
Turtlebot4 User Manual

TurtleBot 4 Lite (left) and TurtleBot 4 (right)

TurtleBot 4 is the next-generation of the world's most popular open source robotics
platform for education and research, offering better computing power, better sensors
and a world class user experience at an affordable price point.

TurtleBot 4 comes in two models - TurtleBot 4 and TurtleBot Lite. Both are equipped
with an iRobot® Create® 3 mobile base, a powerful Raspberry Pi 4 running ROS 2,
OAK-D stereo camera, 2D LiDAR and more. All components have been seamlessly
integrated to deliver an out-of-the-box development and learning platform. Tap into the
thriving open source ROS developer community and get started learning robotics on
day one.

Features 9
TurtleBot 4 9
TurtleBot 4 Lite 11
Hardware Specifications 12
Sensors 14

RPLIDAR A1M8 14
OAK-D-Lite 14
OAK-D-Pro 15

Resources 16
Software 16

Ubuntu 16
Raspberry Pi 16
ROS2 16
TurtleBot 4 16
iRobot® Create® 3 17
Luxonis 17
SLAMTEC 17

Quick Start 17
Powering on the robot 18
Installing ROS2 Galactic on your PC 18
Network Configuration 18
WiFi Setup 19

Find the Raspberry Pi IP on your network 20
Create® 3 WiFi Setup 22
TurtleBot 4 Controller Setup 23
Updating the TurtleBot 4 24

Create® 3 24
Update over WiFi 25

Find the IP address of the Create® 3 on your WiFi network. 25
Place the robot into AP mode. 25

Update over USB-C 26
Debian packages 26
Source packages 27
Install latest Raspberry Pi image 27

Overview 29
Create® 3 29
Raspberry Pi 4 30

User PC 30

TurtleBot 4 Packages 31
TurtleBot 4 31

Installation 31
Debian installation 31
Source installation 31

Description 32
Messages 32

Actions 32
Messages 32
Services 33

Navigation 33
TurtleBot 4 Navigator 35

Node 35
Functions 36
Configuration 36
Buttons 37

Example 38
LEDs 38

Examples 39
Display 42

Menu Control 42
TurtleBot 4 Robot 43

Installation 43
Source installation 43

Base 44
GPIO Interface 44
I2C Interface 45
SSD1306 45
Configuration 45
Robot Upstart 46

Bringup 47
Diagnostics 47

Diagnostics Updater 47
Tests 48

ROS Tests 48
TurtleBot 4 Desktop 51

Installation 51
Debian installation 51
Source installation 51

Visualisation 52
TurtleBot 4 Simulator 52

Installation 52
Dev Tools 52
Ignition Edifice 52
Debian installation 53
Source installation 53

Ignition Bringup 53
Ignition GUI Plugins 54
Ignition Toolbox 55

Sensors 55
RPLIDAR A1M8 56

Connecting 56
Installing 56
Running 56

OAK-D 56
Connecting 57
Installing 57
Running 57

Create® 3 57
Cliff 57
Bumper 58
Wheeldrop 58
IR Proximity 58
Slip and Stall 58
Kidnap 58

Rviz2 58
View Model 59
View Robot 59
Rviz2 Displays 60

LaserScan 61
Camera 62
TF 63

SLAM 64
Synchronous SLAM 65
Asynchronous SLAM 65
Saving the map 66

Nav2 66
Launching Navigation 67

Launch files 67
Parameters 67
Configuration 67
Examples 67

Navigating with Rviz2 69

Simulation 69
Installing Ignition Gazebo 70
Launching Ignition Gazebo 70

TurtleBot 4 72
Attaching Accessories to the Top Integration Plate 72

Removing the Top Integration Plate 72
Making Modifications to the Top Integration Plate 73

Attaching Accessories to the Base Unit 73
Removing the PCBA 74
Removing the Create® 3 Integration Plate and Shell 75

TurtleBot 4 Lite 76
Attaching Accessories to the Base Unit 76
Removing the Create® 3 Integration Plate 77
Accessing the Raspberry Pi Computer 78

Payloads Over 9kg 79
Mechanical Modification 79

Lower payload height 79
Example 81

Software Modifications 83
Acceleration Limits 83
Velocity Limits 83

Keyboard Teleoperation 83
Joystick Teleoperation 83
Command Velocity 84
Create® 3 Actions 84
Nav2 84

Create® 3 85

Raspberry Pi 4B 86

User Interface PCBA 87
Overview 87
User I/O 87
User Power 90

Molex Picoblade 6-Pin cable assembly 91

User USB-C Ports 92

Power Budget 92

Driving your TurtleBot 4 95
Keyboard Teleoperation 95
Joystick Teleoperation 96
Command Velocity 97
Create® 3 Actions 97

Creating your first node (C++) 98
Create a workspace 98
Create a package and node 98
Write your node 98

Add your dependencies 99
Create a class 100
Subscribe to the Create® 3 interface buttons 101
Test Create® 3 Button 1 102
Create a lightring publisher 103
Publish the lightring command with a button press 107
Toggle the lightring 108
Your first C++ Node 109

Creating your first node (Python) 113
Create a workspace 113
Create a package and node 113
Write your node 113

Add your dependencies 114
Create a class 114
Subscribe to the Create® 3 interface buttons 115
Test Create® 3 Button 1 116
Create a lightring publisher 118
Publish the lightring command with a button press 121
Toggle the lightring 121
Your first Python Node 123

Generating a map 126
Launch SLAM 126
Launch Rviz2 126
Drive the TurtleBot 4 127
Save the map 127
View the map 128

Navigation 128

SLAM vs Localization 129
SLAM 129
Localization 129

Nav2 129
Launching navigation 129
Interacting with Nav2 130

2D Pose Estimate 130
Publish Point 131
Nav2 Goal 132

TurtleBot 4 Navigator 133
Navigate to Pose 133

Code breakdown 133
Initialise the node 134
Dock the robot 134
Set the initial pose 134
Wait for Nav2 135
Set the goal pose 135
Undock the robot and go to the goal pose 135

Watch navigation progress in Rviz 136
Navigate Through Poses 136

Code breakdown 136
Set goal poses 138
Navigate through the poses 138

Watch navigation progress in Rviz 138
Follow Waypoints 139

Code breakdown 139
Watch navigation progress in Rviz 140

Create Path 141
Code breakdown 142

Create your path 143
Set initial pose and clear costmaps 143
Follow the path 143

Creating a path with Rviz 144

Diagnostics 145

ROS2 Tests 147

FAQ 149
Common issues with the Raspberry Pi 4B 150

1. Access point is not visible 150
Check that the Raspberry Pi is powered 150
Check for obstructions 150

Restart the robot 151
Access the RPi over Ethernet 151

1. Waiting to connect to bluetoothd… 152
2. No default controller available 152

Common issues with the user PC 153
1. ros2: command not found 153
2. Create® 3 topics are not visible 153

Overview

Features

TurtleBot 4

TurtleBot 4

The TurtleBot 4 is a ROS2-based mobile robot intended for education and research.

The TurtleBot 4 is capable of mapping its surroundings, navigation autonomously,

running AI models on its camera, and more.

It uses a Create® 3 as the base platform, and builds on it with the TurtleBot 4 shell and

User Interface (UI) board. Inside the shell sits a Raspberry Pi 4B which runs the

TurtleBot 4 software.

https://edu.irobot.com/what-we-offer/create3

Raspberry Pi 4B

The UI Board offers status and user LEDs, user buttons, and a 128x64 user display.

Additionally, it exposes 4 USB 3.0 (type C) ports, as well as additional power ports and

some Raspberry Pi pins for the user.

TurtleBot 4 UI Board

On top of the UI board sits a RPLIDAR A1M8 360 degree lidar, and an OAK-D-Pro

camera. Above the sensors is the sensor tower, which allows the user to customize their

TurtleBot4 with additional sensors or payloads.

https://turtlebot.github.io/turtlebot4-user-manual/overview/features.html#rplidar-a1m8
https://turtlebot.github.io/turtlebot4-user-manual/overview/features.html#oak-d-pro

TurtleBot 4 Lite

TurtleBot 4 Lite

The TurtleBot 4 Lite is a barebones version of the TurtleBot 4. It has just the necessary

components for navigation, mapping, and AI applications. The TurtleBot 4 has the same

Raspberry Pi 4B, which sits in the cargo bay of the Create® 3, as well as the same

RPLIDAR A1M8. The camera on the TurtleBot 4 Lite is the OAK-D-Lite. Additional

sensors and payloads can be attached to the Create® 3 faceplate, or placed inside the

cargo bay.

https://turtlebot.github.io/turtlebot4-user-manual/overview/features.html#oak-d-lite

Hardware Specifications

Feature TurtleBot 4 Lite TurtleBot 4

Size (L x W x H) 342 x 339 x 192 mm 342 x 339 x 351 mm

Weight 3270 g 3945 g

Base platform iRobot® Create® 3 iRobot® Create® 3

Wheels (Diameter) 72 mm 72 mm

Ground Clearance 4.5 mm 4.5 mm

On-board Computer Raspberry Pi 4B 4GB Raspberry Pi 4B 4GB

Maximum linear
velocity

0.31 m/s in safe mode, 0.46
m/s without safe mode

0.31 m/s in safe mode, 0.46
m/s without safe mode

Maximum angular
velocity 1.90 rad/s 1.90 rad/s

Maximum payload 9 kg 9 kg

Operation time 2h 30m - 4h depending on
load

2h 30m - 4h depending on
load

Charging time 2h 30m 2h 30m

Bluetooth Controller Not Included TurtleBot 4 Controller

Lidar RPLIDAR A1M8 RPLIDAR A1M8

Camera OAK-D-Lite OAK-D-Pro

User Power

VBAT @1.9A

5V @ Low current

3.3V @ Low current

VBAT @ 300 mA

12V @ 300 mA

5V @ 500 mA

3.3v @ 250 mA

USB Expansion
USB 2.0 (Type A) x2

USB 3.0 (Type A) x2

USB 2.0 (Type A) x2

USB 3.0 (Type A) x1

USB 3.0 (Type C) x4

Programmable
LEDs Create® 3 Lightring

Create® 3 Lightring

User LED x2

Status LEDs -

Power LED

Motors LED

WiFi LED

Comms LED

Battery LED

Buttons and
Switches

Create® 3 User buttons x2

Create® 3 Power Button x1

Create® 3 User buttons x2

Create® 3 Power Button x1

User Buttons x4

Battery 26 Wh Lithium Ion (14.4V
nominal)

26 Wh Lithium Ion (14.4V
nominal)

Charging Dock Included Included

Sensors

RPLIDAR A1M8

RPLIDAR A1M8

The RPLIDAR A1M8 is a 360 degree Laser Range Scanner with a 12m range. It is used

to generate a 2D scan of the robots surroundings. Both the TurtleBot 4 and TurtleBot 4

Lite use this sensor. For more information, click here.

OAK-D-Lite

OAK-D-Lite

The OAK-D-Lite camera from Luxonis uses a 4K IMX214 colour sensor along with a

pair of OV7251 stereo sensors to produce high quality colour and depth images. The

on-board Myriad X VPU gives the camera the power to run computer vision

applications, object tracking, and run AI models. For more information, visit the Luxonis

documentation.

https://www.slamtec.com/en/Lidar/A1
https://docs.luxonis.com/projects/hardware/en/latest/pages/DM9095.html

OAK-D-Pro

OAK-D-Pro

The OAK-D-Pro offers all of the same features the OAK-D-Lite has, but uses higher

resolution OV9282 stereo sensors and adds an IR laser dot projector and an IR

illumination LED. This allows the camera to create higher quality depth images, and

perform better in low-light environments. For more information, visit the Luxonis

documentation.

https://docs.luxonis.com/projects/hardware/en/latest/pages/DM9098pro.html

Resources

Software

Ubuntu
● Ubuntu 20.04 LTS Desktop (Focal Fossa): https://releases.ubuntu.com/20.04/

Raspberry Pi
● Raspberry Pi Imager: https://www.raspberrypi.com/software/
● Raspberry Pi Pinout: https://pinout.xyz/

ROS2
● Documentation: https://docs.ros.org/en/galactic/index.html
● Debian Install:

https://docs.ros.org/en/galactic/Installation/Ubuntu-Install-Debians.html
● Nav2

○ Documentation: https://navigation.ros.org/
○ Github: https://github.com/ros-planning/navigation2

● SLAM
○ slam_toolbox: https://github.com/SteveMacenski/slam_toolbox

TurtleBot 4
● Common package: https://github.com/turtlebot/turtlebot4
● Desktop visualization package: https://github.com/turtlebot/turtlebot4_desktop
● Simulator package: https://github.com/turtlebot/turtlebot4_simulator
● Robot package: https://github.com/turtlebot/turtlebot4_robot
● TurtleBot 4 images: http://download.ros.org/downloads/turtlebot4/
● TurtleBot 4 hardware: https://github.com/turtlebot/turtlebot4-hardware

https://releases.ubuntu.com/20.04/
https://www.raspberrypi.com/software/
https://pinout.xyz/
https://docs.ros.org/en/galactic/index.html
https://docs.ros.org/en/galactic/Installation/Ubuntu-Install-Debians.html
https://navigation.ros.org/
https://github.com/ros-planning/navigation2
https://github.com/SteveMacenski/slam_toolbox
https://github.com/turtlebot/turtlebot4
https://github.com/turtlebot/turtlebot4_desktop
https://github.com/turtlebot/turtlebot4_simulator
https://github.com/turtlebot/turtlebot4_robot
http://download.ros.org/downloads/turtlebot4/
https://github.com/turtlebot/turtlebot4-hardware

iRobot® Create® 3
● Product details: https://edu.irobot.com/what-we-offer/create3
● Hardware overview: https://iroboteducation.github.io/create3_docs/hw/overview/
● Electrical overview: https://iroboteducation.github.io/create3_docs/hw/electrical/
● Create® 3 Simulator: https://github.com/iRobotEducation/create3_sim
● irobot_create_msgs: https://github.com/iRobotEducation/irobot_create_msgs

Luxonis
● OAK-D-Lite product details:

https://docs.luxonis.com/projects/hardware/en/latest/pages/DM9095.html
● OAK-D-Pro product details:

https://docs.luxonis.com/projects/hardware/en/latest/pages/DM9098pro.html
● Depthai-ROS: https://github.com/luxonis/depthai-ros/tree/main
● Depthai-ROS Examples: https://github.com/luxonis/depthai-ros-examples
● API Documentation: https://docs.luxonis.com/projects/api/en/latest/

SLAMTEC
● RPLIDAR A1M8: https://www.slamtec.com/en/Lidar/A1
● Rplidar ROS: https://github.com/allenh1/rplidar_ros

https://edu.irobot.com/what-we-offer/create3
https://iroboteducation.github.io/create3_docs/hw/overview/
https://iroboteducation.github.io/create3_docs/hw/electrical/
https://github.com/iRobotEducation/create3_sim
https://github.com/iRobotEducation/irobot_create_msgs
https://docs.luxonis.com/projects/hardware/en/latest/pages/DM9095.html
https://docs.luxonis.com/projects/hardware/en/latest/pages/DM9098pro.html
https://github.com/luxonis/depthai-ros/tree/main
https://github.com/luxonis/depthai-ros-examples
https://docs.luxonis.com/projects/api/en/latest/
https://www.slamtec.com/en/Lidar/A1
https://github.com/allenh1/rplidar_ros

Quick Start

Powering on the robot

To power the robot, place it on the charging dock. The Create® 3 lightring will turn on
and the Raspberry Pi will be powered as well. To power off the robot, remove it from the
dock and press and hold the Power button on the Create® 3. The lightring will flash 3
times, and the Create® 3 will play a sound before turning off.

Installing ROS2 Galactic on your PC

Follow these instructions to install ROS2 Galactic Desktop on your PC.

Also, install useful tools with this command:

sudo apt update && sudo apt install -y \
Build-essential \
cmake \
git \
python3-colcon-common-extensions \
python3-flake8 \
python3-pip \
python3-pytest-cov \
python3-rosdep \
python3-setuptools \
python3-vcstool \
wget

Network Configuration

ROS2 Galactic supports two middlewares: CycloneDDS and FastRTPS. The default is
CycloneDDS.

The Create® 3 and Raspberry Pi both use the usb0 and wlan0 network interfaces to
communicate. As a result, CycloneDDS needs to be configured on the user PC in order
to see the robot topics properly.

https://docs.ros.org/en/galactic/Installation/Ubuntu-Install-Debians.html
https://github.com/eclipse-cyclonedds/cyclonedds
https://github.com/eProsima/Fast-DDS

CycloneDDS is configured in an XML file, and that configuration should be applied to
the CYCLONEDDS_URI environment variable.

Add this line to your ~/.bashrc file to automatically configure CycloneDDS each time you
open your terminal:

export CYCLONEDDS_URI='<CycloneDDS><Domain><General><DontRoute>true</></></></>'

For more CycloneDDS configuration options, visit the CycloneDDS documentation.

If you wish to switch middlewares or want more information on configuring the Create®
3, check out the Create® 3 Docs.

WiFi Setup

● On the first boot, the Raspberry Pi will enter AP mode which will allow you to
connect to it over WiFi.

● On a PC, connect to the Turtlebot4 WiFi network. The password is also
Turtlebot4.

● Once connected, you can SSH into the Raspberry Pi to configure its WiFi.

ssh ubuntu@10.42.0.1

● The default password is turtlebot4

● In /usr/local/bin there will be a script called wifi.sh which can be used to
configure the Raspberry Pi's WiFi:

sudo wifi.sh -s '<WIFI_SSID>' -p '<WIFI_PASSWORD>' -r <REGULATORY_DOMAIN> && sudo

reboot

Note

The Regulatory Domain is based on the country you live in. USA: US, Canada: CA, UK:
GB, Germany: DE, Japan: JP3, Spain: ES. For a full list, click here.

● Your Raspberry Pi will reboot and connect to your WiFi network.

https://github.com/eclipse-cyclonedds/cyclonedds#run-time-configuration
https://iroboteducation.github.io/create3_docs/setup/xml-config/
https://www.arubanetworks.com/techdocs/InstantWenger_Mobile/Advanced/Content/Instant%20User%20Guide%20-%20volumes/Country_Codes_List.htm#regulatory_domain_3737302751_1017918

Find the Raspberry Pi IP on your network
The TurtleBot 4 will display its WiFi IP address on the display.

WiFi IP address on a TurtleBot 4

For the TurtleBot 4 Lite, you will need to check the /ip topic for the new address.

On your PC, run the following commands:

source /opt/ros/galactic/setup.bash

ros2 topic echo /ip

You should see the IP address printed out in your terminal periodically.

Echoing the IP address of a TurtleBot 4

If you are unable to find the IP address with the previous methods, you can try to use:

nmap -sP 192.168.1.0/24

Make sure to replace 192.168.1 with your subnet.

Scanning IP Addresses with nmap

Once you have found the IP address, you can now ssh back into the robot with it.

ssh ubuntu@xxx.xxx.xxx.xxx

If you wish to put the Raspberry Pi back into AP mode, you can call

sudo wifi.sh -a

Create® 3 WiFi Setup

● Press both Create® 3 button 1 and 2 simultaneously until light ring turns blue

Putting the Create® 3 in AP mode

● The Create® 3 is now in AP mode. Connect to its WiFi network called
‘Create-XXXX'

● In a browser go to 192.168.10.1

● Go to the Connect tab, enter your WiFi ssid and password, and then click
‘Connect'

Connecting the Create® 3 to WiFi

● Wait for it to connect to WiFi and play a chime
● On your PC, run ros2 topic list to ensure that the Create® 3 is publishing its

topics

TurtleBot 4 Controller Setup

The TurtleBot 4 comes with an included TurtleBot 4 Controller. It is paired in advance
with the Raspberry Pi.

If you wish to manually pair a controller, follow these instructions:

● SSH into the TurtleBot 4

sudo bluetoothctl --agent=NoInputNoOutput

● The bluetoothd CLI interface will start.
● Type scan on and press enter.
● Press and hold both the home and share buttons on the TurtleBot 4 controller

until the light starts blinking.

Putting the TurtleBot 4 in pair mode

● In the CLI look for a Wireless Controller device to be found. It will have a MAC
address similar to A0:5A:5C:DF:4D:7F.

● Copy the MAC address.
● In the CLI enter trust MAC_ADDRESS, replacing MAC_ADDRESS with the controllers

address.
● Then, enter pair MAC_ADDRESS.
● Finally, enter connect MAC_ADDRESS.
● The CLI should report that the controller has been connected and the light on the

controller will turn blue.
● Enter exit to exit the CLI.

Updating the TurtleBot 4

It is recommended to update both the Create® 3 and the Raspberry Pi when you first
use it to receive the latest bug fixes and improvements.

Create® 3
Check the [Create® 3 software releases] to see if a newer firmware version is available.
You can check the firmware version of your robot by visiting the Create® 3's webserver.

Update over WiFi

The Create® 3 can be updated through its webserver. There are two options to connect
to the webserver:

Find the IP address of the Create® 3 on your WiFi network.

This can be done by going to your routers portal and viewing connected devices. You
should see the Create® 3 in your Wireless Clients if it is connected.

Enter the IP address into a browser. You will be taken to the Create® 3 webserver.

Go to the Update tab and click the ‘Update' button. The robot will automatically
download and install the latest firmware.

Updating the Create® 3 over WiFi

Place the robot into AP mode.

If you cannot find the IP address of the Create® 3 on your WiFi network, you can
alternatively put it into AP mode and connect directly to it with your PC:

● Download the latest firmware from http://edu.irobot.com/create3-latest-fw.
● Place the robot into AP mode and access the webserver. See Create® 3 WiFi

Setup.

http://edu.irobot.com/create3-latest-fw
https://turtlebot.github.io/turtlebot4-user-manual/overview/quick_start.html#create-3-wifi-setup
https://turtlebot.github.io/turtlebot4-user-manual/overview/quick_start.html#create-3-wifi-setup

● Go to the Update tab and click on the link to update from firmware file.
● Upload the latest firmware and wait for the robot to be updated.

Update over USB-C

Download the latest firmware from http://edu.irobot.com/create3-latest-fw.

Copy the firmware to the Raspberry Pi:

sudo scp ~/Downloads/Create3-G.X.Y.swu ubuntu@xxx.xxx.xxx.xxx:/home/ubuntu/

SSH into the Raspberry Pi and update the Create® 3 firmware over USB-C:

sudo create_update.sh Create3-G.X.Y.swu

or

curl -X POST --data-binary @Create3-G.X.Y.swu http://192.168.186.2/api/firmware-update

This may take a few minutes.

Debian packages
Debian packages can be updated by calling:

sudo apt update

sudo apt install <PACKAGE>

For example, updating the turtlebot4_desktop package can be done like this:

sudo apt update

sudo apt install ros-galactic-turtlebot4-desktop

http://edu.irobot.com/create3-latest-fw

Source packages
To update a source package you will need to use a terminal to manually pull changes.

For example, updating the turtlebot4_robot package on the galactic branch:

cd ~/turtlebot4_ws/src/turtlebot4_robot

git checkout galactic

git pull origin galactic

You will then need to rebuild the packages:

cd ~/turtlebot4_ws

source /opt/ros/galactic/setup.bash

colcon build --symlink-install

source install/setup.bash

Install latest Raspberry Pi image
Warning
Installing a new image on the Raspberry Pi will delete any changes you may have
made. Save your changes before proceeding.
If you wish to install the latest image onto your robot, follow these instructions.

The latest TurtleBot 4 Raspberry Pi images are available at
http://download.ros.org/downloads/turtlebot4/.

● Download the latest image for your robot model and extract it.
● Power off your robot and then remove the microSD card from the Raspberry Pi.
● Insert the microSD card into your PC. You may need an adapter.
● Install the imaging tool dcfldd

sudo apt install dcfldd

● Identify your SD card

sudo fdisk -l

● The SD card should have a name like /dev/mmcblk0 or /dev/sda.
● If you wish to backup your current image, do so now:

sudo dd if=/dev/<SD_NAME> of=<IMAGE_PATH> bs=1M

Note

SD_NAME is the device name (mmcblk0, sda, etc.).

IMAGE_PATH is the path to where you want the image saved – e.g.,
~/turtlebot4_images/backup_image.

● Get the SD flash script from turtlebot4_setup and flash the SD card:

wget

https://raw.githubusercontent.com/turtlebot/turtlebot4_setup/galactic/scripts/sd_flash

.sh

bash sd_flash.sh /path/to/downloaded/image

● Follow the instructions and wait for the SD card to be flashed. Remove the SD
card from your PC.

● Ensure your Raspberry Pi 4 is not powered on before inserting the flashed SD
card.

● Follow WiFi Setup to configure your WiFi.

https://turtlebot.github.io/turtlebot4-user-manual/overview/quick_start.html#wifi-setup

Software
● Overview
● TurtleBot 4 Packages
● Sensors
● Rviz2
● SLAM
● Nav2
● Simulation

Overview
The TurtleBot 4 runs on Ubuntu 20.04 LTS (Focal Fossa) and currently only supports ROS2
Galactic. The TurtleBot 4 software is entirely open source under the Apache 2.0 license, and is
available on the TurtleBot Github.

There are 2 main computers that run software used by TurtleBot 4: the onboard Raspberry Pi 4,
the Create® 3 onboard processor. The user can also connect to the robot with their own PC to
visualise sensor data, configure the robot, and more. Each computer is required to run Ubuntu
20.04 with ROS2 Galactic.

TurtleBot 4 computer connections

https://docs.ros.org/en/galactic/index.html
https://docs.ros.org/en/galactic/index.html
https://github.com/turtlebot

Create® 3
The Create® 3 exposes ROS2 topics, actions, and services over both WiFi and the USB-C
cable powering the Raspberry Pi. This gives users access to the battery state, sensor data,
docking actions, and more. While the Create® 3 can be used with just the USB-C interface, in
order to view the robot model on Rviz or run software such as SLAM or Nav2 from a user PC,
the Create® 3 will require a WiFi connection.

Raspberry Pi 4
The Raspberry Pi 4 on both the TurtleBot 4 and TurtleBot 4 Lite comes preinstalled with Ubuntu
20.04 Server, ROS2 Galactic, and TurtleBot 4 software. The latest TurtleBot 4 images can be
found here. The purpose of the Raspberry Pi 4 is to run the TurtleBot 4 ROS nodes, run sensor
ROS nodes, use bluetooth to connect to the TurtleBot 4 controller, access GPIO, and more.

User PC
The user's PC is used to configure the robot, visualise sensor data, run the TurtleBot 4
simulation, and run additional software. The PC is required to run Ubuntu 20.04 with ROS2
Galactic installed, or to use a Virtual Machine running Ubuntu 20.04. A typical laptop or desktop
will offer significantly higher processing performance than the Raspberry Pi can, so running
applications such as Nav2 or SLAM on the PC will provide significant performance
improvements.

http://download.ros.org/downloads/turtlebot4/
https://en.wikipedia.org/wiki/Virtual_machine
https://turtlebot.github.io/turtlebot4-user-manual/software/nav2.html
https://turtlebot.github.io/turtlebot4-user-manual/software/slam.html

TurtleBot 4 Packages
The TurtleBot 4 has 4 main repositories for software: turtlebot4, turtlebot4_robot,
turtlebot4_desktop, and turtlebot4_simulator. Each repository is also a metapackage and
contains one or more ROS2 packages.

TurtleBot 4
The turtlebot4 repository contains common packages that are used by both turtlebot4_robot and
turtlebot4_simulator.

Installation

Source code is available here.

Note

The turtlebot4 packages are automatically installed when either of turtlebot4_robot or
turtlebot4_simulator is installed.

Debian installation

Individual packages can be installed through apt:

sudo apt update
sudo apt install ros-galactic-turtlebot4-description \
ros-galactic-turtlebot4-msgs \
ros-galactic-turtlebot4-navigation \
ros-galactic-turtlebot4-node

Source installation

To manually install this metapackage from source, clone the git repository:

cd ~/turtlebot4_ws/src
git clone https://github.com/turtlebot/turtlebot4.git

Install dependencies:

cd ~/turtlebot4_ws
vcs import src < src/turtlebot4/dependencies.repos
rosdep install --from-path src -yi

https://github.com/turtlebot/turtlebot4
https://github.com/turtlebot/turtlebot4_robot
https://github.com/turtlebot/turtlebot4_desktop
https://github.com/turtlebot/turtlebot4_desktop
https://github.com/turtlebot/turtlebot4_simulator
http://wiki.ros.org/Metapackages
https://github.com/turtlebot/turtlebot4

Build the packages:

source /opt/ros/galactic/setup.bash
colcon build --symlink-install

Description

The turtlebot4_description package contains the URDF description of the robot and the mesh
files for each component.

The description can be published with the robot_state_publisher.

Messages

The turtlebot4_msgs package contains the custom messages used on the TurtleBot 4:

● UserButton: User Button states.
● UserLed: User Led control.
● UserDisplay: User Display data.

The TurtleBot 4 can also use all of the actions, messages, and services that the iRobot®
Create® 3 platform supports:

Actions

● AudioNoteSequence: Play a given set of notes from the speaker for a given number of
iterations.

● DockServo: Command the robot to dock into its charging station.
● DriveArc: Command the robot to drive along an arc defined by radius.
● DriveDistance: Command the robot to drive a defined distance in a straight line.
● LedAnimation: Command the lights to perform specified animation.
● NavigateToPosition: Command the robot to drive to a goal odometry position using

simple approach that rotates to face goal position then translates to goal position then
optionally rotates to goal heading.

● RotateAngle: Command the robot to rotate in place a specified amount.
● Undock: Command the robot to undock from its charging station.
● WallFollow: Command the robot to wall follow on left or right side using bump and IR

sensors.

Messages

● AudioNote: Command the robot to play a note.
● AudioNoteVector: Command the robot to play a sequence of notes.

https://github.com/turtlebot/turtlebot4/blob/galactic/turtlebot4_msgs/msg/UserButton.msg
https://github.com/turtlebot/turtlebot4/blob/galactic/turtlebot4_msgs/msg/UserLed.msg
https://github.com/turtlebot/turtlebot4/blob/galactic/turtlebot4_msgs/msg/UserDisplay.msg
https://github.com/iRobotEducation/irobot_create_msgs/blob/main/action/AudioNoteSequence.action
https://github.com/iRobotEducation/irobot_create_msgs/blob/main/action/DockServo.action
https://github.com/iRobotEducation/irobot_create_msgs/blob/main/action/DriveArc.action
https://github.com/iRobotEducation/irobot_create_msgs/blob/main/action/DriveDistance.action
https://github.com/iRobotEducation/irobot_create_msgs/blob/main/action/LedAnimation.action
https://github.com/iRobotEducation/irobot_create_msgs/blob/main/action/NavigateToPosition.action
https://github.com/iRobotEducation/irobot_create_msgs/blob/main/action/RotateAngle.action
https://github.com/iRobotEducation/irobot_create_msgs/blob/main/action/Undock.action
https://github.com/iRobotEducation/irobot_create_msgs/blob/main/action/WallFollow.action
https://github.com/iRobotEducation/irobot_create_msgs/blob/main/msg/AudioNote.msg
https://github.com/iRobotEducation/irobot_create_msgs/blob/main/msg/AudioNoteVector.msg

● Button: Status for a button.
● Dock: Information about the robot sensing the its dock charging station.
● HazardDetection: An hazard or obstacle detected by the robot.
● HazardDetectionVector: All the hazards and obstacles detected by the robot.
● InterfaceButtons: Status of the 3 interface buttons on the Create® robot faceplate.
● IrIntensity: Reading from an IR intensity sensor.
● IrIntensityVector: Vector of current IR intensity readings from all sensors.
● IrOpcode: Opcode detected by the robot IR receivers. Used to detect the dock and

virtual walls.
● KidnapStatus: Whether the robot has been picked up off the ground.
● LedColor: RGB values for an LED.
● LightringLeds: Command RGB values of 6 lightring lights.
● Mouse: Reading from a mouse sensor.
● SlipStatus: Whether the robot is currently slipping or not.
● StopStatus: Whether the robot is currently stopped or not.
● WheelStatus: Current/PWM readings from the robot's two wheels in addition to whether

wheels are enabled.
● WheelTicks: Reading from the robot two wheels encoders.
● WheelVels: Indication about the robot two wheels current speed.

Services

● EStop: Set system EStop on or off, cutting motor power when on and enabling motor
power when off.

● RobotPower: Power off robot.

See irobot_create_msgs for more details.

Note

When publishing or subscribing to topics, make sure that the QoS that you use matches that of
the topic.

Navigation

The turtlebot4_navigation packages contains launch and configuration files for using SLAM and
navigation on the TurtleBot 4. It also contains the TurtleBot 4 Navigator Python node.

Launch files:

● Nav Bringup: Launches navigation. Allows for launch configurations to use SLAM, Nav2,
and localization.

● SLAM Sync: Launches slam_toolbox with online synchronous mapping. Recommended
for use on a PC.

https://github.com/iRobotEducation/irobot_create_msgs/blob/main/msg/Button.msg
https://github.com/iRobotEducation/irobot_create_msgs/blob/main/msg/Dock.msg
https://github.com/iRobotEducation/irobot_create_msgs/blob/main/msg/HazardDetection.msg
https://github.com/iRobotEducation/irobot_create_msgs/blob/main/msg/HazardDetectionVector.msg
https://github.com/iRobotEducation/irobot_create_msgs/blob/main/msg/InterfaceButtons.msg
https://github.com/iRobotEducation/irobot_create_msgs/blob/main/msg/IrIntensity.msg
https://github.com/iRobotEducation/irobot_create_msgs/blob/main/msg/IrIntensityVector.msg
https://github.com/iRobotEducation/irobot_create_msgs/blob/main/msg/IrOpcode.msg
https://github.com/iRobotEducation/irobot_create_msgs/blob/main/msg/KidnapStatus.msg
https://github.com/iRobotEducation/irobot_create_msgs/blob/main/msg/LedColor.msg
https://github.com/iRobotEducation/irobot_create_msgs/blob/main/msg/LightringLeds.msg
https://github.com/iRobotEducation/irobot_create_msgs/blob/main/msg/Mouse.msg
https://github.com/iRobotEducation/irobot_create_msgs/blob/main/msg/SlipStatus.msg
https://github.com/iRobotEducation/irobot_create_msgs/blob/main/msg/StopStatus.msg
https://github.com/iRobotEducation/irobot_create_msgs/blob/main/msg/WheelStatus.msg
https://github.com/iRobotEducation/irobot_create_msgs/blob/main/msg/WheelTicks.msg
https://github.com/iRobotEducation/irobot_create_msgs/blob/main/msg/WheelVels.msg
https://github.com/iRobotEducation/irobot_create_msgs/blob/main/srv/EStop.srv
https://github.com/iRobotEducation/irobot_create_msgs/blob/main/srv/RobotPower.srv
https://github.com/iRobotEducation/irobot_create_msgs
https://docs.ros.org/en/galactic/Concepts/About-Quality-of-Service-Settings.html
https://github.com/turtlebot/turtlebot4/blob/galactic/turtlebot4_navigation/launch/nav_bringup.launch.py
https://github.com/turtlebot/turtlebot4/blob/galactic/turtlebot4_navigation/launch/slam_sync.launch.py

● SLAM Async: Launches slam_toolbox with online asynchronous mapping.
Recommended for use on the Raspberry Pi 4.

Nav Bringup launch configuration options:

● namespace: Top-level namespace.
○ default: None

● use_namespace: Whether to apply a namespace to the navigation stack.
○ options: true, false
○ default: false

● slam: Whether to launch SLAM.
○ options: off, sync, async
○ default: off

● localization: Whether to launch localization.
○ options: true, false
○ default: false

● nav2: Whether to launch Nav2.
○ options: true, false
○ default: false

● map: Full path to map yaml file to load.
○ default: /path/to/turtlebot4_navigation/maps/depot.yaml

● use_sim_time: Use simulation (Gazebo) clock if true.
○ options: true, false
○ default: false

● param_file: Full path to the ROS2 parameters file to use for nav2 and localization
nodes.

○ default: /path/to/turtlebot4_navigation/config/nav2.yaml
● autostart: Automatically startup the nav2 stack.

○ options: true, false
○ default: true

● use_composition: Whether to use composed bringup.
○ options: true, false
○ default: true

Running synchronous SLAM:

ros2 launch turtlebot4_navigation nav_bringup.launch.py slam:=sync

Running asynchronous SLAM with Nav2:

ros2 launch turtlebot4_navigation nav_bringup.launch.py slam:=async

Running Nav2 with localization and existing map:

https://github.com/turtlebot/turtlebot4/blob/galactic/turtlebot4_navigation/launch/slam_async.launch.py

ros2 launch turtlebot4_navigation nav_bringup.launch.py localization:=true slam:=off
map:=/path/to/map.yaml

TurtleBot 4 Navigator

The TurtleBot 4 Navigator is a Python node that adds TurtleBot 4 specific functionality to the
Nav2 Simple Commander. It provides a set of Python methods for navigating the TurtleBot 4.
This includes docking, navigating to a pose, following waypoints, and more. Visit the Navigation
Tutorials for examples.

Node

The turtlebot4_node package contains the source code for the rclcpp node turtlebot4_node that
controls the robots HMI as well as other logic. This node is used by both the physical robot and
the simulated robot.

Publishers:

● /hmi/display: turtlebot4_msgs/msg/UserDisplay
○ description: The current information that is to be displayed (TurtleBot 4 model

only).
● /ip: std_msgs/msg/String

○ description: The IP address of the Wi-Fi interface.

Subscribers:

● /battery_state: sensor_msgs/msg/BatteryState
○ description: Current battery state of the Create® 3.

● /hmi/buttons: turtlebot4_msgs/msg/UserButton
○ description: Button states of the TurtleBot 4 HMI (TurtleBot 4 model only).

● /hmi/display/message: std_msgs/msg/String
○ description: User topic to print custom message to display (TurtleBot 4 model

only).
● /hmi/led: turtlebot4_msgs/msg/UserLed

○ description: User topic to control User LED 1 and 2 (TurtleBot 4 model only).
● /interface_buttons: irobot_create_msgs/msg/InterfaceButtons

○ description: Button states of Create® 3 buttons.
● /joy: sensor_msgs/msg/Joy

○ description: Bluetooth controller button states (TurtleBot 4 model only).
● /wheel_status: irobot_create_msgs/msg/WheelStatus

○ description: Wheel status reported by Create® 3.

Service Clients:

● /e_stop: irobot_create_msgs/srv/EStop

https://github.com/turtlebot/turtlebot4/blob/galactic/turtlebot4_navigation/turtlebot4_navigation/turtlebot4_navigator.py
https://github.com/ros-planning/navigation2/tree/galactic/nav2_simple_commander
https://github.com/ros-planning/navigation2/tree/galactic/nav2_simple_commander
https://turtlebot.github.io/turtlebot4-user-manual/tutorials/navigation.html
https://turtlebot.github.io/turtlebot4-user-manual/tutorials/navigation.html
https://github.com/ros2/rclcpp

○ description: Enable or disable motor stop.
● /robot_power: irobot_create_msgs/srv/RobotPower

○ description: Power off the robot.

Action Clients:

● /dock: irobot_create_msgs/action/DockServo
○ description: Command the robot to dock into its charging station.

● /wall_follow: irobot_create_msgs/action/WallFollow
○ description: Command the robot to wall follow on left or right side using bump

and IR sensors.
● /undock: irobot_create_msgs/action/Undock

○ description: Command the robot to undock from its charging station.

Functions

The node has a set of static functions that can be used either with a button or through the
display menu.

Currently, the supported functions are:

● Dock: Call the /dock action.
● Undock: Call the /undock action.
● Wall Follow Left: Call the /wall_follow action with direction FOLLOW_LEFT and a

duration of 10 seconds.
● Wall Follow Right: Call the /wall_follow action with direction FOLLOW_RIGHT and a

duration of 10 seconds.
● Power: Call the /robot_power service and power off the robot.
● EStop: Call the /e_stop service and toggle EStop state.

The TurtleBot 4 also supports the following menu functions:

● Scroll Up: Scroll menu up.
● Scroll Down: Scroll menu down.
● Back: Exit message screen or return to first menu entry.
● Select: Select currently highlighted menu entry.
● Help: Print help statement.

Configuration

This node can be configured using a parameter .yaml file. The default robot parameters can be
found here.

Parameters:

https://github.com/turtlebot/turtlebot4_robot/blob/galactic/turtlebot4_bringup/config/turtlebot4.yaml

● wifi.interface: The Wi-Fi interface being used by the computer. This is used to find the
current IP address of the computer.

● menu.entries: Set menu entries to be displayed. Each entry must be one of the support
functions.

● buttons: Set the function of Create® 3 and HMI buttons.
● controller: Set the function of TurtleBot 4 Controller buttons.

Buttons

The Buttons class in turtlebot4_node provides functionality to all buttons on the robot. This
includes the Create® 3 buttons, HMI buttons, and TurtleBot 4 Controller buttons. The node
receives button states from the /interface_buttons, /hmi/buttons, and /joy topics.

Each button can be configured to have either a single function when pressed, or two functions
by using a short or long press. This is done through configuration.

Supported buttons:

buttons:
create3_1:
create3_power:
create3_2:
hmi_1:
hmi_2:
hmi_3:
hmi_4:

controller:
a:
b:
x:
y:
up:
down:
left:
right:
l1:
l2:
l3:
r1:
r2:
r3:
share:
options:
home:

https://turtlebot.github.io/turtlebot4-user-manual/software/turtlebot4_packages.html#functions
https://turtlebot.github.io/turtlebot4-user-manual/software/turtlebot4_packages.html#functions
https://turtlebot.github.io/turtlebot4-user-manual/software/turtlebot4_packages.html#configuration

Example

Lets say we want the TurtleBot 4 to have the following button functions:

● Make a short press of Create® 3 button 1 toggle EStop.
● Power off robot with 5 second press of Home on the TurtleBot 4 Controller.
● Short press of HMI button 1 performs Wall Follow Left, long press of 3 seconds performs

Wall Follow Right.

Create a new yaml file:

cd /home/ubuntu/turtlebot4_ws
touch example.yaml

Use your favourite text editor and paste the following into example.yaml:

turtlebot4_node:
ros__parameters:
buttons:
create3_1: ["EStop"]
hmi_1: ["Wall Follow Left", "Wall Follow Right", "3000"]

controller:
home: ["Power", "5000"]

Launch the robot with your new configuration:

ros2 launch turtlebot4_bringup standard.launch.py
param_file:=/home/ubuntu/turtlebot4_ws/example.yaml

The buttons should now behave as described in example.yaml.

LEDs

The Leds class in turtlebot4_node controls the states of the HMI LEDs on the TurtleBot 4. It is
not used for the TurtleBot 4 Lite.

There are 5 status LEDs which are controlled by the node: POWER, MOTOR, COMMS, WIFI,
and BATTERY. There are also 2 user LEDs: USER_1 and USER_2 which are controlled by the
user via the /hmi/led topic. The BATTERY and USER_2 LEDs consist of a red and green LED
which allows them to be turned on as either green, red, or yellow (red + green). The rest are
green only.

Status LEDs:

● POWER: Always ON while turtlebot4_node is running.
● MOTOR: ON when wheels are enabled, OFF when wheels are disabled.

○ Wheel status is reported on the /wheel_status topic.
● COMMS: ON when communication with Create® 3 is active. OFF otherwise.

○ Receiving data on the /battery_state topic implies that communication is active.
● WIFI: ON when an IP address can be found for the Wi-Fi interface specified in the

configuration.
● BATTERY: Colour and pattern will vary based on battery percentage.

○ Battery percentage is received on /battery_state topic.

User LEDs:

The user LEDs can be set by publishing to the /hmi/led topic with a UserLed message.

UserLed message:

● led: Which available LED to use.
○ uint8 USER_LED_1 = 0
○ uint8 USER_LED_2 = 1

● color: Which color to set the LED to.
○ uint8 COLOR_OFF = 0
○ uint8 COLOR_GREEN = 1
○ uint8 COLOR_RED = 2
○ uint8 COLOR_YELLOW = 3

● blink_period: Blink period in milliseconds.
○ uint32 ms

● duty_cycle: Percentage of blink period that the LED is ON.
○ float64 (0.0 to 1.0)

Examples

Set USER_1 to solid green:

ros2 topic pub /hmi/led turtlebot4_msgs/msg/UserLed "led: 0
color: 1
blink_period: 1000
duty_cycle: 1.0" --once

https://turtlebot.github.io/turtlebot4-user-manual/software/turtlebot4_packages.html#configuration
https://turtlebot.github.io/turtlebot4-user-manual/software/turtlebot4_packages.html#configuration
https://github.com/turtlebot/turtlebot4/blob/galactic/turtlebot4_msgs/msg/UserLed.msg

User 1: Solid Green

Set USER_1 OFF:

ros2 topic pub /hmi/led turtlebot4_msgs/msg/UserLed "led: 0
color: 0
blink_period: 1000
duty_cycle: 1.0" --once

User 1: Off

Blink USER_2 red at 1hz with 50% duty cycle:

ros2 topic pub /hmi/led turtlebot4_msgs/msg/UserLed "led: 1
color: 2
blink_period: 1000
duty_cycle: 0.5" --once

User 2: Red, 1hz, 50%

Display

The Display class in turtlebot4_node controls the HMI display of the TurtleBot 4. The physical
display is a 128x64 OLED which is controlled over I2C with a SSD1306 driver.

The display has a header line which contains the IP address of the Wi-Fi interface specified in
configuration, as well as the battery percentage received on the /battery_state topic. The display
also has 5 additional lines which are used for the menu by default. The menu entries are
specified in configuration and are a set of the available functions. The 5 menu lines can be
overwritten by publishing to the /hmi/display/message with a String message.

Note

The menu can have any number of entries. If there are more than 5 entries, the user will have to
scroll down to see the entries that do not fit on the 5 menu lines.

Menu Control

The TurtleBot 4 display has a simple scrolling menu. There are 4 control functions for the menu:
Scroll up, Scroll down, Select, and Back.

● Scroll up and down allow the users to navigate through the menu entries and by default
are mapped to user buttons 3 and 4 respectively.

https://turtlebot.github.io/turtlebot4-user-manual/software/turtlebot4_packages.html#configuration
https://turtlebot.github.io/turtlebot4-user-manual/software/turtlebot4_packages.html#configuration
https://turtlebot.github.io/turtlebot4-user-manual/software/turtlebot4_packages.html#configuration

● The select function will call the currently selected menu entry. This can trigger an action
such as docking, a service such as EStop, or display a message such as the Help
message. This function is mapped to user button 1 by default.

● The back function allows the user to return back to the menu from a message screen. If
the menu is already showing the menu entries, it will return to showing the first 5 menu
entries and the first entry will be highlighted.

TurtleBot 4 Menu Controls

TurtleBot 4 Robot
Source code is available here.

Note

The turtlebot4_robot metapackage can be installed on a Raspberry Pi 4B running Ubuntu
Server 20.04 with ROS2 Galactic.

Installation

The turtlebot4_robot metapackage is pre-installed on the TurtleBot 4 Raspberry Pi image.

Source installation

To manually install this metapackage from source, clone the git repository:

https://github.com/turtlebot/turtlebot4_robot

cd ~/turtlebot4_ws/src
git clone https://github.com/turtlebot/turtlebot4_robot.git

Install dependencies:

cd ~/turtlebot4_ws
vcs import src < src/turtlebot4_robot/dependencies.repos
rosdep install --from-path src -yi

Build the packages:

source /opt/ros/galactic/setup.bash
colcon build --symlink-install

Base

The turtlebot4_base package contains the source code for the rclcpp node
turtlebot4_base_node which runs on the physical robot. This node interfaces with the GPIO
lines of the Raspberry Pi which allows it to read the state of the buttons, as well as write to the
LEDs and display.

Publishers:

● /hmi/buttons: turtlebot4_msgs/msg/UserButton
○ description: Button states of the TurtleBot 4 HMI (TurtleBot 4 model only).

Subscribers:

● /hmi/display: turtlebot4_msgs/msg/UserDisplay
○ description: The current information that is to be displayed (TurtleBot 4 model

only).
● /hmi/led/_<led>: std_msgs/msg/Int32

○ description: Hidden topics indicating the state of each LED.

GPIO Interface

The TurtleBot 4 uses libgpiod to interface with the GPIO lines of the Raspberry Pi. The
gpiochip0 device represents the 40-pin header of the Raspberry Pi and is used for reading and
writing to these pins.

https://github.com/ros2/rclcpp

I2C Interface

The linux I2C drivers are used to read and write data on the I2C buses of the Raspberry Pi. The
display's SSD1306 driver is connected to the i2c-3 device by default, but other buses are
available too.

SSD1306

The SSD1306 is a driver for OLED displays. It receives commands over a communication bus
(I2C for the TurtleBot 4) and controls how the physical display behaves. The TurtleBot 4 uses a
modified version of this STM32 SSD1306 driver to write pixels, shapes and characters to the
display.

Configuration
Warning

Do NOT change pin definitions if you are using the standard PCBA or do not know what you are
doing.

The turtlebot4_base_node pin definitions can be set with ROS parameters. The default
configuration is:

turtlebot4_base_node:
ros__parameters:
GPIO definition for HMI. Do NOT change if you are using the standard PCBA.
gpio:
user_button_1: 13
user_button_2: 19
user_button_3: 16
user_button_4: 26

led_green_power: 17
led_green_motors: 18
led_green_comms: 27
led_green_wifi: 24
led_green_battery: 22
led_red_battery: 23
led_green_user_1: 25
led_green_user_2: 6
led_red_user_2: 12

display_reset: 2

https://github.com/afiskon/stm32-ssd1306

Note

The value for each GPIO device is the GPIO number, NOT the pin number.

Robot Upstart

The robot uses the robot_upstart package to install the bringup launch files as a background
process that launches when the robot starts. The launch files are located under the
turtlebot4_bringup package.

To check if the TurtleBot 4 service is running, use this command on the Raspberry Pi:

systemctl | grep turtlebot4

If the service is active, the CLI will echo turtlebot4.service loaded active running "bringup
turtlebot4".

To read the most recent logs from the service, call:

sudo journalctl -u turtlebot4 -r

To stop the service, call:

sudo systemctl stop turtlebot4.service

This will kill all of the nodes launched by the launch file.

Note

The service will automatically start again on reboot. To fully disable the service, uninstall the job.

To start the service again, call:

sudo systemctl start turtlebot4.service

The launch files are installed on the TurtleBot 4 with this command:

ros2 run robot_upstart install turtlebot4_bringup/launch/standard.launch.py --job turtlebot4 --rmw
rmw_cyclonedds_cpp --rmw_config /etc/cyclonedds_rpi.xml

and on the TurtleBot 4 Lite with this command:

https://github.com/clearpathrobotics/robot_upstart/tree/foxy-devel

ros2 run robot_upstart install turtlebot4_bringup/launch/lite.launch.py --job turtlebot4 --rmw
rmw_cyclonedds_cpp --rmw_config /etc/cyclonedds_rpi.xml

To uninstall, use this command:

ros2 run robot_upstart uninstall turtlebot4

Once uninstalled, the launch file will no longer be launched on boot.

Bringup

The turtlebot4_bringup package contains the launch and configuration files to run the robots
software.

Launch files:

● Joy Teleop: Launches nodes to enable the bluetooth controller.
● OAKD: Launches the OAK-D nodes.
● RPLIDAR: Launches the RPLIDAR node.
● Robot: Launches the TurtleBot 4 nodes.
● Lite: Launches all necessary nodes for the TurtleBot 4 Lite.
● Standard: Launches all necessary nodes for the TurtleBot 4.

Config files:

● TurtleBot 4 Controller: Configurations for the TurtleBot 4 controller.
● TurtleBot 4: Configurations for the turtlebot4_node and turtlebot4_base_node.

Diagnostics

The turtlebot4_diagnostics packages contains the source code and launch files for the TurtleBot
4 diagnostics updater.

Launch files:

● Diagnostics: Launches the turtlebot4 diagnostics updater and the diagnostic aggregator
node.

Diagnostics Updater

The diagnostics updater is a Python3 node that runs on the robot. It subscribes to diagnostic
topics records statistics specific to each topic. The diagnostic data is viewable with
rqt_robot_monitor.

https://github.com/turtlebot/turtlebot4_robot/blob/galactic/turtlebot4_bringup/launch/joy_teleop.launch.py
https://github.com/turtlebot/turtlebot4_robot/blob/galactic/turtlebot4_bringup/launch/oakd.launch.py
https://github.com/turtlebot/turtlebot4_robot/blob/galactic/turtlebot4_bringup/launch/rplidar.launch.py
https://github.com/turtlebot/turtlebot4_robot/blob/galactic/turtlebot4_bringup/launch/robot.launch.py
https://github.com/turtlebot/turtlebot4_robot/blob/galactic/turtlebot4_bringup/launch/lite.launch.py
https://github.com/turtlebot/turtlebot4_robot/blob/galactic/turtlebot4_bringup/launch/standard.launch.py
https://github.com/turtlebot/turtlebot4_robot/blob/galactic/turtlebot4_bringup/config/turtlebot4_controller.config.yaml
https://github.com/turtlebot/turtlebot4_robot/blob/galactic/turtlebot4_bringup/config/turtlebot4.yaml
https://github.com/turtlebot/turtlebot4_robot/blob/galactic/turtlebot4_diagnostics/turtlebot4_diagnostics/diagnostics_updater.py

Diagnostic topics:

● /battery_state: Check battery voltage and percentage.
● /wheel_status: Check if wheels are enabled.
● /dock: Check if the robot is docked.
● /scan: Check the frequency of laser scans from the RPLIDAR.
● /left/image: Check the frequency of images from the left OAK-D camera.
● /right/image: Check the frequency of images from the right OAK-D camera.
● /color/image: Check the frequency of images from the OAK-D colour sensor.
● /stereo/image: Check the frequency of depth images from the OAK-D.
● /hazard_detection: Check for detected hazards.
● /imu: Check the frequency of IMU messages.
● /mouse: Check the frequency of Mouse messages.

Viewing diagnostics:

ros2 launch turtlebot4_viz view_diagnostics.launch.py

Diagnostics data captured with rqt_robot_monitor

Tests

The turtlebot4_tests packages contains the source code for the TurtleBot 4 system test scripts.
These scripts test basic functionality of the robot and are useful for troubleshooting issues.

ROS Tests

The ROS tests use ROS topics and actions to test various system functionality. Test results are
saved to ~/turtlebot4_test_results/Y_m_d-H_M_S where Y_m_d-H_M_S is the date and time of
the test. A rosbag is also recorded for the duration of the test and saved to the same location.

Currently supported tests:

● Light Ring: Test the Create® 3 light ring
● Create® 3 Button: Test the Create® 3 buttons
● User LED: Test the HMI LEDs (TurtleBot 4 model only)
● User Button: Test the HMI buttons (TurtleBot 4 model only)
● Display: Test the HMI display (TurtleBot 4 model only)
● Dock: Test the robots ability to undock and dock.

Running the tests:

ros2 run turtlebot4_tests ros_tests

This will launch a CLI menu where the different tests can be run.

Enter the index of the test and hit enter to start the test. Some tests will run automatically while
others require user input.

Running the Light Ring test

TurtleBot 4 Desktop
The turtlebot4_desktop metapackage contains packages used for visualising and interfacing
with the TurtleBot 4 from a PC.

Installation

Source code is available here.

Note

The turtlebot4_desktop metapackage can be installed on a PC running Ubuntu Desktop 20.04
with ROS2 Galactic.

Debian installation

To install the metapackage through apt:

sudo apt update
sudo apt install ros-galactic-turtlebot4-desktop

Source installation

To manually install this metapackage from source, clone the git repository:

cd ~/turtlebot4_ws/src
git clone https://github.com/turtlebot/turtlebot4_desktop.git

Install dependencies:

cd ~/turtlebot4_ws
rosdep install --from-path src -yi

Build the packages:

source /opt/ros/galactic/setup.bash
colcon build --symlink-install

https://github.com/turtlebot/turtlebot4_desktop

Visualisation

The turtlebot4_viz package contains launch files and configurations for viewing the robot in
Rviz2, and viewing the diagnostics.

Launch files:

● View Diagnostics: Launches rqt_robot_monitor to view diagnostic data.
● View Model: Launches rviz2. Used to view the model and sensor data.
● View Robot: Launches rviz2. Used to view the robot while navigating.

TurtleBot 4 Simulator
The turtlebot4_simulator metapackage contains packages used to simulate the TurtleBot 4 in
Ignition Gazebo.

Installation

Source code is available here.

Note

The turtlebot4_simulator metapackage can be installed on a PC running Ubuntu Desktop 20.04
with ROS2 Galactic.

Dev Tools
sudo apt install -y \
python3-colcon-common-extensions \
python3-rosdep \
python3-vcstool

Ignition Edifice

Ignition Edifice must be installed:

sudo apt-get update && sudo apt-get install wget
sudo sh -c 'echo "deb http://packages.osrfoundation.org/gazebo/ubuntu-stable `lsb_release -cs`
main" > /etc/apt/sources.list.d/gazebo-stable.list'
wget http://packages.osrfoundation.org/gazebo.key -O - | sudo apt-key add -
sudo apt-get update && sudo apt-get install ignition-edifice

https://github.com/turtlebot/turtlebot4_desktop/blob/galactic/turtlebot4_viz/launch/view_diagnostics.launch.py
https://github.com/turtlebot/turtlebot4_desktop/blob/galactic/turtlebot4_viz/launch/view_model.launch.py
https://github.com/turtlebot/turtlebot4_desktop/blob/galactic/turtlebot4_viz/launch/view_robot.launch.py
https://github.com/turtlebot/turtlebot4_simulator

Debian installation

To install the metapackage through apt:

sudo apt update
sudo apt install ros-galactic-turtlebot4-simulator ros-galactic-irobot-create-nodes

Source installation

To manually install this metapackage from source, clone the git repository:

cd ~/turtlebot4_ws/src
git clone https://github.com/turtlebot/turtlebot4_simulator.git

Install dependencies:

cd ~/turtlebot4_ws
vcs import src < src/turtlebot4_simulator/dependencies.repos
rosdep install --from-path src -yi

Build the packages:

source /opt/ros/galactic/setup.bash
colcon build --symlink-install

Ignition Bringup

The turtlebot4_ignition_bringup package contains launch files and configurations to launch
Ignition Gazebo.

Launch files:

● Ignition: Launches Ignition Gazebo and all required nodes to run the simulation.
● ROS Ignition Bridge: Launches all of the required ros_ign_bridge nodes to bridge

Ignition topics with ROS topics.
● TurtleBot 4 Nodes: Launches the turtlebot4_node and turtlebot4_ignition_hmi_node

required to control the HMI plugin and robot behaviour.

https://github.com/turtlebot/turtlebot4_simulator/blob/galactic/turtlebot4_ignition_bringup/launch/ignition.launch.py
https://github.com/turtlebot/turtlebot4_simulator/blob/galactic/turtlebot4_ignition_bringup/launch/ros_ign_bridge.launch.py
https://github.com/turtlebot/turtlebot4_simulator/blob/galactic/turtlebot4_ignition_bringup/launch/turtlebot4_nodes.launch.py

Ignition launch configuration options:

● model: Which TurtleBot 4 model to use.
○ options: standard, lite
○ default: standard

● rviz: Whether to launch rviz.
○ options: true, false
○ default: false

● slam: Whether to launch SLAM.
○ options: off, sync, async
○ default: off

● nav2: Whether to launch Nav2.
○ options: true, false
○ default: false

● param_file: Path to parameter file for turtlebot4_node.
○ default: /path/to/turtlebot4_ignition_bringup/config/turtlebot4_node.yaml

● world: Which world to use for simulation.
○ default: depot

● robot_name: What to name the spawned robot.
○ default: turtlebot4

Running the simulator with default settings:

ros2 launch turtlebot4_ignition_bringup ignition.launch.py

Running synchronous SLAM with Nav2:

ros2 launch turtlebot4_ignition_bringup ignition.launch.py slam:=sync nav2:=true rviz:=true

Ignition GUI Plugins

The turtlebot4_ignition_gui_plugins package contains the source code for the TurtleBot 4 HMI
GUI plugin.

The TurtleBot 4 HMI GUI plugin is only used for the standard model. The lite model uses the
Create® 3 HMI GUI plugin.

https://github.com/turtlebot/turtlebot4_simulator/tree/galactic/turtlebot4_ignition_gui_plugins/Turtlebot4Hmi
https://github.com/iRobotEducation/create3_sim/tree/main/irobot_create_ignition/irobot_create_ignition_plugins/Create3Hmi
https://github.com/iRobotEducation/create3_sim/tree/main/irobot_create_ignition/irobot_create_ignition_plugins/Create3Hmi

TurtleBot 4 HMI GUI plugin

Ignition Toolbox

The turtlebot4_ignition_toolbox package contains the source code for the TurtleBot 4 HMI node.
The TurtleBot 4 HMI node acts as a bridge between the turtlebot4_node and ros_ign_bridge to
convert the custom TurtleBot 4 messages into standard messages such as Int32 and String.

https://turtlebot.github.io/turtlebot4-user-manual/software/turtlebot4_packages.html#messages

Sensors

RPLIDAR A1M8

Connecting

The RPLIDAR connects to the TurtleBot 4 with a micro USB to USB-A cable. The sensor does
not require high data throughput, so using a USB 2.0 port is sufficient.

Once connected, the RPLIDAR should register on the Raspberry PI as a USB device. If the
udev rules are installed, the RPLIDAR will appear as /dev/RPLIDAR. Otherwise it will be
/dev/ttyUSB0.

To check that the USB device exists, use the command

ls /dev/RPLIDAR

If the device exists, the terminal will echo /dev/RPLIDAR.

Installing

The RPLIDAR drivers are installed by default on all TurtleBot 4's. To manually install, run:

sudo apt install ros-galactic-rplidar-ros

Running

ros2 launch turtlebot4_bringup rplidar.launch.py

The laserscan will be published to the /scan topic by default.

https://github.com/turtlebot/turtlebot4-images/blob/galactic/turtlebot4_setup/udev/turtlebot4.rules
https://github.com/turtlebot/turtlebot4-images/blob/galactic/turtlebot4_setup/udev/turtlebot4.rules

OAK-D

Connecting

The OAK-D cameras are connected to the Raspberry Pi with a USB-C to USB-A cable. The
cameras requires high data throughput so using a USB 3.0 port is highly recommended.

Installing

The OAK-D drivers are installed by default on all TurtleBot 4's. To manually install, follow the
instructions on the DepthAI ROS github.

Running

The default node used by the TurtleBot 4 can be launched:

ros2 launch turtlebot4_bringup oakd.launch.py

Other nodes are available in the DepthAI ROS examples package.

For example:

ros2 launch depthai_examples mobile_publisher.launch.py

AI examples are available on the DepthAI github. To view the images from these examples you
will need to ssh into the robot with a -X flag.

ssh ubuntu@192.168.0.15 -X

Create® 3
The Create® 3 comes with several sensors for safety, object detection, and odometry. For more
information on the physical location of the sensors, read the Create® 3 Hardware Overview.
Hazards detected by the robot are published to the /hazard_detection topic, although some
sensors also have their own individual topics

Cliff

https://github.com/luxonis/depthai-ros/tree/main#getting-started
https://github.com/luxonis/depthai-ros-examples/tree/main/depthai_examples/launch
https://github.com/luxonis/depthai-python
https://iroboteducation.github.io/create3_docs/hw/overview/

The Create® 3 has 4 cliff sensors located on the front half of the robot. These sensors measure
the distance from the robot to the ground, and prevent the robot from falling off of cliffs.

Bumper

The bumper is used by the Create® 3 to detect objects or walls that the robot has run in to. It
can trigger reflexes to recoil from the object, or use the information to follow the wall.

Wheeldrop

The wheeldrop is the spring on which the Create® 3 wheels sit. When the robot is lifted off of
the ground, the spring is decompressed and the wheeldrop hazard is activated.

IR Proximity

The IR proxmity sensors are located on the front of the bumper and are used for the wall follow
action. The sensor data can be viewed on the /ir_intensity topic.

Slip and Stall

Wheel slip and stall is also detected by the Create® 3. The status can be viewed on the
/slip_status and /stall_status topics.

Kidnap

The robot uses a fusion of sensor data to detect when it has been picked up and "kidnapped".
Motors will be disabled in this state, and will re-enable when placed on the ground again. The
/kidnap_status topic shows the current kidnap state.

Rviz2
Rviz2 is a port of Rviz to ROS2. It provides a graphical interface for users to view their robot,
sensor data, maps, and more. It is installed by default with ROS2 and requires a desktop
version of Ubuntu to use.

turtlebot4_desktop provides launch files and configurations for viewing the TurtleBot 4 in Rviz2.

View Model
To inspect the model and sensor data, run ros2 launch turtlebot4_viz view_model.launch.py.

Rviz2 launched with the View Model configuration

View Robot
For a top down view of the robot in its environment, run ros2 launch turtlebot4_viz
view_robot.launch.py.

This is useful when mapping or navigating with the robot

Rviz2 launched with the View Robot configuration

Rviz2 Displays
Rviz2 offers support for displaying data from various sources. Displays can be added using the
"Add" button.

Adding Displays in Rviz2

LaserScan

The LaserScan display shows data for sensor_msgs/msg/LaserScan messages. On the
TurtleBot 4 the RPLIDAR supplies this data on the /scan topic.

LaserScan displayed in Rviz2

Camera

The Camera display shows camera images from sensor_msgs/msg/Image messages. The
OAK-D cameras publish images on the /color/preview/image and /stereo/depth topics.

Camera image displayed in Rviz2

TF

The TF display can be used to visualise the links that make up the robot. When you first add the
TF display, it will show every link that makes up the robot.

TF with default settings

You can uncheck the "All Enabled" box, and then select the links you wish to see.

TF with selected links

SLAM
Simultaneous localization and mapping (SLAM) is a method used in robotics for creating a map
of the robots surroundings while keeping track of the robots position in that map. The TurtleBot
4 uses slam_toolbox to generate maps by combining odometry data from the Create® 3 with
laser scans from the RPLIDAR. slam_toolbox supports both synchronous and asynchronous
SLAM nodes.

Map generated by slam_toolbox

Synchronous SLAM
Synchronous SLAM requires that the map is updated everytime new data comes in. This results
in maps with high accuracy and detail. The downside to synchronous SLAM is that it requires
high processing power from the computer running it to keep up with the sensor data. This
approach is ideal for use on a PC, whether it is for the simulator or for getting better SLAM
performance on the physical robot.

Launching synchronous SLAM:

ros2 launch turtlebot4_navigation slam_sync.launch.py

Asynchronous SLAM
Asynchronous SLAM will update the map as fast as the processor running it can handle. This
may cause it to drop some laser scans or odometry data. Maps created with asynchronous
SLAM may have reduced accuracy and detail, but this method requires significantly less

https://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
https://github.com/SteveMacenski/slam_toolbox

proccessing power. This approach is ideal for use on the TurtleBot 4's Raspberry Pi. The default
parameters for asynchronous SLAM use a reduced map resolution to further improve
performance on the Pi.

Launching asynchronous SLAM:

ros2 launch turtlebot4_navigation slam_async.launch.py

Saving the map
Once you have driven the robot around and generated the map, you can use the following call
to save the map to your current directory:

ros2 service call /slam_toolbox/save_map slam_toolbox/srv/SaveMap "name:
data: 'map_name' "

This will generate two files: map_name.yaml and map_name.pgm. You can open the .pgm file
with an image editor to view your map.

Nav2
Nav2 is the official navigation stack in ROS2. Nav2 can be used to calculate and execute a
travel path for the robot by using a map of its surroundings. The map can be loaded at launch or
generated with SLAM while navigating.

Launching Navigation

Launch files

● Nav Bringup: Launches Nav2 nodes, with the option to launch SLAM or Localization as
well.

Parameters

● nav2: Whether to launch Nav2 nodes.
○ options: [true, false]
○ default: true

● slam: Launch SLAM along with Nav2.
○ options: [off, sync, async]
○ default: off

● localization: Launch localization with an existing map
○ options: [true, false]
○ default: false

● map: Path to existing map.
○ default: /path/to/turtlebot4_navigation/maps/depot.yaml

● params_file: Full path to parameter file for Nav2 and localization nodes.
○ default: /path/to/turtlebot4_navigation/config/nav2.yaml

Configuration

The default TurtleBot 4 configuration can be found here. It is a slightly modified version of the
default configuration from the Nav2 github. The configuration file allows the user to modify
parameters such as velocity while pathing, the radius of the robot, costmap update frequencies
and resolutions, and more. For more information, read the Nav2 configuration guide.

https://navigation.ros.org/
https://turtlebot.github.io/turtlebot4-user-manual/software/slam.html
https://github.com/turtlebot/turtlebot4/blob/galactic/turtlebot4_navigation/config/nav2.yaml
https://github.com/ros-planning/navigation2/blob/main/nav2_bringup/params/nav2_params.yaml
https://github.com/ros-planning/navigation2/blob/main/nav2_bringup/params/nav2_params.yaml
https://navigation.ros.org/configuration/index.html

Examples

Launching Nav2 with synchronous SLAM:

ros2 launch turtlebot4_navigation nav_bringup.launch.py slam:=sync

The map and costmaps can be viewed in Rviz2:

ros2 launch turtlebot4_viz view_robot.launch.py

Nav2 with SLAM

Obstacles that are detected on the map will have a padding around with a radius equivalent to
the radius of the robot. When navigating, Nav2 will drive the robot outside of the padded area to
avoid hitting obstacles.

Navigating with Rviz2

The easiest way to set a navigation goal is to use Nav2 Goal in Rviz2. With Nav2 running,
select the Nav2 Goal tool at the top of Rviz2, and click the location on the map where you would
like to navigate to.

Navigating with Rviz2

Simulation
The simulator allows the user to test the robot without the need for a physical robot. It has all of
the same functionality as the real robot. The TurtleBot 4 can be simulated using Ignition
Gazebo. Unlike Gazebo, Ignition Gazebo does not natively support ROS. Instead, it has its own
transport stack with a similar topic and node implementation. To communicate with ROS, we can
use the ros_ign_bridge. This ROS node translates data from ROS to Ignition, and vice versa.

Installing Ignition Gazebo
Requirements:

● Ubuntu 20.04
● ROS2 Galactic

Recommended:

● PC with dedicated GPU

Follow the installation instructions described here.

Launching Ignition Gazebo
The ignition.launch.py launch file has several launch configurations that allow the user to
customize the simulation.

Default TurtleBot 4 launch:

ros2 launch turtlebot4_ignition_bringup ignition.launch.py

Ignition Gazebo will launch and spawn the TurtleBot 4 in the default world along with all of the
necessary nodes.

https://ignitionrobotics.org/home
https://ignitionrobotics.org/home
http://gazebosim.org/
https://github.com/ignitionrobotics/ros_ign/tree/ros2/ros_ign_bridge
https://turtlebot.github.io/turtlebot4-user-manual/software/turtlebot4_packages.html#installation-3
https://turtlebot.github.io/turtlebot4-user-manual/software/turtlebot4_packages.html#ignition-bringup

TurtleBot 4 in Ignition Gazebo

TurtleBot 4 Lite launch:

ros2 launch turtlebot4_ignition_bringup ignition.launch.py model:=lite

TurtleBot 4 Lite in Ignition Gazebo

Mechanical

TurtleBot 4
TurtleBot 4 is designed to be modified to meet your needs and make it possible to attach
additional sensors and accessories.

Attaching Accessories to the Top Integration Plate
The TurtleBot 4 is equipped with an acrylic plate at the top that is easy to modify in order to
attach additional sensors and peripherals.

Warning

Modifications to the plate should only be done when it is removed from the robot, attempting to
modify the plate while mounted can cause the plastic to crack.

Removing the Top Integration Plate

The plate is attached to the robot by four Round head M4x0.7 screws. Remove the screws by
using a 2.5mm hex key.

TurtleBot 4 Top Integration Plate screw locations

Making Modifications to the Top Integration Plate

Modifying the plate can be done roughly by hand, however a 3D model and 2D drawing of the
part is available at Github. When cutting or drilling into the plate, ensure proper safety
precautions are taken; wear safety glasses, be familiar with your tools, fasten the plate securely
to a work surface. When working with acrylic, it is best to start with a smaller hole (Ø3mm) and
enlarge it to the desired size incrementally.

To reattach the plate, apply a low to medium strength thread locker (e.g. Loctite 222). Insert the
screws and torque them to 25N-cm.

Attaching Accessories to the Base Unit
There is space for sensors to be attached to the base unit above the PCBA as well as near the
Create® 3 User Buttons and inside the Shell.

To attach accessories above the PCBA, mounting brackets can be designed for the desired
accessory and attached to the TurtleBot 4 by securing them to the standoffs. 3D models of the
TurtleBot4 are available on Github that can help in the design process.

To attach accessories inside the Shell, the PCBA and the Create® 3 Integration Plate should be
removed. Inside, the existing holes can be used or additional mounting features can be
machined or 3D printed.

To attach accessories to the Create® 3, the existing holes in the plate can be used, or additional
holes can be drilled by removing the Create® 3 Integration Plate.

TurtleBot 4 Attachment Locations

https://github.com/turtlebot/turtlebot4-hardware
https://github.com/turtlebot/turtlebot4-hardware
https://turtlebot.github.io/turtlebot4-user-manual/mechanical/turtlebot4.html#removing-the-pcba
https://turtlebot.github.io/turtlebot4-user-manual/mechanical/turtlebot4.html#removing-the-create%C2%AE-3-integration-plate-and-shell
https://turtlebot.github.io/turtlebot4-user-manual/mechanical/turtlebot4.html#removing-the-create%C2%AE-3-integration-plate-and-shell

Removing the PCBA
To access the inside of the "Shell" of the TurtleBot4, the PCBA can be removed. Ensure that
you have a safe spot to place the PCBA when it is removed to prevent damage to the
components. It is recommended that this procedure is done on an Electrostatic Discharge Mat
to protect the PCBA from damage caused by static electricity. Follow the steps below to remove
the PCBA.

1. Remove the Top Integration Plate and the four standoffs.
2. Disconnect the USB cables connected to the Oak-D Camera and the RPLIDAR. Feed

these cables through the opening at the back of the Robot.

TurtleBot 4 Cable passthrough

3. Carefully lift the PCBA by holding the camera bracket or the RPLIDAR base.
4. Disconnect the USB-B cable, the power harness, the 40 pin ribbon cable, and the fan

cable, as well as any other cables that may have been attached.

The PCBA should now be free to be removed and placed safely.

https://turtlebot.github.io/turtlebot4-user-manual/mechanical/turtlebot4.html#removing-the-top-integration-plate

Removing the Create® 3 Integration Plate and Shell
The Create® 3 Integration Plate and Shell can be removed with the rest of the assembly on or
off. To remove the Create® 3 Integration Plate, first open and remove the rear Create® 3 tray.
Then disconnect the USB C cable and the power harness from the Create® 3 base. Feed these
cables through the slot at the back of the Create® 3. Using the tabs on the Create® 3, twist the
plate counter-clockwise until it snaps to unlock it and remove the plate.

Create® 3 Integration Plate Removal

To reattach the plate, place the plate slightly angled such that the posts fit into the tabs. Then,
twist the plate clockwise until it snaps back into place.

TurtleBot 4 Lite
TurtleBot Lite is built on the iRobot Create® 3 learning platform which features an easy to
modify integration plate.

Attaching Accessories to the Base Unit
There is space for sensors and accessories to be attached to the base unit around the Oak
Camera and RPILIDAR. To attach accessories to the Create® 3, the existing holes in the plate
can be used. These Ø3.5mm holes are spaced apart 10mm. Alternatively, holes can be drilled
by removing the Create® 3 Integration Plate. 3D models of the robot are available on Github
which can help in the design.

TurtleBot 4 Lite Integration

https://turtlebot.github.io/turtlebot4-user-manual/mechanical/turtlebot4_lite.html#removing-the-create%C2%AE-3-integration-plate
https://github.com/turtlebot/turtlebot4-hardware

Removing the Create® 3 Integration Plate
The Create® 3 Integration Plate can be removed. To remove the Create® 3 Integration Plate
follow the steps below.

1. Disconnect the USB cables connected to the Oak-D Camera and the RPLIDAR. Feed
these cables through the slot opening at the back of the Robot.

TurtleBot 4 Lite Cable Passthrough

1. Using the tabs on the Create® 3, twist the plate counter-clockwise until it snaps to
unlock it and remove the plate.

Create® 3 Integration Plate Removal

To reattach the plate, place the plate slightly angled such that the posts fit into the tabs. Then,
twist the plate clockwise until it snaps back into place. Open the rear tray and feed the USB

cables that were previously disconnected through the slot. Attach the USB-C cable to the
Oak-Camera and connect the USB Micro cable to the RPLIDAR.

Accessing the Raspberry Pi Computer
The Raspberry Pi is found in the rear tray of the robot. To fully access the Raspberry Pi,
disconnect the USB cables connected to the Oak Camera and RPLIDAR and feed them through
the slot opening at the rear of the robot. You can now carefully slide out the cargo bay.

Create® 3 Cargo Bay removal

Payloads Over 9kg
The TurtleBot4 is able to perform with heavier payloads over 9 kg, however some mechanical
and software changes must be made for ideal operation. If these changes are not used the
system may become unstable and difficult to control.

Mechanical Modification
In order to ensure the robot is as stable as possible during operation, it is important to mount the
payload such that its center of gravity (COG) is fully supported by the wheelbase. This can be
achieved through two methods:

1. Design the payload mounting to accommodate for the offset COG. This can be done by
using the existing acrylic integration plate or by using a custom plate.

2. Add an additional caster wheel to the rear of the Create 3. This will ensure that the
payload is fully supported and balanced. Detailed instructions as well as design files are
available here.

Additionally, the payload height can be lowered to ensure better stability for the robot,
particularly if an additional caster wheel is not used and the system is balanced on three
wheels. While the acceleration and speed can be modified to accommodate for the elevated
COG (see below), lowering it will optimize robot performance.

Lower payload height

Lowering the integration plate of the Standard TurtleBot4, and therefore the payload, is the
simplest way to make the COG as low as possible. Follow the steps below:

1. Remove the four M4 screws using a 2.5mm hex key. The integration plate should now
be free; set it aside.

https://iroboteducation.github.io/create3_docs/hw/mechanical/#adding-a-rear-caster

TurtleBot 4 Top Integration Plate screw locations

1. Remove the four round standoffs by hand and set them aside. Note that the PCBA is
now free to move and care should be taken to ensure it is not damaged.

2. Use alternative standoffs (e.g. from Mcmaster Carr) or other mounting options. The
threaded inserts of the robot are M4x0.7mm. The mounting pattern can be taken from
3D CAD available on Github or it can be transferred from the integration plate itself.

TurtleBot 4 Mounting Inserts

When reassembling the robot with new hardware, ensure that all fasteners are torqued
according to the fastener and mating threads and that a threadlocker is used.

For the TurtleBot4 Lite, the Create 3 plate can be used to secure payloads. Tips for mounting
directly to this plate can be found on the Create 3 Github.

https://www.mcmaster.com/standoffs/male-female-threaded-hex-standoffs-6/system-of-measurement~metric/thread-size~m4/
https://github.com/turtlebot/turtlebot4-hardware
https://iroboteducation.github.io/create3_docs/hw/mechanical/

Note

The minimum clearance to accommodate the OAK-D-Pro is 108mm. For the OAK-D-Lite it is
102mm.

Example

The pictures below show a Clearpath Robotics Hackday project where a NED2 Robot
manipulator (8.9kg) mounted on top of a TurtleBot4 Lite using 4X2 M4 standoffs (Mcmaster Carr
P/N 98952A450) and an integration plate from a TurtleBot4 Standard.The manipulator was
mounted such that the COG was further forward and supported by the front caster wheel. An
external NEC ALM 12V7 Battery (0.9kg) was also attached to power the device. In this
particular case the battery was installed on a hinge that would allow the battery to sit closer to
the robot or to be laid out and supported on its own omni-wheel. This was a design choice to
allow the demonstration of either a larger weight mounted to the unit or a payload hitched to the
robot as an alternative payload mounting design method.

https://www.mcmaster.com/98952A450/
https://www.mcmaster.com/98952A450/

TurtleBot 4 Lite with a NED2 arm

Software Modifications
Velocity and acceleration limits should be set appropriately to maintain stability when driving the
robot. Otherwise you may find that the robot will shake, stall, or not drive as commanded.

Acceleration Limits

The acceleration limit on the Create® 3 can be changed using the wheel_accel_limit parameter
of the motion_control node.

ros2 param set /motion_control wheel_accel_limit 300

The acceleration value can be between 1 and 900.

Note

The wheel_accel_limit is applied to both acceleration and deceleration. If you set it too low, the
robot will stop very slowly.

Velocity Limits

The Create® 3 has linear velocity limits of 0.31 m/s with safety enabled, and 0.46 m/s with
safety overridden. The angular velocity is limited to 1.9 rad/s. For heavy payloads you may want
to limit this further. The method to do this will vary based on how you are driving the robot.

Keyboard Teleoperation

If you are using the teleop_twist_keyboard ROS2 node, you can follow the CLI instructions to
reduce linear and angular velocities.

Joystick Teleoperation

To limit the teleop_twist_joy velocities you will need create a modified version the TurtleBot4
controller config file. The scale_linear.x value limits the linear velocity, and the
scale_angular.yaw value limits the angular velocity.

Once you have created the config file, you can launch joy_teleop and set the controller_config
parameter to the full path of your new config file.

ros2 launch turtlebot4_bringup joy_teleop.launch.py controller_config:=/path/to/config.yaml

https://turtlebot.github.io/turtlebot4-user-manual/tutorials/driving.html
https://github.com/turtlebot/turtlebot4_robot/blob/galactic/turtlebot4_bringup/config/turtlebot4_controller.config.yaml
https://github.com/turtlebot/turtlebot4_robot/blob/galactic/turtlebot4_bringup/config/turtlebot4_controller.config.yaml

Command Velocity

If you are manually sending the velocity through the /cmd_vel topic, simply reduce the velocity
values to an appropriate level.

Create® 3 Actions

If you are driving the robot through one of the Create® 3 actions, you can set velocity limits in
the action goal.

Nav2

To limit velocity during navigation, you can create a modified nav2.yaml configuration file.
Changing parameters such as controller_server.FollowPath.max_vel_x will limit the velocity
commands sent by the Nav2 stack.

Launch Nav2 with your modified parameter file:

ros2 launch turtlebot4_navigation nav_bringup.launch.py params_file:=/path/to/your/nav2.yaml

https://github.com/turtlebot/turtlebot4/blob/galactic/turtlebot4_navigation/config/nav2.yaml

Electrical

Create® 3
On the TurtleBot 4, the connection of the User Interface board with the Create® 3 robot is only
through the VBAT connector J7, which uses JST XH-style connector. The connector has been
marked with Positive and Negative signs on the board (Positive being pin 1). The VBAT line is
fused with a PTC fuse rated at 2A.

Create® 3 Power Adapter (left) and J7 connector (right)

The Create® 3 power adapter also supplies the Raspberry Pi 4 with power and communication
through a USB 2.0 (Type C) on both the TurtleBot 4 and TurtleBot 4 Lite. The USB interface can
supply up to 3A at 5V.

For more details, visit the Create® 3 Documentation.

Warning

It is recommended to not drain the robot below 20% as VBAT voltage begin to decline sharply at
this level.

https://iroboteducation.github.io/create3_docs/hw/electrical/

Raspberry Pi 4B
The Raspberry Pi 4 is present on both the TurtleBot 4 and TurtleBot 4 Lite. On the TurtleBot 4 it
can be found inside the shell, while on the Lite it is mounted in the Create® 3 cargo bay.

The TurtleBot 4 connects the Raspberry Pi with the User Interface Board through a 40 pin
connector and a USB 3.0 (Type B) cable. The USB 3.0 type cable enables communication to 4
USB-C ports on the UI board, while the ribbon cable passes the 40 GPIO pins of the Raspberry
Pi through to the UI Board.

TurtleBot 4 UI Board to Raspberry Pi connector

The TurtleBot 4 comes with a USB-A to USB-B 3.0 cable to connect the UI board and
Raspberry Pi. Without this connection the USB-C ports will only be able to supply power, but not
communication.

TurtleBot 4 UI Board USB type B connector

https://turtlebot.github.io/turtlebot4-user-manual/electrical/pcba.html

User Interface PCBA
Note

The User Interface PCBA is only available on the TurtleBot 4 and NOT the TurtleBot 4 Lite.

Overview
The TurtleBot 4 comes with an additional User Interface board that expands on the Raspberry
Pi 4 functionality to give the user ease of control over the Create 3 robot and Raspberry Pi and
to act as an expansion board for addons, sensors, gadgets the user might have in mind to
utilize.

TurtleBot 4 User Interface PCBA

User I/O
The TurtleBot 4 has a 2x20 pin internal connector connecting it to the Raspberry Pi via a flex
cable, and another 2x12 pin connector allowing the user to access the remaining GPIOs and a
set of 5V, and 3.3V power pins coming from the Raspberry Pi.

The IO interface between the 2x20 connector and 2x12 connector and the available GPIOs to
the user are shown in Table 1, and 2. The GPIO numbers are a direct match to the Raspberry Pi
4 GPIO.

Table 1: 2x20 RPi Connector Pinout

GPIO # Function Pin # Pin # Function GPIO #

3V3_RPi 1 2 5V_RPi

GPIO2 USER_PORT 3 4 5V_RPi

GPIO3 USER_PORT 5 6 GND

GPIO4 SDA 7 8 USER_PORT GPIO14

GND 9 10 USER_PORT GPIO15

GPIO17 PWR_LED 11 12 MTR_LED GPIO18

GPIO27 COMM_LED 13 14 GND

GPIO22 BATT_GRN_LED 15 16 BATT_RED_LED GPIO23

3V3_RPi 17 18 WIFI_LED GPIO24

GPIO10 USER_PORT 19 20 GND

GPIO9 USER_PORT 21 22 USER1_GRN_LED GPIO25

GPIO11 USER_PORT 23 24 USER_PORT GPIO8

GND 25 26 USER_PORT GPIO7

GPIO0 EEPROM_SD 27 28 EEPROM_SC GPIO1

GPIO5 SCL 29 30 GND

https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf

GPIO6 USER2_GRN_LED 31 32 USER_PORT GPIO12

GPIO13 DISPLAY-RST 33 34 GND

GPIO19 USER_SW1 35 36 USER_SW2 GPIO16

GPIO26 USER_SW3 37 38 USER_SW4 GPIO20

GND 39 40 USER2_RED_LED GPIO21

Note

ALL USER_PORTs are routed to the 2X12 Auxiliary connectors

Table 2: 2x12 User I/O Pinout

GPIO # Function Pin # Pin # Function GPIO #

3V3_RPi 1 2 5V_RPi

GPIO2 USER_PORT 3 4 5V_RPi

GPIO3 USER_PORT 5 6 GND

GND 7 8 USER_PORT GPIO14

3V3_RPi 9 10 USER_PORT GPIO15

GPIO0 EEPROM_SD 11 12 EEPROM_SC GPIO1

GPIO10 USER_PORT 13 14 GND

GPIO9 USER_PORT 15 16 GND

GPIO11 USER_PORT 17 18 USER_PORT GPIO8

GND 19 20 USER_PORT GPIO7

GND 21 22 USER_PORT GPIO12

GND 23 24 GND

User Power
In addition to these GPIO ports, the user has two additional power ports available supplying
3.3V, 5V, 12V, VBAT (14.4V), and two grounds each.

TurtleBot 4 Additional Power Ports

The pinout and power ratings can be found in Table 3.

Table 3: User Power Port Pinout

Pinout Sourc
e

Max current output (mA) Fuse Hold at (mA)

1
VBAT 300 350

2 12V 300 350

3 GND

4 5V 500 500

5 3V3 250 300

6 GND

Molex Picoblade 6-Pin cable assembly

The two connectors are both 6-Pin Molex PicoBlade P/N 0532610671. The cable assembly
needed to use these connectors are P/N 0151340602.

Molex PicoBlade: Connector 0532610671 (left) and Cable 0151340602 (right)

https://www.digikey.ca/en/products/detail/molex/0532610671/699098
https://www.digikey.ca/en/products/detail/molex/0151340602/6198156?s=N4IgTCBcDaIAwEYCsCDMAWOA2OEC6AvkA

User USB-C Ports
The are 4 USB-C ports that go through an integrated hub on the User Interface board and
connect to the Raspberry Pi through a single USB 3.0 cable. The current available to all 4 ports
is 3A. Additionally, each individual port is current limited to 3A. In other words, each port is
capable of supplying 3A if the others aren't in use, or the available 3A is shared amongst ports
that are in use. The bandwidth for communication is split among 4 dynamically depending on
how many of the ports are communication at once, and is limited by the USB 3.0 connection to
the Raspberry Pi.

Note

On the REV 2 board only port 4 can supply 3A. The other three ports can supply 2.6A +/- 0.1A.
The revision and port numbers are labeled on the underside of the PCBA.

Power Budget
The total power made available by the Create 3 output power adapter is 28.8W. This supplies
the USB-C connector mated to Raspberry Pi, and the two pin auxiliary VBAT connector
combined. Since the two connectors share this power amongst them, a rise in consumption of
one will lead to reduction of available power for the other. Thus, although maximum theoretical
power consumption of individual components is mentioned in Table 2, the true limiting factor is
the remaining power available to the whole system.

Table 1: Nominal power consumption

Source TurtleBot 4 Lite (W) TurtleBot 4 (W)

Raspberry Pi 4B
4 4

OAK-D-Pro - 5

OAK-D-Lite 3.5 -

RPLIDAR A1M8 2.3 2.3

Fan 0.8 1.3

UI Board - 2.4

User Power - *Limited By Remaining Power

USB-C Ports - *Limited By Remaining Power

Total Power Draw 10.6 15

Total Available Power 28.8 28.8

*Remaining Power 18.2 13.8

Table 2: Maximum power consumption of individual components and systems

Source Operating
Voltage (V)

Max current
draw (A)

Max Power
(W)

User Interface Board
~40

4 USB-C ports 5 3 15

USB Hub Controller 1.2, 3.3 1.3 1.8

OLED Display 12 0.031 0.372

User LEDs 5 0.007 0.17

USER PWR Ports VBAT 0.3 4.32

12 0.3 3.6

5 0.5 2.5

3.3 0.25 0.825

OAK-D-Lite 5 1 5

OAK-D-Pro (connected to
RPi)

5 1 5

OAK-D-Pro (connected to
UI Board)

5 1.5 7.5

RPLIDAR A1M8 5 0.6 3

Blower Fan 5 0.25 1.25

Axial Fan 5 0.15 0.75

Raspberry Pi 4B 5 1.2 6

Note

Not accounting for inefficiencies of components, and power loss. Assuming USB hub speed
operating with all ports at SuperSpeed, and OLED is set to max brightness.

Tutorials

Driving your TurtleBot 4
There are several methods to get your TurtleBot 4 moving.

Note

The robot must first be set up and connected to Wi-Fi before it can be driven. Check out the
Quick Start section if you have not already.

Keyboard Teleoperation
The simplest way to get your robot driving is to use a keyboard application on your PC.

You can install the teleop_twist_keyboard package on your PC by running the following
commands:

sudo apt update

sudo apt install ros-galactic-teleop-twist-keyboard

Once installed, run the node by calling:

source /opt/ros/galactic/setup.bash

ros2 run teleop_twist_keyboard teleop_twist_keyboard

This will start a CLI interface which allows you to press keys to command the robot to drive.

https://turtlebot.github.io/turtlebot4-user-manual/overview/quick_start.html
https://turtlebot.github.io/turtlebot4-user-manual/overview/quick_start.html

teleop_twist_keyboard CLI

Press i to drive forward, j to rotate left, and so on. You can also adjust linear and angular
speeds on the go.

Joystick Teleoperation
If you have a TurtleBot 4 controller or have your own Bluetooth controller, you can drive the
robot with it.

First, make sure that your controller is paired and connects to the robot. If you have a TurtleBot
4 controller, press the home button and check that the controller's light turns blue. If your
controller is not paired or connecting, refer to the Controller Setup section.

Note

If you are using a TurtleBot 4 Lite, the Bluetooth packages will not be installed by default. To
install them, SSH into the Raspberry Pi and call sudo bluetooth.sh and then reboot the Pi. Then
follow the Controller Setup instructions.

Once your controller is connected, make sure that the joy_teleop nodes are running. These are
launched as part of the Standard and Lite launch files under turtlebot4_bringup. If it is not
running, you can run it manually by calling:

ros2 launch turtlebot4_bringup joy_teleop.launch.py

https://turtlebot.github.io/turtlebot4-user-manual/overview/quick_start.html#turtlebot-4-controller-setup

Note

The default configuration for the joy_teleop nodes will only work for the TurtleBot 4 controller
and PS4 controllers. You may need to create your own config file if the button mappings on your
controller differ.

To drive the robot, press and hold either L1 or R1, and move the left joystick. By default, L1 will
drive the robot at ‘normal' speeds, and R1 will drive the robot at ‘turbo' speeds. The buttons can
be changed in the configuration file.

Command Velocity
Both the keyboard and joystick teleop methods work by sending velocity commands the the
robot through the /cmd_vel topic. This topic uses a geometry_msgs/Twist message to tell the
robot what linear and angular velocities should be applied.

You can manually publish to this topic through the command line by calling:

ros2 topic pub /cmd_vel geometry_msgs/msg/Twist \
"linear:
x: 0.0
y: 0.0
z: 0.0

angular:
x: 0.0
y: 0.0
z: 0.0"

Set the linear.x value to drive the robot forwards or backwards, and the angular.z value to rotate
left or right.

Create® 3 Actions
The Create® 3 provides a set of ROS2 Actions for driving the robot. You can use the
DriveDistance, DriveArc, and RotateAngle actions to tell the robot exactly how far and how fast
to drive or rotate.

For example, command the robot to drive 0.5 m forwards at 0.3 m/s:

ros2 action send_goal /drive_distance irobot_create_msgs/action/DriveDistance \
"distance: 0.5
max_translation_speed: 0.3"

https://github.com/turtlebot/turtlebot4_robot/blob/galactic/turtlebot4_bringup/config/turtlebot4_controller.config.yaml
https://docs.ros2.org/galactic/api/geometry_msgs/msg/Twist.html
https://docs.ros.org/en/galactic/Tutorials/Understanding-ROS2-Actions.html
https://github.com/iRobotEducation/irobot_create_msgs/blob/main/action/DriveDistance.action
https://github.com/iRobotEducation/irobot_create_msgs/blob/main/action/DriveDistance.action
https://github.com/iRobotEducation/irobot_create_msgs/blob/main/action/DriveArc.action
https://github.com/iRobotEducation/irobot_create_msgs/blob/main/action/RotateAngle.action

Creating your first node (C++)
This tutorial will go through the steps of creating a ROS2 package and writing a ROS2 node in
C++. For a Python example, click here. These steps are similar to the ROS2 Tutorial, but focus
on interacting with the TurtleBot 4. For source code, click here.

Note

You can follow this tutorial on either the Raspberry Pi of your TurtleBot 4, or your PC.

Create a workspace
If you do not already have a workspace, open a terminal and create one in the directory of your
choice:

mkdir ~/turtlebot4_ws/src -p

Create a package and node
You will need to create a ROS2 package to hold your files. For this tutorial, we will create a
package called turtlebot4_cpp_tutorials with a node called turtlebot4_first_cpp_node.

source /opt/ros/galactic/setup.bash
cd ~/turtlebot4_ws/src
ros2 pkg create --build-type ament_cmake --node-name turtlebot4_first_cpp_node
turtlebot4_cpp_tutorials

This will create a turtlebot4_cpp_tutorials folder and populate it with a basic "Hello World" node,
as well as the CMakeLists.txt and package.xml files required for a ROS2 C++ package.

Write your node
The next step is to start coding. For this tutorial, our goal will be to use the Create® 3 interface
button 1 to change the colour of the Create® 3 lightring. Open up the "Hello World" .cpp file
located at ~/turtlebot4_ws/src/turtlebot4_cpp_tutorials/src/turtlebot4_first_cpp_node.cpp in your
favourite text editor.

https://turtlebot.github.io/turtlebot4-user-manual/tutorials/first_node_python.html#creating-your-first-node-python
https://docs.ros.org/en/galactic/Tutorials/Writing-A-Simple-Cpp-Publisher-And-Subscriber.html
https://github.com/turtlebot/turtlebot4_tutorials/tree/galactic/turtlebot4_cpp_tutorials

Add your dependencies

For this tutorial, we will need to use the rclcpp and irobot_create_msgs packages. The rclcpp
package allows us to create ROS2 nodes and gives us full access to all the base ROS2
functionality in C++. The irobot_create_msgs package gives us access to the custom messages
used by the Create® 3 for reading the button presses and controlling the lightring.

In your CMakeLists.txt file, add these lines under find_package(ament_cmake REQUIRED):

find_package(rclcpp REQUIRED)
find_package(irobot_create_msgs REQUIRED)

and add this line under add_executable(turtlebot4_first_cpp_node
src/turtlebot4_first_cpp_node.cpp):

ament_target_dependencies(turtlebot4_first_cpp_node rclcpp irobot_create_msgs)

In package.xml, add these lines under <buildtool_depend>ament_cmake</buildtool_depend>:

<depend>rclcpp</depend>
<depend>irobot_create_msgs</depend>

Finally, in your nodes .cpp file you will need to include these headers:

#include <chrono>
#include <functional>
#include <memory>
#include <string>

#include "rclcpp/rclcpp.hpp"

#include "irobot_create_msgs/msg/interface_buttons.hpp"
#include "irobot_create_msgs/msg/lightring_leds.hpp"

Create a class

Now that the dependencies are set, we can create a class that inherits from the rclcpp::Node
class. We will call this class TurtleBot4FirstNode.

class TurtleBot4FirstNode : public rclcpp::Node
{
public:
TurtleBot4FirstNode()
: Node("turtlebot4_first_cpp_node")
{}

};

Notice that our class calls the Node constructor and passes it the name of our node,
turtlebot4_first_cpp_node.

We can now create our node in the main function and spin it. Since our node is empty, the node
will be created but it won't do anything.

int main(int argc, char * argv[])
{
rclcpp::init(argc, argv);
rclcpp::spin(std::make_shared<TurtleBot4FirstNode>());
rclcpp::shutdown();
return 0;

}

Subscribe to the Create® 3 interface buttons

Our next step is to subscribe to the Create® 3 interface buttons topic to receive button presses.

We will need to create a rclcpp::Subscription as well as a callback function for the subscription.
The callback function will be called every time we receive a message on the interface buttons
topic.

class TurtleBot4FirstNode : public rclcpp::Node
{
public:
TurtleBot4FirstNode()
: Node("turtlebot4_first_cpp_node")
{
// Subscribe to the /interface_buttons topic
interface_buttons_subscriber_ =
this->create_subscription<irobot_create_msgs::msg::InterfaceButtons>(
"/interface_buttons",
rclcpp::SensorDataQoS(),
std::bind(&TurtleBot4FirstNode::interface_buttons_callback, this, std::placeholders::_1));

}

private:
// Interface buttons subscription callback
void interface_buttons_callback(
const irobot_create_msgs::msg::InterfaceButtons::SharedPtr create3_buttons_msg)

{}

// Interface Button Subscriber
rclcpp::Subscription<irobot_create_msgs::msg::InterfaceButtons>::SharedPtr

interface_buttons_subscriber_;
};

Notice that the interface_buttons_subscriber_ uses the InterfaceButtons message type, and the
quality of service is rclcpp::SensorDataQoS(). These parameters must match the topic,
otherwise the subscription will fail. If you are unsure what message type or QoS a topic is using,
you can use the ROS2 CLI to find this information.

Call ros2 topic info /<topic> --verbose to get the full details.

https://github.com/iRobotEducation/irobot_create_msgs/blob/main/msg/InterfaceButtons.msg

ROS2 topic information

Test Create® 3 Button 1

Now that we are subscribed, lets test out our node by printing a message every time button 1 is
pressed.

Edit the interface_buttons_callback function to look like this:

// Interface buttons subscription callback
void interface_buttons_callback(
const irobot_create_msgs::msg::InterfaceButtons::SharedPtr create3_buttons_msg)

{
// Button 1 is pressed
if (create3_buttons_msg->button_1.is_pressed) {
RCLCPP_INFO(this->get_logger(), "Button 1 Pressed!");

}
}

Now every time we receive a message on the /interface_buttons topic we will check if button 1
is pressed, and if it is then the node will print a message.

To test this out, we will need to build our package using colcon:

cd ~/turtlebot4_ws

colcon build --packages-select turtlebot4_cpp_tutorials

source install/local_setup.bash

The --packages-select flag allows you to enter any number of packages that you want to build,
in case you don't want to build all packages in your workspace.

Now, try running the node:

ros2 run turtlebot4_cpp_tutorials turtlebot4_first_cpp_node

When you run it, nothing will happen until you press button 1 on your TurtleBot 4.

Press the button, and you should see this message in your terminal:

[INFO] [1652379086.090977658] [turtlebot4_first_cpp_node]: Button 1 Pressed!

Tip

Printing messages like this is a great way to debug your code.

Create a lightring publisher

Now that we can receive a button press, lets create a lightring publisher.

class TurtleBot4FirstNode : public rclcpp::Node
{
public:
TurtleBot4FirstNode()
: Node("turtlebot4_first_cpp_node")
{
// Subscribe to the /interface_buttons topic
interface_buttons_subscriber_ =
this->create_subscription<irobot_create_msgs::msg::InterfaceButtons>(
"/interface_buttons",
rclcpp::SensorDataQoS(),
std::bind(&TurtleBot4FirstNode::interface_buttons_callback, this, std::placeholders::_1));

// Create a publisher for the /cmd_lightring topic
lightring_publisher_ = this->create_publisher<irobot_create_msgs::msg::LightringLeds>(
"/cmd_lightring",
rclcpp::SensorDataQoS());

}

private:
// Interface buttons subscription callback
void interface_buttons_callback(
const irobot_create_msgs::msg::InterfaceButtons::SharedPtr create3_buttons_msg)

{
// Button 1 is pressed
if (create3_buttons_msg->button_1.is_pressed) {
RCLCPP_INFO(this->get_logger(), "Button 1 Pressed!");

}
}

// Interface Button Subscriber
rclcpp::Subscription<irobot_create_msgs::msg::InterfaceButtons>::SharedPtr

interface_buttons_subscriber_;
// Lightring Publisher
rclcpp::Publisher<irobot_create_msgs::msg::LightringLeds>::SharedPtr lightring_publisher_;

};

Note
The Lightring publisher uses the LightringLeds message type.
Next, lets create a function that will populate a LightringLeds message, and publish it.
Add this code below your interface_buttons_callback function:

// Perform this function when Button 1 is pressed.

https://github.com/iRobotEducation/irobot_create_msgs/blob/main/msg/LightringLeds.msg

void button_1_function()
{
// Create a ROS2 message
auto lightring_msg = irobot_create_msgs::msg::LightringLeds();
// Stamp the message with the current time
lightring_msg.header.stamp = this->get_clock()->now();

// Override system lights
lightring_msg.override_system = true;

// LED 0
lightring_msg.leds[0].red = 255;
lightring_msg.leds[0].blue = 0;
lightring_msg.leds[0].green = 0;

// LED 1
lightring_msg.leds[1].red = 0;
lightring_msg.leds[1].blue = 255;
lightring_msg.leds[1].green = 0;

// LED 2
lightring_msg.leds[2].red = 0;
lightring_msg.leds[2].blue = 0;
lightring_msg.leds[2].green = 255;

// LED 3
lightring_msg.leds[3].red = 255;
lightring_msg.leds[3].blue = 255;
lightring_msg.leds[3].green = 0;

// LED 4
lightring_msg.leds[4].red = 255;
lightring_msg.leds[4].blue = 0;
lightring_msg.leds[4].green = 255;

// LED 5
lightring_msg.leds[5].red = 0;
lightring_msg.leds[5].blue = 255;
lightring_msg.leds[5].green = 255;
// Publish the message
lightring_publisher_->publish(lightring_msg);

}

This function creates a LightringLeds message and populates the parameters.

We first stamp the message with the current time:

lightring_msg.header.stamp = this->get_clock()->now();

Then we set the override_system parameter to true so that our command overrides whatever
commands the Create® 3 is sending to the lightring.

lightring_msg.override_system = true;

Next, we populate the 6 LEDs in the leds array with whatever colours we want.

// LED 0
lightring_msg.leds[0].red = 255;
lightring_msg.leds[0].blue = 0;
lightring_msg.leds[0].green = 0;

// LED 1
lightring_msg.leds[1].red = 0;
lightring_msg.leds[1].blue = 255;
lightring_msg.leds[1].green = 0;

// LED 2
lightring_msg.leds[2].red = 0;
lightring_msg.leds[2].blue = 0;
lightring_msg.leds[2].green = 255;

// LED 3
lightring_msg.leds[3].red = 255;
lightring_msg.leds[3].blue = 255;
lightring_msg.leds[3].green = 0;

// LED 4
lightring_msg.leds[4].red = 255;
lightring_msg.leds[4].blue = 0;
lightring_msg.leds[4].green = 255;

// LED 5
lightring_msg.leds[5].red = 0;
lightring_msg.leds[5].blue = 255;
lightring_msg.leds[5].green = 255;

Tip

Each RGB value can be set between 0 and 255. You can look up the RGB value of any color
and set it here.

Finally, we publish the message.

self.lightring_publisher.publish(lightring_msg)

Publish the lightring command with a button press

Now we can connect our interface button subscription to our lightring publisher. Simply call
button_1_function inside the interface_buttons_callback.

Interface buttons subscription callback
def interface_buttons_callback(self, create3_buttons_msg: InterfaceButtons):

Button 1 is pressed
if create3_buttons_msg.button_1.is_pressed:

self.get_logger().info('Button 1 Pressed!')
self.button_1_function()

Test this out by running the node like before.

Press button 1 and the lightring light should look like this:

Lightring colours controlled with the press of a button!

Toggle the lightring

You will notice that once you have set the lightrings LEDs they will remain like that forever. Lets
make the button toggle the light on or off each time we press it.

Add a boolean to keep track of the light state:

bool lights_on_;

Initialize the boolean in the class constructor:

TurtleBot4FirstNode()
: Node("turtlebot4_first_cpp_node"), lights_on_(false)

And modify button_1_function to toggle the light:

void button_1_function()
{
// Create a ROS2 message
auto lightring_msg = irobot_create_msgs::msg::LightringLeds();
// Stamp the message with the current time
lightring_msg.header.stamp = this->get_clock()->now();

// Lights are currently off
if (!lights_on_) {
// Override system lights
lightring_msg.override_system = true;

// LED 0
lightring_msg.leds[0].red = 255;
lightring_msg.leds[0].blue = 0;
lightring_msg.leds[0].green = 0;

// LED 1
lightring_msg.leds[1].red = 0;
lightring_msg.leds[1].blue = 255;
lightring_msg.leds[1].green = 0;

// LED 2
lightring_msg.leds[2].red = 0;
lightring_msg.leds[2].blue = 0;
lightring_msg.leds[2].green = 255;

// LED 3
lightring_msg.leds[3].red = 255;

lightring_msg.leds[3].blue = 255;
lightring_msg.leds[3].green = 0;

// LED 4
lightring_msg.leds[4].red = 255;
lightring_msg.leds[4].blue = 0;
lightring_msg.leds[4].green = 255;

// LED 5
lightring_msg.leds[5].red = 0;
lightring_msg.leds[5].blue = 255;
lightring_msg.leds[5].green = 255;

}
// Lights are currently on
else {
// Disable system override. The system will take back control of the lightring.
lightring_msg.override_system = false;

}
// Publish the message
lightring_publisher_->publish(lightring_msg);
// Toggle the lights on status
lights_on_ = !lights_on_;

}

Now the Create® 3 will regain control of the lightring if we press button 1 again.

Your first C++ Node

You have finished writing your first C++ node! The final .cpp file should look like this:

#include <chrono>
#include <functional>
#include <memory>
#include <string>

#include "rclcpp/rclcpp.hpp"

#include "irobot_create_msgs/msg/interface_buttons.hpp"
#include "irobot_create_msgs/msg/lightring_leds.hpp"

class TurtleBot4FirstNode : public rclcpp::Node
{
public:

TurtleBot4FirstNode()
: Node("turtlebot4_first_cpp_node"), lights_on_(false)
{
// Subscribe to the /interface_buttons topic
interface_buttons_subscriber_ =
this->create_subscription<irobot_create_msgs::msg::InterfaceButtons>(
"/interface_buttons",
rclcpp::SensorDataQoS(),
std::bind(&TurtleBot4FirstNode::interface_buttons_callback, this, std::placeholders::_1));

// Create a publisher for the /cmd_lightring topic
lightring_publisher_ = this->create_publisher<irobot_create_msgs::msg::LightringLeds>(
"/cmd_lightring",
rclcpp::SensorDataQoS());

}

private:
// Interface buttons subscription callback
void interface_buttons_callback(
const irobot_create_msgs::msg::InterfaceButtons::SharedPtr create3_buttons_msg)

{
// Button 1 is pressed
if (create3_buttons_msg->button_1.is_pressed) {
RCLCPP_INFO(this->get_logger(), "Button 1 Pressed!");

button_1_function();
}

}

// Perform a function when Button 1 is pressed.
void button_1_function()
{
// Create a ROS2 message
auto lightring_msg = irobot_create_msgs::msg::LightringLeds();
// Stamp the message with the current time
lightring_msg.header.stamp = this->get_clock()->now();

// Lights are currently off
if (!lights_on_) {
// Override system lights
lightring_msg.override_system = true;

// LED 0
lightring_msg.leds[0].red = 255;

lightring_msg.leds[0].blue = 0;
lightring_msg.leds[0].green = 0;

// LED 1
lightring_msg.leds[1].red = 0;
lightring_msg.leds[1].blue = 255;
lightring_msg.leds[1].green = 0;

// LED 2
lightring_msg.leds[2].red = 0;
lightring_msg.leds[2].blue = 0;
lightring_msg.leds[2].green = 255;

// LED 3
lightring_msg.leds[3].red = 255;
lightring_msg.leds[3].blue = 255;
lightring_msg.leds[3].green = 0;

// LED 4
lightring_msg.leds[4].red = 255;
lightring_msg.leds[4].blue = 0;
lightring_msg.leds[4].green = 255;

// LED 5
lightring_msg.leds[5].red = 0;
lightring_msg.leds[5].blue = 255;
lightring_msg.leds[5].green = 255;

}
// Lights are currently on
else {
// Disable system override. The system will take back control of the lightring.
lightring_msg.override_system = false;

}
// Publish the message
lightring_publisher_->publish(lightring_msg);
// Toggle the lights on status
lights_on_ = !lights_on_;

}

// Interface Button Subscriber
rclcpp::Subscription<irobot_create_msgs::msg::InterfaceButtons>::SharedPtr
interface_buttons_subscriber_;

// Lightring Publisher
rclcpp::Publisher<irobot_create_msgs::msg::LightringLeds>::SharedPtr lightring_publisher_;

// Lights on status
bool lights_on_;

};

int main(int argc, char * argv[])
{
rclcpp::init(argc, argv);
rclcpp::spin(std::make_shared<TurtleBot4FirstNode>());
rclcpp::shutdown();
return 0;

}

Don't forget to build the package again before running the node.

Creating your first node (Python)
This tutorial will go through the steps of creating a ROS2 package and writing a ROS2 node in
Python. For a C++ example, click here. These steps are similar to the ROS2 Tutorial, but focus
on interacting with the TurtleBot 4. For source code, click here.

Note

You can follow this tutorial on either the Raspberry Pi of your TurtleBot 4, or your PC.

Create a workspace
If you do not already have a workspace, open a terminal and create one in the directory of your
choice:

mkdir ~/turtlebot4_ws/src -p

Create a package and node
You will need to create a ROS2 package to hold your files. For this tutorial, we will create a
package called turtlebot4_python_tutorials with a node called turtlebot4_first_python_node.

source /opt/ros/galactic/setup.bash
cd ~/turtlebot4_ws/src
ros2 pkg create --build-type ament_python --node-name turtlebot4_first_python_node
turtlebot4_python_tutorials

This will create a turtlebot4_python_tutorials folder and populate it with a basic "Hello World"
node, as well as the setup and package.xml files required for a ROS2 Python package.

Write your node
The next step is to start coding. For this tutorial, our goal will be to use the Create® 3 interface
button 1 to change the colour of the Create® 3 lightring. Open up the "Hello World" .py file
located at
~/turtlebot4_ws/src/turtlebot4_python_tutorials/turtlebot4_python_tutorials/turtlebot4_first_pytho
n_node.py in your favourite text editor.

https://turtlebot.github.io/turtlebot4-user-manual/tutorials/first_node_cpp.html#creating-your-first-node-c
https://docs.ros.org/en/galactic/Tutorials/Writing-A-Simple-Py-Publisher-And-Subscriber.html
https://github.com/turtlebot/turtlebot4_tutorials/tree/galactic/turtlebot4_python_tutorials

Add your dependencies

For this tutorial, we will need to use the rclpy and irobot_create_msgs packages. The rclpy
package allows us to create ROS2 nodes and gives us full access to all the base ROS2
functionality in Python. The irobot_create_msgs package gives us access to the custom
messages used by the Create® 3 for reading the button presses and controlling the lightring.

In package.xml, add these lines under <buildtool_depend>ament_cmake</buildtool_depend>:

<depend>rclpy</depend>
<depend>irobot_create_msgs</depend>

In your .py file, import these packages:

from irobot_create_msgs.msg import InterfaceButtons, LightringLeds

import rclpy
from rclpy.node import Node
from rclpy.qos import qos_profile_sensor_data

Create a class

Now that the dependencies are set, we can create a class that inherits from the rclpy.Node
class. We will call this class TurtleBot4FirstNode.

class TurtleBot4FirstNode(Node):
def __init__(self):

super().__init__('turtlebot4_first_python_node')

Notice that our class calls the super() constructor and passes it the name of our node,
turtlebot4_first_python_node.

We can now create our node in the main function and spin it. Since our node is empty, the node
will be created but it won't do anything.

def main(args=None):
rclpy.init(args=args)
node = TurtleBot4FirstNode()
rclpy.spin(node)
node.destroy_node()
rclpy.shutdown()

Subscribe to the Create® 3 interface buttons

Our next step is to subscribe to the Create® 3 interface buttons topic to receive button presses.

We will need to create a rclpy.Subscription as well as a callback function for the subscription.
The callback function will be called every time we receive a message on the interface buttons
topic.

class TurtleBot4FirstNode(Node):
lights_on_ = False

def __init__(self):
super().__init__('turtlebot4_first_python_node')

Subscribe to the /interface_buttons topic
self.interface_buttons_subscriber = self.create_subscription(

InterfaceButtons,
'/interface_buttons',
self.interface_buttons_callback,
qos_profile_sensor_data)

Interface buttons subscription callback
def interface_buttons_callback(self, create3_buttons_msg: InterfaceButtons):

Notice that the interface_buttons_subscriber uses the InterfaceButtons message type, and the
quality of service is qos_profile_sensor_data. These parameters must match the topic,
otherwise the subscription will fail. If you are unsure what message type or QoS a topic is using,
you can use the ROS2 CLI to find this information.

Call ros2 topic info /<topic> --verbose to get the full details.

https://github.com/iRobotEducation/irobot_create_msgs/blob/main/msg/InterfaceButtons.msg

ROS2 topic information

Test Create® 3 Button 1

Now that we are subscribed, lets test out our node by printing a message every time button 1 is
pressed.

Edit the interface_buttons_callback function to look like this:

Interface buttons subscription callback
def interface_buttons_callback(self, create3_buttons_msg: InterfaceButtons):

Button 1 is pressed
if create3_buttons_msg.button_1.is_pressed:

self.get_logger().info('Button 1 Pressed!')

Now every time we receive a message the one /interface_buttons topic we will check if button 1
is pressed, and if it is then the node will print a message.

To test this out, we will need to build our package using colcon:

cd ~/turtlebot4_ws
colcon build --symlink-install --packages-select turtlebot4_python_tutorials
source install/local_setup.bash

The --symlink-install allows us to install a symbolic link to our Python script, rather than a copy
of the script. This means that any changes we make to the script will be applied to the installed
script, so we don't need to rebuild the package after each change.

The --packages-select flag allows you to enter any number of packages that you want to build,
in case you don't want to build all packages in your workspace.

Now, try running the node:

ros2 run turtlebot4_python_tutorials turtlebot4_first_python_node

When you run it, nothing will happen until you press button 1 on your TurtleBot 4.

Press the button, and you should see this message in your terminal:

[INFO] [1652384338.145094927] [turtlebot4_first_python_node]: Button 1 Pressed!

Tip

Printing messages like this is a great way to debug your code.

Create a lightring publisher

Now that we can receive a button press, lets create a lightring publisher.

class TurtleBot4FirstNode(Node):
def __init__(self):

super().__init__('turtlebot4_first_python_node')

Subscribe to the /interface_buttons topic
self.interface_buttons_subscriber = self.create_subscription(

InterfaceButtons,
'/interface_buttons',
self.interface_buttons_callback,
qos_profile_sensor_data)

Create a publisher for the /cmd_lightring topic
self.lightring_publisher = self.create_publisher(

LightringLeds,
'/cmd_lightring',
qos_profile_sensor_data)

Note

The Lightring publisher uses the LightringLeds message type.

Next, lets create a function that will populate a LightringLeds message, and publish it.

Add this code below your interface_buttons_callback function:

def button_1_function(self):
Create a ROS2 message
lightring_msg = LightringLeds()
Stamp the message with the current time
lightring_msg.header.stamp = self.get_clock().now().to_msg()

Override system lights
lightring_msg.override_system = True

LED 0
lightring_msg.leds[0].red = 255
lightring_msg.leds[0].blue = 0
lightring_msg.leds[0].green = 0

https://github.com/iRobotEducation/irobot_create_msgs/blob/main/msg/LightringLeds.msg

LED 1
lightring_msg.leds[1].red = 0
lightring_msg.leds[1].blue = 255
lightring_msg.leds[1].green = 0

LED 2
lightring_msg.leds[2].red = 0
lightring_msg.leds[2].blue = 0
lightring_msg.leds[2].green = 255

LED 3
lightring_msg.leds[3].red = 255
lightring_msg.leds[3].blue = 255
lightring_msg.leds[3].green = 0

LED 4
lightring_msg.leds[4].red = 255
lightring_msg.leds[4].blue = 0
lightring_msg.leds[4].green = 255

LED 5
lightring_msg.leds[5].red = 0
lightring_msg.leds[5].blue = 255
lightring_msg.leds[5].green = 255

Publish the message
self.lightring_publisher.publish(lightring_msg)

This function creates a LightringLeds message and populates the parameters.

We first stamp the message with the current time:

lightring_msg.header.stamp = self.get_clock().now().to_msg()

Then we set the override_system parameter to True so that our command overrides whatever
commands the Create® 3 is sending to the lightring.

lightring_msg.override_system = True

Next, we populate the 6 LEDs in the leds array with whatever colours we want.

LED 0
lightring_msg.leds[0].red = 255
lightring_msg.leds[0].blue = 0
lightring_msg.leds[0].green = 0

LED 1
lightring_msg.leds[1].red = 0
lightring_msg.leds[1].blue = 255
lightring_msg.leds[1].green = 0

LED 2
lightring_msg.leds[2].red = 0
lightring_msg.leds[2].blue = 0
lightring_msg.leds[2].green = 255

LED 3
lightring_msg.leds[3].red = 255
lightring_msg.leds[3].blue = 255
lightring_msg.leds[3].green = 0

LED 4
lightring_msg.leds[4].red = 255
lightring_msg.leds[4].blue = 0
lightring_msg.leds[4].green = 255

LED 5
lightring_msg.leds[5].red = 0
lightring_msg.leds[5].blue = 255
lightring_msg.leds[5].green = 255

Tip

Each RGB value can be set between 0 and 255. You can look up the RGB value of any color
and set it here.

Finally, we publish the message.

self.lightring_publisher.publish(lightring_msg)

Publish the lightring command with a button press

Now we can connect our interface button subscription to our lightring publisher. Simply call
button_1_function inside the interface_buttons_callback.

Interface buttons subscription callback
def interface_buttons_callback(self, create3_buttons_msg: InterfaceButtons):

Button 1 is pressed
if create3_buttons_msg.button_1.is_pressed:

self.get_logger().info('Button 1 Pressed!')
self.button_1_function()

Test this out by running the node like before.

Press button 1 and the lightring light should look like this:

Lightring colours controlled with the press of a button!

Toggle the lightring

You will notice that once you have set the lightrings LEDs they will remain like that forever. Lets
make the button toggle the light on or off each time we press it.

Add a boolean to keep track of the light state:

class TurtleBot4FirstNode(Node):
lights_on_ = False

def __init__(self):

And modify button_1_function to toggle the light:

Perform a function when Button 1 is pressed
def button_1_function(self):

Create a ROS2 message
lightring_msg = LightringLeds()
Stamp the message with the current time
lightring_msg.header.stamp = self.get_clock().now().to_msg()

Lights are currently off
if not self.lights_on_:

Override system lights
lightring_msg.override_system = True

LED 0
lightring_msg.leds[0].red = 255
lightring_msg.leds[0].blue = 0
lightring_msg.leds[0].green = 0

LED 1
lightring_msg.leds[1].red = 0
lightring_msg.leds[1].blue = 255
lightring_msg.leds[1].green = 0

LED 2
lightring_msg.leds[2].red = 0
lightring_msg.leds[2].blue = 0
lightring_msg.leds[2].green = 255

LED 3
lightring_msg.leds[3].red = 255
lightring_msg.leds[3].blue = 255
lightring_msg.leds[3].green = 0

LED 4
lightring_msg.leds[4].red = 255

lightring_msg.leds[4].blue = 0
lightring_msg.leds[4].green = 255

LED 5
lightring_msg.leds[5].red = 0
lightring_msg.leds[5].blue = 255
lightring_msg.leds[5].green = 255

Lights are currently on
else:

Disable system override. The system will take back control of the lightring.
lightring_msg.override_system = False

Publish the message
self.lightring_publisher.publish(lightring_msg)
Toggle the lights on status
self.lights_on_ = not self.lights_on_

Now the Create® 3 will regain control of the lightring if we press button 1 again.

Your first Python Node

You have finished writing your first Python node! The final .py file should look like this:

from irobot_create_msgs.msg import InterfaceButtons, LightringLeds

import rclpy
from rclpy.node import Node
from rclpy.qos import qos_profile_sensor_data

class TurtleBot4FirstNode(Node):
lights_on_ = False

def __init__(self):
super().__init__('turtlebot4_first_python_node')

Subscribe to the /interface_buttons topic
self.interface_buttons_subscriber = self.create_subscription(

InterfaceButtons,
'/interface_buttons',
self.interface_buttons_callback,
qos_profile_sensor_data)

Create a publisher for the /cmd_lightring topic
self.lightring_publisher = self.create_publisher(

LightringLeds,
'/cmd_lightring',
qos_profile_sensor_data)

Interface buttons subscription callback
def interface_buttons_callback(self, create3_buttons_msg: InterfaceButtons):

Button 1 is pressed
if create3_buttons_msg.button_1.is_pressed:

self.get_logger().info('Button 1 Pressed!')
self.button_1_function()

Perform a function when Button 1 is pressed
def button_1_function(self):

Create a ROS2 message
lightring_msg = LightringLeds()
Stamp the message with the current time
lightring_msg.header.stamp = self.get_clock().now().to_msg()

Lights are currently off
if not self.lights_on_:

Override system lights
lightring_msg.override_system = True

LED 0
lightring_msg.leds[0].red = 255
lightring_msg.leds[0].blue = 0
lightring_msg.leds[0].green = 0

LED 1
lightring_msg.leds[1].red = 0
lightring_msg.leds[1].blue = 255
lightring_msg.leds[1].green = 0

LED 2
lightring_msg.leds[2].red = 0
lightring_msg.leds[2].blue = 0
lightring_msg.leds[2].green = 255

LED 3
lightring_msg.leds[3].red = 255
lightring_msg.leds[3].blue = 255
lightring_msg.leds[3].green = 0

LED 4
lightring_msg.leds[4].red = 255
lightring_msg.leds[4].blue = 0
lightring_msg.leds[4].green = 255

LED 5
lightring_msg.leds[5].red = 0
lightring_msg.leds[5].blue = 255
lightring_msg.leds[5].green = 255

Lights are currently on
else:

Disable system override. The system will take back control of the lightring.
lightring_msg.override_system = False

Publish the message
self.lightring_publisher.publish(lightring_msg)
Toggle the lights on status
self.lights_on_ = not self.lights_on_

def main(args=None):
rclpy.init(args=args)
node = TurtleBot4FirstNode()
rclpy.spin(node)
node.destroy_node()
rclpy.shutdown()

if __name__ == '__main__':
main()

Generating a map
In this tutorial we will be mapping an area by driving the TurtleBot 4 around and using SLAM.
Start by making sure that the area you will be mapping is clear of unwanted obstacles. Ideally,
you don't want people or animals moving around the area while creating the map.

Launch SLAM
First, make sure that the RPLIDAR and description nodes are running on the TurtleBot 4.

Then run SLAM. It is recommended to run synchronous SLAM on a remote PC to get a higher
resolution map.

ros2 launch turtlebot4_navigation slam_sync.launch.py

Asynchronous SLAM can be used as well.

ros2 launch turtlebot4_navigation slam_async.launch.py

Launch Rviz2
To visualise the map, launch Rviz2 with the view_robot launch file.

ros2 launch turtlebot4_viz view_robot.launch.py

Rviz2 showing a map generate by SLAM

Drive the TurtleBot 4
Use any method to drive the robot around the area you wish to map. Check out the driving
tutorial if you are unsure of how to drive the robot.

Keep watch of RVIZ as you drive the robot around the area to make sure that the map gets filled
out properly.

Generating a map by driving the TurtleBot 4

https://turtlebot.github.io/turtlebot4-user-manual/tutorials/driving.html

Save the map
Once you are happy with your map, you can save it with the following command:

ros2 service call /slam_toolbox/save_map slam_toolbox/srv/SaveMap "name:

data: 'map_name'"

This will save the map to your current directory.

View the map
Once the map is saved it will generate a map_name.pgm file which can be viewed in an image
editor. A map_name.yaml file is also created. You can edit this file to adjust the map
parameters.

Generated map image

Navigation
This tutorial will cover various methods of navigating with the TurtleBot 4 and Nav2.

SLAM vs Localization
There are two localization methods we can use to figure out where the robot is on the map:
SLAM or Localization. SLAM allows us to generate the map as we navigate, while localization
requires that a map already exists.

SLAM

SLAM is useful for generating a new map, or navigating in unknown or dynamic environments. It
updates the map as it detects and changes, but cannot see areas of the environment that it has
not discovered yet.

Localization

Localization uses an existing map along with live odometry and laserscan data to figure out the
position of the robot on the given map. It does not update the map if any changes have been
made to the environment, but we can still avoid new obstacles when navigating. Because the
map doesn't change, we can get more repeatable navigation results.

For this tutorial, we will be using localization to navigate on a map generated with SLAM.

Nav2
The TurtleBot 4 uses the Nav2 stack for navigation.

Launching navigation

For this tutorial we can launch navigation with Nav Bringup.

On a physical TurtleBot 4, call:

ros2 launch turtlebot4_navigation nav_bringup.launch.py slam:=off localization:=true
map:=office.yaml

Replace office.yaml with your own map.

If you are using the simulator, call:

https://turtlebot.github.io/turtlebot4-user-manual/tutorials/generate_map.html#generating-a-map
https://navigation.ros.org/
https://github.com/turtlebot/turtlebot4/blob/galactic/turtlebot4_navigation/launch/nav_bringup.launch.py

ros2 launch turtlebot4_ignition_bringup ignition.launch.py nav:=true slam:=off localization:=true

This will launch the simulation in the default depot world and will use the existing depot.yaml file
for the map. If you are using a different world you will need to create a map for it and pass that
in as a launch argument.

For example:

ros2 launch turtlebot4_ignition_bringup ignition.launch.py nav:=true slam:=off localization:=true
world:=classroom map:=classroom.yaml

Interacting with Nav2

In a new terminal, launch Rviz so that you can view the map and interact with navigation:

ros2 launch turtlebot4_viz view_robot.launch.py

Office Map shown in Rviz

At the top of the Rviz window is the toolbar. You will notice that there are three navigation tools
available to you.

Navigation tools in Rviz

2D Pose Estimate

The 2D Pose Estimate tool is used in localization to set the approximate initial pose of the robot
on the map. This is required for the Nav2 stack to know where to start localizing from. Click on
the tool, and then click and drag the arrow on the map to approximate the position and
orientation of the robot.

Setting the initial pose

Publish Point

The Publish Point tool allows you to click on a point on the map, and have the coordinates of
that point published to the /clicked_point topic.

Open a new terminal and call:

ros2 topic echo /clicked_point

Then, select the Publish Point tool and click on a point on the map. You should see the
coordinates published in your terminal.

Getting a point coordinate

Nav2 Goal

The Nav2 Goal tool allows you to set a goal pose for the robot. The Nav2 stack will then plan a
path to the goal pose and attempt to drive the robot there. Make sure to set the initial pose of
the robot before you set a goal pose.

Driving the TurtleBot4 with a Nav2 Goal

TurtleBot 4 Navigator
The TurtleBot 4 Navigator is a Python node that adds on to the Nav2 Simple Commander. It
includes TurtleBot 4 specific features such as docking and undocking, as well as easy to use
methods for navigating.

Note

TurtleBot 4 Navigator requires at least version 1.0.11 of Nav2 Simple Commander

The code for the following examples is available at
https://github.com/turtlebot/turtlebot4_tutorials. For each example, the robot starts on a dock at
the origin of the map.

Navigate to Pose

This example demonstrates the same behaviour as Nav2 Goal. The Nav2 stack is given a pose
on the map with which it calculates a path. The robot then attempts to drive along the path. This
example is demonstrated in the depot world of the TurtleBot 4 simulation.

To run this example, start the Ignition simulation:

ros2 launch turtlebot4_ignition_bringup ignition.launch.py nav:=true slam:=off localization:=true

Once the simulation has started, open another terminal and run:

ros2 run turtlebot4_python_tutorials nav_to_pose

Code breakdown

The source code for this example is available here.

Lets take a look at the main function.

def main():
rclpy.init()

navigator = TurtleBot4Navigator()

Start on dock
if not navigator.getDockedStatus():

navigator.info('Docking before intialising pose')
navigator.dock()

https://github.com/turtlebot/turtlebot4/blob/galactic/turtlebot4_navigation/turtlebot4_navigation/turtlebot4_navigator.py
https://github.com/ros-planning/navigation2/blob/galactic/nav2_simple_commander/nav2_simple_commander/robot_navigator.py
https://github.com/turtlebot/turtlebot4_tutorials
https://github.com/turtlebot/turtlebot4_tutorials
https://turtlebot.github.io/turtlebot4-user-manual/tutorials/navigation.html#nav2-goal
https://github.com/turtlebot/turtlebot4_tutorials/blob/galactic/turtlebot4_python_tutorials/turtlebot4_python_tutorials/nav_to_pose.py

Set initial pose
initial_pose = navigator.getPoseStamped([0.0, 0.0], TurtleBot4Directions.NORTH)
navigator.setInitialPose(initial_pose)

Wait for Nav2
navigator.waitUntilNav2Active()

Set goal poses
goal_pose = navigator.getPoseStamped([13.0, 5.0], TurtleBot4Directions.EAST)

Undock
navigator.undock()

Go to each goal pose
navigator.startToPose(goal_pose)

rclpy.shutdown()

Initialise the node

We start by initialising rclpy and creating the TurtleBot4Navigator object. This will initialise any
ROS2 publishers, subscribers and action clients that we need.

rclpy.init()

navigator = TurtleBot4Navigator()

Dock the robot

Next, we check if the robot is docked. If it is not, we send an action goal to dock the robot. By
docking the robot we guarantee that it is at the [0.0, 0.0] coordinates on the map.

if not navigator.getDockedStatus():
navigator.info('Docking before intialising pose')
navigator.dock()

Set the initial pose

Now that we know the robot is docked, we can set the initial pose to [0.0, 0.0], facing "North".

initial_pose = navigator.getPoseStamped([0.0, 0.0], TurtleBot4Directions.NORTH)
navigator.setInitialPose(initial_pose)

The TurtleBot 4 Navigator uses cardinal directions to set the orientation of the robot relative to
the map. You can use actual integers or floating points if you need a more precise direction.

class TurtleBot4Directions(IntEnum):
NORTH = 0
NORTH_WEST = 45
WEST = 90
SOUTH_WEST = 135
SOUTH = 180
SOUTH_EAST = 225
EAST = 270
NORTH_EAST = 315

Note

These cardinal directions are relative to the map, not the actual magnetic north pole. Driving
north is equivalent to driving upwards on the map, west is driving left, and so on.

Wait for Nav2

Once the initial position has been set, the Nav2 stack will place the robot at that position on the
map and begin localizing. We want to wait for Nav2 to be ready before we start sending
navigation goals.

navigator.waitUntilNav2Active()

Note

This call will block until Nav2 is ready. Make sure you have launched nav bringup in a separate
terminal.

Set the goal pose

Now we can create a geometry_msgs/PoseStamped message. The getPoseStamped method
makes it easy for us. All we have to do is pass in a list describing the x and y position that we
want to drive to on the map, and the direction that we want the robot to be facing when it
reaches that point.

goal_pose = navigator.getPoseStamped([13.0, 5.0], TurtleBot4Directions.EAST)

Undock the robot and go to the goal pose

We are ready to drive to the goal pose. We start by undocking the robot so that it does not
attempt to drive through the dock, and then send the goal pose. As the robot drives to the goal
pose, we will be receiving feedback from the action. This feedback includes the estimated time
of arrival.

https://github.com/ros2/common_interfaces/blob/galactic/geometry_msgs/msg/PoseStamped.msg

navigator.undock()

navigator.startToPose(goal_pose)

Once the robot has reached the goal, we call rclpy.shutdown() to gracefully destroy the rclpy
context.

Watch navigation progress in Rviz

You can visualise the navigation process in Rviz by calling:

ros2 launch turtlebot4_viz view_robot.launch.py

Navigate to a pose

Navigate Through Poses

This example demonstrates the Navigate Through Poses behaviour tree. The Nav2 stack is
given a set of poses on the map and creates a path that goes through each pose in order until
the last pose is reached. The robot then attempts to drive along the path. This example is
demonstrated in the depot world of the TurtleBot 4 simulation.

To run this example, start the Ignition simulation:

ros2 launch turtlebot4_ignition_bringup ignition.launch.py nav:=true slam:=off localization:=true

Once the simulation has started, open another terminal and run:

ros2 run turtlebot4_python_tutorials nav_through_poses

https://navigation.ros.org/behavior_trees/trees/nav_through_poses_recovery.html

Code breakdown

The source code for this example is available here.

Lets take a look at the main function.

def main():
rclpy.init()

navigator = TurtleBot4Navigator()

Start on dock
if not navigator.getDockedStatus():

navigator.info('Docking before intialising pose')
navigator.dock()

Set initial pose
initial_pose = navigator.getPoseStamped([0.0, 0.0], TurtleBot4Directions.NORTH)
navigator.setInitialPose(initial_pose)

Wait for Nav2
navigator.waitUntilNav2Active()

Set goal poses
goal_pose = []
goal_pose.append(navigator.getPoseStamped([0.0, -1.0], TurtleBot4Directions.NORTH))
goal_pose.append(navigator.getPoseStamped([1.7, -1.0], TurtleBot4Directions.EAST))
goal_pose.append(navigator.getPoseStamped([1.6, -3.5], TurtleBot4Directions.NORTH))
goal_pose.append(navigator.getPoseStamped([6.75, -3.46],

TurtleBot4Directions.NORTH_WEST))
goal_pose.append(navigator.getPoseStamped([7.4, -1.0], TurtleBot4Directions.SOUTH))
goal_pose.append(navigator.getPoseStamped([-1.0, -1.0], TurtleBot4Directions.WEST))

Undock
navigator.undock()

Navigate through poses
navigator.startThroughPoses(goal_pose)

Finished navigating, dock
navigator.dock()

rclpy.shutdown()

https://github.com/turtlebot/turtlebot4_tutorials/blob/galactic/turtlebot4_python_tutorials/turtlebot4_python_tutorials/nav_through_poses.py

This example starts the same as navigate to pose. We initialse the node, make sure the robot is
docked, and set the initial pose. Then we wait for Nav2 to become active.

Set goal poses

The next step is to create a list of PoseStamped messages which represent the poses that the
robot needs to drive through.

goal_pose = []
goal_pose.append(navigator.getPoseStamped([0.0, -1.0], TurtleBot4Directions.NORTH))
goal_pose.append(navigator.getPoseStamped([1.7, -1.0], TurtleBot4Directions.EAST))
goal_pose.append(navigator.getPoseStamped([1.6, -3.5], TurtleBot4Directions.NORTH))
goal_pose.append(navigator.getPoseStamped([6.75, -3.46],
TurtleBot4Directions.NORTH_WEST))
goal_pose.append(navigator.getPoseStamped([7.4, -1.0], TurtleBot4Directions.SOUTH))
goal_pose.append(navigator.getPoseStamped([-1.0, -1.0], TurtleBot4Directions.WEST))

Navigate through the poses

Now we can undock the robot and begin navigating through each point. Once the robot has
reached the final pose, it will then return to the dock.

navigator.undock()

navigator.startThroughPoses(goal_pose)

navigator.dock()

Watch navigation progress in Rviz

You can visualise the navigation process in Rviz by calling:

ros2 launch turtlebot4_viz view_robot.launch.py

https://turtlebot.github.io/turtlebot4-user-manual/tutorials/navigation.html#navigate-to-pose

Navigate through a set of poses

Follow Waypoints

This example demonstrates how to follow waypoints. The Nav2 stack is given a set of waypoints
on the map and creates a path that goes through each waypoint in order until the last waypoint
is reached. The robot then attempts to drive along the path. The difference between this
example and Navigating Through Poses is that when following waypoints the robot will plan to
reach each waypoint individually, rather than planning to reach the last pose by driving through
the other poses. This example is demonstrated in the depot world of the TurtleBot 4 simulation.

To run this example, start the Ignition simulation:

ros2 launch turtlebot4_ignition_bringup ignition.launch.py nav:=true slam:=off localization:=true

Once the simulation has started, open another terminal and run:

ros2 run turtlebot4_python_tutorials follow_waypoints

Code breakdown

The source code for this example is available here.

Lets take a look at the main function.

https://github.com/turtlebot/turtlebot4_tutorials/blob/galactic/turtlebot4_python_tutorials/turtlebot4_python_tutorials/follow_waypoints.py

def main():
rclpy.init()

navigator = TurtleBot4Navigator()

Start on dock
if not navigator.getDockedStatus():

navigator.info('Docking before intialising pose')
navigator.dock()

Set initial pose
initial_pose = navigator.getPoseStamped([0.0, 0.0], TurtleBot4Directions.NORTH)
navigator.setInitialPose(initial_pose)

Wait for Nav2
navigator.waitUntilNav2Active()

Set goal poses
goal_pose = []
goal_pose.append(navigator.getPoseStamped([-3.3, 5.9], TurtleBot4Directions.NORTH))
goal_pose.append(navigator.getPoseStamped([2.1, 6.3], TurtleBot4Directions.EAST))
goal_pose.append(navigator.getPoseStamped([2.0, 1.0], TurtleBot4Directions.SOUTH))
goal_pose.append(navigator.getPoseStamped([-1.0, 0.0], TurtleBot4Directions.NORTH))

Undock
navigator.undock()

Follow Waypoints
navigator.startFollowWaypoints(goal_pose)

Finished navigating, dock
navigator.dock()

rclpy.shutdown()

This example is very similar to Navigate Through Poses. The difference is that we are using
different poses as our waypoints, and that we use the startFollowWaypoints method to perform
our navigation behaviour.

Watch navigation progress in Rviz

You can visualise the navigation process in Rviz by calling:

https://turtlebot.github.io/turtlebot4-user-manual/tutorials/navigation.html#navigate-through-poses

ros2 launch turtlebot4_viz view_robot.launch.py

Follow a set of Waypoints

Create Path

This example demonstrates how to create a navigation path in Rviz during runtime. It uses the
2D Pose Estimate tool to pass the TurtleBot 4 Navigator a set of poses. Then we use the Follow
Waypoints behaviour to follow those poses. This example was run on a physical TurtleBot 4.

To run this example, start nav bringup on your PC or on the Raspberry Pi:

ros2 launch turtlebot4_navigation nav_bringup.launch.py slam:=off localization:=true
map:=office.yaml

Replace office.yaml with the map of your environment.

Once the navigation has started, open another terminal and run:

ros2 run turtlebot4_python_tutorials create_path

https://turtlebot.github.io/turtlebot4-user-manual/tutorials/navigation.html#2d-pose-estimate
https://turtlebot.github.io/turtlebot4-user-manual/tutorials/navigation.html#2d-pose-estimate
https://turtlebot.github.io/turtlebot4-user-manual/tutorials/navigation.html#follow-waypoints
https://turtlebot.github.io/turtlebot4-user-manual/tutorials/navigation.html#follow-waypoints

On your PC you will need to start Rviz:

ros2 launch turtlebot4_viz view_robot.launch.py

Code breakdown

The source code for this example is available here.

Lets take a look at the main function.

def main():
rclpy.init()

navigator = TurtleBot4Navigator()

Set goal poses
goal_pose = navigator.createPath()

if len(goal_pose) == 0:
navigator.error('No poses were given, exiting.')
exit(0)

Start on dock
if not navigator.getDockedStatus():

navigator.info('Docking before intialising pose')
navigator.dock()

Set initial pose
initial_pose = navigator.getPoseStamped([0.0, 0.0], TurtleBot4Directions.NORTH)
navigator.clearAllCostmaps()
navigator.setInitialPose(initial_pose)

Wait for Nav2
navigator.waitUntilNav2Active()

Undock
navigator.undock()

Navigate through poses
navigator.startFollowWaypoints(goal_pose)

https://github.com/turtlebot/turtlebot4_tutorials/blob/galactic/turtlebot4_python_tutorials/turtlebot4_python_tutorials/create_path.py

Finished navigating, dock
navigator.dock()

rclpy.shutdown()

This example begins the same as the others by initialising the TurtleBot 4 Navigator.

Create your path

After initialisation, the user is prompted to create their path by using the 2D Pose Estimate tool.
You must set at least one pose. Once all of the poses have been set, the user can press CTRL
+ C to stop creating the path and begin navigating.

goal_pose = navigator.createPath()

if len(goal_pose) == 0:
navigator.error('No poses were given, exiting.')
exit(0)

Set initial pose and clear costmaps

Next we set the initial pose and clear all costmaps. We clear costmaps because the 2D Pose
Estimate tool is subscribed to by the Nav2 stack, and every time we use it Nav2 assumes that
the robot is in that position, when it is not. Clearing the costmaps will get rid of any false
costmaps that may have spawned when creating the path.

if not navigator.getDockedStatus():
navigator.info('Docking before intialising pose')
navigator.dock()

initial_pose = navigator.getPoseStamped([0.0, 0.0], TurtleBot4Directions.NORTH)
navigator.clearAllCostmaps()
navigator.setInitialPose(initial_pose)

navigator.waitUntilNav2Active()

We also wait for Nav2 to be active before continuing.

https://turtlebot.github.io/turtlebot4-user-manual/tutorials/navigation.html#2d-pose-estimate

Follow the path

Now we can undock and follow the created path. In this example we use the Follow Waypoints
behaviour, but this can easily be replaced with Navigate Through Poses.

navigator.undock()

navigator.startFollowWaypoints(goal_pose)

navigator.dock()

We finish the example by docking the robot. This assumes that the last pose in the created path
is near the dock. If it is not, you can remove this action.

Creating a path with Rviz

Running this example will look something like this:

Creating a path and following it

Note

As the path is created, you will see the robot being placed at the position you click on. This is
normal and gets cleared up when the initial pose is set by the TurtleBot 4 Navigator.

https://turtlebot.github.io/turtlebot4-user-manual/tutorials/navigation.html#follow-waypoints
https://turtlebot.github.io/turtlebot4-user-manual/tutorials/navigation.html#navigate-through-poses

Troubleshooting

Diagnostics
The TurtleBot 4 and TurtleBot 4 both run diagnostics updater and aggregator nodes by default.
The updater records diagnostics data and the aggregator formats it so that it can be used with
rqt_robot_monitor. This is a tool that can be used to monitor various robot topics to ensure that
they are publishing data at the expected frequency.

To check that diagnostics are running properly, call

ros2 node list

You should see a node called turtlebot4_diagnostics. Additionally, calling

ros2 topic list

should list topics such as /diagnostics, /diagnostics_agg, and /diagnostics_toplevel_state. If
diagnostics are not running, you can manually run them by calling

ros2 launch turtlebot4_diagnostics diagnostics.launch.py

Once diagnostics are running, you can view them with rqt_robot_monitor. Ensure that
turtlebot4_desktop is installed on your PC, then call

ros2 launch turtlebot4_viz view_diagnostics.launch.py

https://turtlebot.github.io/turtlebot4-user-manual/software/turtlebot4_packages.html#installation-2
https://turtlebot.github.io/turtlebot4-user-manual/software/turtlebot4_packages.html#installation-2

rqt_robot_monitor with TurtleBot 4 diagnostics

The monitor will display any errors in the first window, any warnings in the second window, and
a summary of all topics in the "All devices" section at the bottom. Each topic has a status level
of OK, WARNING, ERROR, or STALE. There is also a more detailed message included as well.
You can click on each topic to view more information.

In this example, the OAK-D node is not running, so the camera topics are not being published.

Color camera diagnostics

ROS2 Tests
Both TurtleBot 4 models have the turtlebot4_tests package installed by default. This package
provides some tests that can be run from CLI to test basic system functions.

Each test uses a ROS2 topic, action, or service to perform the action. To run Create® 3 tests,
the Create® 3 must be connected to the Raspberry Pi over either WiFi or USB-C.

To run the tests, call

ros2 run turtlebot4_tests ros_tests

Running the Light Ring test

Test results are saved to ~/turtlebot4_test_results/Y_m_d-H_M_S where Y_m_d-H_M_S is the
date and time of the test. A rosbag is also recorded for the duration of the test and saved to the
same location.

FAQ

Common issues with the Raspberry Pi 4B

1. Access point is not visible

If your Raspberry Pi is in AP mode, a Turtlebot4 WiFi network should become visible about 30
seconds after the robot has been powered on. If it does not, try the following.

Check that the Raspberry Pi is powered

The Raspberry Pi has a Power LED near the USB-C port. Make sure it is illuminated.

If the LED is not on, then the Raspberry Pi is not powered. Check the USB-C connection and
make sure the Create® 3 power adapter board is inserted fully.

Check for obstructions

If the Pi is on but you cannot see the access point, make sure that any wires in the robot are not
obstructing the WiFi module of the Raspberry Pi. This includes the ribbon cable connecting the
RPi to the UI PCBA on the TurtleBot 4, and the wires powering the fans on both models.

Raspberry Pi 4B WiFi module and antenna

Restart the robot

If the WiFi module is unobstructed, try restarting the robot. Take the robot off of its dock and
press and hold the Power button on the Create® 3 until it is off. Wait a few seconds and place
the robot back on its dock.

Access the RPi over Ethernet

If you are still unable to see the Turtlebot4 access point, you can connect directly to the RPi
using an ethernet cable. You may need a USB to Ethernet adapter for your PC.

Connecting to the TurtleBot 4 over Ethernet

The Raspberry Pi uses a static IP address for the ethernet interface, 192.168.185.3. You will
need to configure your wired connection to use the same subnet:

● Go to your wired connection settings.
● Set your IPv4 Method to Manual and set your static IP. The IP address cannot be the

same as the Raspberry Pi.

Configure your PC's wired IP

● Click ‘Apply'

You can now go to your terminal and SSH into the robot by typing:

ssh ubuntu@192.168.185.3

1. Waiting to connect to bluetoothd…

This issue is usually a result of the bluetooth service being stopped.

To start the service again, run sudo systemctl start bluetooth.

2. No default controller available

This error occurs if you are attempting to connect a bluetooth device to the Raspberry Pi with
sudo bluetoothctl and the hciuart service throws errors.

To fix this, call sudo systemctl disable hciuart and then reboot the Pi with sudo reboot.

Once the Pi has restarted, call sudo systemctl restart hciuart. Now you can run sudo
bluetoothctl again and the bluetooth controller should be found.

Common issues with the user PC

1. ros2: command not found

Make sure you have sourced ROS2 galactic:

source /opt/ros/galactic/setup.bash

If you are building packages from source, you will also want to source the workspace:

source /path/to/ws/install/setup.bash

2. Create® 3 topics are not visible

First, check that the Create® 3 is connected to your WiFi network. You should be able to access
the Create® 3 portal by entering the Create® 3 IP address in a browser. For information on how
to connect the Create® 3 to WiFi, check the quick start guide.

If it is connected to WiFi, check if you can see Create® 3 topics on the Raspberry Pi.

If topics are visible on the Raspberry Pi, ensure that your PC has the following configuration set
for CycloneDDS:

<CycloneDDS>
<Domain>

<General>
<DontRoute>true</DontRoute>

</General>
</Domain>

</CycloneDDS>

To set this configuration automatically, add the following line to your ~/.bashrc file.

export
CYCLONEDDS_URI='<CycloneDDS><Domain><General><DontRoute>true</></></></>'

If you have set a ROS_DOMAIN_ID for the Create® 3, your terminal will have to have the same
ID. You can set the ID by using this command:

export ROS_DOMAIN_ID=#

Replace # with the ID.

If topics are not visible on the Raspberry Pi, you may need to restart the Create® 3 application
through the portal, or reboot the robot.

https://turtlebot.github.io/turtlebot4-user-manual/overview/quick_start.html#create%C2%AE-3-wifi-setup

