinite turn (Continuous Rotation)

6-7. STAT

ID(253) Resquest Status

ACK Packet Data[0] refers to Status Error and means no Error

Data[1] refers to Status Detail 0x40 Torque On

* Refer to Page 39 for detailed information on Status Error and Status Detail.

	Header Pa		ader Packet Size plD C		CMD	Check Sum1	Check Sum2
STAT	0	1	2	3	4	5	6
	0xFF	0xFF	7	Servo ID	0x07	(Refer to	o Pg 20)
Example2	0xFF	0xFF	0x07	0x07 0xFD 0x07 0		0xFC	0x02
STAT ACK	0xFF 0xFF		0x09	0xFD	0x47	0xF2	0x0C
Optio	nal Dat	ta					
7		8					
Data[0]		Data[1]					
0x00 0x40							

6-8. ROLLBACK

ID(253) ROLLBACK(Factory Default), ID and Baud Rate excepted

0x40

ROLLBACK ACK

0x00

When r(ACK Policy) is set to "2" meaning "Always Reply" Send ACK Packet

	Hea	ader	Packet Size	plD	CMD	Check Sum1	Check Sum2
ROLLBACK	0	1	2	3	4	5	6
	0xFF	0xFF	9	Servo ID	0x08	(Refer to	o Pg 20)
Example1	0xFF	0xFF	0x09	0xFD	0x08	0xFC	0x02
ROLLBACK ACK	0xFF	0xFF	0x09	0xFD	0x48	0xFC	0x02
Optional Data							
7 8							

/	8
Data[0]	Data[1]
ID Skip	Band Skip
1	1
00	0x40

6-9. REBOOT

ID(254) Reboot

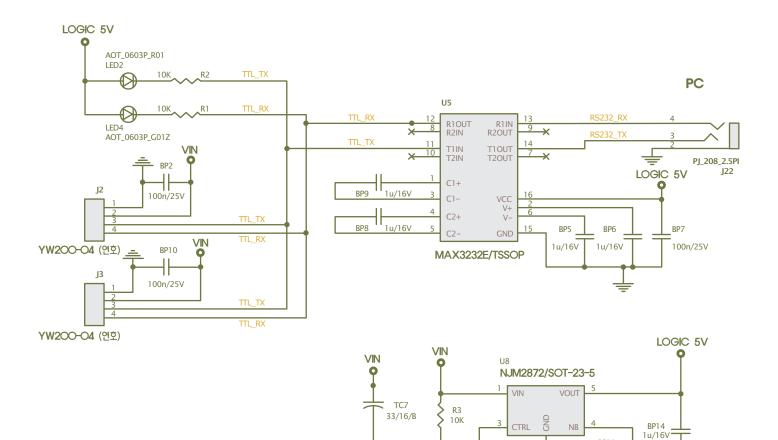
REBOOT ACK

_

0x00

When r(ACK Policy) is set to "2" meaning "Always Reply" Send ACK Packet

_

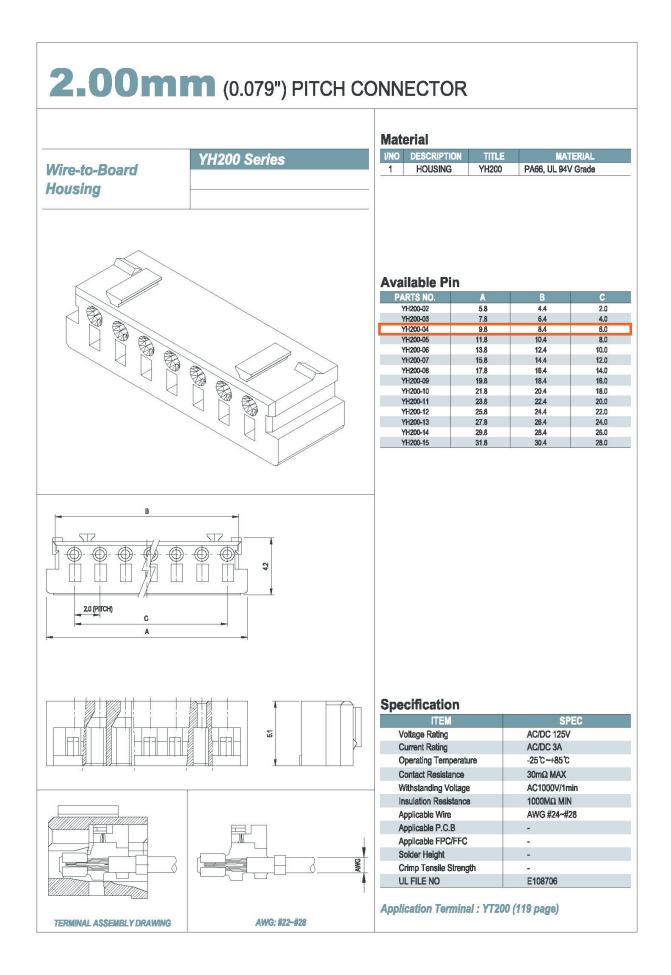

0x00

	Hea	ader	Packet Size	plD	CMD	Check Sum1	Check Sum2
REBOOT	0	1	2	3	4	5	6
	0xFF	0xFF	7	Servo ID	0×09	(Refer to	o Pg 20)
Example1	0xFF	0xFF	0x07	0xFD	0x09	0xF2	0x0C
REBOOT ACK	0xFF	0xFF	0x09	0xFD	0x49	0xBC	0x42
Optio	nal Dat	ta					
7		8					
 Data[0] Data[1]							

		Ji .
O€ I	thinking MORE for L Dongbu	Robot

Reference

HerkuleX Manager Kit Circuit Diagram



BP11 1u/16V =

2.00mm (0.079") PITCH CONNECTOR

		Mat	erial			
Wire-to-Board Wafer	YW200 Series DIP Straight	1/NO 1 2	DESCRIPTION WAFER PIN	TITLE YW200	MAT PA66, UL 94V Brass, Tin plat	
		P/	iilable Pin ARTS NO. YW200-02 YW200-03 YW200-04 YW200-05 YW200-06 YW200-07 YW200-08 YW200-09 YW200-10 YW200-11 YW200-12 YW200-13 YW200-15	A 5.9 7.9 9.9 11.9 13.9 15.9 17.9 19.9 21.9 23.9 25.9 27.9 27.9 28.9 31.9	B 5.1 7.1 9.1 11.1 13.1 15.1 17.1 19.1 21.1 23.1 25.1 27.1 29.1 31.1	C 2.0 4.0 6.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0
		Spe	cification		SP	
01.0# 2.0.50% C =0.1 PCB LAYOUT	PCB ASSY	0 0 0 1 1 1 1 1 2 2 2 2 0	Voltage Rating Current Rating Diperating Temperat Sontact Resistance Withstanding Voltag Insulation Resistanc Applicable Wire Applicable PPC/FFC Solder Height Drimp Tensile Streng JL FILE NO	e e	AC/DC 125V AC/DC 125V AC/DC 3A -25°C~+85°C 30mΩ MAX AC1000V/1m 1000MΩ MIN - 1.2~1.6mm - - E108706	in

ADC Voltage Coversion Chart

ADC	2	VIN	AD	C	VIN	ADO	C	- VIN	ADO	C	VIN
Decimal	HEX	VIIN	Decimal	HEX	VIIN	Decimal	HEX		Decimal	HEX	VIIN
0	0	0.000	64	40	4,741	128	80	9,481	192	CO	14,222
1	1	0.074	65	41	4,815	129	81	9.556	193	C1	14,296
2	2	0.148	66	42	4,889	130	82	9.630	194	C2	14.370
3	3	0.222	67 68	43 44	4.963 5.037	131 132	83 84	9.704 9.778	195 196	C3 C4	14.444 14.519
5	5	0.290	69	45	5.111	133	85	9.778	190	C5	14,519
6	6	0.444	70	46	5,185	134	86	9.926	198	C6	14.667
7	7	0.519	71	47	5.259	135	87	10.000	199	C7	14,741
8	8	0.593	72	48	5,333	136	88	10.074	200	C8	14.815
9	9	0.667	73	49	5.407	137	89	10.148	201	C9	14.889
10	A	0.741	74	4A	5.481	138	8A	10,222	202	CA	14,963
11	B	0.815	75	4B	5.556	139	8B	10.296	203	CB	15.037
<u>12</u> 13	C D	0.889	76 77	4C 4D	5.630 5.704	<u>140</u>	8C 8D	10.370 10.444	204 205	CC CD	<u>15,111</u> 15,185
14	E	1.037	78	4D 4E	5.778	141	8E	10.444	205	CE	15,259
15	F	1,111	79	4F	5.852	143	8F	10.593	207	CF	15,333
16	10	1,185	80	50	5.926	144	90	10.667	208	DO	15.407
17	11	1,259	81	51	6.000	145	91	10,741	209	D1	15,481
18	12	1,333	82	52	6.074	146	92	10.815	210	D2	15.556
19	13	1.407	83	53	6.148	147	93	10.889	211	D3	15.630
20	14	1.481	84	54	6.222	148	94	10,963	212	D4	15.704
<u>21</u> 22	15 16	1.556	<u> </u>	55 56	6.296 6.370	<u>149</u> 150	95 96	11.037	213 214	D5 D6	15.778 15.852
23	17	1.704	87	57	6.444	150	97	11,185	214	D0	15,926
23	18	1.778	88	58	6.519	152	98	11,259	216	D7 D8	16.000
25	19	1.852	89	59	6.593	153	99	11,333	217	D9	16.074
26	1A	1.926	90	5A	6.667	154	9A	11.407	218	DA	16,148
27	1B	2,000	91	5B	6.741	155	9B	11,481	219	DB	16,222
28	1C	2.074	92	5C	6,815	156	9C	11,556	220	DC	16,296
29	1D	2.148	93	5D	6.889	<u>157</u>	9D	11.630	221 222	DD DE	16.370
<u> </u>	1E 1F	2,222 2,296	<u>94</u> 95	5E 5F	6.963 7.037	158	9E 9F	<u>11.704</u> 11.778	222	DE	16.444 16.519
32	20	2,230	96	60	7,111	160	AO	11.852	224	EO	16,593
33	21	2,444	97	61	7,185	161	A1	11,926	225	E1	16.667
34	22	2,519	98	62	7,259	162	A2	12.000	226	E2	16.741
35	23	2,593	99	63	7,333	163	A3	12,074	227	E3	16.815
36	24	2.667	100	64	7.407	164	A4	12.148	228	E4	16,889
37	25	2,741	101	65	7.481	165	A5	12,222	229	E5	16.963
38 39	26 27	2,815 2,889	102 103	66 67	7.556 7.630	166 167	A6 A7	12,296 12,370	230 231	E6 E7	17.037 17.111
40	28	2,963	103	68	7.704	168	 A8	12.370	232	E8	17.185
41	29	3.037	104	69	7,778	169	A9	12.519	233	E9	17.259
42	2A	3,111	106	6A	7.852	170	AA	12,593	234	EA	17.333
43	2B	3.185	107	6B	7.926	171	AB	12.667	235	EB	17.407
44	2C	3,259	108	6C	8.000	172	AC	12.741	236	EC	17,481
45	2D	3.333	109	6D	8.074	173	AD	12,815	237	ED	17.556
46 47	2E	3,407	110	6E	8,148	174	AE	12,889	238	EE	17.630
47	2F 30	3.481	111 112	6F 70	8.222 8.296	175 176	AF B0	12,963 13,037	239 240	EF F0	17.704 17.778
40	31	3.630	112	70	8.370	170	B1	13,111	240	 F1	17.852
50	32	3.704	114	72	8.444	178	B2	13.185	242	F2	17.926
51	33	3,778	115	73	8.519	179	B3	13,259	243	F3	18.000
52	34	3.852	116	74	8.593	180	B4	13,333	244	F4	18.074
53	35	3.926	117	75	8,667	181	B5	13,407	245	F5	18,148
54	36	4.000	118	76	8,741	182	B6	13.481	246	F6	18,222
55	37	4.074	119	77	8.815	183	B7	13,556	247	F7	18,296
56 57	38 39	4.148	120 121	78 79	8.889 8.963	<u>184</u>	B8 B9	13.630 13.704	248 249	F8 F9	18,370 18,444
58	39 3A	4,222	121	79 7A	9.037	186	BA	13.778	249	F9 FA	18,519
59	3B	4,230	123	7B	9,111	187	BB	13.852	251	FB	18,593
60	3C	4.444	124	7C	9,185	188	BC	13.926	252	FC	18,667
61	3D	4.519	125	7D	9.259	189	BD	14,000	253	FD	18,741
62	3E 3F	4,593	126 127	7E 7F	9.333	190	BE	14.074	254	FE FF	18.815 18.889
63				/1 -	9.407	191	BF	14,148	255		

ADC Temperature Coversion Chart

Decimal HEX Decimal HEX <thdecimal hex<="" th=""> <thdecimal hex<="" th=""></thdecimal></thdecimal>	AD	С	- °C	AD	С	°0	AD	С	- °C	AD	С	°c
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Decimal	HEX	- C	Decimal	HEX	° – °C	Decimal	HEX	- C	Decimal	HEX	- °C
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0	0	-79.47	69	45	1.37	138	8A	29.33	207	CF	68.32
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	1	-71.78	70	46		139		29.76		DO	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			-									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10	A		79	4F		148	94		217	D9	
	11	В	-38.20		50	6.03	149			218	DA	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-										4,294
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		<u> </u>		-	-							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		15				-						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	22	16	-25.69	91	5B	10,50	160	AO	39.13	229	E5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											E6	4.510
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-			-							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					-				-			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		21		102					44.61		FO	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				103				AC		241		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												4,784
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2B						B5			FA	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				113		19.20		B6		251		4,922
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									51.27	252		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										255	HH -	0,000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		36										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	55	37	-5.04	124	7C	23.59	193		57.60			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						23,99						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
64 40 -0.84 133 85 27.25 202 CA 64.17 65 41 -0.39 134 86 27.66 203 CB 64.97 66 42 0.05 135 87 28.08 204 CC 65.78 67 43 0.49 136 88 28.50 205 CD 66.61												
65 41 -0.39 134 86 27.66 203 CB 64.97 66 42 0.05 135 87 28.08 204 CC 65.78 67 43 0.49 136 88 28.50 205 CD 66.61												
66 42 0.05 135 87 28.08 204 CC 65.78 67 43 0.49 136 88 28.50 205 CD 66.61												
67 43 0.49 136 88 28.50 205 CD 66.61	66	42	0.05	135	87	28.08		CC	65,78			
<u>68 44 0.93</u> <u>137 89 28.91</u> <u>206 CE 67.46</u>	67		0.49	136		28.50			66.61			
	68	44	0,93	137	89	28.91	206	CE	67.46			

ADC Position Coversion Chart

AD	С	– degree	ADC		- degree	AD	ADC		AD	ADC	
Decimal	HEX	uegiee	Decimal	HEX	uegiee	Decimal	HEX	degree	Decimal	HEX	degree
0	0	-166.650	69	45	-144.169	138	8A	-121,689	207	CF	-99,208
1	1	-166.324	70	46	-143.844	139	8B	-121,363	208	D0	-98.882
2	2	-165,998	71	47	-143,518	140	8C	-121.037	209	D1	-98,556
3	3	-165,673	72	48	-143,192	141	8D	-120,711	210	D2	-98,231
4	4	-165.347	73	49	-142.866	142	8E	-120.385	211	D3	-97.905
5	5	-165.021	74	4A	-142,540	143	8F	-120.060	212	D4	-97.579
6	6	-164,695 -164,369	75 76	4B 4C	-142 <u>215</u> -141 <u>889</u>	144 145	<u>90</u> 91	-119.734 -119.408	<u>213</u> 214	D5 D6	-97.253 -96.927
8	8	-164.044	70	40 4D	-141.563	145	91	-119.082	214	D6 D7	-96.602
9	9	-163.718	78	4D 4E	-141,237	140	93	-118,756	216	D7 D8	-96.276
10	A	-163,392	79	4F	-140,911	148	94	-118.431	217	D9	-95.950
11	B	-163.066	80	50	-140.585	149	95	-118,105	218	DA	-95.624
12	С	-162,740	81	51	-140.260	150	96	-117,779	219	DB	-95,298
13	D	-162,415	82	52	-139.934	151	97	-117,453	220	DC	-94.973
14	E	-162.089	83	53	-139.608	152	98	-117,127	221	DD	-94.647
15	F	-161,763	84	54	-139,282	153	99	-116,802	222	DE	-94.321
16	10	-161.437	85	55	-138.956	154	9A	-116.476	223	DF	-93.995
17	11	-161,111	86	56	-138.631	155	9B	-116.150	224	EO	-93.669
18	12	-160.785	87	57	-138,305	156	9C	-115.824	225	E1	-93.344
<u>19</u> 20	13 14	-160,460	<u> </u>	58 59	-137.979 -137.653	<u> </u>	9D 9E	<u>-115.498</u> -115.173	226 227	E2 E3	-93.018 -92.692
20	15	-159.808	90	59 5A	-137,327	159	9E 9F	-114.847	228	E3	-92,366
22	16	-159,482	91	5B	-137.002	160	A0	-114.521	229	E5	-92.040
23	17	-159.156	92	5C	-136.676	161	A1	-114,195	230	E6	-91,715
24	18	-158,831	93	5D	-136.350	162	A2	-113,869	231	E7	-91,389
25	19	-158,505	94	5E	-136.024	163	A3	-113,544	232	E8	-91,063
26	1A	-158,179	95	5F	-135.698	164	A4	-113,218	233	E9	-90.737
27	1B	-157,853	96	60	-135.373	165	A5	-112,892	234	EA	-90.411
28	1C	-157.527	97	61	-135.047	166	A6	-112.566	235	EB	-90.085
29	1D	-157.202	98	62	-134,721	167	A7	-112,240	236	EC	-89.760
30 31	1E 1F	-156.876 -156.550	<u> </u>	63 64	-134.395 -134.069	168 169	A8 A9	-111.915 -111.589	237 238	ED EE	-89.434 -89.108
32	20	-156,224	100	65	-133.744	170	A9	-111.263	230	EF	-88,782
33	20	-155.898	102	66	-133.418	170	AB	-110.937	240	F0	-88.456
34	22	-155.573	102	67	-133.092	172	AC	-110.611	241	F1	-88,131
35	23	-155.247	104	68	-132,766	173	AD	-110,285	242	F2	-87,805
36	24	-154,921	105	69	-132,440	174	AE	-109,960	243	F3	-87.479
37	25	-154.595	106	6A	-132,115	175	AF	-109.634	244	F4	-87,153
38	26	-154.269	107	6B	-131,789	176	BO	-109.308	245	F5	-86.827
39	27	-153.944	108	6C	-131.463	177	B1	-108.982	246	F6	-86.502
40	28 29	-153.618	109	6D	-131.137	178	B2	-108.656	247 248	F7	-86,176
41 42	29 2A	-153.292 -152.966	<u> </u>	6E 6F	-130.811 -130.485	179 180	B3 B4	-108.331 -108.005	248	F8 F9	-85.850 -85.524
43	2A 2B	-152,640	112	70	-130,465	181	B5	-107.679	250	FA	-85,198
43	2D	-152.315	112	70	-129.834	182	B6	-107,353	250	FB	-84,873
45	20 2D	-151,989	114	72	-129,508	183	B7	-107,027	252	FC	-84,547
46	2E	-151,663	115	73	-129,182	184	B8	-106.702	253	FD	-84,221
47	2F	-151,337	116	74	-128.856	185	B9	-106.376	254	FE	-83,895
48	30	-151.011	117	75	-128,531	186	BA	-106.050	255	FF	-83.569
49	31	-150,685	118	76	-128,205	187	BB	-105,724	256	100	-83,244
50	32	-150.360	119	77	-127.879	188	BC	-105.398	257	101	-82.918
51	33	-150.034	120	78	-127.553	189	BD	-105.073	258	102	-82.592
52	34	-149.708	121	79	-127,227	190	BE	-104.747	259	103	-82,266
53 54	35 36	-149,382	122	7A 7B	-126,902	191	BF C0	-104.421	260 261	104	-81,940
<u>54</u>	36	-149.056 -148.731	<u> </u>	7B 7C	-126.576 -126.250	<u> </u>	C0 C1	-104.095 -103.769	261	105 106	-81,615
56	38	-148,405	124	70 7D	-125,924	193	C2	-103,444	263	100	-80,963
57	39	-148.079	125	7D 7E	-125.598	195	C3	-103,118	264	107	-80.637
58	3A	-147.753	120	7E	-125,273	196	C4	-102,792	265	109	-80.311
59	3B	-147,427	128	80	-124.947	197	C5	-102,466	266	10A	-79,985
60	3C	-147.102	129	81	-124.621	198	C6	-102.140	267	10B	-79.660
61	3D	-146.776	130	82	-124.295	199	C7	-101.815	268	10C	-79.334
62	3E	-146.450	131	83	-123,969	200	C8	-101,489	269	10D	-79.008
63	3F	-146.124	132	84	-123.644	201	C9	-101.163	270	10E	-78.682
64	40	-145.798	133	85	-123,318	202	CA	-100.837	271	10F	-78.356
65	41	-145.473	134	86 87	-122,992	203	CB	-100.511	272	110	-78.031
<u> </u>	42 43	<u>-145.147</u> -144.821	<u> </u>	87	-122.666 -122.340	204 205	CC CD	-100.185 -99.860	273 274	111 112	-77.705 -77.379
68	43	-144,495	130	89	-122,015	205	CE	-99.534	274	112	-77.053
00	44	144,430	107	03	122,010	200	UE	33,004	210	110	11,000

AD	ADC		ADC		degree	AD	ADC		AD	С	dograa
Decimal	HEX	degree	Decimal	HEX	uegree	Decimal	HEX	degree	Decimal	HEX	degree
276	114	-76,727	350	15E	-52.618	424	1A8	-5.376	498	1F2	-4.398
277	115	-76.402	351	15F	-52.292	425	1A9	-5.050	499	1F3	-4.073
278	116	-76.076	352	160	-51.966	426	1AA	-4.724	500	1F4	-3.747
279 280	117 118	-75.750	353	161 162	-51.640 -51.315	427 428	1AB 1AC	-28,508	<u> </u>	1F5	-3.421
280	118	-75.424 -75.098	<u>354</u> 355	162	-50,989	428	1AC 1AD	-28,182 -27,856	502	1F6 1F7	-3.095 -2.769
282	11A	-74.773	356	164	-50.663	430	1AE	-27.531	504	1F8	-2.444
283	11B	-74.447	357	165	-50.337	431	1AF	-27,205	505	1F9	-2.118
284	11C	-74.121	358	166	-50.011	432	1B0	-26.879	506	1FA	-1.792
285	11D	-73.795	359	167	-49.685	433	1B1	-26.553	507	1FB	-1.466
286 287	11E 11F	-73.469	360 361	168 169	-49.360 -49.034	434 435	1B2 1B3	-26,227	<u> </u>	1FC	<u>-1.140</u> -0.815
288	120	-73.144 -72.818	362	169 16A	-49.034	435	1B3 1B4	-25.902 -25.576	510	1FD 1FE	-0.489
289	120	-72.492	363	16B	-48.382	437	1B5	-25.250	511	1FF	-0.163
290	122	-72,166	364	16C	-48.056	438	1B6	-24.924	512	200	0,163
291	123	-71,840	365	16D	-47,731	439	1B7	-24.598	513	201	0.489
292	124	-71.515	366	16E	-47.405	440	1B8	-24.273	514	202	0.815
293 294	125 126	-71.189 -70.863	<u> </u>	16F 170	-47.079 -46.753	441 442	1B9 1BA	-23.947 -23.621	<u>515</u> 516	203 204	1.140 1.466
294	120	-70.603	369	170	-46.427	442	1BA 1BB	-23,295	517	204	1.400
296	128	-70.211	370	172	-46.102	444	1BC	-22,969	518	206	2.118
297	129	-69.885	371	173	-45.776	445	1BD	-22.644	519	207	2,444
298	12A	-69,560	372	174	-45.450	446	1BE	-22,318	520	208	2,769
299	12B	-69.234	373	175	-45.124	447	1BF	-21.992	521	209	3.095
<u>300</u> 301	12C 12D	-68.908 -68.582	<u> </u>	176 177	-44.798 -44.473	448 449	1C0 1C1	-21,666	522 523	20A 20B	3.421 3.747
302	12D	-68,256	376	178	-44.147	449	1C2	-21.015	524	20B	4.073
303	12F	-67.931	377	179	-43.821	451	1C3	-20,689	525	20D	4.398
304	130	-67.605	378	17A	-43.495	452	1C4	-20.363	526	20E	4.724
305	131	-67.279	379	17B	-43,169	453	1C5	-20.037	527	20F	5.050
306 307	132	-66.953	380	17C	-42.844	454	1C6	-19,711	528	210	5.376
307	133 134	-66.627 -66.302	<u>381</u> 382	17D 17E	-42 <u>.</u> 518 -42 <u>.</u> 192	455 456	1C7 1C8	-19.385 -19.060	<u> </u>	211 212	<u>5.702</u> 6.027
309	135	-65.976	383	17E	-41.866	457	1C9	-18.734	531	212	6.353
310	136	-65.650	384	180	-41.540	458	1CA	-18,408	532	214	6.679
311	137	-65.324	385	181	-41.215	459	1CB	-18.082	533	215	7.005
312	138	-64.998	386	182	-40.889	460	1CC	-17.756	534	216	7.331
313 314	139 13A	-64.673	<u> </u>	183 184	-40.563	461 462	1CD 1CE	-17.431 -17.105	<u>535</u> 536	217 218	7.656
314	13A 13B	-64.347 -64.021	388	185	-39.911	462	1CE	-16,779	530	218	8.308
316	13C	-63.695	390	186	-39.585	464	1D0	-16.453	538	213 21A	8.634
317	13D	-63.369	391	187	-39,260	465	1D1	-16.127	539	21B	8,960
318	13E	-63.044	392	188	-38.934	466	1D2	-15.802	540	21C	9,285
319	13F	-62.718	393	189	-38.608	467	1D3	-15.476	541	21D	9.611
320 321	140 141	-62.392 -62.066	<u> </u>	18A 18B	-38,282	468 469	1D4 1D5	-15.150 -14.824	<u> </u>	21E 21F	9.937
321	141	-61,740	396	18C	-37.956 -37.631	409 470	1D5 1D6	-14.498	543	216	10.263 10.589
323	143	-61.415	397	18D	-37,305	471	1D7	-14.173	545	221	10.915
324	144	-61,089	398	18E	-36,979	472	1D8	-13,847	546	222	11,240
325	145	-60.763	399	18F	-36.653	473	1D9	-13.521	547	223	11,566
326	146	-60.437	400	190	-36.327	474	1DA	-13,195	548	224	11.892
327 328	147 148	-60.111 -59.785	401 402	191 192	-36.002 -35.676	475 476	1DB 1DC	-12.869 -12.544	<u>549</u> 550	225 226	12.218 12.544
329	140	-59.460	402	192	-35,350	470	1DC	-12.218	550	220	12,344
330	14A	-59,134	404	194	-35.024	478	1DE	-11.892	552	228	13,195
331	14B	-58,808	405	195	-34.698	479	1DF	-11,566	553	229	13,521
332	14C	-58,482	406	196	-34.373	480	1E0	-11.240	554	22A	13.847
333	14D 14E	-58,156	407	197	-34.047	481 482	1E1 1E2	-10.915	555	22B 22C	14.173
<u>334</u> 335	14E 14F	-57.831 -57.505	408 409	198 199	-33,721 -33,395	483	1E2	-10.589 -10.263	556 557	22C 22D	14.498 14.824
336	150	-57.179	410	19A	-33.069	484	1E4	-9.937	558	22E	15,150
337	151	-56,853	411	19B	-32,744	485	1E5	-9.611	559	22F	15.476
338	152	-56,527	412	19C	-32.418	486	1E6	-9.285	560	230	15,802
339	153	-56.202	413	19D	-32.092	487	1E7	-8.960	561	231	16.127
340	154 155	-55,876	414	19E	-31,766	488 489	1E8 1E9	-8.634	562	232	16.453
<u> </u>	155	-55.550 -55.224	415 416	19F 1A0	-31,440 -31,115	489 490	1E9 1EA	-8.308 -7.982	<u> </u>	233 234	16.779 17.105
343	150	-54.898	417	1A0	-30,789	490	1EB	-7.656	565	235	17.431
344	158	-54.573	418	1A2	-30,463	492	1EC	-7.331	566	236	17.756
345	159	-54.247	419	1A3	-30,137	493	1ED	-7.005	567	237	18,082
346	15A	-53,921	420	1A4	-29,811	494	1EE	-6.679	568	238	18.408
347	15B 15C	-53,595	421 422	1A5 1A6	-29,485	495 496	1EF 1F0	-6.353	569	239	18,734
<u> </u>	15C	-53.269 -52.944	422	1A6 1A7	-29.160	496	1F0 1F1	-6.027 -5.702	<u> </u>	23A 23B	<u>19.060</u> 19.385
	100	0=,0+1	-120	0.0	_0,004			0,102		200	.0,000

AD	С	dograa	AD	С	dograa	AD	С	dograa	ADC		degree
Decimal	HEX	degree	Decimal	HEX	degree	Decimal	HEX	degree	Decimal	HEX	uegiee
572	23C	19.711	646	286	43,821	720	2D0	67.931	794	31A	92.040
573	23D	20.037	647	287	44.147	721	2D1	68.256	795	31B	92,366
574 575	23E 23F	20,363 20,689	648 649	288 289	44.473 44.798	722 723	2D2 2D3	68.582 68.908	796 797	31C 31D	92.692 93.018
576	240	21.015	650	28A	45,124	724	2D0	69.234	798	31E	93,344
577	241	21,340	651	28B	45.450	725	2D5	69,560	799	31F	93,669
578	242	21,666	652	28C	45.776	726 727	2D6 2D7	69.885	800	320	93,995
579 580	243 244	21,992 22,318	<u>653</u> 654	28D 28E	46.102 46.427	727	2D7 2D8	70,211 70,537	<u>801</u> 802	321 322	94.321 94.647
581	245	22,644	655	28F	46.753	729	2D9	70.863	803	323	94,973
582	246	22,969	656	290	47.079	730	2DA	71,189	804	324	95,298
583 584	247 248	23,295 23,621	<u>657</u> 658	291 292	47.405 47.731	731 732	2DB 2DC	71,515 71,840	805 806	325 326	95.624 95.950
585	240	23.947	659	293	48.056	733	2DC 2DD	72,166	807	320	96,276
586	24A	24.273	660	294	48,382	734	2DE	72,492	808	328	96.602
587	24B	24.598	661	295	48,708	735	2DF	72.818	809	329	96,927
588 589	24C 24D	24.924 25.250	662 663	296 297	49.034 49.360	736 737	2E0 2E1	73.144 73.469	<u>810</u> 811	32A 32B	97.253 97.579
590	24D	25.576	664	298	49.685	738	2E2	73,795	812	32C	97.905
591	24F	25,902	665	299	50.011	739	2E3	74,121	813	32D	98,231
592	250	26.227	666	29A	50.337	740	2E4	74.447	814	32E	98.556
593 594	251 252	26.553 26.879	<u> </u>	29B 29C	50.663 50.989	741 742	2E5 2E6	74.773	815 816	32F 330	98.882 99.208
595	253	27,205	669	29D	51,315	742	2E0	75.424	817	331	99.534
596	254	27,531	670	29E	51,640	744	2E8	75.750	818	332	99,860
597	255	27.856	671	29F	51,966	745	2E9	76.076	819	333	100,185
598 599	256 257	28,182 28,508	<u> </u>	2A0 2A1	52,292 52,618	746 747	2EA 2EB	76.402	<u>820</u> 821	334 335	100.511 100.837
600	258	28,834	674	2A2	52,944	748	2ED 2EC	77.053	822	336	101,163
601	259	29,160	675	2A3	53,269	749	2ED	77,379	823	337	101.489
602	25A	29.485	676	2A4	53,595	750	2EE	77.705	824	338	101,815
603 604	25B 25C	29.811 30.137	<u> </u>	2A5 2A6	53.921 54.247	751 752	2EF 2F0	78.031 78.356	825 826	339 33A	102.140
605	25D	30.463	679	2A7	54.573	753	2F1	78,682	827	33B	102,792
606	25E	30,789	680	2A8	54.898	754	2F2	79.008	828	33C	103,118
607 608	25F	31.115	681	2A9	55.224	755 756	2F3	79.334	829	33D	103.444
609	260 261	31.440 31.766	682 683	2AA 2AB	55.550 55.876	750	2F4 2F5	79.660 79.985	830 831	33E 33F	103.769 104.095
610	262	32,092	684	2AC	56,202	758	2F6	80,311	832	340	104.421
611	263	32,418	685	2AD	56.527	759	2F7	80.637	833	341	104.747
612 613	264 265	32.744 33.069	686 687	2AE 2AF	56.853 57.179	760 761	2F8 2F9	80,963 81,289	<u>834</u> 835	342 343	105.073 105.398
614	265	33,395	688	280	57,505	761	2F9 2FA	81.615	836	343	105,398
615	267	33,721	689	2B1	57,831	763	2FB	81,940	837	345	106.050
616	268	34.047	690	2B2	58,156	764	2FC	82,266	838	346	106.376
617 618	269 26A	34.373 34.698	691 692	2B3 2B4	58.482 58.808	765 766	2FD 2FE	82,592 82,918	<u>839</u> 840	347 348	106.702
619	26B	35.024	693	2B4	59,134	767	2FF	83.244	841	349	107.353
620	26C	35,350	694	2B6	59,460	768	300	83,569	842	34A	107,679
621	26D	35.676	695	2B7	59.785	769	301	83.895	843	34B	108.005
622 623	26E 26F	36.002 36.327	<u> </u>	2B8 2B9	<u>60,111</u> 60,437	770 771	302 303	84.221 84.547	<u> </u>	34C 34D	108.331
624	270	36,653	698	2BA	60,763	772	304	84,873	846	34E	108,982
625	271	36,979	699	2BB	61.089	773	305	85,198	847	34F	109.308
626	272	37.305	700	2BC	61,415	774	306	85.524	848	350	109.634
627 628	273 274	37.631 37.956	701 702	2BD 2BE	61.740 62.066	775 776	307 308	85.850 86.176	<u>849</u> 850	351 352	109.960 110.285
629	275	38,282	702	2BE	62,392	777	309	86.502	851	353	110,611
630	276	38,608	704	2C0	62,718	778	30A	86,827	852	354	110,937
631	277	38.934	705	2C1	63.044	779	30B	87.153	853	355	111,263
<u>632</u> 633	278 279	39.260 39.585	706 707	2C2 2C3	63,369 63,695		30C 30D	87.479 87.805	854 855	356 357	111.589 111.915
634	27A	39,911	708	2C3	64.021	782	30E	88,131	856	358	112,240
635	27B	40.237	709	2C5	64.347	783	30F	88.456	857	359	112,566
636	27C 27D	40.563 40.889	710	2C6 2C7	64,673	784	310 311	88,782	858	35A	112,892
<u>637</u> 638	27D 27E	40.889		207	64.998 65.324		312	89.108 89.434	<u> </u>	35B 35C	113.218 113.544
639	27F	41,540	712	200	65.650	787	313	89,760	861	35D	113,869
640	280	41.866	714	2CA	65.976	788	314	90.085	862	35E	114,195
641	281 282	42.192 42.518	715 716	2CB 2CC	66.302 66.627	789	315	90.411 90.737	<u> </u>	35F 360	114.521
<u>642</u> 643	282	42,518	716	200 20D	66,953	<u>790</u> 791	316 317	90,737	865	360	114.847 115.173
644	284	43,169	718	2CE	67.279	792	318	91.389	866	362	115,498
645	285	43,495	719	2CF	67,605	793	319	91,715	867	363	115,824

ADC			AD		
Decimal	HEX	degree	Decimal	HEX	degree
868	364	116,150	942	3AE	140,260
869	365	116,476	943	3AF	140,585
870	366	116,802	944	3B0	140,911
871	367	117,127	945	3B1	141,237
872	368	117,453	946	3B2	141,563
873	369	117,779	947	3B3	141,889
874	36A	118,105	948	3B4	142,215
875	36B	118,431	949	3B5	142,540
876	36C	118,756	950	3B6	142,866
877	36D	119,082	951	3B7	143,192
	36E		952	3B8	
878		119,408			143.518
879	36F	119.734	953	3B9	143.844
880	370	120.060	954	3BA	144.169
881	371	120,385	955	3BB	144,495
882	372	120,711	956	3BC	144.821
883	373	121.037	957	3BD	145.147
884	374	121,363	958	3BE	145.473
885	375	121,689	959	3BF	145,798
886	376	122.015	960	3C0	146,124
887	377	122.340	961	3C1	146.450
888	378	122,666	962	3C2	146,776
889	379	122,992	963	3C3	147.102
890	37A	123,318	964	3C4	147.427
891	37B	123,644	965	3C5	147,753
892	37C	123,969	966	3C6	148,079
893	37D	124,295	967	3C7	148,405
894	37E	124,621	968	3C8	148,731
895	37F	124.947	969	3C9	149,056
896	380	125.273	970	3CA	149,382
897	381	125,598	971	3CB	149,708
898	382	125.924	972	<u> 3CC</u>	150.034
899	383	126,250	973	3CD	150,360
900	384	126.576	974	3CE	150.685
901	385	126,902	975	3CF	151.011
902	386	127.227	976	3D0	151.337
903	387	127,553	977	3D1	151.663
904	388	127,879	978	3D2	151,989
905	389	128,205	979	3D3	152,315
906	38A	128,531	980	3D4	152,640
907	38B	128,856	981	3D5	152,966
908	38C	129,182	982	3D6	153,292
909	38D	129,508	983	3D7	153,618
910	38E	129,834	984	3D8	153,944
911	38F	130,160	985	3D9	154,269
912	390	130,485	986	3DA	154,595
913	391	130,811	987	3DB	154.921
913	392	131,137	988	3DD 3DC	155.247
915	393	131,463	989	3DD	155,573
916	394	131,789	990	3DE	155,898
917	395	132,115	991	3DF	156.224
918	396	132.440	992	3E0	156.550
919	397	132,766	993	3E1	156.876
920	398	133.092	994	3E2	157.202
921	399	133,418	995	3E3	157.527
922	39A	133,744	996	3E4	157,853
923	39B	134.069	997	3E5	158,179
924	39C	134,395	998	3E6	158,505
925	39D	134,721	999	3E7	158,831
926	39E	135.047	1000	3E8	159,156
927	39F	135.373	1001	3E9	159,482
928	3A0	135,698	1002	3EA	159,808
929	3A1	136,024	1003	3EB	160,134
930	3A2	136,350	1004	3EC	160,460
931	3A3	136.676	1005	3ED	160,785
932	3A3	137,002	1005	3EE	161,111
932	3A5	137.327	1000	3EF	161,437
934	3A6	137.653	1008	3F0	161,763
935	3A7	137.979	1009	3F1	162.089
936	3A8	138,305	1010	3F2	162,415
937	3A9	138.631	1011	3F3	162.740
938	3AA	138,956	1012	3F4	163.066
020	3AB	139,282	1013	3F5	163.392
939					
939 940 941	3AC 3AD	139.608	1014 1015	3F6 3F7	163.718 164.044

AD	degree	
Decimal	HEX	ucgicc
1016	3F8	164,369
1017	3F9	164,695
1018	3FA	165,021
1019	3FB	165,347
1020	3FC	165.673
1021	3FD	165,998
1022	3FE	166,324
1023	3FF	166.650