
MCP Series Brushed DC Motor Controllers
MCP233
MCP236
MCP263
MCP266
MCP2163
MCP2126
MCP2166
MCP2206
MCP2128
MCP2168

User Manual

Firmware V1.1 and Newer
Hardware V2 and Newer
User Manual Revision 1.2

(c) 2014, 2015 Ion Motion Control. All Rights Reserved

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 2

Contents
Firmware History ..9
Warnings ..10

1.0 Introduction ..11
1.0.1 Motor Selection ... 11
1.0.2 Stall Current ... 11
1.0.3 Running Current .. 11
1.0.4 Wire Lengths ... 11
1.0.5 Run Away ... 11
1.0.6 Disconnect .. 11
1.0.7 Encoders .. 11
1.0.8 Power Sources .. 12
1.0.9 Primary Power ... 12
1.0.10 Secondary Power ... 12
1.0.11 Manual Voltage Settings .. 12
1.0.12 Minimum Power ... 12
1.0.13 Easy to use Libraries .. 12

1.1 Hardware Overview ..13
1.1.1 Control Inputs ... 13
1.1.2 Encoder Inputs .. 13
1.1.3 Main Battery Screw Terminals .. 13
1.1.4 Main Battery Disconnect ... 13
1.1.5 Motor Screw Terminals ... 13

1.2 Ion Studio Overview ...14
1.2.1 Ion Studio Setup Utility .. 14
1.2.2 Device Connection ... 14
1.2.3 Device Status .. 15
1.2.4 Device Status Screen Layout ... 15
1.2.5 Status Indicator .. 16
1.2.6 File Menu .. 17
1.2.7 Edit Menu ... 17
1.2.8 Device Menu ... 18
1.2.9 Help Menu .. 18
1.2.10 General Settings Screen ... 19

1.3 Firmware Updates ...30
1.3.1 Ion Studio Setup ... 30
1.3.2 Firmware Update ... 30

1.4 DC Power Settings ..32
1.4.1 Automatic Battery Detection on Startup .. 32
1.4.2 Manual Voltage Settings ... 32

1.5 Wiring ...33
1.5.1 Basic Wiring .. 33
1.5.2 Wiring Safety .. 34
1.5.3 Wiring Closed Loop Mode .. 34
1.5.4 Backup Power ... 35
1.5.5 Limit, Home and E-Stop Wiring .. 36

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 3

1.6 Status LEDs ...37
1.6.1 Status and Error LEDs .. 37
1.6.2 Message Types .. 37
1.6.3 LED Blink Sequences .. 38

1.7 Regenerative Voltage Clamping ..39
1.7.1 Voltage Clamp ... 39
1.7.2 Simple Voltage Clamp Setup ... 39
1.7.3 MOSFET Voltage Clamp Setup ... 40
1.7.4 MOSFET Voltage Clamp Wiring ... 40
1.7.5 Voltage Clamp Setup and Testing ... 41

1.8 Bridged Channel Mode ..42
1.8.1 Bridging Channels .. 42
1.8.2 Bridged Channel Wiring .. 42

1.9 I/O Configuration ...43
1.9.1 I/O Types ... 43
1.9.2 Pin Settings .. 43
1.9.3 USB ... 44
1.9.4 CANOpen .. 45
1.9.8 Digital, Analog, Pulsed and Encoder Inputs .. 51
1.9.10 Signal Graph ... 56
1.9.11 Command Settings ... 58
1.9.12 Status .. 60

2.0 Communications ...61
2.0.1 Communication and Input Types .. 61

2.1 USB Communications ..62
2.1.1 USB Connection ... 62
2.1.2 USB Power .. 62
2.1.3 USB Comport and Baud rate .. 62

2.2 Packet Serial Mode ..63
2.2.1 Packet Serial Communications ... 63
2.2.6 CRC16 Checksum Calculation .. 64
2.2.10 Packet Serial Wiring ... 66

2.3 Advance Packet Serial Mode..71
2.3.1 Command List ... 71
144 - Get Signal Properties .. 81
145 - Set Stream Properties ... 82
146 - Get Stream Properties ... 82
147 - Get Signal Values ... 82
148 - Set PWM Mode .. 82
149 - Read PWM Mode .. 83
200 - E-Stop Reset .. 83
201 - Lock/Unlock E-Stop Reset .. 83
202 - Get E-Stop Lock ... 83
246 - Set Script Autorun Delay ... 83
247 - Get Script Autorun Delay ... 83
248 - Start Script .. 83
249 - Stop Script .. 84

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 4

252 - Read User EEProm Word .. 84
253 - Write User EEProm Word ... 84

2.4 Encoders ...85
2.4.1 Cloosed Loop Modes ... 85
2.4.2 Quadrature Encoders ... 85
2.4.3 Absolute Encoder ... 86
2.4.4 Encoder Tuning ... 86
2.4.5 Auto Tuning .. 87
2.4.6 Manual Velocity Calibration Procedure ... 87
2.4.7 Manual Position Calibration Procedure ... 88
2.4.8 Encoder Commands ... 89
16 - Read Encoder Count/Value M1 .. 89
17 - Read Quadrature Encoder Count/Value M2 .. 90
18 - Read Encoder Speed M1 ... 90
19 - Read Encoder Speed M2 ... 90
20 - Reset Quadrature Encoder Counters .. 90
22 - Set Quadrature Encoder 1 Value .. 91
23 - Set Quadrature Encoder 2 Value .. 91
30 - Read Raw Speed M1 .. 91
31 - Read Raw Speed M2 .. 91
78 - Read Encoder Counters .. 91
79 - Read ISpeeds Counters .. 91
2.4.9 Advanced Motor Control ... 92
28 - Set Velocity PID Constants M1 .. 93
29 - Set Velocity PID Constants M2 .. 93
32 - Drive M1 With Signed Duty Cycle .. 93
33 - Drive M2 With Signed Duty Cycle .. 94
34 - Drive M1 / M2 With Signed Duty Cycle ... 94
35 - Drive M1 With Signed Speed ... 94
36 - Drive M2 With Signed Speed ... 94
37 - Drive M1 / M2 With Signed Speed ... 94
38 - Drive M1 With Signed Speed And Acceleration ... 95
39 - Drive M2 With Signed Speed And Acceleration ... 95
40 - Drive M1 / M2 With Signed Speed And Acceleration 95
41 - Buffered M1 Drive With Signed Speed And Distance 96
42 - Buffered M2 Drive With Signed Speed And Distance 96
43 - Buffered Drive M1 / M2 With Signed Speed And Distance 96
44 - Buffered M1 Drive With Signed Speed, Accel And Distance 97
45 - Buffered M2 Drive With Signed Speed, Accel And Distance 97
46 - Buffered Drive M1 / M2 With Signed Speed, Accel And Distance................... 98
47 - Read Buffer Length .. 98
50 - Drive M1 / M2 With Signed Speed And Individual Acceleration 98
51 - Buffered Drive M1 / M2 With Signed Speed, Individual Accel And Distance 99
52 - Drive M1 With Signed Duty And Acceleration ... 99

3.0 Programming MCP ..103
3.0.1 MCL ..103
3.0.2 MCL Editor ...103
3.0.3 Device Menu ..104
3.0.4 Start and Stop Program Execution ..104

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 5

3.1 MCL Language ...105
3.1.1 Variables ...105
3.1.2 Variable Types ..105
3.1.3 Variable Locations ...105
3.1.4 Defining Variables ...105
3.1.5 Variable Names ..106
3.1.6 Aliases ..106
3.1.7 Variable Modifiers ...106
3.1.8 Variable Modifier Types ..107
3.1.9 Variable Arrays ...107
3.1.10 Out of Range ..107
3.1.11 Constants ..108
3.1.12 Constant Tables ..108
3.1.14 System Registers ..109
VERSION ...111
SYSSTATUS ..111
SYSCLK ..111
SYSUSTICK ..111
SYSTICK ..111
SYSTEMP2 ...112
DOUTACTION(8) ...113
DOUT(8) ..113
PRIORITYLEVEL ..114
PRIORITYACTIVE ..114
MOTORFLAGS (2) ..114
MOTORPWM (2) ..115
MOTORCURRENT (2) ...115
MOTORTARGETPWM (2) ...115
MOTORVELKP (2) ..115
MOTORVELKI (2) ..115
MOTORVELKD (2) ...115
MOTORVELQPPS (2) ..116
MOTORTARGETSPEED (2) ...116
MOTORDISTANCE (2) ..116
MOTORPOSKP (2) ...116
MOTORPOSKI (2) ..116
MOTORPOSKIMAX (2) ..116
MOTORPOSKD (2) ...117
MOTORPOSMAX (2) ...117
MOTORPOSMIN (2) ...117
MOTORPOSDEADZONE (2) ...117
MOTORTARGETPOS (2) ..117
MOTORACCEL (2) ..117
MOTORDECCEL (2) ..118
MOTORSPEED (2) ...118
MOTORDEFAULTACCEL (2) ..118
MOTORMAXCURRENT (2) ...118
MOTORMINCURRENT (2) ..118
MOTORL (2) ...119
MOTORR (2) ...119
MOTORENCPOS (2) ...119
MOTORENCSPEED (2) ..119
MOTORENCSPEEDS (2) ..119
MOTORENCSTATUS (2) ..120

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 6

MOTORENCPIN (2) ..120
MOTORBUFFER (2) ..120
STREAMTYPE (4) ..120
STREAMRATE (4) ..120
STREAMTIMEOUT (4) ..121
STREAMTICK (4) ...121
STREAMISBUSY (4) ...121
STREAMCOUNT (4) ...121
SIGNALACTIVE (32) ..121
SIGNALTYPE (32) ..122
SIGNALTARGET (32) ..122
SIGNALLOWPASS (32) ...122
SIGNALTIMEOUT (32) ..122
SIGNALTICK (32) ..122
SIGNALMINACTION (32) ..123
SIGNALMAXACTION (32) ...123
SIGNALLOADHOME (32) ..123
SIGNALMIN (32) ...124
SIGNALMAX (32) ..124
SIGNALCENTER (32) ...124
SIGNALDEADBAND (32) ..124
SIGNALPOWEREXP (32) ...124
SIGNALPOWERMIN (32) ...125
SIGNALMODE (32) ..125
SIGNALMINOUT (32) ...125
SIGNALMAXOUT (32) ..125
SIGNALPOSITION (32) ..126
SIGNALPERCENT (32) ..126
SIGNALSPEED (32) ...126
SIGNALSPEEDS (32) ...126
SIGNALCOMMAND (32) ..126

3.2 MCL Math ..127
3.2.1 Math Functions ...127
3.2.2 Number Bases ..127
3.2.3 Math and Operators ..127
3.2.4 Operators ..127
3.2.5 Operator Precedence ...129
3.2.6 Precedence Table ..129
- (Negative) ...129
ABS ..130
SIN, COS ...130
SQR (Square Root) ...131
BIN2BCD ...132
RANDOM ...132
Subtraction (-) ...133
Addition (+) ...133
Multiplication (*) ..133
Division (/) ..133
High Multiplication (**) ...134
Fractional Multiplication (*/) ...134
Mod (//) ..135
MAX ..135
MIN ..135

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 7

DIG ..135
Shift Left (<<) ...136
Shift Right (>>) ...136
AND (&) ..136
OR (|) ...137
Exclusive OR (^) ..137
NAND (&/) ...138
NOR (|/) ..138
NXOR (^/) ...138
Equal (=) ...139
NOT Equal To (<>) ...139
Less Than (<) ..139
Greater Than (>) ..139
Greater Than or Equal To (>=) ...140
AND ..140
OR ..141
XOR ..141
NOT ..142
Floating Point Operators...142
TOINT ...143
TOFLOAT ...143
FABS ...143
FSQRT ...143
FSIN ...144
FCOS ..144
FTAN ...144
FASIN ...144
FACOS ...145
FATAN ...145
FLN ...145
FEXP ...145
FSINH ...146
FCOSH ..146
FTANH ...146
FATANH ...146

3.3 MCL Modifiers ..147
3.3.1 Output Modifiers ...147
3.2.2 Modifiers ...147
DEC ..148
SDEC ..149
HEX ..150
IHEX ...151
REP ...151
REAL ...152
STR ..152

3.4 MCL Commands ...153
3.4.1 Command Reference ...153
BRANCH ..154
CLEAR ...155
DIST ...156
DIST2 ...157
DO - WHILE ...158

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 8

END ..159
FOR...NEXT ..160
GETS ..161
GOSUB ..162
GOTO ..163
IF...THEN...ELSEIF...ELSE...ENDIF ...164
I2COUT..I2COUTNS ...168
I2CIN ..169
MOVE ..170
MOVE2 ..171
PAUSE ...172
POWER ..173
Description ..173
POWER2 ..174
PUTS ...175
READ ..176
REPEAT...UNTIL ..177
RETURN ...178
SPEED ...179
SPEED2 ...180
STOP ...181
WHILE - WEND ...182
WRITE ...183

3.4 Compile Time Directives ..184
3.4.1 Compiler Directives ...184
3.4.2 Conditional Compiling ..184
#IF .. #ENDIF ..184
#IFDEF .. #ENDIF ...185
#IFNDEF .. #ENDIF ...185
#ELSE ...186
#ELSIF ..187
#ELSEIFDEF, #ELSEIFNDEF ..187

ASCII Table ...188
Warranty ...189
Copyrights and Trademarks ..189
Disclaimer ...189
Contacts ..189
Discussion List ..189
Technical Support ...189

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 9

Firmware History

MCP is an actively maintained product. New firmware features will be available from time to
time. The table below outlines key revisions that could affect the version of MCP you currently
own.

Revision Description

1.0.0 • Initial Public Release

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 10

Warnings

There are several warnings that should be noted before getting started. Damage can easily
result if the motor controller is not properly wired. Injury can occur due to inadequate planning
for emergency situations. Any time mechanical movement is involved the potential for injury is
present. The following information can help avoid damage to the motor controller, connected
devices and help reduce the potential for injury.

Disconnecting the negative power terminal is not the proper way to shut
down a motor controller. Any connected I/O to MCP will create a ground loop
and cause damage to the MCP and attached devices.

Brushed DC motors are generators when spun. A robot being pushed or
coasting can create enough voltage to power MCPs logic intermittently
creating an unsafe state. Always stop the motors before powering down MCP.

MCP has a minimum power requirement. Under heavy loads, without a logic
battery and, brownouts can happen. This will cause erratic behavior. A logic
battery should be used in these situations.

Never reverse the main battery wires, MCP will be permanently damaged.

Never disconnect the motors from MCP when under power. Damage will
result.

!

!

!

!

!

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 11

1.0 Introduction
1.0.1 Motor Selection
When selecting a motor controller several factors should be considered. All DC brushed motors
will have two current ratings, maximum stall current and continuous current. The most important
rating is the stall current. Choose a model that can support the stall current of the motor
selected to insure the motor can be driven properly without damage to the motor controller.

1.0.2 Stall Current
A motor at rest is in a stalled condition. This means during start up the motors stall current can
be reached. The loading of the motor will determine how long maximum stall current is required.
A motor that is required to start and stop or change directions rapidly even with a light load may
still require maximum stall current often.

1.0.3 Running Current
The continuous current rating of a motor is the maximum current the motor can run without
overheating and eventually failing. The continuous current rating on most motors is several
times lower than the stall current rating of the motor. The continuous running current of the
motor should not exceed the continuous current rating of the motor to prevent damage to the
motor.

1.0.4 Wire Lengths
Wire lengths to the motors and from the battery should be kept as short as possible. Longer
wires will create increased inductance which will produce undesirable effects such as electrical
noise or increased current and voltage ripple in the DC Link capacitors. The power supply/battery
wires must be as short as possible. They should also be sized appropriately for the amount of
current being drawn. Increased inductance in the power source wires will increase the ripple
current/voltage which can damage the DC Link capacitors on the board and/or causing voltage
spikes over the rated voltage of the motor controller, leading to controller failure.

1.0.5 Run Away
During development of your project caution should be taken to avoid run away conditions.
The motors should be mounted securely and allowed to rotate freely until properly setup. If
the motor is embedded, ensure you have a safe and easy method to remove power from the
controller as a fail safe.

1.0.6 Disconnect
To assure powering off in an emergency, a properly sized switch and/or contactor should be
used. Also because the power may be disconnected at any time there should be a path for
regeneration energy back to the battery even after the power has been disconnected. Use a
power diode with proper ratings to provide a path across the switch/contactor and any fuse.

1.0.7 Encoders
MCP features dual quadrature encoders along with various other encoder options such as
absolute. When wiring encoders make sure the direction of spin is the correct direction relative
to the motor direction. Incorrect encoder connections can cause a run away state. Refer to the
encoder section of this user manual for proper setup. In addition some encoders can cause
excessive noise on the +5VDC rail of the controller. This excessive noise will cause unpredictable
behavior in velocity and position control modes.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 12

1.0.8 Power Sources
A battery or DC power supply can be used as the main power source for the MCP motor
controller. When using a DC power supplies, motor deceleration can cause excessive regenerative
voltages. Typically excessive regenerative voltage must be bleed off using a voltage clamp
circuit. This can also be resolved by limiting motor deceleration. This will reduce the regenerative
voltages.

The MCPs minimum and maximum voltage levels can be set to prevent some of these voltage
spikes, however this will cause the motors to brake when slowing down in an attempt to reduce
the over voltage spikes. This will also limit power output when accelerating motors or when the
load changes to prevent undervoltage conditions.

1.0.9 Primary Power
The MCP can operate as a single power source motor controller. The MCP has a built in DC/DC
switching regulator to power the logic. The DC/DC circuit also supplies a +5VDC rail to power
user devices. When powering external devices from the controller, ensure the maximum current
rating is not exceeded. This can cause MCP to suffer logic brownouts which will cause erratic
behavior.

1.0.10 Secondary Power
The MCPs logic circuits can be powered from a secondary power source. The logic power source
will also power the DC/DC switching regulator. The main and secondary power sources are feed
through a diode circuit to the DC/DC switching regulator circuit. The higher voltage between the
main and secondary power sources will power the DC/DC switching regulator. When the MCP is
under heavy load and the voltage drops below the secondary battery source it will become the
preferential power source for the DC/DC circuit.

1.0.11 Manual Voltage Settings
The minimum and maximum voltage can be set using the Ion Studio software or packet serial/
CANopen commands. Values can be set to any value between the boards minimum and
maximum voltage limits. This is useful when using a power supply without using a voltage
clamp. A minimum voltage just below the power supply voltage (2 to 3v below) will prevent
the power supply voltage from dipping too low under heavy loads. A maximum voltage set just
above the power supply voltage (2 to 3v above) will help protect the power supply and MCP from
regenerative voltage spikes if an external voltage clamp circuit is not being used by braking the
motors to dissipate the over voltage.

1.0.12 Minimum Power
Depending on the model of MCP there is a minimum main power requirement of at least 10V.
Under heavy loads, if the logic is powered from the main battery, brownouts can happen. This
can cause erratic behavior from the controller. If this is the case a separate logic battery should
be used to power the logic of the motor controller.

1.0.13 Easy to use Libraries
Source code and Libraries are available on the Ion Motion Control website. This includes libraries
for Arduino(C++), C# on Windows(.NET) or Linux(Mono) and Python(Raspberry Pi, Linux, OSX,
etc).

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 13

1.1 Hardware Overview
1.1.1 Control Inputs
All digital input are 15V tolerant. The MCP outputs can interface to both 5V and 3.3V logic with
no voltage translation required. The MCP inputs are internally current limited and voltage cliped
to 3.3V. This method also protects the MCP I/O from damage.

The digital output pins can drive up to 3Amps at 40VDC. The CAN interface and RS232 pins
are duplexed. When a duplex function is used the other is set to a high Z state. R/C pulse
input, Analog, TTL and PWM can be generated from any microcontroller such as a Arduino or
Raspberry Pi. The R/C Pulse in pins can be driven by any standard R/C radio receiver. There are
several user configurable options depending on the device used to control the MCP. Ion Studio is
required to configure the MCP from the USB port.

1.1.2 Encoder Inputs
The MCP provides inputs for dual encoders and +5VDC for powering attached encoders. When
connecting the encoder ensure the leading channel of the encoder is connect to Channel A on
the motor controller. Channel A is configured to increment the internal counters. Refer to the
data sheet of the encoder you are using for channel direction. The encoders can be swapped and
paired to either motor channel from Ion Studio.

1.1.3 Main Battery Screw Terminals
The main power input can be from 10VDC to 80VDC depending on the MCP model. The main
battery connections are marked + and - near the main screw terminal. The plus (+) symbol
marks the positive terminal and the negative (-) marks the negative terminal. The main battery
wires should be as short as possible.

Do not reverse main battery wires. Roboclaw will be permanently damaged.

1.1.4 Main Battery Disconnect
The main battery should have a quick disconnect in case of a run away situation. The switch
must be rated to handle the maximum current and voltage from the main battery. This will vary
depending on the type of motors and or power source you are using. A typically solution would
be an inexpensive contactor which can be sourced from sites like Ebay. A power diode rated for
the maximum current the battery will deliver should be placed across the switch/contactor to
provide a path back to the battery when disconnected while the motors are spinning. The diode
will provide a path back to the battery for regenerative power even if the switch is opened.

1.1.5 Motor Screw Terminals
The motor screw terminals are marked with M1A / M1B for channel 1 and M2A / M2B for channel
2. For both motors to turn in the same direction the wiring of one motor should be reversed from
the other in a typical differential drive robot. The motor and battery wires should be as short
as possible. Long wires can increase the inductance and therefore increase potentially harmful
voltage spikes.

!

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 14

1.2 Ion Studio Overview
1.2.1 Ion Studio Setup Utility
The Ion Studio software suite is designed to update firmware, configure I/O functions, configure
MCP modes and create MCL programs. Ion Studio includes an editor for creating MCL programs
to customize the MCP motor controller. The Ion Studio application can be downloaded from the
ionmc.com downloads page.

1.2.2 Device Connection
This first screen shown is the Ion Studio connection screen. From this screen a detected motor
controller must be selected (1). More than one motor controller can be detected. Only one can
connect at a time from the selection box (1).

After the motor controller is connected it's firmware version is checked (2). If a newer firmware
version is available it can be updated by clicking the Update Firmware button (2).

Fields (3,4,5) display current values and status. The fields at the top of the screen (3) show the
current value for each of the monitored parameters and are updated live once a motor controller
is connected. Status indicators (4) indicate the current condition of the monitored parameter.
The bottom of the window includes a duplicate set of abbreviated indicators (5). These indicators
(5) are shown on all screens. Green indicates the status is OK. Yellow is a warning. This typically
means a limit is close to maximum. Red is an error. In most cases this will cause the unit to shut
down the motors.

2
4

1

5

3

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 15

1.2.3 Device Status
Once a connection is established, the device status screen becomes active (1). All status
indicators (3,4) and monitored parameter fields (2) will update to reflect the current status of
the connected motor controller.

When a motor controller is connected the Stop All (5) button becomes active. There is a small
check box to activate the Stop All function by using the space bar on an attached keyboard. This
safety feature is the quickest method to stop all motor movements when using Ion Studio.

1.2.4 Device Status Screen Layout
Label Function Description

1 Window Selection Used to select which settings or testing screen is currently displayed.

2 Monitored Parameters Displays continuously updated status parameters.

3 Status Indicators Displays current warnings and faults.

4 Status Indicators Displays abbreviated status of warnings and faults. Visible at all times.

5 Stop All Stops all motion. Can be activated from keyboard space bar.

4

2

1
3

5

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 16

1.2.5 Status Indicator
The status indicators (4) shown at the bottom of the screen are an abbreviated duplication of the
main status indicators (3) shown on the device status screen.

Label Description

M1OC Motor 1 over current.

M2OC Motor 2 over current.

MBHI Main battery over voltage.

MBLO Main battery under voltage.

LBHI Logic battery over voltage.

LBLO Logic battery under voltage.

TMP1 Temperature 1

TMP2 Optional temperature 2 on some models.

M1DF Motor driver 1 fault. Not applicable to MCP motor controllers.

M2DF Motor driver 2 fault. Not applicable to MCP motor controllers.

ESTP Emergency stop. When active.

M1HM Motor 1 homed or limit switch active. When option in use.

M2HM Motor 2 homed or limit switch active. When option in use.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 17

1.2.6 File Menu

Label Description

New Create a new MCL program file.

Open Open an existing MCL program file.

Save Save an open MCL program file.

Save As Save an open MCL progam file to a new filename.

Exit Disconnects from the unit and close Ion Motion.

1.2.7 Edit Menu

Label Description

Undo Undo last edit in MCL editor.

Redo Redo last edit in MCL editor.

Cut Cut selected text in MCL editor.

Copy Copy selected text in MCL editor.

Paste Paste copied text in MCL editor.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 18

1.2.8 Device Menu

Label Description

Connect CANOpen Bus Connects or Disconnects from a GridConnect CANUSB Bus controller.

Read Settings Reads the settings saved in non-volatile memory on the controller.

Default Settings Loads the factory default settings to the controller.

Save Settings Writes current settings to non-volatile memory on the controller.

Check MCL Compiles and checks the open MCL script for errors.

Download MCL Downloads the MCL script to the controllers flash memory.

Start Script start currently programmed script

Stop Script stop script if active

1.2.9 Help Menu

Label Description

Roboclaw User Manual Open Roboclaw User Manual in PDF reader.

MCP User Manual Open MCP User Manual in PDF reader.

About Ion Motion Version information for Ion Motion.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 19

1.2.10 General Settings Screen
The general settings screen is used to configure the connected motor controller.

(1) Unit Settings
Function Description

Packet Serial Address Set the attached units address for bussed serial.

E-Stop Soft Reset Select E-Stop Reset option. Defaults to hardware reset.

Control Mixing Mixes two motor control channels for differential steering control.

PWM Mode Locked Anti Phase or Sign Magnitude.

Bridge Channels Bridge motor output channel 1 and channel 2.

Encoder input selection Select the input signal pin for the motors encoder.

(2) Voltage Limits
Function Description

Main Battery Set minimum and maximum voltage cut off.

Logic Battery Set minimum and maximum voltage cut off.

1

2

3

4

5

6

7

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 20

(3) Current Limits
Function Description

Main Battery Set minimum and maximum voltage cut off.

Logic Battery Set minimum and maximum voltage cut off.

(4) Priority Levels
Function Description

Priority Level 1 Sets input signal priorities. Level 1 is the master input. Level 2 inputs will
override level 3. Used to time out a control input and move to a backup.

Priority Level 2 Sets input signal priorities. Level 1 is the master input. Level 2 inputs will
override level 3. Used to time out a control input and move to a backup.

Priority Level 3 Sets input signal priorities. Level 1 is the master input. Level 2 inputs will
override level 3. Used to time out a control input and move to a backup.

(5) Scripting
Function Description

Execute Script on Power up Enable to execute a MCL script on power up. It left uncheck any programmed
script will not execute.

Delay Sets run delay. Amount of time before scripts begins to execute after power
up.

(6) Pin Settings
All available pin functions for a connected motor controller will be shown in the pin settings list.
Each pin function shown in the list can have multiple settings. These settings will be displayed in
the input settings (7)

(7) Input Settings
The input settings will change based on the highlighted pin in the pin setting list (6). Each pin
setting is temporairly saved when changing to each pin. After all changes are made, the settings
must be saved from the file menu.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 21

1.2.11 PWM Settings
The PWM settings screen is used testing a connected motor controller. Sliders are provided to
control each motor channel. This screen can also be used to determine the QPPS of attached
encoders.

(1) Graph
Function Description

Grid Displays channel data with 100mS update rate and one second horizontal
divisions.

(2) PWM/Torque Settings
Function Description

L MCP only. Motor Inductance in Henries.

R MCP only. Motor resistance in Ohms.

2

1

3

4

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 22

(3) Control
Function Description

Motor 1 Controls motor 1 duty percentage forward and reverse.

Motor 2 Controls motor 2 duty percentage forward and reverse.

Sync Motors Synchronises Motor 1 and Motor 2 Sliders.

Accel Acceleration rate used when moving the sliders.

Duty Displays the numberic value of the motor slider in 10ths of a Percent (0 to +/-
1000).

(4) Graph Channels
Function Description

Scale Sets vertical scale to fit the range of the specified Channel.

Channels Select data to display on the channel. The channel is graphed in the color
shown. Channel options:

• M1 or M2 Setpoint - User input for channel

• M1 or M2 PWM - Motor PWM output

• M1 or M2 Velocity - Motors Encoder Velocity

• M1 or M2 Position - Motors Encoder Position

• M1 or M2 Current - Motor running current

• Temperature

• Main Battery Voltage

• Logic Battery Voltage

Clear Clears channels graphed line.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 23

1.2.12 Velocity Control Settings
The Velocity settings screen is used to set the encoder and PID settings for speed control. The
screen can also used for testing and plotting.

(1) Graph
Function Description

Grid Displays channel data with 100mS update rate and one second horizontal
divisions.

(2) Velocity Settings
Function Description

Velocity P Proportional setting for PID.

Velocity I Integral setting for PID.

Velocity D Differential setting for PID.

QPPS Maximum speed of motor using encoder counts per second.

L MCP only. Motor Inductance in Henries.

R MCP only. Motor resistance in Ohms.

1

3

2 4

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 24

(3) Control
Function Description

Motor 1 Motor 1 velocity control (0 to +/- maximum motor speed).

Motor 2 Motor 2 velocity control (0 to +/- maximum motor speed).

Sync Motors Synchronises Motor 1 and Motor 2 Sliders.

On Release Will not update new speed until the slider is released.

Accel Acceleration rate used when moving the sliders.

Velocity Shows the numeric value for the sliders current position.

Tune M1 Start motor 1 velocity auto tune.

Level Adjust auto tune 1 values agressiveness. Sllide left for softer control.

Tune M2 Start motor 2 velocity auto tune.

Level Adjust auto tune 2 values agressiveness. Sllide left for softer control.

(4) Graph Channels
Function Description

Scale Sets vertical scale to fit the range of the specified Channel.

Channels Select data to display on the channel. The channel is graphed in the color
shown. Channel options:

• M1 or M2 Setpoint - User input for channel

• M1 or M2 PWM - Motor PWM output

• M1 or M2 Velocity - Motors Encoder Velocity

• M1 or M2 Position - Motors Encoder Position

• M1 or M2 Current - Motor running current

• Temperature

• Main Battery Voltage

• Logic Battery Voltage

Clear Clears channels graphed line.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 25

1.2.13 Position Control Settings
The Position settings screen is used to set the encoder and PID settings for position control. The
screen can also be used for testing and plotting.

(1) Graph
Function Description

Grid Displays channel data with 100mS update rate and one second horizontal
divisions.

3

1 2

4

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 26

(2) Graph Channels
Function Description

Scale Sets vertical scale to fit the range of the specified Channel.

Channels Select data to display on the channel. The channel is graphed in the color
shown. Channel options:

• M1 or M2 Setpoint - User input for channel

• M1 or M2 PWM - Motor PWM output

• M1 or M2 Velocity - Motors Encoder Velocity

• M1 or M2 Position - Motors Encoder Position

• M1 or M2 Current - Motor running current

• Temperature

• Main Battery Voltage

• Logic Battery Voltage

Clear Clears channels graphed line.

(3) Position Settings
Function Description

Velocity P Proportional setting for velocity PID.

Velocity I Integral setting for velocity PID.

Velocity D Differential setting for velocity PID.

QPPS Maximum speed of motor using encoder counts per second.

L MCP only. Motor Inductance in Henries.

R MCP only. Motor resistance in Ohms.

Position P Proportional setting for position PID.

Position I Integral setting for position PID.

Position D Differential setting for position PID.

Max I Maximum integral windup limit.

Deadzone Zero position deadzone. Increases the "stopped" range.

Min Pos Minimum encoder position.

Max Pos Maximum encoder position.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 27

(4) Control
Function Description

Motor 1 Motor 1 velocity control (0 to +/- maximum motor speed).

Motor 2 Motor 2 velocity control (0 to +/- maximum motor speed).

Sync Motors Synchronises Motor 1 and Motor 2 Sliders.

On Release Will not update new speed until the slider is released.

Accel Acceleration rate used when moving the sliders.

Deccel Decceleration rate used when moving the sliders.

Speed Speed to use with slide move.

Position Numeric value of slider motor position.

Autotune Method used. PD = Proportional and Differential. PID = Proportional
Differential and Integral. PIV = Cascaded Velocity PD + Position P.

Tune M1 Start motor 1 velocity auto tune.

Level Adjust auto tune 1 values agressiveness. Sllide left for softer control.

Tune M2 Start motor 2 velocity auto tune.

Level Adjust auto tune 2 values agressiveness. Sllide left for softer control.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 28

1.2.14 MCL Editor
The MCP editor is used to create MCL programs which are then download and ran on the MCP
motor controller.

(1) MCL Editor
The built in program editor is a single document intereface. Mulitple files can be opened at a time
and will be shown as tabs. The highlted tab is the working file.

(2) Control Toolbar
The editor toolbar controls all the fucntions for the MCL editor. Starting from left to right each
function is listed in the following table.

Function Description

New Create new MCL file.

Open Open existing MCL file.

Save Save open MCL file.

Print Print open MCL file.

Cut Standard cut text function.

Copy Standard copy text function.

1

2

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 29

Function Description

Paste Standard paste text function.

Shown Hidden Characters Shows hidden characters that are typically left over from a copy / paste
function.

Highlight Current Line Highlights current selected line.

Show Folding Lines Start motor 1 velocity auto tune.

Undo Undo changes.

Redo Redo changes.

Add

Remove

Goto Bookmarks

Check Check current script for syntax errors.

Upload Uploaded current program to attached motor controller.

Run Script Execute script on attached motor controller.

Stop Script Stop current running script on attached motor controller.

Open Terminal Window Open standard terminal window for communications to attached motor
controller.

Set Text Zoom Set text zoom size.

Find Search current program.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 30

1.3 Firmware Updates
1.3.1 Ion Studio Setup
Download and install the Ion Studio application. Win7 or newer is required. When opening Ion
Studio, it will check for updates and search for a USB Windows Driver to verify installation. If the
USB driver is not found, Ion Studio will install it.

1. Open the Ion Studio application.

2. Apply a reliable power source such as a fully charge battery to power the motor controller.

3. Connect the powered motor controller to a USB port on your computer with Ion Studio already
open.

1.3.2 Firmware Update
Once Ion Studio detects the motor controller it will display the current firmware version in the
Firmware Version field (1). Each time Ion Studio is started it will check for a new version of its
self which will always include new firmware. If an update is required Ion Studio will download the
latest version and display it in the firmware available field (2).

1
2
3

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 31

1. When a new version of firmware is shown click the update button (3) to start the process.

2. Ion Studio will begin to update the firmware. While the firmware update is in progress the
onboard LEDs will begin to flash. The onboard flash memory will first be erased. It is important
power is not lost during this process or the motor controller will no longer function. There is no
recovery if power fails during the erase process.

3. Once the firmware update is complete the motor controller will reset. Click the "Connect
Selected Unit" button to re-connect.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 32

1.4 DC Power Settings
1.4.1 Automatic Battery Detection on Startup
Auto detect will sample the main battery voltage on power up or after a reset. All Lipo batteries,
depending on cell count will have a minimum and maximum safe voltage range. The attached
battery must be within this acceptable voltage range to be correctly detected. Undercharged or
overcharged batteries will cause false readings and the MCP will not properly protect the battery.
If the automatic battery detection mode is enabled using the on-board buttons, the Stat2 LED
will blink to indicate the battery cell count that was detected. Each blink indicates the number
of LIPO cells detected. When automatic battery detection is used the number of cells detected
should be confirmed on power up.

Undercharged or overcharged batteries can cause an incorrect auto detection
voltage.

1.4.2 Manual Voltage Settings
The minimum and maximum voltage can be set using the Ion Studio application or packet serial
commands. Values can be set to any value between the boards minimum and maximum voltage
limits. This feature can be useful when using a power supply to power the MCP. A minimum
voltage just below the power supply voltage of 2VDC will prevent the power supply voltage
from dipping too low under heavy load. A maximum voltage set to just above the power supply
voltage 2VDC will help protect the power supply from regenerative voltage spikes if an external
voltage clamp circuit is not being used. However when the minimum or maximum voltages are
reached MCP will go into either braking or freewheel mode. This feature will only help to protect
a power supply not correct regenerative voltages issues. A voltage clamping circuit is required to
correct any regenerative voltage issues when a power supply is used as the main power source.
See Voltage Clamping.

!

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 33

1.5 Wiring
1.5.1 Basic Wiring
The MCP has many control modes and each mode may have unique wiring requirements
to ensure safe and reliable operation. The diagram below illustrates a very basic wiring
configuration used in a small motor system where safety concerns are minimal. This is the most
basic wiring configuration possible. Any wiring of MCP controllers should include a main battery
shut off switch, even when safety concerns are minimal. Never underestimate a motorized
system in an uncontrolled condition.

In addition, the MCP is a regenerative motor controller. If the motors are moved when the
system is off, it can cause potential erratic behavior due to the regenerative voltages powering
the system. A return path to the battery should always be supplied if the system can move
when main power is disconnected or a fuse is blown by adding a power diode across the shut off
switch.

Never disconnect the negative battery lead before disconnecting the positive!

M1A

M1B

M2B

M2A

B-

B+

S2

MCP

Motor 1

Motor 2

Channel 1

Channel 2

R/C
Receiver

S1

!

+-

Main
DC Power

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 34

1.5.2 Wiring Safety
In all system with movement, safety is a concern. The wiring diagram below illustrates a properly
wired system with several safety features. An external main power cut off is required for safety.
When the RoboClaw is switched off or the fuse is blown, a high current diode (D1) is required
to create a return path to the battery for any regenerative voltages. The use of a pre-charge
resistor (R1) is required to avoid high inrush currents and arcing when using high voltages. A
pre-charge resistor (R1) could be 220ohm, 1/2Watt for a MCP266 60VDC motor controller with a
pre-charge time of about 200 milliseconds and an in-rush current of less than 1 amp.

1.5.3 Wiring Closed Loop Mode
A wide range of inputs are supported including quadrature encoders, pulse width encoders,
analog absolute encoders and hall effect sensors for closed loop operation. See the Encoder
section of this manual for additional information.

Encoder 1

A
B

GND
+5V

EN1 A
EN1 B

5VDC
GROUND

Encoder 2

A
B

GND
+5V

EN2 A
EN2 B

5VDC
GROUND

M1A

M1B

M2B

M2A

B-

B+

+-

RX0

TX0

+5V

GROUND

MCP

Motor 1

Motor 2

UART TX

UART RX

5VDC

GROUND

MCU
R1

F1

D1

Main
DC Power

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 35

1.5.4 Backup Power
An optional backup battery is supported. Under heavy loads the main power can suffer voltage
drops, causing potential logic brown outs if the voltage dips below approximately 8VDC, which
may result in uncontrolled behavior. A separate power source for the motor controllers logic
circuits, can remedy potential problems from main power voltage drops. The backup battery
maximum input voltage is 15VDC with a minimum input voltage of 6VDC. The 5VDC regulated
user output is supplied by the secondary backup battery if supplied. The mAh of the backup
battery should be determined based on the load of attached devices powered by the regulated
5VDC user output. The MCP controller will automatically use the appropriate power source
depending on the current voltage of either power source.

+-

Motor 1

Motor 2

R1

F1 D1

M1A

M1B

M2B

M2A

B-

B+

MCP
F2

+-

Backup
DC Power

SW1

SW2

GND

LB+

Main
DC Power

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 36

1.5.5 Limit, Home and E-Stop Wiring
Digital or Analog inputs can be used for Limit, Home or E-Stop signalling. A pull-up resistor to
5VDC or 3.3VDC should be used as shown. The circuit below shows a NO (normally open) style
switch. Connect the NO to the specific input pin and the COM end to a ground shared with the
MCP.

Motor 1

Motor 2

M1A

M1B

M2B

M2A

MCP

+-

R1

F1 D1

B-

B+
SW1

S5

5+

R3
SW3

GND

S4

5+

R2
SW2

GND

Main
DC Power

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 37

ERR

STAT2

STAT1

1.6 Status LEDs

1.6.1 Status and Error LEDs
MCP includes 3 LEDs to indicate status. Two green status LEDs labeled STAT1 and STAT2 and one
red error LED labeled ERR. When the motor controller is first powered on all 3 LEDs should blink
briefly to indicate all LEDs are functional.

The LEDs will behave differently depending on the mode. During normal operation the status 1
LED will remain on continuously or blink when data is received in RC Mode or Serial Modes. The
status 2 LED will light when either drive stage is active.

1.6.2 Message Types
There are 3 types of message RoboClaw can indicate. The first type is a fault. When a fault
occurs, both motor channel outputs will be disabled and RoboClaw will stop any further actions
until the unit is reset, or in the case of non-latching E-Stops, the fault state is cleared. The
second message type is a warning. When a warnings occurs both motor channel outputs will
be controlled automatically depending on the warning condition. As an example if an over
temperature of 85c is reach RoboClaw will reduce the maximum allowed current until a safe
temperature is reached. The final message type is a notice. Currently there is only one notice
indicated.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 38

1.6.3 LED Blink Sequences
When a warning or fault occurs RoboClaw will use the LEDs to blink a sequence. The below table
details each sequence and the cause.

LED Status Condition Type Description

All three LEDs lit. E-Stop Error Motors are stopped by braking.

Error LED lit while condition
is active.

Over 85c Temperature Warning Motor current limit is recalculated based on
temperature.

Error LED blinks once with
short delay. Other LEDs off.

Over 100c Temperature Error Motors freewheel while condition exist.

Error LED lit while condition
is active.

Over Current Warning Motor power is automatically limited.

Error LED blinking three
times.

Logic Battery High Error Motors freewheel until reset.

Error LED blinking four times. Logic Battery Low Error Motors freewheel until reset.

Error LED blinking five times. Main Battery High Error Motors are stopped by braking until reset.

Error LED lit while condition
is active.

Main Battery High Warning Motors are stopped by braking while
condition exist.

Error LED lit while condition
is active.

Main Battery Low Warning Motors freewheel while condition exist.

STAT1 and STAT2 LEDs
cycling back and forth after
power up.

MCP is waiting for new
firmware.

Notice MCP is in boot mode. Use Ion Studio setup
utility to update firmware which will clear
the notice.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 39

1.7 Regenerative Voltage Clamping
1.7.1 Voltage Clamp
When using power supplies regenerative voltage spikes will need to be dissipated. A power
resistor in the range of 10 Ohms at 50 watts for small motors and down to 1 Ohms or lower
for larger motors may be required. 50 watts will likely cover most situations however smaller
wattage resistor may also work depending on the application. The regenerative energy will be
dissipated as heat.

1.7.2 Simple Voltage Clamp Setup
When using DOUT pins as a direct voltage clamp, the total power dissipated cannot exceed the
3A at 40VDC limit of the DOUT pins. The DOUT pins can be double up to increase the current
capacity. The maximum rate voltage of 40VDC will not change. To use the DOUT pins as a direct
voltage clamp set the specific DOUT pin action to "Over Voltage" to activate on an Over Voltage
using Ion Studio.

Motor 1

M1A

M1B

Motor 2

M2B

M2A

MCP

+-

R1

F1 D1

B-

B+
SW1

DOUT

B+

R2

Main
DC Power

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 40

1.7.3 MOSFET Voltage Clamp Setup
When using DOUT to drive an N-Channel MOSFET set the specific DOUT pin action to "Over
Voltage" and check the "inverted" option in Ion Studio.

1.7.4 MOSFET Voltage Clamp Wiring
Alternatively a solid state switch (Q1) can be used along with the power resistor(R3) for higher
current requirements. Wire the circuit as shown below. Q1 should be a 5v logic level N-Channel
MOSFET. An example would be the FQP30N06L. It is rated to a maximum voltage of 60VDC. You
may need to change the MOSFET used based on the application. The gate of the MOSFET must
be connected to a DOUT pin along with a 5VDC pull-up resistor.

Motor 1

M1A

M1B

Motor 2

M2B

M2A

MCP

+-

R1

F1 D1

B-

B+
SW1

S

D

G
DOUT

B- B+

R2

R3

Q1

Main
DC Power

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 41

1.7.5 Voltage Clamp Setup and Testing
The circuits shown will need to be modified for each application to make sure it properly
dissipates the regenerative voltages. Testing should consist of running the motor up to 25% of
its speed and then quickly slowing down without braking or E-Stop while checking the voltage
spike generated. Repeat, increasing the speed and power by 5% each time and checking the
voltage spike again. Repeat this process until 100% power is achieved or excessive over voltage
is detected. If over voltages are not clamped within requirements, either a lower Ohm resistor
will be required or additional DC Link capacitance will need to be added across B+ and B-.
Adding additional DC Link capacitance increases the amount of time the power resistor will have
to dissipate the regenerated power.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 42

1.8 Bridged Channel Mode
1.8.1 Bridging Channels
The dual channels on an MCP can be bridged to run as one channel, effectively doubling its
current capability for one motor. The MCP can be damaged if it is not set to bridged channel
mode before wiring up the single motor as show. Download and install Ion Studio setup utility.
Connect the motor controller to the computer using an available USB port. Run Ion Studio and
in general settings check the option to bridge channels. Then click “Save Settings” in the device
menu. When operating in bridged channel mode the total peak current output is combined from
both channels. The peak current run time is dependant on heat build up. Adequate cooling must
be maintained.

1.8.2 Bridged Channel Wiring
When bridged channel mode is active the internal driver scheme for the output stage is modified.
The output leads must be wired correctly or damage will result.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 43

1.9 I/O Configuration
1.9.1 I/O Types
There are several I/O types available on the MCP. This includes Digital Input, Pulse Inputs,
Analog, CAN, TTL Serial, RS-232 and USB. The I/O types can be set using Ion Studio. Under the
general settings screen all available pin settings will be listed for the connected motor controller.
Refer to the data sheet for pin locations of the specific model of motor controller.

1.9.2 Pin Settings
Pins can have more than one function. When a pin is selected from the pin settings list (1)
the available functions for that pin will be displayed under the mode drop down (3) shown
under input settings (2). The mode drop down menu (3) enables the desired function for the
selected pin. Once the mode is set the available configuration options can be adjusted. Some
configuration options may not be applicable to the selected mode and will be grayed out.

Once all changes are made the settings can be saved to the connected MCP by choosing "Menu-
> Save Settings". In addition to read the settings of a connected MCP choose "Menu-> Read
Settings".

1

3

2

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 44

1.9.3 USB
The USB has two modes and a timeout function. The USB can be access from an MCL program
with a priority timeout. To configure the USB control settings select USB from the pin settings
list.

Modes
Pins can have multiple functions. The mode drop down menu under input settings is used to set
the main fuction of the selected pin from the pin settings list. After the mode is set the available
settings for that mode will be active and can be set. If the setting is not applicable to the
selected mode it will be grayed out.

• Packet Serial - Used to communicate with the MCP firmware. If set to different mode Packet
Serial can be forced active by setting the RTS signal of the Virtual Serial port.

• MCL Serial - MCL Serial is used to give an MCL script access to USB. Can be used with the CDC
ACM virtual comport over the USB connection.

Priority Timeout - Time in milliseconds new data must be received before timing out. As
long as any data is received, even if it is not a valid packet the timeout period will be reset.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 45

1.9.4 CANOpen
To configure the CANopen control settings select the CAN pins from the pin settings list. Then
select CANopen from the mode drop down menu to enable the CAN buss feature.

Priority Timeout - Disabled, CANOpen functions will execute at all priority levels.

Rate - Bit rate for CANopen. Show in bits per secopnd. Default value is 250000. Supported
bit rates are: 1000000, 800000, 500000, 250000, 125000, 100000, 50000, 20000 and
10000

Node ID - Sets teh Node ID for the CANOpen Interface (valid values 1 to 127).

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 46

1.9.5 RS-232
The RS-232 port is hardware level converted. It can be directly interfaced with any standard RS-
232 equipment. CANopen pins are typically shared and when not in use are set to a high Z state.
To configure the RS-232 control settings select RS-232 from the pin settings list.

Modes
Pins can have multiple functions. The mode drop down menu under input settings is used to set
the main fuction of the selected pin from the pin settings list. After the mode is set the available
settings for that mode will be active and can be set. If the setting is not applicable to the
selected mode it will be grayed out.

• Packet Serial - Mode to communicate to the MCP firmware. Packet Serial mode can be forced

active by setting the RTS signal of the Virtual Serial port.

Priority Timeout - Time in milliseconds new data must be received before timing out. As
long as any data is received, even if it is not a valid packet the timeout period will be reset.

Rate - The bit rate to communicate at. Default value is 115200. Valid Range is 300 to
1000000 bps.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 47

• MCL Serial - Give an MCL script access to the UART. Can be used with the CDC ACM virtual
comport over the USB connection.

Rate - The bit rate to communicate at. Default value is 115200. Valid Range is 300 to
1000000 bps.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 48

1.9.6 I2C
Enable the I2C bus control settings. MCP supports one I2C master bus which can be used for
controlling sensors and memory I2C slave devices. I2C is only accessable from a user MCL script.

Rate - I2C Bit Rate used to communicated to slave devices. Valid bit rates for I2C Master is
100000, 400000 and 1000000.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 49

1.9.7 TTL UARTx
Configure UARTx control settings. TTL UARTs are buffered. There are a total of three TTL UARTS
available.

Modes
Pins can have multiple functions. The mode drop down menu under input settings is used to set
the main fuction of the selected pin from the pin settings list. After the mode is set the available
settings for that mode will be active and can be set. If the setting is not applicable to the
selected mode it will be grayed out.

• Packet Serial - Mode to communicate to the MCP firmware. Packet Serial mode can be forced

active by setting the RTS signal of the Virtual Serial port.

Priority Timeout - Time in milliseconds new data must be received before timing out. As
long as any data is received, even if it is not a valid packet the timeout period will be reset.

Rate - The bit rate to communicate at. Default value is 115200. Valid Range is 300 to
1000000 bps.

Multi Unit Mode - Sets TTL output into open-drain mode, allowing multiple MCP units to use
the same RX connection to the external controller. An external pullup resistor (recommend
values 1k to 10k) should be added to the external controllers RX pin.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 50

• MCL Serial - Give an MCL script access to the UART. Can be used with the CDC ACM virtual
comport over the USB connection.

Rate - The bit rate to communicate at. Default value is 115200. Valid Range is 300 to
1000000 bps.

Multi Unit Mode - Sets TTL output into open-drain mode, allowing multiple MCP units to use
the same RX connection to the external controller. An external pullup resistor (recommend
values 1k to 10k) should be added to the external controllers RX pin.

• Disabled Mode - The MCP units have multiple functions on most I/O pins. To use the DIN
functions on UART2 and or UART3 pins that are multiplexed need to be disabled. The DIN pins
for UART2 and 3 are marked with TX2/RX2 and TX3/RX3 respectively. If the UART is not set tpo
disabled, the multiplexed DIN pins functions will be disabled.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 51

1.9.8 Digital, Analog, Pulsed and Encoder Inputs
Pins with a DINx can be configured as digital inputs. Pins with ANx can be configure as analog
inputs. Pins with a Px can be configred as pulse inputs. Pins with an ENCx are can be configured
as encoder inputs. The encoder inputs must be grouped. ENC1A and ENC1B are used for encoder
one which corresponds to motor channel one. Not all pins are capable of all three functions. The
pin settings list will display the connected motor controllers available pins and fuctions.

Input Settings
All configuration options shown in the Input Settings section apply to Digital, Analog and
Pulse inputs. The settings will reset each time the mode is changed. To read the settings of a
connected MCP choose "Menu-> Read Settings". Once all changes are made the settings can be
saved to the connected MCP by choosing "Menu-> Save Settings".

Priority Timeout - Only applies to pulsed input pins. The timeout period is set in
milliseconds. The selected input will wait for a signal or pin state change for the specified
amount of time. If no signal or state change is detected the next priority level pin will be
selected. This system is only active if a motor is controlled by the input signal.

Min, Center and Max - The Min, Center and Max values are used to calculate the Position
value of an input signal. Unlike Analog inputs, Digital inputs only have 2 inherant values, 0
and 4095. However by using the digital low pass filter, a PWM input signal on the Digital pin
can be converted into a value from 0 to 4095. The resolution and update rate will depend on
the PWM frequency and the low pass filter sampling rate.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 52

Low Pass - Sets the low pass digital filter for the input. The digital filter takes a running
average of 2^N samples at 10khz. By default the low pass filter is disabled on digital inputs.
To use the digital input with a PWM signal (without using pulse measurement) the low pass
filter must be enabled. Note this method of reading a PWM signal supports PWM frequecnies
up to 5khz (half the sample rate). Frequencies higher than that should either use analog
inputs with an external filter or pulse width measurement. To determine the best sample size
divide 10000 by the update rate of the input signal provided. If udpated readings of 20 times
a second are required, 500 samples per reading will be the maximum. The closest 2^N value
less than or equal to 200 is 256. The low pass setting would be 8.

Deadband - Specify the input signal range around center that will be considered equal to 0.
For example if an analog joystick is attached to the input, the spring that holds the joystick
centered may not always return back to exactly 0. Deadband allows you to set a window that
will be considered 0.

Power Exp - Add an exponential response curve to the input signal. Positive values increase
sensitivity close to the center point while negative values increase input sensitivity near the
Min and Max limits.

Power Min - Adds a +/- offset to the input signal around the center setting. Input values
greater than or less than zero (as calculated using the deadband) will have the Power Min
offset added / subtracted from the input. For example, if a motor needs a minimum of 5%
duty to start moving an offset using Power Min can be added to always start the motor
properly and increase the input range. If a value of 5 is choosen the duty for the motor at
stop will be 0 and when movement is intiallized will jump to 5% duty to start the motors
movement.

Load Home - The value that is set to the controlled motors encoder register if a load home
action is triggered by the selected input.

Min Action - Drop down list of automated actions that can be performed if the input signal is
less than or equal to the set Min value from Min, Center and Max.

Max Action - Drop down list of automated actions that can be performed if the input signal
is less than or equal to the set Min value from Min, Center and Max.

Min Actions and Max Actions
The Min and Max actions are preset automated functions that can be perform if the input values
of the selected pin are equal to or less than the value set for Min and greater than the value set
for Max.

M1/M2 Safe Stop - When triggered will stop the controlled motor at the maximum
decceleration rate supported. The motor will remain stopped until the input signal comes
back to Center

M1/M2 Off - The controlled motor will turn off (coast to a stop). Motor will be prevented
from new motion until the action is cleared.

M1/M2 Reverse - The controlled motors direction will be reversed(at the currently set accel
/ deccel rate)

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 53

M1/M2 Forward Limit - The controlled motor will be stopped at the maximum decceleration
rate allowed. After stopped the motor will be prevented from moving forward, however
reverse commands will be allowed until the action is cleared.

M1/M2 Backward Limit - The controlled motor will be stopped at the maximum
decceleration rate allowed. After stopped the motor will be prevented from moving backward,
however forward commands will be allowed until the action is cleared.

M1/M2 Load Home - Load a specified value to motors encoder register. Allows reset of non
0 values.

Run Script - Start running the programmed user script.

Stop Script - Stop user script

Reset Script - Reset user script to begining, keep running if already running.

E-Stop - Stop both motors at maximum supported deceleration rate.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 54

1.9.9 DOUTx
The DOUTx pins are sinking only. They can be used to drive loads such as contactors or braking sys-
tems. Configure the MCP digital output pins.

Mode
Sets the action that will trigger the output pin. MCL scripts can override the set action

Motor1 On - Turns the selected DOUTx pin on when motor channel 1 turns on.

Motor2 On - Turns the selected DOUTx pin on when motor channel 2 turns on.

Motors On - Turns the selected DOUTx pin on when either motor channel turns on.

Motor 1 Reverse - Turns the selected DOUTx pin on when motor channel 1 reverses
direction.

Motor 1 Reverse - Turns the selected DOUTx pin on when motor channel 1 reverses
direction.

Motors Reverse - Turns the selected DOUTx pin on when either motor channel reverses
direction.

Over Voltage - Turns the selected DOUTx pin on when the motor controller has an over
voltage condition.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 55

Over Temperature - Turns the selected DOUTx pin on when the motor controller has an
over temperature condition.

Status1 LED - Turns the selected DOUTx pin on when the led goes active. Can be used to
add remotely located duplicate LEDs.

Status2 LED - Turns the selected DOUTx pin on when the led goes active. Can be used to
add remotely located duplicate LEDs.

Error LED - Turns the selected DOUTx pin on when the led goes active. Can be used to add
remotely located duplicate LEDs.

Invert
The DOUTx is normally off (open). The inverted setting will turn the DOUTx pin on (closed) on
power up and off (open) when active.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 56

1.9.10 Signal Graph
The signal graph shows how the input signal is modified by the input settings. If no settings are
changed and the Min, Center and Max ranges are set to their defaults a straight slope will be
shown. The graph below shows the default signal slope.

Deadband
If an R/C signal is used to control a motor and deadband is added so the R/C controller stick
doesn't need to be exactly centered to stop the controlled motor. The graph would show an
horizontal in the middle of the graph at the 0 point. The lines would slop up and down an angle
like normal after the shown zero area. The size of the horizontal line at the 0 point will changes it
length based on how much deadband is set.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 57

Power Minimum
In another example, some motors may need an offset in the minimum power to start rotating.
After adjusting the Power Min to the required minimum value to start rotating the graph would
show a vertical offset of the sloped lines above and below the center / zero point.

Power Exponential
In the last example, when the Power Exp is adjusted the graph will show a curve in or out giving
more resolution at the lower input values or at the higher input values depending on whether the
Power Exp setting is positive or negative.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 58

1.9.11 Command Settings
The signal graph shows how the input signal is modified by the input settings. If no settings are
changed and the Min, Center and Max ranges range and set to their defaults a straight slope will
be shown.

Modes
Inputs can be used to control one or both motors by duty cycle, velocity control or position
control depending on the PID settings for that particular motor. Each input has its base
value (Position), however inputs also have other inherant states. The current percentage of the
set range, the instantaneous speed and the average speed. The command used to control the
selected motor(s) can be any of these values. For example when using a jog dial with a
quadrature encoder input the instant or average speed of the input signal (the Jog dial turn
speed) can be used to control the speed of the motor(s).

Min and Max
The Min and Max command range sets the scale of the motor control singal. For example the
default settings of +/- 32,767 scale the input signal so its full range will output the full range of
the motors duty cycle, velocity or position ranges. If the application requires the motor
not run at 100% power or full speed the scale can be reduced, individually, in the forward
in the reverse directions by reducing the Command range Min and Max.

Control Motor 1 and 2
Enables the input singal to control the specified motor(s).

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 59

Match Input
The Match Input option calculates the input range with center being 0 and sets the Min and Max
value range to match it. An example is Min was 1000, Center is 2000 and Max is 3000 it would
set the command range Min / max to -1000 and +1000

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 60

1.9.12 Status
The status displays the current input signal parameters. The status display is updated
continiously and can be used to verify the input signal.

Command
Displays the scaled command value based on the Command Min,Max range and Mode

Position
Displays the input signals value after ranging, filtering, deadband, Power Exp and Power Min
offset have been calciulated.

Percent
Displays the command percent scaled to +/- 32,767

Instantaneous Speed
Displays the most recent speed reading (updated 625 times a second) of the input

Average Speed
Displays the 1 second running average speed of the input signal.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 61

2.0 Communications
2.0.1 Communication and Input Types
The MCP offers several methods of communications. User generated MCL programs can access
each type. During initial development USB is best suited due to its simplicity and speed. USB is
not immune to electrically noisy environments and RS-232 serial or CANopen are recommended
for the final application.

• USB Packet Serial - A USB connection can be used to control the MCP controller an interface
to an MCL program. Ion Studio uses packet serial communications over USB to configure the
controller.

• RS-232 Packet Serial - (+/- 12v) For high noise environments RS-232 communications may be
used. RS-232 has a robust signaling voltage which prevents almost all forms of electrical noise
from interfering with communications.

• TTL Packet Serial - (0v to 5v) Same as RS-232 without the level translator. This allows easy
integration with devices such as the Arduino or Raspberry-Pi microcontrollers.

• CANopen - Open industry standard that allows multiple types of controls to be synchronously
controlled from a single master controller.

• Digital Signals - Used for inputting limit and/or home switches as well as custom uses in user
generated MCL programs.

• Analog Signals - Used for inputting analog voltages from many types of sensors for use as
position encoders or in user generated MCL programs.

• PWM Signals - Inputs for different sensor types including magnetic linear and rotatory. Sensor
can be used for position and velocity control or in user generated MCL programs.

• RC Pulse Signals - Control inputs from a R/C Radio receiver. Can be used for motor control or in
user generated MCL programs.

• Quadrature Pulse Signals - Used for velocity and position control as well as for jog control or
user generated MCL programs.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 62

2.1 USB Communications
2.1.1 USB Connection
A USB connection can be used to control the MCP. The USB connection use packet serial
commands. The USB connection can also interface to a running MCL script. The MCP can
communicate over USB using packet serial commands at any time.

2.1.2 USB Power
The MCP USB port is self powered. This means it receives no power from the USB cable. The
controller must be externally powered to function.

2.1.3 USB Comport and Baud rate
The MCP will be detected as a CDC Virtual Comport. When connected to a Windows PC, a
driver must be installed. The driver is available for download from our website. On Linux or OSX
the MCP will be automatically detected as a virtual comport and an appropriate driver will be
automatically loaded.

Unlike a physical serial port the USB CDC Virtual Comport does not need a baud rate to be set
correctly. It will always communicate at the fastest speed the master and slave device can reach.
This will typically be around 1mb/s.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 63

2.2 Packet Serial Mode
2.2.1 Packet Serial Communications
Packet serial is a buffered bidirectional serial mode. Sophisticated instructions can be sent to the
controller. The basic command structures consist of an address byte, command byte, data bytes
and a CRC16 16bit checksum. The amount of data each command will send or receive can vary.

2.2.2 Address
Packet serial requires a unique address. With up to 8 addresses available you can control up to 8
motor controllers on the same TTL serial port when properly wired. Addresses range form 0x80
to 0x87

2.2.3 Packet Serial Baud Rate
When in serial mode or packet serial mode the baud rate can be changed to any baud rate
between 300 and 1000000bps

2.2.4 Packet Timeout
When sending a packet to the MCP, if there is a delay longer than 10ms between bytes being
received in a packet, the MCP will discard the entire packet. This will allow the packet buffer
to be cleared by simply adding a minimum 10ms delay before sending a new packet command
in the case of a communications error. This can usually be accommodated by having a 10ms
timeout when waiting for a reply from the MCP. If the reply times out the packet buffer will have
been cleared automatically.

2.2.5 Packet Acknowledgement
MCP will send an acknowledgment byte on write only packet commands that are valid. The value
sent back is 0xFF. If the packet was not valid for any reason no acknowledgement will be sent
back.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 64

2.2.6 CRC16 Checksum Calculation
MCP uses a CRC(Cyclic Redundancy Check) to validate each packet it receives. This is more
complex than a simple checksum but prevents errors that could otherwise cause unexpected
actions to execute on the controller.

The CRC can be calculated using the following code(example in C):

//Calculates CRC16 of nBytes of data in byte array message
unsigned int crc16(unsigned char *packet, int nBytes) {
 for (int byte = 0; byte < nBytes; byte++) {
 crc = crc ^ ((unsigned int)packet[byte] << 8);
 for (unsigned char bit = 0; bit < 8; bit++) {
 if (crc & 0x8000) {
 crc = (crc << 1) ^ 0x1021;
 } else {
 crc = crc << 1;
 }
 }
 }
 return crc;
}

2.2.7 CRC16 Checksum Calculation for Received data
The CRC16 calculation can also be used to validate data sent from the MCP. The CRC16 value
should be calculated using the sent Address and Command byte as well as all the data received
back from the Roboclaw except the two CRC16 bytes. The value calculated will match the CRC16
sent by the Roboclaw if there are no errors in the data sent or received.

2.2.8 Easy to use Libraries
Source code and Libraries are available on the Ion Motion Control website that already handle
the complexities of using packet serial with the MCP. Libraries are available for Arduino(C++),
C# on Windows(.NET) or Linux(Mono) and Python(Raspberry Pi, Linux, OSX, etc) as well as a
LabView Instrument Driver.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 65

2.2.9 Handling values larger than a byte
Many Packet Serial commands require values larger than a byte can hold. In order to send or
receive those values they need to be broken up into 2 or more bytes. There are two ways this
can be done, high byte first or low byte first. Roboclaw expects the high byte first. All command
arguments and values are either single bytes, words (2 bytes) or longs (4 bytes). All arguments
and values are integers (signed or unsigned). No floating point values (numbers with decimal
places) are used in Packet Serial commands.

To convert a 32bit value into 4 bytes you just need to shift the bits around:

unsigned char byte3 = MyLongValue>>24; //High byte
unsigned char byte2 = MyLongValue>>16;
unsigned char byte1 = MyLongValue>>8;
unsigned char byte0 = MyLongValue; //Low byte

The same applies to 16bit values:

unsigned char byte1 = MyWordValue>>8; //High byte
unsigned char byte0 = MyWordValue; //Low byte

The oposite can also be done. Convert several bytes into a 16bit or 32bit value:

unsigned long MyLongValue = byte3<<24 | byte2<<16 | byte1<<8 | byte0;

unsigned int MyWordValue = byte1<<8 | byte0;

Packet Serial commands, when a value must be broken into multiple bytes or combined from
multiple bytes it will be indicated either by (2 bytes) or (4 bytes).

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 66

2.2.10 Packet Serial Wiring
In packet serial mode the MCP can transmit and receive serial data. A microcontroller with a
UART is recommended. The UART will buffer the data received from controller. When a request
for data is made to the MCP the return data will have at least a 1ms delay after the command
is received if the baudrate is set at or below 38400. This will allow slower processors and
processors without UARTs to communicate with the controller.

The diagram below shows the main battery as the only power source. Make sure the LB jumper
is set correctly. The 5VDC shown connected is only required if your MCU needs a power source.
This is the BEC feature of the MCP. If the MCU has its own power source do not connect the
5VDC.

M1A

M1B

M2B

M2A

B -

B +

+-

S1 Signal

S2 Signal

5VDC

UART TX

UART RX

GROUND
5VDC

GROUND

MCU

MCP

Motor 1

Motor 2

D1

SW1

Main
DC Power

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 67

2.2.11 Multi-Unit Packet Serial Wiring
In packet serial mode up to eight MCP units can be controlled from a single serial port. The
wiring diaghram below illustrates how this is done. Each controller must have multi-unit mode
enabled and have a unique packet serial address set (see General Settings in IonMotion). Wire
the S1 and S2 pins directly to the MCU TX and RX pins. Install a pullup resistor (R1) on the MCU
RX pin. A 1K to 4.7K resistor value is recommended.

S1 Signal

S2 Signal

5VDC
GROUND

MCP 2

S1 Signal

S2 Signal

5VDC
GROUND

MCP 3

S1 Signal

S2 Signal

5VDC
GROUND

MCP 1

UART TX

UART RX

5VDC
GROUND

MCU

R1

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 68

2.2.12 Commands 0 - 7 Compatibility Commands
The following commands are used in packet serial mode. The command syntax is the same for
commands 0 thru 7:

 Send: Address, Command, ByteValue, CRC16
 Receive: [0xFF]

Command Description

0 Drive Forward Motor 1

1 Drive Backwards Motor 1

2 Set Main Voltage Minimum

3 Set Main Voltage Maximum

4 Drive Forward Motor 2

5 Drive Backwards Motor 2

6 Drive Motor 1 (7 Bit)

7 Drive Motor 2 (7 Bit)

8 Drive Forward Mixed Mode

9 Drive Backwards Mixed Mode

10 Turn Right Mixed Mode

11 Turn Left Mixed Mode

12 Drive Forward or Backward (7 bit)

13 Turn Left or Right (7 Bit)

0 - Drive Forward M1
Drive motor 1 forward. Valid data range is 0 - 127. A value of 127 = full speed forward, 64 =
about half speed forward and 0 = full stop.

 Send: [Address, 0, Value, CRC(2 bytes)]
 Receive: [0xFF]

1 - Drive Backwards M1
Drive motor 1 backwards. Valid data range is 0 - 127. A value of 127 full speed backwards, 64 =
about half speed backward and 0 = full stop.

 Send: [Address, 1, Value, CRC(2 bytes)]
 Receive: [0xFF]

2 - Set Minimum Main Voltage (Command 57 Preferred)

Sets main battery (B- / B+) minimum voltage level. If the battery voltages drops below the set
voltage level RoboClaw will stop driving the motors. The voltage is set in .2 volt increments. A
value of 0 sets the minimum value allowed which is 6V. The valid data range is 0 - 140 (6V -
34V). The formula for calculating the voltage is: (Desired Volts - 6) x 5 = Value. Examples of
valid values are 6V = 0, 8V = 10 and 11V = 25.

 Send: [Address, 2, Value, CRC(2 bytes)]
 Receive: [0xFF]

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 69

3 - Set Maximum Main Voltage (Command 57 Preferred)
Sets main battery (B- / B+) maximum voltage level. The valid data range is 30 - 175 (6V -
34V). During regenerative breaking a back voltage is applied to charge the battery. When using
a power supply, by setting the maximum voltage level, RoboClaw will, before exceeding it, go
into hard braking mode until the voltage drops below the maximum value set. This will prevent
overvoltage conditions when using power supplies. The formula for calculating the voltage is:
Desired Volts x 5.12 = Value. Examples of valid values are 12V = 62, 16V = 82 and 24V = 123.

 Send: [Address, 3, Value, CRC(2 bytes)]
 Receive: [0xFF]

4 - Drive Forward M2
Drive motor 2 forward. Valid data range is 0 - 127. A value of 127 full speed forward, 64 = about
half speed forward and 0 = full stop.

 Send: [Address, 4, Value, CRC(2 bytes)]
 Receive: [0xFF]

5 - Drive Backwards M2
Drive motor 2 backwards. Valid data range is 0 - 127. A value of 127 full speed backwards, 64 =
about half speed backward and 0 = full stop.

 Send: [Address, 5, Value, CRC(2 bytes)]
 Receive: [0xFF]

6 - Drive M1 (7 Bit)
Drive motor 1 forward or reverse. Valid data range is 0 - 127. A value of 0 = full speed reverse,
64 = stop and 127 = full speed forward.

 Send: [Address, 6, Value, CRC(2 bytes)]
 Receive: [0xFF]

7 - Drive M2 (7 Bit)
Drive motor 2 forward or reverse. Valid data range is 0 - 127. A value of 0 = full speed reverse,
64 = stop and 127 = full speed forward.

 Send: [Address, 7, Value, CRC(2 bytes)]
 Receive: [0xFF]

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 70

2.2.13 Commands 8 - 13 Mixed Mode Compatibility Commands
The following commands are mix mode compatibility commands used to control speed and turn
using differential steering. Before a command is executed valid drive and turn data is required.
You only need to send both data packets once. After receiving both valid drive and turn data
RoboClaw will begin to operate the motors. At this point you only need to update turn or drive
data as needed.

8 - Drive Forward
Drive forward in mix mode. Valid data range is 0 - 127. A value of 0 = full stop and 127 = full
forward.

 Send: [Address, 8, Value, CRC(2 bytes)]
 Receive: [0xFF]

9 - Drive Backwards
Drive backwards in mix mode. Valid data range is 0 - 127. A value of 0 = full stop and 127 = full
reverse.

 Send: [Address, 9, Value, CRC(2 bytes)]
 Receive: [0xFF]

10 - Turn right
Turn right in mix mode. Valid data range is 0 - 127. A value of 0 = stop turn and 127 = full
speed turn.

 Send: [Address, 10, Value, CRC(2 bytes)]
 Receive: [0xFF]

11 - Turn left
Turn left in mix mode. Valid data range is 0 - 127. A value of 0 = stop turn and 127 = full speed
turn.

 Send: [Address, 11, Value, CRC(2 bytes)]
 Receive: [0xFF]

12 - Drive Forward or Backward (7 Bit)
Drive forward or backwards. Valid data range is 0 - 127. A value of 0 = full backward, 64 = stop
and 127 = full forward.

 Send: [Address, 12, Value, CRC(2 bytes)]
 Receive: [0xFF]

13 - Turn Left or Right (7 Bit)
Turn left or right. Valid data range is 0 - 127. A value of 0 = full left, 0 = stop turn and 127 = full
right.

 Send: [Address, 13, Value, CRC(2 bytes)]
 Receive: [0xFF]

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 71

2.3 Advance Packet Serial Mode

2.3.1 Command List
The following commands are used to read board status, version information and set/read
configuration values.

Command Description

21 Read Firmware Version

24 Read Main Battery Voltage

25 Read Logic Battery Voltage

26 Set Minimum Logic Voltage Level

27 Set Maximum Logic Voltage Level

48 Read Motor PWMs

49 Read Motor Currents

57 Set Main Battery Voltages

58 Set Logic Battery Voltages

59 Read Main Battery Voltage Settings

60 Read Logic Battery Voltage Settings

80 Restore Defaults

82 Read Temperature

83 Read Temperature 2

90 Read Status

91 Read Encoder Modes

92 Set Motor 1 Encoder Mode

93 Set Motor 2 Encoder Mode

94 Write Settings to EEPROM

95 Read Settings from EEPROM

128 Set M1 Inductance and Resistance

129 Set M2 Inductance and Resistance

130 Get M1 Inductance and Resistance

131 Get M2 Inductance and Resistance

133 Set M1 Maximum Current

134 Set M2 Maximum Current

135 Read M1 Maximum Current

136 Read M2 Maximum Current

137 Set DOUT Action

138 Get DOUT Actions

139 Set Priority Levels

140 Get Priority Levels

141 Set Address and Mixed Flag

142 Get Mixed Flag

143 Set Signal Properties

144 Get All Signal Properies

145 Set Stream Properties

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 72

Command Description

146 Get All Stream Properties

147 Get Signal Values

148 Set PWM Mode

149 Read PWM Mode

200 E-Stop Reset

201 Lock/Unlock E-Stop Reset

202 Get E-Stop Lock

246 Set Script Autorun Delay

247 Get Script Autorun Delay

248 Start Script

249 Stop Script

252 Read User NVM Word

253 Write User NVM Word

21 - Read Firmware Version
Read RoboClaw firmware version. Returns up to 48 bytes(depending on the Roboclaw model) and
is terminated by a line feed character and a null character.

Send: [Address, 21]
Receive: ["MCP266 2x60A v1.0.0",10,0, CRC(2 bytes)]

The command will return up to 48 bytes. The return string includes the product name and
firmware version. The return string is terminated with a line feed (10) and null (0) character.

24 - Read Main Battery Voltage Level
Read the main battery voltage level connected to B+ and B- terminals. The voltage is returned in
10ths of a volt(eg 300 = 30v).

Send: [Address, 24]
Receive: [Value(2 bytes), CRC(2 bytes)]

25 - Read Logic Battery Voltage Level
Read a logic battery voltage level connected to LB+ and LB- terminals. The voltage is returned in
10ths of a volt(eg 50 = 5v).

Send: [Address, 25]
Receive: [Value.Byte1, Value.Byte0, CRC(2 bytes)]

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 73

26 - Set Minimum Logic Voltage Level
Note: This command is included for backwards compatibility. We recommend you use
command 58 instead.

Sets logic input (LB- / LB+) minimum voltage level. RoboClaw will shut down with an error if
the voltage is below this level. The voltage is set in .2 volt increments. A value of 0 sets the
minimum value allowed which is 6V. The valid data range is 0 - 140 (6V - 34V). The formula for
calculating the voltage is: (Desired Volts - 6) x 5 = Value. Examples of valid values are 6V = 0,
8V = 10 and 11V = 25.

Send: [Address, 26, Value, CRC(2 bytes)]
Receive: [0xFF]

27 - Set Maximum Logic Voltage Level
Note: This command is included for backwards compatibility. We recommend you use
command 58 instead.

Sets logic input (LB- / LB+) maximum voltage level. The valid data range is 30 - 175 (6V -
34V). RoboClaw will shutdown with an error if the voltage is above this level. The formula for
calculating the voltage is: Desired Volts x 5.12 = Value. Examples of valid values are 12V = 62,
16V = 82 and 24V = 123.

Send: [Address, 27, Value, CRC(2 bytes)]
Receive: [0xFF]

48 - Read Motor PWM values
Read the current PWM output values for the motor channels. The values returned are +/-32767.
The duty cycle percent is calculated by dividing the Value by 327.67.

Send: [Address, 48]
Receive: [M1 PWM(2 bytes), M2 PWM(2 bytes), CRC(2 bytes)]

49 - Read Motor Currents
Read the current draw from each motor in 10ma increments. The amps value is calculated by
dividing the value by 100.

Send: [Address, 49]
Receive: [M1 Current(2 bytes), M2 Currrent(2 bytes), CRC(2 bytes)]

57 - Set Main Battery Voltages
Set the Main Battery Voltage cutoffs, Min and Max. Min and Max voltages are in 10th of a volt
increments. Multiply the voltage to set by 10.

Send: [Address, 57, Min(2 bytes), Max(2bytes, CRC(2 bytes)]
Receive: [0xFF]

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 74

58 - Set Logic Battery Voltages
Set the Logic Battery Voltages cutoffs, Min and Max. Min and Max voltages are in 10th of a volt
increments. Multiply the voltage to set by 10.

Send: [Address, 58, Min(2 bytes), Max(2bytes, CRC(2 bytes)]
Receive: [0xFF]

59 - Read Main Battery Voltage Settings
Read the Main Battery Voltage Settings. The voltage is calculated by dividing the value by 10

Send: [Address, 59]
Receive: [Min(2 bytes), Max(2 bytes), CRC(2 bytes)]

60 - Read Logic Battery Voltage Settings
Read the Logic Battery Voltage Settings. The voltage is calculated by dividing the value by 10

Send: [Address, 60]
Receive: [Min(2 bytes), Max(2 bytes), CRC(2 bytes)]

80 - Restore Defaults
Reset Settings to factory defaults.

Send: [Address, 80, CRC(2 bytes)]
Receive: [0xFF]

82 - Read Temperature
Read the board temperature. Value returned is in 10ths of degrees.

Send: [Address, 82]
Receive: [Temperature(2 bytes), CRC(2 bytes)]

83 - Read Temperature 2
Read the second board temperature(only on supported units). Value returned is in 10ths of
degrees.

Send: [Address, 83]
Receive: [Temperature(2 bytes), CRC(2 bytes)]

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 75

90 - Read Status
Read the current unit status.

Send: [Address, 90]
Receive: [Status, CRC(2 bytes)]

Function Status Bit Mask

Normal 0x0000

M1 OverCurrent Warning 0x0001

M2 OverCurrent Warning 0x0002

E-Stop 0x0004

Temperature Error 0x0008

Temperature2 Error 0x0010

Main Battery High Error 0x0020

Logic Battery High Error 0x0040

Logic Battery Low Error 0x0080

Main Battery High Warning 0x0400

Main Battery Low Warning 0x0800

Termperature Warning 0x1000

Temperature2 Warning 0x2000

91 - Read Encoder Mode
Read the encoder pins assigned for both motors.

Send: [Address, 91]
Receive: [Enc1Mode, Enc2Mode, CRC(2 bytes)]

92 - Set Motor 1 Encoder Mode
Set the Encoder Pin for motor 1. See command 91.

Send: [Address, 92, Pin, CRC(2 bytes)]
Receive: [0xFF]

93 - Set Motor 2 Encoder Mode
Set the Encoder Pin for motor 2. See command 91.

Send: [Address, 93, Pin, CRC(2 bytes)]
Receive: [0xFF]

94 - Write Settings to EEPROM
Writes all settings to non-volatile memory. Values will be loaded after each power up.

Send: [Address, 94]
Receive: [0xFF]

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 76

95 - Read Settings from EEPROM
Read all settings from non-volatile memory.

Send: [Address, 95]
Receive: [Enc1Mode, Enc2Mode, CRC(2 bytes)]

128 - Set M1 Inductance and Resistance
Set Motor Inductance and Resistance values. Used for torque mode control. Inductance = L *
16777216. Resistance = R * 16777216. L is in henrys and R is in ohms. For example a motor
with L of .6 millihenries = .0006henrys = .0006 * 16777216 = 10066. A motor with resistance of
6mohm = .006 ohm = .006 * 16777216 = 100663.

Send: [Address, 128, Inductance(4 bytes), Resistance (4 bytes), CRC(2 bytes)]
Receive: [0xFF]

129 - Set M2 Inductance and Resistance
Set Motor Inductance and Resistance values. Used for torque mode control. See Command 128.

Send: [Address, 129, Inductance(4 bytes), Resistance (4 bytes), CRC(2 bytes)]
Receive: [0xFF]

130 - Get M1 Inductance and Resistance
Get Motor Inductance and Resistance values. Used for torque mode control. Caluclate actual
motor L and R by dividing Inductance and Resistance by 16777216. For example if Inductance is
201123, actual L in Henrys is 201123/16777216 = .0012 Henrys.

Send: [Address, 130]
Receive: [Inductance(4 bytes), Resistance(4 bytes), CRC(2 bytes)]

131 - Get M2 Inductance and Resistance
Get Motor Inductance and Resistance values. Used for torque mode control. See Cmd 130

Send: [Address, 131]
Receive: [Inductance(4 bytes), Resistance(4 bytes), CRC(2 bytes)]

133 - Set M1 Max Current Limit
Set Motor 1 Maximum Current Limit. Current value is in 10ma units. To calculate multiply current
limit by 100.

Send: [Address, 134, MaxCurrent(4 bytes), 0, 0, 0, 0, CRC(2 bytes)]
Receive: [0xFF]

134 - Set M2 Max Current Limit
Set Motor 2 Maximum Current Limit. Current value is in 10ma units. To calculate multiply current
limit by 100.

Send: [Address, 134, MaxCurrent(4 bytes), 0, 0, 0, 0, CRC(2 bytes)]
Receive: [0xFF]

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 77

135 - Read M1 Max Current Limit
Read Motor 1 Maximum Current Limit. Current value is in 10ma units. To calculate divide value
by 100. MinCurrent is always 0.

Send: [Address, 135]
Receive: [MaxCurrent(4 bytes), MinCurrent(4 bytes), CRC(2 bytes)]

136 - Read M2 Max Current Limit
Read Motor 2 Maximum Current Limit. Current value is in 10ma units. To calculate divide value
by 100. MinCurrent is always 0.

Send: [Address, 136]
Receive: [MaxCurrent(4 bytes), MinCurrent(4 bytes), CRC(2 bytes)]

137 - Set DOUT Action
Sets Action that triggers a DOUT pin. For example if an Overvoltage is triggered DOUT pin 1 can
be triggered to enable an external voltage dump circuit.

Actions
Motor1 is active 0x01
Motor2 is active 0x02
Either motor is active 0x03
Motor1 is reversed 0x04
Motor2 is reversed 0x05
Either motor is reversed 0x06
Overvoltage 0x07
Overtemperature 0x08
Stat1 LED 0x09
Stat2 LED 0x0A
Err LED 0x0B

Send: [Address, 137, Index(1 byte), Action(1 bytes), CRC(2 bytes)]

138 - Get DOUT Actions
Get all DOUT actions. This command sends the action settings for all DOUT pins. The number of
pins depends on the model of the unit. The first byte sent back indicates the number of DOUT
pins for the unit. See Actions table in command 137.

Send: [Address, 138]
Receive: [Count(1 bytes), Actions(count bytes), CRC(2 bytes)]

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 78

139 - Set Priority Levels
Set Priority Level signal types. Each of three Priority Levels can have a control signal type
selected. The higher priority level is used first. If that input is inactive(determine by a timeout
value) the Priority Level is changed to the next level down. if the particular Priority level is
disabled the next lower level is moved to. if a higher level signal input becomes active the
Priority level is changed back to the higher level.

Priority Level Signals
Disabled 0
Packet Serial 1
Pulse/Pwm 2
Analog 3

Send: [Address, 139, Level1, Level2, Level3, CRC(2 bytes)]
Receive: [0xFF]

140 - Get Priority Levels
Get Priority Level settings. See command 139.

Send: [Address, 140]
Receive: [Level1, Level2, Level3, CRC(2 bytes)]

141 - Set Address and Mixed Flag
Set packet Serial Address and Mixed Mode flag. Address can be set to 0x80 to 0x87. The Mixed
flag setting is 0 for disabled and 1 for enabled.

Send: [Address, 141, Address, Mixed, CRC(2 bytes)]
Receive: [0xFF]

142 - Get Mixed Flag
Get Mixed flag setting. See command 141

Send: [Address, 142]
Receive: [Mixed, CRC(2 bytes)]

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 79

143 - Set Signal Properties
Set Signal Properties. This command will set all the properties for one channel(eg P0,P1, PID1A,
PID1B ect).

Types: (Note: Not all types are available on all input pins)
 NONE 0
 ANALOG 1
 PULSE 2
 ENCODER 3
 PSERIAL 4

Modes:
 Position 0
 Percent(0 to 65535) 1
 Average Speed 2
 Speed 3

Target:
 None 0
 Motor1 1
 Motor2 2
 Both Motors 3

MinAction...MaxAction:
Motor1 safestop 0x0001
Motor2 safestop 0x0100
Both Motors safestop 0x0101
Motor1 off 0x0002
Motor2 off 0x0200
Both Motors off 0x0202
Motor1 reverse 0x0004
Motor2 reverse 0x0400
Both Motors reverse 0x0404
Motor1 Forward Limit 0x0008
Motor2 Forward Limit 0x0800
Both Motors Forward Limit 0x0808
Motor1 Reverse Limit 0x0010
Motor2 Reverse Limit 0x1000
Both Motors Reverse Limit 0x1010
Motor1 load Loadhome value 0x0020
Motor2 load loadhome value 0x2000
Both Motors load loadhome 0x2020
Run Script 0x0040
Stop Script 0x4000
Reset Script 0x0080
Trigger ESTOP 0x8000

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 80

Timeout
The timeout in millisecond for the signal to be considered idle. This is used to determine when a
lower priority level should be switched to.

LoadHome
value to set the position to on a LoadHome action. This is usually used to zero a quadrature
encoder input.

Minimum...Maximum
The minimum and maximum position values. Any values higher or lower than these settings will
trigger a MinAction or MaxAction if set.
Center: The middle point of the control input.

Deadband
For input signals that have slop near their center point Deadband can be set to zero this area. It
can also be used to provide a large area where there is no effect on the position value, centered
on the Center position.

PowerExp
The exponent setting. Values from -8*65536 to 8*65536 A value of 0 provides a linear control
inpug. Values larger then 0 will provide more control resolution near the endpoints of a control
input, while values less then 0 increase the control resolution near the control inputs center
point.

PowerMin
Sets an absolute minimum signal value. For exampel if PowerMin is set to 100 then a any signal
value >= 0 will be offset to 100. Any control input < 0 will be offset to -100.

MinOutput...MaxOutput
When the signal input is used to command a motor channel the signal can be scaled to any range
of output. The default setting is for the full PWM range of a motor channel, -2068 to +2068. For
example in some cases it may be prefered to limit the reverse power range on a motor(such as
on a wheeled vehicle). Reducing the negative range will reduce the maximum power that can be
applied in reverse.

Send: [Address,
 143,
 Pin(1 byte),
 Type(1 byte),
 Mode (1 byte),
 Target (1 byte),
 MinAction (1 byte),
 MaxAction (1 byte),
 Timeout(4 bytes),
 LoadHome(4 bytes),
 Minimum(4 bytes),
 Maximum(4 bytes),
 Center(4 bytes),
 Deadband(4 bytes),
 PowerExp(4 bytes),
 MinOutput(4 bytes),
 MaxOutput(4 bytes),
 PowerMin(4 bytes),
 CRC(2 bytes)]
Receive: [0xFF]

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 81

144 - Get Signal Properties
Read all Signal Properties. Command returns the pin count plus the properties for all the pins
the controller supports. See command 143 for descriptions of the properties.

Send: [Address, 144]
Receive: [Count,
 Type1(1 byte),
 Mode1 (1 byte),
 Target1 (1 byte),
 MinAction1 (1 byte),
 MaxAction1 (1 byte),
 Timeout1(4 bytes),
 LoadHome1(4 bytes),
 Minimum1(4 bytes),
 Maximum1(4 bytes),
 Center1(4 bytes),
 Deadband1(4 bytes),
 PowerExp1(4 bytes),
 MinOutput1(4 bytes),
 MaxOutput1(4 bytes),
 PowerMin1(4 bytes),
 ...,
 TypeN(1 byte),
 ModeN(1 byte),
 TargetN(1 byte),
 MinActionN(1 byte),
 MaxActionN(1 byte),
 TimeoutN(4 bytes),
 LoadHomeN(4 bytes),
 MinimumN(4 bytes),
 MaximumN(4 bytes),
 CenterN(4 bytes),
 DeadbandN(4 bytes),
 PowerExpN(4 bytes),
 MinOutputN(4 bytes),
 MaxOutputN(4 bytes),
 PowerMinN(4 bytes),
 CRC(2 bytes)]
Receive: [0xFF]

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 82

145 - Set Stream Properties
Set Stream Properties.

Index:
 USB 0
 RS232 UART0 1
 TTL UART1 2
 TTL UART2 3
 TTL UART3 4

Type:
 MCL 0
 PacketSerial 1
 Disabled 2
(Note: CAN will be active if UART0 is disabled, I2C will be active if UART1 is disabled)

Rate: The bps setting for the stream

Timeout: the timeout in milliseconds before the stream is considered inactive.

Send: [Address, 145, Index(byte), Type(byte), Rate(4 bytes), timeout(4 bytes), CRC(2
bytes)]
Receive: [0xFF]

146 - Get Stream Properties
Read all stream properties. Returns the stream CNT followed by all stream properties.

Send: [Address, 146]
Receive: [streamcnt, type1(byte), rate1(4 bytes), timeout1(4 bytes),..., typeN, rateN,
timeoutN, CRC(2 bytes)]

147 - Get Signal Values
Get all signal values for all inputs

Count: The intput pin count on the unit.
Command: The value of the currently selected mode(see command 143 mode).
Position: The current signal position.
Percent: The current signal percent.
Speed: The current instant speed.
SpeedS: The current average speed.

Send: [Address, 147]
Receive: [Count(byte), Command1(4 bytes), Position1(4 bytes), Percent1 (4 bytes), Speed1 (4
bytes), SpeedS1 (4 bytes),..., CommandN, PositionN, PercentN, SpeedN, SpeedSN, CRC(2
bytes)]

148 - Set PWM Mode
Set PWM Drive mode. Locked Antiphase(0) or Sign Magnitude(1).

 Send: [Address, 148, Mode, CRC(2 bytes)]
 Receive: [0xFF]

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 83

149 - Read PWM Mode
Read PWM Drive mode. See Command 148.

Send: [Address, 149]
Receive: [PWMMode, CRC(2 bytes)]

200 - E-Stop Reset
Reset an E-Stop error. This command will do nothing if the E-Stop is not first unlocked.

Send: [Address, 200, CRC(2 bytes)]
Receive: [0xFF]

201 - Lock/Unlock E-Stop Reset
Lock/Unlock the E-Stop reset capaibility. By default teh E-Stop software reset is locked.

Lock:
 Unlock 0xAA
 Lock Any other value

Send: [Address, 201]
Receive: [Lock, CRC(2 bytes)]

202 - Get E-Stop Lock
Get Current E-Stop Reset Lock setting. See command 201.

Send: [Address, 202]
Receive: [Lock, CRC(2 bytes)]

246 - Set Script Autorun Delay
Set the delay, in milliseconds, after a reset before the currently loaded script runs. If the value
is less than 100ms the script will not run(autorun is disabled).

Send: [Address, 246, Delay(4 bytes), CRC(2 bytes)]
Receive: [0xFF]

247 - Get Script Autorun Delay
Get Autorun Delay

Send: [Address, 247]
Receive: [Delay(4 bytes), CRC(2 bytes)]

248 - Start Script
Start the loaded script

Send: [Address, 248, CRC(2 bytes)]
Receive: [0xFF]

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 84

249 - Stop Script
Stop the loaded Script.

Send: [Address, 249, CRC(2 bytes)]
Receive: [0xFF]

252 - Read User EEProm Word
Read a value from the User EEProm memory(256 bytes).

Send: [Address, 252, EEProm Address(byte)]
Receive: [Value(2 bytes), CRC(2 bytes)]

253 - Write User EEProm Word
Get Priority Levels.

Send: [Address, 253, Address(byte),Value(2 bytes), CRC(2 bytes)]
Receive: [0xFF]

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 85

2.4 Encoders
2.4.1 Cloosed Loop Modes
MCP supports a wide range of encoders in close loop mode. This section of the manual mainly
deals with Quadrature and Absolute encoders. However additional types of encoders can be
supported.

2.4.2 Quadrature Encoders
MCP is capable of reading two quadrature encoders, one for each motor channel. The main MCP
interface provides a dual A and B input signals for each encoder as well as acces to regulated 5v.

Quadrature encoders are directional. In a simple two motor robot, one motor will spin clock
wise (CW) and the other motor will spin counter clock wise (CCW). The A and B inputs for one
of the encoders must be reversed to allow both encoders to count up when the robot is moving
forward. If both encoder are connected with leading edge pulse to channel A one will count up
and the other down. This will cause commands like Mix Drive Forward to not work as expected.
All motor and encoder combinations will need to be tuned.

Encoder 1

A
B

GND
+5V

EN1 A
EN1 B

5VDC
GROUND

Encoder 2

A
B

GND
+5V

EN2 A
EN2 B

5VDC
GROUND

M1A

M1B

M2B

M2A

B-

B+

+-

RX0

TX0

+5V

GROUND

MCP

Motor 1

Motor 2

UART TX

UART RX

5VDC

GROUND

MCU
R1

F1

D1

Main
DC Power

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 86

2.4.3 Absolute Encoder
MCP is capable of reading absolute encoders that output an analog voltage. Like the Analog input
modes for controlling the motors, the absolute encoder voltage must be between 0v and 5v.

The diagram below shows the main battery as the only power source. The 5VDC shown
connected is only required if your MCU needs a power source. This is the BEC feature of the MCP.
If the MCU has its own power source do not connect the 5VDC.

2.4.4 Encoder Tuning
To control motor speed and or position with an encoder the PID must be calibrated for the
specific motor and encoder being used. Using Ion Studio the PID can be tuned manually or by
the auto tune fucntion. Once the encoders are tuned the settings can be saved to the onboard
eeprom and will be loaded each time the unit powers up.

The Ion Studio window for Velocity Settings will auto tune for velocity. The window for Position
Settings can tune a simple PD position controller, a PID position controller or a cascaded Position
with Velocity controller(PIV). The cascaded tune will determine both the velocity and position
values for the motor but still requires the QPPS be manually set for the motor before starting.
Auto tune functions usually return reasonable values but manually adjustments may be required
for optimum performance.

Motor 1

A
GND
+2V

M1A

M1B

Positive +

+-

S1 Signal

S2 Signal

5VDC

UART TX

UART RX

GROUND
5VDC

GROUND

MCP

Motor 2

EN1 A

5VDC
GROUND

Pot 2
A

GND
+2V

EN2 A

5VDC
GROUND

Pot 1

R1

R2

M2B

M2A

Negative -
D1

SW1

Main
DC Power

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 87

2.4.5 Auto Tuning
Ion Studio provides the option to auto tune velocity and position control. To use the auto tune
option make sure the encoder and motor are running in the desired direction and the basic
PWM control of the motor works as expected. It is recommend to ensure the motor and encoder
combination are functioning properly before using the auto tune feature.

1. Go to the PWM Settings screen in Ion Studio.

2. Slide the motor slider up to start moving the motor forward. Check the encoder is increasing
in value. If it is not either reverse the motor wires or the encoder wires. The recheck.

Before using auto tune you must first set the motors and encoders maximum speed. For the
purpose of auto tune the maximum quadrature pulse per second (QPPS) is the maximum speed
the motor and encoder can acheive. When using an absolute encoder the QPPS will be the
maximum rotational speed of the absolute encoder. Check the encoders data sheet to ensure the
maximum rotational speed is not exceeded. Auto tune for position control can not automatically
measure the maximum QPPS due to most position control systems having a limited range of
movement.

3. To determine the maximum QPPS value, use the PWM settings screen to run the motor and
encoder at 100% duty by moving the slider bar full up or down. Record the value from M1 Speed
or M2 Speed fields at the top of the window. This is your maximum QPPS speed. If the motor
can not be ran at full speed due to physical constraints, then an estimated maximum speed in
encoder counts is required.

4. Enter the QPPS speed obtained from step 3 into the QPPS fields under settings. Ensure the
correct QPPS is entered for the corresponding motor channel. Two identical motors and encoders
may not function exactly the same so the maximum QPPS may vary.

5. To start auto tune click the auto tune button for the motor channel that is will be tuned first.
The auto tune function will try to determine the best settings for that motor channel.

If the motor or encoder are wired incorrectly, the auto tune function can lock
up and the motor controller will become unresponsive. Correct the wiring
problem and reset the motor controller to continue.

2.4.6 Manual Velocity Calibration Procedure
1. Determine the quadrature pulses per second(QPPS) value for your motor. The simplest
method to do this is to run the Motor at 100% duty using Ion Studio and read back the speed
value from the encoder attached to the motor. If you are unable to run the motor like this due to
physical constraints you will need to estimate the maximum speed in encoder counts the motor
can produce.

2. Set the initial P,I and D values in the Velocity control window to 1,0 and 0. Try moving the
motor using the slider controls in IonMotion. If the motor does not move it may not be wired
correctly or the P value needs to be increased. If the motor immediately runs at max speed
when you change the slider position you probably have the motor or encoder wires reversed.
The motor is trying to go at the speed specified but the encoder reading is coming back in the
opposite direction so the motor increases power until it eventually hits 100% power. Reverse the
encoder or motor wires(not both) and test again.

!

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 88

3. Once the motor has some semblance of control you can set a moderate speed. Then start
increasing the P value until the speed reading is near the set value. If the motor feels like it is
vibrating at higher P values you should reduce the P value to about 2/3rds that value. Move on
to the I setting.

4. Start increasing the I setting. You will usually want to increase this value by .1 increments.
The I value helps the motor reach the exact speed specified. Too high an I value will also cause
the motor to feel rough/vibrate. This is because the motor will over shoot the set speed and then
the controller will reduce power to get the speed back down which will also under shoot and this
will continue oscillating back and forth form too fast to too slow, causing a vibration in the motor.

5. Once P and I are set reasonably well usually you will leave D = 0. D is only required if you are
unable to get reasonable speed control out of the motor using just P and I. D will help dampen
P and I over shoot allowing higher P and I values, but D also increases noise in the calculation
which can cause oscillations in the speed as well.

2.4.7 Manual Position Calibration Procedure
1. Position mode requires the Velocity mode QPPS value be set as described above. For simple
Position control you can set Velocity P, I and D all to 0.

2. Set the Position I and D settings to 0. Set the P setting to 2000 as a reasonable starting
point. To test the motor you must also set the Speed argument to some value. We recommend
setting it to the same value as the QPPS setting(eg maximum motor speed). Set the minimum
and maximum position values to safe numbers. If your motor has no dead stops this can be +-2
billion. If your motor has specific dead stops(like on a linear actuator) you will need to manually
move the motor to its dead stops to determine these numbers. Leave some margin infront of
each deadstop. Note that when using quadrature encoders you will need to home your motor on
every power up since the quadrature readings are all relative to the starting position unless you
set/reset the encoder values.

3. At this point the motor should move in the appropriate direction and stop, not necessarily
close to the set position when you move the slider. Increase the P setting until the position
is over shooting some each time you change the position slider. Now start increasing the D
setting(leave I at 0). Increasing D will add dampening to the movement when getting close
to the set position. This will help prevent the over shoot. D will usually be anywhere from 5 to
20 times larger than P but not always. Continue increasing P and D until the motor is working
reasonably well. Once it is you have tuned a simple PD system.

4. Once your position control is acting relatively smoothly and coming close to the set position
you can think about adjusting the I setting. Adding I will help reach the exact set point specified
but in most motor systems there is enough slop in the gears that instead you will end up causing
an oscillation around the specified position. This is called hunting. The I setting causes this when
there is any slop in the motor/encoder/gear train. You can compensate some for this by adding
deadzone. Deadzone is the area around the specified position the controller will consider to be
equal to the position specified.

5. One more setting must be adjusted in order to use the I setting. The Imax value sets the
maximum wind up allowed for the I setting calculation. Increasing Imax will allow I to affect a
larger amount of the movement of the motor but will also allow the system to oscillate if used
with a badly tuned I and/or set too high.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 89

2.4.8 Encoder Commands
The following commands are used with the encoder(quadrature and absolute) hardware.

Command Description

16 Read Encoder Count/Value for M1.

17 Read Encoder Count/Value for M2.

18 Read M1 Speed in Encoder Counts Per Second.

19 Read M2 Speed in Encoder Counts Per Second.

20 Resets Encoder Registers for M1 and M2(Quadrature only).

22 Set Encoder 1 Register(Quadrature only).

23 Set Encoder 2 Register(Quadrature only).

30 Read Current M1 Raw Speed

31 Read Current M2 Raw Speed

78 Read Encoders Counts

79 Read Motor Speeds

16 - Read Encoder Count/Value M1
Read M1 encoder count/position.

Send: [Address, 16]
Receive: [Enc1(4 bytes), Status, CRC(2 bytes)]

Quadrature encoders have a range of 0 to 4,294,967,295. Absolute encoder values are converted
from an analog voltage into a value from 0 to 4095 for the full 5.1v range.

The status byte tracks counter underflow, direction and overflow. The byte value represents:

 Bit0 - Counter Underflow (1= Underflow Occurred, Clear After Reading)
 Bit1 - Direction (0 = Forward, 1 = Backwards)
 Bit2 - Counter Overflow (1= Underflow Occurred, Clear After Reading)
 Bit3 - Reserved
 Bit4 - Reserved
 Bit5 - Reserved
 Bit6 - Reserved
 Bit7 - Reserved

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 90

17 - Read Quadrature Encoder Count/Value M2
Read M2 encoder count/position.

Send: [Address, 17]
Receive: [EncCnt(4 bytes), Status, CRC(2 bytes)]

Quadrature encoders have a range of 0 to 4,294,967,295. Absolute encoder values are
converted from an analog voltage into a value from 0 to 4095 for the full 5.1v range.

The Status byte tracks counter underflow, direction and overflow. The byte value represents:

 Bit0 - Counter Underflow (1= Underflow Occurred, Cleared After Reading)
 Bit1 - Direction (0 = Forward, 1 = Backwards)
 Bit2 - Counter Overflow (1= Underflow Occurred, Cleared After Reading)
 Bit3 - Reserved
 Bit4 - Reserved
 Bit5 - Reserved
 Bit6 - Reserved
 Bit7 - Reserved

18 - Read Encoder Speed M1
Read M1 counter speed. Returned value is in pulses per second. MCP keeps track of how many
pulses received per second for both encoder channels.

Send: [Address, 18]
Receive: [Speed(4 bytes), Status, CRC(2 bytes)]

Status indicates the direction (0 – forward, 1 - backward).

19 - Read Encoder Speed M2
Read M2 counter speed. Returned value is in pulses per second. MCP keeps track of how many
pulses received per second for both encoder channels.

Send: [Address, 19]
Receive: [Speed(4 bytes), Status, CRC(2 bytes)]

Status indicates the direction (0 – forward, 1 - backward).

20 - Reset Quadrature Encoder Counters
Will reset both quadrature decoder counters to zero. This command applies to quadrature
encoders only.

Send: [Address, 20, CRC(2 bytes)]
Receive: [0xFF]

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 91

22 - Set Quadrature Encoder 1 Value
Set the value of the Encoder 1 register. Useful when homing motor 1. This command applies to
quadrature encoders only.

Send: [Address, 22, Value(4 bytes), CRC(2 bytes)]
Receive: [0xFF]

23 - Set Quadrature Encoder 2 Value
Set the value of the Encoder 2 register. Useful when homing motor 2. This command applies to
quadrature encoders only.

Send: [Address, 23, Value(4 bytes), CRC(2 bytes)]
Receive: [0xFF]

30 - Read Raw Speed M1
Read the pulses counted in that last 300th of a second. This is an unfiltered version of command
18. Command 30 can be used to make a independent PID routine. Value returned is in encoder
counts per second.

Send: [Address, 30]
Receive: [Speed(4 bytes), Status, CRC(2 bytes)]

The Status byte is direction (0 – forward, 1 - backward).

31 - Read Raw Speed M2
Read the pulses counted in that last 300th of a second. This is an unfiltered version of command
19. Command 31 can be used to make a independent PID routine. Value returned is in encoder
counts per second.

Send: [Address, 31]
Receive: [Speed(4 bytes), Status, CRC(2 bytes)]

The Status byte is direction (0 – forward, 1 - backward).

78 - Read Encoder Counters
Read M1 and M2 encoder counters. Quadrature encoders have a range of 0 to 4,294,967,295.
Absolute encoder values are converted from an analog voltage into a value from 0 to 2047 for
the full 2V analog range.

Send: [Address, 78]
Receive: [Enc1(4 bytes), Enc2(4 bytes), CRC(2 bytes)]

79 - Read ISpeeds Counters
Read M1 and M2 instantaneous speeds. Returns the speed in encoder counts per second for the
last 300th of a second for both encoder channels.

Send: [Address, 79]
Receive: [ISpeed1(4 bytes), ISpeed2(4 bytes), CRC(2 bytes)]

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 92

2.4.9 Advanced Motor Control
The following commands are used to control motor speeds, acceleration distance and position
using encoders.

Command Description

28 Set Velocity PID Constants for M1.

29 Set Velocity PID Constants for M2.

32 Drive M1 With Signed Duty Cycle. (Encoders not required)

33 Drive M2 With Signed Duty Cycle. (Encoders not required)

34 Drive M1 / M2 With Signed Duty Cycle. (Encoders not required)

35 Drive M1 With Signed Speed.

36 Drive M2 With Signed Speed.

37 Drive M1 / M2 With Signed Speed.

38 Drive M1 With Signed Speed And Acceleration.

39 Drive M2 With Signed Speed And Acceleration.

40 Drive M1 / M2 With Signed Speed And Acceleration.

41 Drive M1 With Signed Speed And Distance. Buffered.

42 Drive M2 With Signed Speed And Distance. Buffered.

43 Drive M1 / M2 With Signed Speed And Distance. Buffered.

44 Drive M1 With Signed Speed, Acceleration and Distance. Buffered.

45 Drive M2 With Signed Speed, Acceleration and Distance. Buffered.

46 Drive M1 / M2 With Signed Speed, Acceleration And Distance. Buffered.

47 Read Buffer Length.

50 Drive M1 / M2 With Individual Signed Speed and Acceleration

51 Drive M1 / M2 With Individual Signed Speed, Accel and Distance

52 Drive M1 With Signed Duty and Accel. (Encoders not required)

53 Drive M2 With Signed Duty and Accel. (Encoders not required)

54 Drive M1 / M2 With Signed Duty and Accel. (Encoders not required)

55 Read Motor 1 Velocity PID Constants

56 Read Motor 2 Velocity PID Constants

61 Set Position PID Constants for M1.

62 Set Position PID Constants for M2

63 Read Motor 1 Position PID Constants

64 Read Motor 2 Position PID Constants

65 Drive M1 with Speed, Accel, Deccel and Position

66 Drive M2 with Speed, Accel, Deccel and Position

67 Drive M1 / M2 with Speed, Accel, Deccel and Position

68 Set Default Duty Acceleration for M1

69 Set Default Duty Acceleration for M2

81 Read Default Duty Acceleration Settings

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 93

28 - Set Velocity PID Constants M1
Several motor and quadrature combinations can be used with RoboClaw. In some cases the
default PID values will need to be tuned for the systems being driven. This gives greater
flexibility in what motor and encoder combinations can be used. The RoboClaw PID system
consist of four constants starting with QPPS, P = Proportional, I= Integral and D= Derivative.
The defaults values are:

 QPPS = 44000
 P = 0x00010000
 I = 0x00008000
 D = 0x00004000

QPPS is the speed of the encoder when the motor is at 100% power. P, I, D are the default
values used after a reset. Command syntax:

Send: [Address, 28, D(4 bytes), P(4 bytes), I(4 bytes), QPPS(4 byte), CRC(2 bytes)]
Receive: [0xFF]

29 - Set Velocity PID Constants M2
Several motor and quadrature combinations can be used with RoboClaw. In some cases the
default PID values will need to be tuned for the systems being driven. This gives greater
flexibility in what motor and encoder combinations can be used. The RoboClaw PID system
consist of four constants starting with QPPS, P = Proportional, I= Integral and D= Derivative.
The defaults values are:

 QPPS = 44000
 P = 0x00010000
 I = 0x00008000
 D = 0x00004000

QPPS is the speed of the encoder when the motor is at 100% power. P, I, D are the default
values used after a reset. Command syntax:

Send: [Address, 29, D(4 bytes), P(4 bytes), I(4 bytes), QPPS(4 byte), CRC(2 bytes)]Receive:
[0xFF]

32 - Drive M1 With Signed Duty Cycle
Drive M1 using a duty cycle value. The duty cycle is used to control the speed of the motor
without a quadrature encoder.

Send: [Address, 32, Duty(2 Bytes), CRC(2 bytes)]
Receive: [0xFF]

The duty value is signed and the range is -32767 to +32767 (eg. +-100% duty).

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 94

33 - Drive M2 With Signed Duty Cycle
Drive M2 using a duty cycle value. The duty cycle is used to control the speed of the motor
without a quadrature encoder. The command syntax:

Send: [Address, 33, Duty(2 Bytes), CRC(2 bytes)]
Receive: [0xFF]

The duty value is signed and the range is -32768 to +32767 (eg. +-100% duty).

34 - Drive M1 / M2 With Signed Duty Cycle
Drive both M1 and M2 using a duty cycle value. The duty cycle is used to control the speed of
the motor without a quadrature encoder. The command syntax:

Send: [Address, 34, DutyM1(2 Bytes), DutyM2(2 Bytes), CRC(2 bytes)]
Receive: [0xFF]

The duty value is signed and the range is -32768 to +32767 (eg. +-100% duty).

35 - Drive M1 With Signed Speed
Drive M1 using a speed value. The sign indicates which direction the motor will turn. This
command is used to drive the motor by quad pulses per second. Different quadrature encoders
will have different rates at which they generate the incoming pulses. The values used will differ
from one encoder to another. Once a value is sent the motor will begin to accelerate as fast as
possible until the defined rate is reached.

Send: [Address, 35, Speed(4 Bytes), CRC(2 bytes)]
Receive: [0xFF]

36 - Drive M2 With Signed Speed
Drive M2 with a speed value. The sign indicates which direction the motor will turn. This
command is used to drive the motor by quad pulses per second. Different quadrature encoders
will have different rates at which they generate the incoming pulses. The values used will differ
from one encoder to another. Once a value is sent, the motor will begin to accelerate as fast as
possible until the rate defined is reached.

Send: [Address, 36, Speed(4 Bytes), CRC(2 bytes)]
Receive: [0xFF]

37 - Drive M1 / M2 With Signed Speed
Drive M1 and M2 in the same command using a signed speed value. The sign indicates which
direction the motor will turn. This command is used to drive both motors by quad pulses per
second. Different quadrature encoders will have different rates at which they generate the
incoming pulses. The values used will differ from one encoder to another. Once a value is sent
the motor will begin to accelerate as fast as possible until the rate defined is reached.

Send: [Address, 37, SpeedM1(4 Bytes), SpeedM2(4 Bytes), CRC(2 bytes)]
Receive: [0xFF]

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 95

38 - Drive M1 With Signed Speed And Acceleration
Drive M1 with a signed speed and acceleration value. The sign indicates which direction the
motor will run. The acceleration values are not signed. This command is used to drive the motor
by quad pulses per second and using an acceleration value for ramping. Different quadrature
encoders will have different rates at which they generate the incoming pulses. The values used
will differ from one encoder to another. Once a value is sent the motor will begin to accelerate
incrementally until the rate defined is reached.

Send: [Address, 38, Accel(4 Bytes), Speed(4 Bytes), CRC(2 bytes)]
Receive: [0xFF]

The acceleration is measured in speed increase per second. An acceleration value of 12,000
QPPS with a speed of 12,000 QPPS would accelerate a motor from 0 to 12,000 QPPS in 1 second.
Another example would be an acceleration value of 24,000 QPPS and a speed value of 12,000
QPPS would accelerate the motor to 12,000 QPPS in 0.5 seconds.

39 - Drive M2 With Signed Speed And Acceleration
Drive M2 with a signed speed and acceleration value. The sign indicates which direction the
motor will run. The acceleration value is not signed. This command is used to drive the motor
by quad pulses per second and using an acceleration value for ramping. Different quadrature
encoders will have different rates at which they generate the incoming pulses. The values used
will differ from one encoder to another. Once a value is sent the motor will begin to accelerate
incrementally until the rate defined is reached.

Send: [Address, 39, Accel(4 Bytes), Speed(4 Bytes), CRC(2 bytes)]
 Receive: [0xFF]

The acceleration is measured in speed increase per second. An acceleration value of 12,000
QPPS with a speed of 12,000 QPPS would accelerate a motor from 0 to 12,000 QPPS in 1 second.
Another example would be an acceleration value of 24,000 QPPS and a speed value of 12,000
QPPS would accelerate the motor to 12,000 QPPS in 0.5 seconds.

40 - Drive M1 / M2 With Signed Speed And Acceleration
Drive M1 and M2 in the same command using one value for acceleration and two signed speed
values for each motor. The sign indicates which direction the motor will run. The acceleration
value is not signed. The motors are sync during acceleration. This command is used to drive
the motor by quad pulses per second and using an acceleration value for ramping. Different
quadrature encoders will have different rates at which they generate the incoming pulses. The
values used will differ from one encoder to another. Once a value is sent the motor will begin to
accelerate incrementally until the rate defined is reached.

Send: [Address, 40, Accel(4 Bytes), SpeedM1(4 Bytes), SpeedM2(4 Bytes), CRC(2 bytes)]
Receive: [0xFF]

The acceleration is measured in speed increase per second. An acceleration value of 12,000
QPPS with a speed of 12,000 QPPS would accelerate a motor from 0 to 12,000 QPPS in 1 second.
Another example would be an acceleration value of 24,000 QPPS and a speed value of 12,000
QPPS would accelerate the motor to 12,000 QPPS in 0.5 seconds.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 96

41 - Buffered M1 Drive With Signed Speed And Distance
Drive M1 with a signed speed and distance value. The sign indicates which direction the motor
will run. The distance value is not signed. This command is buffered. This command is used to
control the top speed and total distance traveled by the motor. Each motor channel M1 and M2
have separate buffers. This command will execute immediately if no other command for that
channel is executing, otherwise the command will be buffered in the order it was sent. Any
buffered or executing command can be stopped when a new command is issued by setting the
Buffer argument. All values used are in quad pulses per second.

Send: [Address, 41, Speed(4 Bytes), Distance(4 Bytes), Buffer, CRC(2 bytes)]
Receive: [0xFF]

The Buffer argument can be set to a 1 or 0. If a value of 0 is used the command will be buffered
and executed in the order sent. If a value of 1 is used the current running command is stopped,
any other commands in the buffer are deleted and the new command is executed.

42 - Buffered M2 Drive With Signed Speed And Distance
Drive M2 with a speed and distance value. The sign indicates which direction the motor will run.
The distance value is not signed. This command is buffered. Each motor channel M1 and M2 have
separate buffers. This command will execute immediately if no other command for that channel
is executing, otherwise the command will be buffered in the order it was sent. Any buffered
or executing command can be stopped when a new command is issued by setting the Buffer
argument. All values used are in quad pulses per second.

Send: [Address, 42, Speed(4 Bytes), Distance(4 Bytes), Buffer, CRC(2 bytes)]
Receive: [0xFF]

The Buffer argument can be set to a 1 or 0. If a value of 0 is used the command will be buffered
and executed in the order sent. If a value of 1 is used the current running command is stopped,
any other commands in the buffer are deleted and the new command is executed.

43 - Buffered Drive M1 / M2 With Signed Speed And Distance
Drive M1 and M2 with a speed and distance value. The sign indicates which direction the motor
will run. The distance value is not signed. This command is buffered. Each motor channel M1
and M2 have separate buffers. This command will execute immediately if no other command for
that channel is executing, otherwise the command will be buffered in the order it was sent. Any
buffered or executing command can be stopped when a new command is issued by setting the
Buffer argument. All values used are in quad pulses per second.

Send: [Address, 43, SpeedM1(4 Bytes), DistanceM1(4 Bytes),
 SpeedM2(4 Bytes), DistanceM2(4 Bytes), Buffer, CRC(2 bytes)]
Receive: [0xFF]

The Buffer argument can be set to a 1 or 0. If a value of 0 is used the command will be buffered
and executed in the order sent. If a value of 1 is used the current running command is stopped,
any other commands in the buffer are deleted and the new command is executed.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 97

44 - Buffered M1 Drive With Signed Speed, Accel And Distance
Drive M1 with a speed, acceleration and distance value. The sign indicates which direction the
motor will run. The acceleration and distance values are not signed. This command is used to
control the motors top speed, total distanced traveled and at what incremental acceleration value
to use until the top speed is reached. Each motor channel M1 and M2 have separate buffers. This
command will execute immediately if no other command for that channel is executing, otherwise
the command will be buffered in the order it was sent. Any buffered or executing command can
be stopped when a new command is issued by setting the Buffer argument. All values used are
in quad pulses per second.

Send: [Address, 44, Accel(4 bytes), Speed(4 Bytes), Distance(4 Bytes),
 Buffer, CRC(2 bytes)]
Receive: [0xFF]

The Buffer argument can be set to a 1 or 0. If a value of 0 is used the command will be buffered
and executed in the order sent. If a value of 1 is used the current running command is stopped,
any other commands in the buffer are deleted and the new command is executed.

45 - Buffered M2 Drive With Signed Speed, Accel And Distance
Drive M2 with a speed, acceleration and distance value. The sign indicates which direction the
motor will run. The acceleration and distance values are not signed. This command is used to
control the motors top speed, total distanced traveled and at what incremental acceleration value
to use until the top speed is reached. Each motor channel M1 and M2 have separate buffers. This
command will execute immediately if no other command for that channel is executing, otherwise
the command will be buffered in the order it was sent. Any buffered or executing command can
be stopped when a new command is issued by setting the Buffer argument. All values used are
in quad pulses per second.

Send: [Address, 45, Accel(4 bytes), Speed(4 Bytes), Distance(4 Bytes),
 Buffer, CRC(2 bytes)]
Receive: [0xFF]

The Buffer argument can be set to a 1 or 0. If a value of 0 is used the command will be buffered
and executed in the order sent. If a value of 1 is used the current running command is stopped,
any other commands in the buffer are deleted and the new command is executed.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 98

46 - Buffered Drive M1 / M2 With Signed Speed, Accel And Distance
Drive M1 and M2 with a speed, acceleration and distance value. The sign indicates which
direction the motor will run. The acceleration and distance values are not signed. This command
is used to control both motors top speed, total distanced traveled and at what incremental
acceleration value to use until the top speed is reached. Each motor channel M1 and M2 have
separate buffers. This command will execute immediately if no other command for that channel
is executing, otherwise the command will be buffered in the order it was sent. Any buffered
or executing command can be stopped when a new command is issued by setting the Buffer
argument. All values used are in quad pulses per second.

Send: [Address, 46, Accel(4 Bytes), SpeedM1(4 Bytes), DistanceM1(4 Bytes),
SpeedM2(4 bytes), DistanceM2(4 Bytes), Buffer, CRC(2 bytes)]
Receive: [0xFF]

The Buffer argument can be set to a 1 or 0. If a value of 0 is used the command will be buffered
and executed in the order sent. If a value of 1 is used the current running command is stopped,
any other commands in the buffer are deleted and the new command is executed.

47 - Read Buffer Length
Read both motor M1 and M2 buffer lengths. This command can be used to determine how many
commands are waiting to execute.

Send: [Address, 47]
Receive: [BufferM1, BufferM2, CRC(2 bytes)]

The return values represent how many commands per buffer are waiting to be executed. The
maximum buffer size per motor is 64 commands(0x3F). A return value of 0x80(128) indicates
the buffer is empty. A return value of 0 indiciates the last command sent is executing. A value of
0x80 indicates the last command buffered has finished.

50 - Drive M1 / M2 With Signed Speed And Individual Acceleration
Drive M1 and M2 in the same command using one value for acceleration and two signed speed
values for each motor. The sign indicates which direction the motor will run. The acceleration
value is not signed. The motors are sync during acceleration. This command is used to drive
the motor by quad pulses per second and using an acceleration value for ramping. Different
quadrature encoders will have different rates at which they generate the incoming pulses. The
values used will differ from one encoder to another. Once a value is sent the motor will begin to
accelerate incrementally until the rate defined is reached.

Send: [Address, 50, AccelM1(4 Bytes), SpeedM1(4 Bytes), AccelM2(4 Bytes),
 SpeedM2(4 Bytes), CRC(2 bytes)]
Receive: [0xFF]

The acceleration is measured in speed increase per second. An acceleration value of 12,000
QPPS with a speed of 12,000 QPPS would accelerate a motor from 0 to 12,000 QPPS in 1 second.
Another example would be an acceleration value of 24,000 QPPS and a speed value of 12,000
QPPS would accelerate the motor to 12,000 QPPS in 0.5 seconds.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 99

51 - Buffered Drive M1 / M2 With Signed Speed, Individual Accel And Distance
Drive M1 and M2 with a speed, acceleration and distance value. The sign indicates which
direction the motor will run. The acceleration and distance values are not signed. This command
is used to control both motors top speed, total distanced traveled and at what incremental
acceleration value to use until the top speed is reached. Each motor channel M1 and M2 have
separate buffers. This command will execute immediately if no other command for that channel
is executing, otherwise the command will be buffered in the order it was sent. Any buffered
or executing command can be stopped when a new command is issued by setting the Buffer
argument. All values used are in quad pulses per second.

Send: [Address, 51, AccelM1(4 Bytes), SpeedM1(4 Bytes), DistanceM1(4 Bytes),
AccelM2(4 Bytes), SpeedM2(4 bytes), DistanceM2(4 Bytes), Buffer, CRC(2 bytes)]
Receive: [0xFF]

The Buffer argument can be set to a 1 or 0. If a value of 0 is used the command will be buffered
and executed in the order sent. If a value of 1 is used the current running command is stopped,
any other commands in the buffer are deleted and the new command is executed.

52 - Drive M1 With Signed Duty And Acceleration
Drive M1 with a signed duty and acceleration value. The sign indicates which direction the motor
will run. The acceleration values are not signed. This command is used to drive the motor by
PWM and using an acceleration value for ramping. Accel is the rate per second at which the duty
changes from the current duty to the specified duty.

Send: [Address, 52, Duty(2 bytes), Accel(2 Bytes), CRC(2 bytes)]
Receive: [0xFF]

The duty value is signed and the range is -32768 to +32767(eg. +-100% duty). The accel value
range is 0 to 655359(eg maximum acceleration rate is -100% to 100% in 100ms).

53 - Drive M2 With Signed Duty And Acceleration
Drive M1 with a signed duty and acceleration value. The sign indicates which direction the motor
will run. The acceleration values are not signed. This command is used to drive the motor by
PWM and using an acceleration value for ramping. Accel is the rate at which the duty changes
from the current duty to the specified dury.

Send: [Address, 53, Duty(2 bytes), Accel(2 Bytes), CRC(2 bytes)]
Receive: [0xFF]

The duty value is signed and the range is -32768 to +32767 (eg. +-100% duty). The accel value
range is 0 to 655359 (eg maximum acceleration rate is -100% to 100% in 100ms).

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 100

54 - Drive M1 / M2 With Signed Duty And Acceleration
Drive M1 and M2 in the same command using acceleration and duty values for each motor.
The sign indicates which direction the motor will run. The acceleration value is not signed. This
command is used to drive the motor by PWM using an acceleration value for ramping. The
command syntax:

Send: [Address, CMD, DutyM1(2 bytes), AccelM1(4 Bytes), DutyM2(2 bytes),
 AccelM1(4 bytes), CRC(2 bytes)]
Receive: [0xFF]

The duty value is signed and the range is -32768 to +32767 (eg. +-100% duty). The accel value
range is 0 to 655359 (eg maximum acceleration rate is -100% to 100% in 100ms).

55 - Read Motor 1 Velocity PID and QPPS Settings
Read the PID and QPPS Settings.

Send: [Address, 55]
Receive: [P(4 bytes), I(4 bytes), D(4 bytes), QPPS(4 byte), CRC(2 bytes)]

56 - Read Motor 2 Velocity PID and QPPS Settings
Read the PID and QPPS Settings.

Send: [Address, 56]
Receive: [P(4 bytes), I(4 bytes), D(4 bytes), QPPS(4 byte), CRC(2 bytes)]

61 - Set Motor 1 Position PID Constants
The RoboClaw Position PID system consist of seven constants starting with P = Proportional, I=
Integral and D= Derivative, MaxI = Maximum Integral windup, Deadzone in encoder counts,
MinPos = Minimum Position and MaxPos = Maximum Position. The defaults values are all zero.

Send: [Address, 61, D(4 bytes), P(4 bytes), I(4 bytes), MaxI(4 bytes),
Deadzone(4 bytes), MinPos(4 bytes), MaxPos(4 bytes), CRC(2 bytes)]
Receive: [0xFF]

Position constants are used only with the Position commands, 65,66 and 67 or when encoders
are enabled in RC/Analog modes.

62 - Set Motor 2 Position PID Constants
The RoboClaw Position PID system consist of seven constants starting with P = Proportional, I=
Integral and D= Derivative, MaxI = Maximum Integral windup, Deadzone in encoder counts,
MinPos = Minimum Position and MaxPos = Maximum Position. The defaults values are all zero.

Send: [Address, 62, D(4 bytes), P(4 bytes), I(4 bytes), MaxI(4 bytes),
Deadzone(4 bytes), MinPos(4 bytes), MaxPos(4 bytes), CRC(2 bytes)]
Receive: [0xFF]

Position constants are used only with the Position commands, 65,66 and 67 or when encoders
are enabled in RC/Analog modes.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 101

63 - Read Motor 1 Position PID Constants
Read the Position PID Settings.

Send: [Address, 63]
Receive: [P(4 bytes), I(4 bytes), D(4 bytes), MaxI(4 byte), Deadzone(4 byte),
 MinPos(4 byte), MaxPos(4 byte), CRC(2 bytes)]

64 - Read Motor 2 Position PID Constants
Read the Position PID Settings.

Send: [Address, 64]
Receive: [P(4 bytes), I(4 bytes), D(4 bytes), MaxI(4 byte), Deadzone(4 byte),
 MinPos(4 byte), MaxPos(4 byte), CRC(2 bytes)]

65 - Buffered Drive M1 with signed Speed, Accel, Deccel and Position
Move M1 position from the current position to the specified new position and hold the new
position. Accel sets the acceleration value and deccel the decceleration value. QSpeed sets the
speed in quadrature pulses the motor will run at after acceleration and before decceleration.

Send: [Address, 65, Accel(4 bytes), Speed(4 Bytes), Deccel(4 bytes),
 Position(4 Bytes), Buffer, CRC(2 bytes)]
Receive: [0xFF]

66 - Buffered Drive M2 with signed Speed, Accel, Deccel and Position
Move M2 position from the current position to the specified new position and hold the new
position. Accel sets the acceleration value and deccel the decceleration value. QSpeed sets the
speed in quadrature pulses the motor will run at after acceleration and before decceleration.

Send: [Address, 66, Accel(4 bytes), Speed(4 Bytes), Deccel(4 bytes),
 Position(4 Bytes), Buffer, CRC(2 bytes)]
Receive: [0xFF]

67 - Buffered Drive M1 & M2 with signed Speed, Accel, Deccel and Position
Move M1 & M2 positions from their current positions to the specified new positions and hold the
new positions. Accel sets the acceleration value and deccel the decceleration value. QSpeed sets
the speed in quadrature pulses the motor will run at after acceleration and before decceleration.

Send: [Address, 67, AccelM1(4 bytes), SpeedM1(4 Bytes), DeccelM1(4 bytes),
 PositionM1(4 Bytes), AccelM2(4 bytes), SpeedM2(4 Bytes), DeccelM2(4 bytes),
 PositionM2(4 Bytes), Buffer, CRC(2 bytes)]
Receive: [0xFF]

68 - Set M1 Default Duty Acceleration
Set the default acceleration for M1 when using duty cycle commands(Cmds 32,33 and 34) or
when using Standard Serial, RC and Analog PWM modes.

Send: [Address, 68, Accel(4 bytes), CRC(2 bytes)]
Receive: [0xFF]

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 102

69 - Set M2 Default Duty Acceleration
Set the default acceleration for M2 when using duty cycle commands(Cmds 32,33 and 34) or
when using Standard Serial, RC and Analog PWM modes.

Send: [Address, 69, Accel(4 bytes), CRC(2 bytes)]
 Receive: [0xFF]

81 - Read Default Duty Acceleration Settings
Read M1 and M2 Duty Cycle Acceleration Settings.

Send: [Address, 81]
Receive: [M1Accel(4 bytes), M2Accel(4 bytes), CRC(2 bytes)]

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 103

3.0 Programming MCP
3.0.1 MCL
The MCL programming language is based on a subset of BASIC. The MCL language provides
full control over sensors and motor performance characteristics to create robust stand alone
applications. MCL is capable of 32 bit integer and floating point math.

3.0.2 MCL Editor
Ion Studio incorporates an editor for creating and managing MCL programs. The editor is also
used to comppile and downloaded user generated MCL programs to the MCP. To begin creating
a new MCL program select the MCL Editor screen (1). Once the screen is open click in the editor
window (2).

1

2

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 104

3.0.3 Device Menu
The Ion Studio Device menu is used to check and download a MCL program. After creating a
MCL program use the Check MCL to compile and check the program for syntax errors. Once the
program is checked, select Download MCL to send the program to the connect MCP.

3.0.4 Start and Stop Program Execution
Once a program is downloaded to the MCP and Ion Studio is connected use the Start Script to
begin program execution. The Stop Script function can be used to halt program execution while
Ion Studio is connected.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 105

3.1 MCL Language
3.1.1 Variables
Variables are used to store values used in your program. The values stored will typically change
during program run time. What was stored at the start of your program in a given variable can
change by the time your program stops running.

To use a variable it must be defined in your program so the MCP knows to set aside the required
amount of space in RAM. The MCP can handle up to 32 bit variables.

When creating a variable you specify what type of variable you will need in your program.
You can define as many variables as you want. The only limiting factor is the amount of RAM
available which varies for each MCP model.

3.1.2 Variable Types
Type Bits Value Range

Bit 1 1 or 0

Nib 4 0 to 15

Byte 8 0 to 255

SByte 8 -128 to +127

Word 16 0 to 65,535

SWord 32 -32,768 to +32,767

Long 32 0 to 4,294,967,295

SLong 32 -2,147,483,647 to +2,147,483,648

Float 32 ± 2.0 EXP -126 to ± 2.0 EXP 127

3.1.3 Variable Locations
Where the variable is defined dictates where the variables can be used. Variables must be
defined before they can be used. It is recommended to define your variables at the begining of
your program.

3.1.4 Defining Variables
Variables are defined using the statement VAR. You can declare your new variable as any type
found in the Variable Types table. To define a variable use the syntax shown below.

Syntax:

VariableName VAR Type

Examples:

Red VAR Byte
Tick VAR Nib
Switch var Bit
Totals var Sword

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 106

3.1.5 Variable Names
Variable names must start with a letter but can be any combination of letters and numbers
including some symbols that are not in the reserved word list. You can name your variables
almost anything. However, its a good idea to name them something useful that you will
remember and understand for debugging your program. Variable names can be up to 1,024
characters long. The only names you can not use for your variables are reserved words. These
are words used by Studio for commands or other syntax based names (see the manual appendix
for a complete reserved word list).

Example:

MotorSensor VAR Word

3.1.6 Aliases
Variables can be aliased. Using an alias allows you to rename a variable in various places in your
code. This helps your program be human readable without wasting additional memory space.
Aliasing can also be used to access just a proportion of the variable such as the low or high byte
for a word sized variable.

Example:

MotorDirection VAR Word
MaxCCSpeed VAR MotorDirection
MaxCCWSpeed VAR MotorDirection.byte0

3.1.7 Variable Modifiers
Variable modifiers can be used when only part of a variables value is needed. Most
communication formats such as serial or I2C are byte driven. If you have a word sized variable
and you are sending data to such a device, you will need to send one byte at a time of the word
variable. The word value can be split using an alias with a modifier as shown below.

Example

MyData VAR Word
FirstByte VAR MyData.HighByte
SecondByte VAR MyData.LowByte

Variable modifiers can also be used inline with the variable in an expression.

Example

MyData VAR Word
MyByteSum var word

MyData = 0x1234
MyByteSum = MyData.byte1 + MyData.byte0 ;MyByteSum will equal 0x12 + 0x34
end

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 107

3.1.8 Variable Modifier Types
Modifier Description

LowBit Returns the low bit of a variable (least significant bit).

HighBit Returns the high bit of a variable (most significant bit).

Bitn Returns the Nth bit of a variable. From 0 to 31 depending on variable size.

LowNib Returns the low nibble (4 bits) of a variable (least significant nib).

HighNib Returns the high nibble (4 bits) of a variable (most significant nib).

Nibn Returns the Nth nib (4 bits) of a variable. From 0 to 7 depending on variable size.

LowByte Returns the low byte (8 bits) of a variable (least significant byte).

HighByte Returns the high byte (8 bits) of a variable (most significant byte).

Byten Returns the Nth byte of a variable. From 0 to 3 depending on variable size.

SByten Returns the Nth signed byte of a variable. From 0 to 3 depending on variable size.

LowWord Returns the low word (8 bits) of a variable (least significant word).

HighWord Returns the high word (8 bits) of a variable (most significant word)

Wordn Returns the Nth word of a variable. 0 to 1 depending on variable size.

SWordn Returns the Nth signed word of a variable. 0 to 1 depending on variable size.

3.1.9 Variable Arrays
Variable arrays can be used to store several values using one variable name. A good use of
variable arrays would be taking multiple readings from a temperature sensor and storing the
samples in a variable named Temperature. The reads can later be averaged for a more accurate
temperature. MCL only supports one dimensional arrays.

Example:

Temperature VAR Byte(5)

The example above creates 5 byte sized RAM locations for the variable temperature. Each
location is indexed and referenced by using a numerical value. The range is based on the array
size that was defined. In this case the array size is 5. So an index value of 0 to 4 can be used.

Example:

Temperature(0) = 255 ;loads first position
Temperature(1) = 255 ;loads second position
Temperature(2) = 255 ;loads third position
Temperature(3) = 255 ;loads fourth position
Temperature(4) = 255 ;loads fifth position

Temp = Temperature(0) ;Loads value from first position in the array

A common use of variable arrays is to store strings of ASCII based characters. This can be used
to send an entire sentence of text to a byte driven device such as a computer terminal window
using the STR command modifier shown later.

3.1.10 Out of Range
When declaring variables, careful consideration should be given to the maximum value it will
store. If a byte sized variable is declared but the result of some function is word sized then data
will be lost. MCL has no way of knowing these possible conditions existing within your program.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 108

3.1.11 Constants
Constants are defined values that will never change. The assigned value is stored in program
memory and can not be changed. Constants are set during compile time by MCL. Constants are
a convenient way to give a name to a numeric value. They are typically used to make a program
more human readable. There are two types of constants. Normal constants defined using CON
and an explicit floating point constant defined by FCON. You can use almost any name for a
constant, except reserved words (see manual appendix).

Example:

LimitTravel CON 255
MaxSpeed FCON 6.50

3.1.12 Constant Tables
Tables are similar to arrays except tables only store constant values. You can store large strings
of text in a constant table. Each position is accessed like arrays using an index number. Values
assigned to a table are stored in program memory and can not be changed during program run
time. A common use for constant tables is building interactive menu systems. If the user selects
n reply with a string from table n. Constant tables are restricted to word boundaries if you have
an odd number of bytes in a byte table an extra byte is added for padding automatically.

Example:

Sentence ByteTable “Hello World!”

The above example bytetable Sentence contains the string Hello World!. Each character including
the space is a byte in the table. Sentence contains 12 bytes. To access the bytes you would use
an index value of 0 to 11.

Example:

Temp VAR Byte
Sentence ByteTable “Hello World!”

Temp = Sentence(0)

The variable Temp now is equal to the ASCII value H since index 0 is the first byte in the
defined table.

3.1.13 Table Types
Type Description

ByteTable Each table index point is byte sized (8 bits).

SByteTable Each table index point is sbyte sized(signed 8 bits).

WordTable Each table index point is word sized (16 bits).

SWordTable Each table index point is sword sized(signed 16 bits).

LongTable Each table index point is long sized (32 bits).

SLongTable Each table index point is slong sized (32 bits).

FloatTable Each table index point is floating point sized (32 bits).

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 109

3.1.14 System Registers
System registers are special variables defined by MCL to access functions of the MCP control
unit. System registers can, in most cases be used just like a user defined variable. However
some System Registers are read only(see table below) and Variable Modifiers can not be used
with system registers.

3.1.15 System Registers Table

Variable Names Variable Size Array Size Type Description

VERSION WORD 1 R Firmware Version

SYSSTATUS WORD 1 R Error and Warning Status

SYSCLK LONG 1 R System Clock Counter

SYSUSTICK LONG 1 R System Microsecond Tick

SYSTICK LONG 1 R System Millisecond Tick

SYSTEMP WORD 1 R System Temperature 1

SYSTEMP2 WORD 1 R System Temperature 2(on select units)

SYSMBAT WORD 1 R System Main Battery Voltage

SYSLBAT WORD 1 R System Logic Battery voltage

SYSMINMBAY WORD 1 R/W Minimum Main Battery Voltage

SYSMAXMBAT WORD 1 R/W Maximum Main Battery Voltage

SYSMINLBAT WORD 1 R/W Minimum Logic Battery Voltage

SYSMAXLBAT WORD 1 R/W Maximum Logic Battery Voltage

DOUTACTION BYTE 8 R/W Action to trigger an Output Pin

DOUT BIT 8 R/W Output Pin State

PRIORITYLEVEL BYTE 1 R Control Priority Level Number

PRIORITYACTIVE BYTE 1 R Control Priority Level Mask

MOTORFLAGS WORD 2 R Motor Control State Flags

MOTORPWM SWORD 2 R Motor PWM Setting

MOTORCURRENT SWORD 2 R Motor Current Reading

MOTORTARGETPWM SWORD 2 R Motor Target PWM Setting

MOTORVELKP LONG 2 R/W Motor Velocity KP Value

MOTORVELKI LONG 2 R/W Motor Velocity KI Value

MOTORVELKD LONG 2 R/W Motor Velocity KD Value

MOTORVELQPPS LONG 2 R/W Motor Velocity QPPS Value

MOTORTARGETSPEED SLONG 2 R Motor Target Speed

MOTORDISTANCE LONG 2 R Motor Distance

MOTORPOSKP LONG 2 R/W Motor Position KP Value

MOTORPOSKI LONG 2 R/W Motor Position KI Value

MOTORPOSKIMAX LONG 2 R/W Motor Position KIMAX Value

MOTORPOSKD LONG 2 R/W Motor Position KD Value

MOTORPOSMAX SLONG 2 R/W Motor Maximum Position

MOTORPOSMIN SLONG 2 R/W Motor Minimum Position

MOTORPOSDEADZONE LONG 2 R/W Motor Position Deadzone

MOTORTARGETPOS SLONG 2 R Motor Target Position

MOTORACCEL LONG 2 R Motor Acceleration

MOTORDECCEL LONG 2 R Motor Decceleration

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 110

Variable Names Variable Size Array Size Type Description

MOTORSPEED SLONG 2 R Motor Speed

MOTORDEFAULTACCEL LONG 2 R/W Motor Default Acceleration

MOTORMAXCURRENT SWORD 2 R/W Motor Maximum Current

MOTORMINCURRENT SWORD 2 R/W Motor Minimum Current

MOTORL LONG 2 R/W Motor Inductance

MOTORR LONG 2 R/W Motor Resistance

MOTORENCPOS SLONG 2 R/W Encoder Position

MOTORENCSPEED SLONG 2 R Encoder Speed

MOTORENCSPEEDS SLONG 2 R Average Encoder Speed(1 second running aver-
age)

MOTORENCSTATUS BYTE 2 R Encoder Status

MOTORENCPIN BYTE 2 R/W Encoder Signal Input Pin

MOTORBUFFER BYTE 2 R Motor Command Buffer Position

STREAMTYPE BYTE 4 R/W Stream Type

STREAMRATE LONG 4 R/W Stream Rate

STREAMTIMEOUT LONG 4 R/W Stream Timeout

STREAMTICK LONG 4 R Stream Tick(System tick of last recevied byte)

STREAMISBUSY BIT 4 R Stream Is Busy

STREAMCOUNT BYTE 4 R Buffered bytes in stream

SIGNALACTIVE BYTE 32 R Signal Is Active

SIGNALTYPE BYTE 32 R/W Signal Type

SIGNALTARGET BYTE 32 R/W Signal Target

SIGNALMINACTION BYTE 32 R/W Minimum Signal Action

SIGNALMAXACTION BYTE 32 R/W Maximum Signal Action

SIGNALLOWPAS BYTE 32 R/W Low Pass Filter Setting

SINGALTIMEOUT LONG 32 R/W Signal Timeout

SIGNALLOADHOME SLONG 32 R/W Signal Loadhome Setting

SIGNALMIN SLONG 32 R/W Minimum Signal

SIGNALMAX SLONG 32 R/W Maximum Signal

SIGNALCENTER SLONG 32 R/W Center Signal

SIGNALDEADBAND LONG 32 R/W Signal Deadband

SIGNALPOWEREXP SLONG 32 R/W Signal Power Exponent

SIGNALPOWERMIN LONG 32 R/W Signal Power Minimum

SIGNALMODE BYTE 32 R Signal Mode

SIGNALMINOUT SLONG 32 R/W Signal Minimum Output

SIGNALMAXOUT SLONG 32 R/W Signal Maximum Output

SIGNALPOSITION SLONG 32 R Signal Position

SIGNALPERCENT WORD 32 R Signal Percent

SIGNALSPEED SLONG 32 R Signal Speed

SIGNALSPEEDS SLONG 32 R Average Signal Speed

SIGNALCOMMAND SLONG 32 R Signal Command

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 111

VERSION
The version variable holds the firmware version loaded on the board. This allows a MCL script to
determine if the firmware version supports the functions being used by the script. The high byte
of the word value stores the major version number and the low byte of the word value stores the
minor verison number.

main
 puts 0,[“Version “,hex2 VERSION.byte1\2,”.”, hex2 VERSION.byte0\2,13]
 pause 100
 goto main

SYSSTATUS
Variable holds the current controller warning and error states. It can be used in an MCL script to
determine if an error has occured.

Status Bits
Motor1 Overcurrent Protection 0x0001
Motor2 Overcurrent Protection 0x0002
ESTOP Triggered 0x0004
Temperature Error 0x0008
Temperature2 Error 0x0010
Main Battery High Error 0x0020
Main Battery Low Error 0x0040
Logic Battery High Error 0x0080
Logic Battery Low Error 0x0100
Main Battery High Warning 0x0800
Temperature Warning 0x4000

main
 puts 0,[hex4 SYSSTATUS\4,13]
 pause 100
 goto main

SYSCLK
variable holds the current clock counter value. The clock counter starts counting from 0 on
power up in single clock increments((160mhz).

SYSUSTICK
variable holds the current tick counter value. The tick counter starts counting from 0 on power
up in 1us increments.

SYSTICK
variable holds the current tick counter value. The tick counter starts counting from 0 on power
up in 1ms increments.

SYSTEMP
variable holds the board temperature in 10ths of a degree Celcius increments.

main
 puts 0,[real TOFLOAT SYSTEMP/10.0\2,13]
 pause 100
 goto main

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 112

SYSTEMP2
Variable holds the boards secondary temperature in 10ths of a degree increments. Only MCP21xx
support this feature. There is two temperature sensors one for each channel.

SYSMBAT
variable hols the main battery voltage reading in 10ths of a volt.

main
 puts 0,[real TOFLOAT SYSMBAT/10.0\2,13]
 pause 100
 goto main

SYSLBAT
Variable to read the logic battery voltage in 10ths of a volt. If the logic battery input is not being
used the reading may float but will usually read as 0v. To prevent the Logic battery input from
floating the user can ground the Logic Battery input.

main
 puts 0,[real TOFLOAT SYSLBAT/10.0\2,13]
 pause 100
 goto main

SYSMINMBAT
Variable to read or set the minimum main battery voltage limit. Values are in 10ths of a volt.

SYSMINMBAT = 120 ;tenths of a volt
main
 puts 0,[hex4 SYSSTATUS\4,13] ;watch status for an error
 pause 100
 goto main

SYSMAXMBAT
Variable can be use to read or set the maximum main battery voltage limit. Values are in 10ths
of a volt.

SYSMAXMBAT = 200 ;tenths of a volt
main
 puts 0,[hex4 SYSSTATUS\4,13] ;watch status for a warning
 pause 100
 goto main

SYSMINLBAT
Variable can be use to read or set the minimum logic battery voltage limit. Values are in 10ths of
a volt.

SYSMINLBAT = 120 ;tenths of a volt
main
 puts 0,[hex4 SYSSTATUS\4,13] ;watch status for an error
 pause 100
 goto main

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 113

SYSMAXLBAT
Variable can be use to read or set the maximum logic battery voltage limit. Values are in 10ths
of a volt.

SYSMAXLBAT = 120 ;tenths of a volt
main
 puts 0,[hex4 SYSSTATUS\4,13] ;watch status for an error
 pause 100
 goto main

DOUTACTION(8)
Variable array is used to set or read the DOUT pins action setting.

Actions
Motor1 is active 0x01
Motor2 is active 0x02
Either motor is active 0x03
Motor1 is reversed 0x04
Motor2 is reversed 0x05
Either motor is reversed 0x06
Overvoltage 0x07
Overtemperature 0x08
Stat1 LED 0x09
Stat2 LED 0x0A
Err LED 0x0B

;Output Error Status on an external LEDs/Lamps
DOUTACTION(0) = 0x0B ;wire DOUT1 to an external LED/Lamp
DOUTACTION(1) = 0x07 ;wire DOUT2 to an external load dump circuit

DOUT(8)
Variable array is used to set or read the output state of a DOUT pin.

;Blink an external LED
main
 DOUT(0) = 1 ;wire DOUT1 to an external LED/Lamp
 pause 100
 DOUT(0) = 0 ;wire DOUT1 to an external LED/Lamp
 pause 100
 goto main

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 114

PRIORITYLEVEL
Variable holds the control priority level that is currently active. Levels 0,1 or 2.

main
 if PRIORIYLEVEL=0 then
 puts 0,[“Prioritylevel 1”,13]
 elseif PRIORITYLEVEL=1
 puts 0,[“Prioritylevel 2”,13]
 elseif PRIORITYLEVEL=2
 puts 0,[“Prioritylevel 3”,13]
 goto main

PRIORITYACTIVE
Variable holds the trigger mask for priority levels. The mask indicates which control types can
become active. For exampel if Priority Level 1 is set to Serial and Oriority Level 2 is active,
PRIORITYACTIVE will equal 0x01. Indicating any activity on a Serial stream will change the
priority level back to level 1.

Priority Levels
SERIAL 0x01
PULSE 0x02
ANALOG 0x04

MOTORFLAGS (2)
Variable array holds the control state flags for both motor channels. These can be useful when
debugging hardware problems or triggering some specific script function based on motor status.

Flags
stop triggered 0x0001
reverse triggered 0x0002
forward stop triggered 0x0004
backward stop triggered 0x0008
loadhome triggered 0x0010
estop triggered 0x0020
motor is active 0x0040
velocity pid is enabled 0x0080
position pid is enabled 0x0100
motor command buffere is empty 0x0200
distance command is active 0x0400

main
 if MOTORFLAGS(0)&0x0040 then
 puts 0,[“Motor1 is active.”,13]
 endif
 if MOTORFLAGS(1)&0x0040 then
 puts 0,[“Motor2 is active.”,13]
 endif
 pause 100
 goto main

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 115

MOTORPWM (2)
Variable array holds the current PWM setting for both motor channels.

main
 puts 0,[“Motor 1 PWM:”,dec MOTORPWM(0),13]
 pause 100
 goto main

MOTORCURRENT (2)
Variable array holds the current reading for both motor channels. Value is in 10ma increments

main
 puts 0,[“Motor1 current:”,real MOTORCURRENT(0)/100.0\2,13]
 pause 100
 goto main

MOTORTARGETPWM (2)
Variable array holds the target PWM setting for both motor channels. This is the PWM value the
motor is increasing/decreasing power to reach.

main
 puts 0,[“Motor1 pwm target:”,real MOTORTARGETOWM(0)/100.0\2,13]
 pause 100
 goto main

MOTORVELKP (2)
Variable array holds the velocity Kp setting for both motor channels.

;initialize motor Kp setting in script
MOTORVELKP(0) = TOINT(1.0*65536.0)
main
 goto main

MOTORVELKI (2)
Variable array holds the velocity Ki setting for both motor channels.

;initialize motor Ki setting in script
MOTORVELKI(0) = TOINT(0.5*65536.0)
main
 goto main

MOTORVELKD (2)
Variable array holds the velocity Kd setting for both motor channels.

;initialize motor Kd setting in script
MOTORVELKD(0) = TOINT(0.25*65536.0)
main
 goto main

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 116

MOTORVELQPPS (2)
Variable array holds the QPPS setting for both motor channels.

;initialize motor QPPS setting in script
MOTORVELQPPS(0) = 180000
main
 goto main

MOTORTARGETSPEED (2)
Variable array holds the target Speed setting for both motor channels. This is the speed the
motor is accelerating/deccelerating to reach.

main
 puts 0,[“Motor1 target speed:”,dec MOTORTARGETSPEED(0),13]
 pause 100
 goto main

MOTORDISTANCE (2)
Variable array holds the remaining distance for both motor channels.

main
 puts 0,[“Motor1 distance:”,dec MOTORDISTANCE(0),13]
 pause 100
 goto main

MOTORPOSKP (2)
Variable array holds the position Kp setting for both motor channels.

;initialize motor Kp setting in script
MOTORPOSKP(0) = TOINT(4000.0*2048.0)
main
 goto main

MOTORPOSKI (2)
Variable array holds the position Ki setting for both motor channels.

;initialize motor Ki setting in script
MOTORPOSKI(0) = TOINT(0.0*2048.0)
main
 goto main

MOTORPOSKIMAX (2)
Variable array holds the position KiMax setting for both motor channels.

;initialize motor KiMax setting in script
MOTORPOSKIMAX(0) = 100
main
 goto main

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 117

MOTORPOSKD (2)
Variable array holds the position Kd setting for both motor channels.

;initialize motor Kd setting in script
MOTORPOSKD(0) = TOINT(40000.0*2048.0)
main
 goto main

MOTORPOSMAX (2)
Variable array holds the position Max setting for both motor channels.

;initialize motor maximum position
MOTORPOSMAX(0) = 10000
main
 goto main

MOTORPOSMIN (2)
Variable array holds the position Min setting for both motor channels.

;initialize motor minimum position
MOTORPOSMIN(0) = 10000
main
 goto main

MOTORPOSDEADZONE (2)
Variable array holds the position Deadzone setting for both motor channels.

;initialize motor deadzone
MOTORDEADZONE(0) = 10
main
 goto main

MOTORTARGETPOS (2)
Variable array holds the target Position for both motor channels. This is the current position to
move to.

main
 puts 0,[“Motor1 Target Position:”,sdec MOTORTARGETPOS(0),13]
 pause 100
 goto main

MOTORACCEL (2)
Variable array holds the current acceleeration setting for both motor channels.

main
 puts 0,[“Motor1 Acceleration Setting:”,dec MOTORACCEL(0),13]
 pause 100
 goto main

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 118

MOTORDECCEL (2)
Variable array holds the current decceleration setting for both motor channels. The seperate
decceleration value is only used with position commands. Acceleration is used as both
acceleration and decceleration in velocity/distance commands.

main
 puts 0,[“Motor1 Decceleration Setting:”,dec MOTORDECCEL(0),13]
 pause 100
 goto main

MOTORSPEED (2)
Variable array holds the current speed setting for both motor channels.

main
 puts 0,[“Motor1 speed:”,sdec MOTORSPEED(0),13]
 pause 100
 goto main

MOTORDEFAULTACCEL (2)
Variable array holds the default acceleration setting used for duty cycle commands and
compatibility commands for both motor channels.

;initialize motor default acceleration for Duty cycle commands
MOTORDEFAULTACCEL(0) = 655360
main
 goto main

MOTORMAXCURRENT (2)
Variable array holds the maximum current setting for both motor channels.

;initialize motor maximum current limit
MOTORMAXCURRENT(0) = 3000
main
 goto main

MOTORMINCURRENT (2)
Variable array holds the minimum current setting for both motor channels.

;initialize motor maximum current limit
MOTORMINCURRENT(0) = -3000
main
 goto main

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 119

MOTORL (2)
Variable array holds the motor inductance setting for both motor channels. If this value and
MOTORR are set then PWM commands are executed using a current control algorithm instead of
voltage control.

main
 puts 0,[“Motor1 inductance:”,real TOFLOAT MOTORL(0)/16777216.0\2,13]
 pause 100
 goto main

MOTORR (2)
Variable array holds the motor resistance setting for both motor channels. If this value and
MOTORL are set then PWM commands are executed using a current control algorithm instead of
voltage control.

main
 puts 0,[“Motor1 resistor:”,real TOFLOAT MOTORR/16777216.0\2,13]
 pause 100
 goto main

MOTORENCPOS (2)
Variable array holds the current encoder position for both motor channels. This value is equal to
the signal channel assigned as encoder input for the specific motor.

main
 puts 0,[“Motor1 encoder pos:”,sdec MOTORENCPOS,13]
 pause 100
 goto main

MOTORENCSPEED (2)
Variable array holds the current encoder speed for both motor channels. This value is equal to
the signal channel assigned as encoder input for the specific motor.

main
 puts 0,[“Motor1 encoder speed:”,sdec MOTORENCSPEED,13]
 pause 100
 goto main

MOTORENCSPEEDS (2)
Variable array holds the current encoder average speed for both motor channels. This value is
equal to the signal channel assigned as encoder input for the specific motor.

main
 puts 0,[“Motor1 encoder average speed:”,sdec MOTORENCSPEEDS,13]
 pause 100
 goto main

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 120

MOTORENCSTATUS (2)
Variable array holds the current encoder status for both motor channels. This value is equal to
the signal channel assigned as encoder input for the specific motor.

main
 puts 0,[“Motor1 status:”,hex MOTORENCSTATUS,13]
 pause 100
 goto main

MOTORENCPIN (2)
Variable array holds the signal number used for encoder input. This allows any signal
pin(P0,P1,PID1A,PID1B etc) to be used as an encoder input. Pulse, PWM, analog or quadrature
inputs can be used as encoder input.

main
 puts 0,[“Motor1 encoder pin:”,dec MOTORENCPIN(0),13]
 pause 100
 goto main

MOTORBUFFER (2)
Variable array holds the motor buffer state for both motor channels. The high bit of the byte
indicates the motor buffer is empty and no buffered command is executing. The low 7 bits
indicate the used buffer size(0 to 127).

main
 puts 0,[“Motor1 buffer status:”,hex2 MOTORBUFFER(0)\2,13]
 pause 100
 goto main

STREAMTYPE (4)
Variable array holds the stream type for each stream. Stream types currently supported are
0(user stream) or 1(packetserial stream).

;initialize USB stream type
STREAMTYPE(0) = 0
main
 goto main

STREAMRATE (4)
Variable array holds the transmission speed for each stream. This value is in bits per
second(bps).

;initialize RS232 stream rate
STREAMRATE(3) = 115200
main
 goto main

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 121

STREAMTIMEOUT (4)
Variable array holds the activity timeout in milliseconds for each stream. The timeout value is
the maximum time between receiving data on the channel before the channel is deactivated and
a low priority channel is activated.

;initialize USB stream timeout to 1 second
STREAMTIMEOUT(0) = 1000
main
 goto main

STREAMTICK (4)
Variable array holds the last activity tick count for each stream. This is the last system tick
count when data was received on the specified stream.

main
 puts 0,[“USB Stream last active tick:”,dec STREAMTICK(0),13]
 pause 100
 goto main

STREAMISBUSY (4)
Variable array holds the busy status flag for each stream. This indicates if the stream is active or
not.

main
 puts 0,[“USB Stream state:”,dec STREAMISBUSY(0),13]
 pause 100
 goto main

STREAMCOUNT (4)
Variable array holds the used byte count for each stream buffer.

main
 puts 0,[“USB Stream bytes waiting:”,dec STREAMCOUNT(0),13]
 pause 100
 goto main

SIGNALACTIVE (32)
Variable array holds the activity status for each signal. This indicates if the signal input is active

main
 puts 0,[“P0 state:”,dec SIGNALACTIVE(0),13]
 pause 100
 goto main

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 122

SIGNALTYPE (32)
Variable array holds the signal type for each signal.

Signal Types
None 0x00
Analog 0x01
RC Pulse/PWM 0x02
Quadrature Encoder 0x03

main
 puts 0,[“P0 SignalType:”,dec SIGNALTYPE(0),13]
 pause 100
 goto main

SIGNALTARGET (32)
Variable array holds the target for each signal. The target can be either Motor1(0) or Motor2(1).

main
 puts 0,[“P0 Signal Target:”,dec SIGNALTARGET(0),13]
 pause 100
 goto main

SIGNALLOWPASS (32)
Variable array holds the low pass filter setting. 2^n samples. 0 = disabled.

SIGNALTIMEOUT (32)
Variable array holds the activity timeout for each signal. The time in system tick counts before
the signal is deactivated and a lower priority input will be activated.

main
 puts 0,[“P0 Signal Timeout:”,dec SIGNALTIMEOUT(0),13]
 pause 100
 goto main

SIGNALTICK (32)
Variable array holds the last activity tick count for each signal. The time the last signal was
received.

main
 puts 0,[“P0 Last Signal Tick:”,dec SIGNALTICK(0),13]
 pause 100
 goto main

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 123

SIGNALMINACTION (32)
Variable array holds the action that will trigger if the minimum is reached for each signal.

Action triggered by Signal Minimum
Motor1 safestop 0x0001
Motor2 safestop 0x0100
Both Motors safestop 0x0101
Motor1 off 0x0002
Motor2 off 0x0200
Both Motors off 0x0202
Motor1 reverse 0x0004
Motor2 reverse 0x0400
Both Motors reverse 0x0404
Motor1 Forward Limit 0x0008
Motor2 Forward Limit 0x0800
Both Motors Forward Limit 0x0808
Motor1 Reverse Limit 0x0010
Motor2 Reverse Limit 0x1000
Both Motors Reverse Limit 0x1010
Motor1 load Loadhome value 0x0020
Motor2 load loadhome value 0x2000
Both Motors load loadhome 0x2020
Run Script 0x0040
Stop Script 0x4000
Reset Script 0x0080
Trigger ESTOP 0x8000

;initialize Signal P0 minimum action
SIGNALMINACTION(0) = 0x8000 ;trigger E-Stop if signal goes low
main
 goto main

SIGNALMAXACTION (32)
Variable array holds the maximum action for each signal. See SIGNALMINACTION for actions list.

;initialize P0 maximum action
SIGNALMAXACTION(0) = 0x0040 ;run script if P0 goes high
main
 goto main

SIGNALLOADHOME (32)
Variable array holds the loadhome value for each signal. This value is loaded to the encoder
position value when a Loadhome action occurs. This only applies to encremental encoder
signals.

main
 puts 0,[“P0 Load Home Value:”,dec SIGNALLOADHOME(0),13]
 pause 100
 goto main

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 124

SIGNALMIN (32)
Variable array holds the minimum position for each signal. This limits the minimum signal value
and can trigger an action(on a DOUT or a motor channel).

main
 puts 0,[“P0 Minimum:”,dec SIGNALMIN(0),13]
 pause 100
 goto main

SIGNALMAX (32)
Variable array holds the maximum position for each signal. This limits the maximum signal value
and can trugger an action(on a DOUT or a motor channel).

main
 puts 0,[“P0 Maximum:”,dec SIGNALMAX(0),13]
 pause 100
 goto main

SIGNALCENTER (32)
Variable array holds the center position for each signal. This value sets the center point of
the signal input. This in combination with the min and max values can be used to limit the
maximum range of either direction of a signal.

main
 puts 0,[“P0 Center:”,dec SIGNALCENTER(0),13]
 pause 100
 goto main

SIGNALDEADBAND (32)
Variable array holds the deadband width for each signal. The deadband allows you to elliminate
any slop in your control input when it is centered. For example you use an analog joystick that
doesnt return to center perfectly you can set an area near the center to always equal the center
value.

main
 puts 0,[“P0 Deadband:”,dec SIGNALDEADBAND(0),13]
 pause 100
 goto main

SIGNALPOWEREXP (32)
Variable array holds the power exponent for each signal. The power exponent value lets the
user define the curve of the signal input. This allows the control to be more precise near the
center point or near the min and max limits. The higher/lower the number the more extreme the
change in control.

main
 puts 0,[“P0 Exp:”,real SIGNALPOWEREXP/65536.0\2,13]
 pause 100
 goto main

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 125

SIGNALPOWERMIN (32)
Variable array holds the minimum power level for each signal. This sets the absolute minimum
control output for a signal controling a motor.

main
 puts 0,[“P0 Power Minimum:”,dec SIGNALPOWERMIN,13]
 pause 100
 goto main

SIGNALMODE (32)
Variable array holds the mode for each signal. Changign the signal mode allows the user to read
specific dat from a signal:

Mode
Absolute position of the signal 0x00
Percent of the signal(PWM Duty) 0x01
Average speed of the signal Change 0x02
Speed of the signal change 0x03

main
 puts 0,[“P0 Mode:”,dec SIGNALMODE(0),13]
 pause 100
 goto main

SIGNALMINOUT (32)
Variable array holds the minimum output for each signal. Sets the minimum output to the target
motor.

main
 puts 0,[“P0 Minimum Output:”,sdec SIGNALMINOUT(0),13]
 pause 100
 goto main

SIGNALMAXOUT (32)
Variable array holds the maximum output for each signal. Sets the maximum output to the
target motor.

main
 puts 0,[“P0 Maximum Output:”,dec SIGNALMAXOUT(0),13]
 pause 100
 goto main

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 126

SIGNALPOSITION (32)
Variable array holds the current position for each signal.

main
 puts 0,[“P0 Position:”,dec SIGNALPOSITION(0),13]
 pause 100
 goto main

SIGNALPERCENT (32)
Variable array holds the current percentage of the signal throw for each signal.

main
 puts 0,[“P0 PERCENT:”,dec SIGNALPERCENT(0),13]
 pause 100
 goto main

SIGNALSPEED (32)
Variable array holds the current speed for each signal.

main
 puts 0,[“P0 SPEED:”,dec SIGNALSPEED(0),13]
 pause 100
 goto main

SIGNALSPEEDS (32)
Variable array holds the current average speed for each signal.

main
 puts 0,[“P0 Average Speed:”,dec SIGNALSPEEDS(0),13]
 pause 100
 goto main

SIGNALCOMMAND (32)
Variable array holds the command for each signal. This is either the position,percent,speed or
average speed of the signal input depending on the signal mode setting.

Command Types
Position 0
Percent 1
Speed 2
Average Speed 3

main
 puts 0,[“P0 Output Command:”,dec SIGNALCOMMAND(0),13]
 pause 100
 goto main

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 127

3.2 MCL Math

3.2.1 Math Functions
MCL includes a full complement of math and comparison functions. MCL supports 32 bit integer
math, both signed and unsigned. It also supports floating point math. A signed value denotes
whether the resulting value is positive or negative.

3.2.2 Number Bases
Although all calculations are handled internally in binary, users can refer to numbers as decimal,
hexadecimal or binary, whichever is most convenient for the programmer. For example, the
number 2349 can be referred to as:

2349 Decimal
0x092D Hexadecimal
%100100101101 Binary

Leading zeros are not required for hex or binary numbers, but may be used if desired. When
using signed integers (sbyte, sword, slong) it is probably a good idea to stick to decimal notation
to avoid confusion.

3.2.3 Math and Operators
Operators are what makes math work, by performing a function. An example of an operator
would be + (Addition), - (Subtraction), * (Multiplication) and / (Division). All these symbols
represent an operation to be performed. However, the operators need something to do, so we
add operands which are better known as arguments. Math arguments are the values used in an
expression.

In the following section you will see the word “expression” used many times. This refers to
something like 1+2. The expression 1+2 has one operator (+) and two arguments(1 and 2) or
operands.

3.2.4 Operators
Operator Description

- Changes the value of an expression from positive to negative. Also used in subtraction.

ABS Returns the absolute value of an expression.

SIN Returns the integer sine of an expression.

COS Returns the integer cosine of an expression.

SQR Returns the integer square root.

BIN2BCD Converts expression from binary to packed binary coded decimal format.

RANDOM Returns a random 32 bit number generated from a seed value.

- Subtraction. Also used to sign a value.

+ Addition.

* Multiplication, returns the low 32bits of a integer multiplication result.

/ Division.

** Returns high 32 bits of an integer multiplication result.

*/ Fractional integer multiplication.

// Remainder of Integer Division.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 128

Operator Description

MAX Limits the expression to a maximum value

MIN Limits the expression to a minimum value

DIG Returns the specified digits value

<< Shift left by specified amount.

>> Shift right by specified amount.

& Binary math AND.

| Binary math OR.

^ Binary math XOR.

&/ Binary math NAND.

|/ Binary math NOR.

^/ Binary math NXOR.

= Is equal to.

<> Is not equal to.

< Is less than.

> Is greater than.

<= Is less than or equal to.

>= Is greater than or equal to.

AND Logical AND.

OR Logical OR.

XOR Logical XOR.

NOT Logical NOT.

TOINT Convert a Floating Point value to a Integer

TOFLOAT Convert an Integer value to a Floating Point

FABS Floating Point Absolue value

FSQRT Floating Point Square Root

FSIN Floating Point Sine

FCOS Floating Point Cosine

FTAN Floating Point Tangent

FASIN Floating Point ArcSine

FACOS Floating Point ArcCosine

FATAN Floating Point Arc Tangent

FSINH Floating Point Hyperbolic Sine

FCOSH Floating Point Hyperbolic Cosine

FTANH Floating Point Hyperbolic Tangent

FATANH Floating Point Hyperbolic ArcTangent

FLN Floating Point Natural Log

FEXP Floating Point Exponent

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 129

3.2.5 Operator Precedence
All math functions have a precedence order. This simply means each math function in an
expression is calculated based on its precedence not necessarily based on the order in which it
appears in the expression. This even holds true for math as it was taught in school. However, the
precedence of order may differ.

To solve the following equation 2+2*5/10 = 3 MCL would start with multiplication first since it
has the higher precedence order. 2*5 will be calculated first which equals 10, then divide 10
by 10 which equals 1, then addition of 2 which equals 3. The 2 was added last since it had the
lowest precedence.

The multiplication and division operators have equal precedence, and both have higher
precedence than addition and subtraction. Now you can change the order in which the math is
performed by using parenthesis. This will force a specific order. Using parentheses, the following
expression ((2+2)*5) /10 would yield a result of 2.

3.2.6 Precedence Table
Order Operation

1st NOT, ABS, SIN, COS, - (NEG), SQR, RANDOM, TOINT, TOFLOAT, BIN2BCD, ~(Binary NOT),
!(Binary NOT), NOT(Logical NOT), FABS, FSQRT, FSIN, FCOS, FTAN, FASIN, FACOS, FATAN,
FSINH, FCOSH, FTANH, FATANH, FLN, FEXP

2nd Dig

3rd MAX, MIN

4th *, **, */, /, //

5th +, -

6th <<, >>

7th <, <=, =, >=, >, <>

8th &, |, ^, &/, |/, ^/

9th And, Or, Xor

- (Negative)
Signs an expression (integer or floating point) as a negative value.

Temp var Byte
Result var Byte
Temp = 1
Result = Temp + -1

Temp is first is set to equal 1. Then -1 is added. -1 is a signed integer. So Result now equals 0.
Since 1 added to -1 equals 0.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 130

ABS
The Absolute Value (ABS) converts a signed number to its absolute value. The absolute value of
a number is the value that represents its difference from 0. The absolute value of -4 is 4. If the
number is positive the result will always be the same number returned:

temp = abs(-1234)
temp = abs(1234)

In the example above, the result will always be 1234 since the difference of 0 from -1234 is
1234.

SIN, COS
In integer arithmetic, some modifications to the way sine and cosine work have been made. For
example, in floating point math, the expression:

ans = sin(angle)

where angle is 1 radian, would return a value of 0.841... for ans. In fact, the sine of an angle
must always be a fractional value between -1 and 1. MBasic can not deal with fractional values
for integer math so SIN and COS are made to work with integers.

Since we are dealing with binary integers, we divide the circle into 256 (rather than 360) parts.
This means that a right angle is expressed as 64 units, rather than 90 degrees. When working
with Basic Micro Studio angular units give you a precision of about 1.4 degrees.

The result of the SIN or COS function is a signed number in the range of –127 to +128. This
number divided by 128 gives the fractional value of SIN or COS.

In most “real world” applications, the angle does not need to be in degrees, nor does the result
need to be in decimal form. The following example shows a possible use of SIN values. If a
sensor returns the angle of a robotic control arm as a number from 0 to 64, where 0 is parallel
and 64 is a right angle. We want to take action based on the sine of the angle.

 limit var byte
 angle var byte
loop
 (code that inputs the value of “angle”)
 limit = sin angle
 if limit > 24 then first
 if limit > 48 then second
 goto loop
first
 code to warn of excessive angle
 goto loop
second
 code to shut down equipment
 etc...

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 131

This will warn the operator if the arm angle exceeds approximately 8 units (11.25 degrees) and shut
down the equipment if the arm angle exceeds approximately 16 units (22.5 degrees). Most control
examples don’t need to work in actual degrees or decimal values of sine or cosine. To find the sine of
a 60 degree angle, first convert the angle to MBasic units by multiplying by 256 and dividing by 360.
For example:

angle = 60 * 256 / 360

will result in a value of 42. (It should actually be 42.667, which rounds to 43, but with integer
arithmetic the decimal fraction is ignored, and the integer is not rounded up.) Then find the sine
of this angle:

ans = sin angle

This will give a result of 109. Dividing this value by 128 will give the decimal value of 0.851
(compared to the correct floating point value which should be 0.866). You can not directly get
the decimal value by doing this division within MBasic (you would get a result of 0). However,
you could first multiply by 1000, then divide by 128 to get 851 as your result.

SQR (Square Root)
SQR returns the integer portion of the square root of the argument. Increased precision can be
obtained by multiplying the argument by an even square of 10, such as 100 or 10000.

If the value of “num” is 64, the following statement will return the value of 8 (which is the
square root of 64).

answer = sqr num

If the value of “num” is 220, the following statement will return the value 14, which is the
integer portion of 14.832..., the square root of 220.

answer = sqr num

If more precision is required, multiply the argument by 100 or 10000. Using the example where
“num” = 220 a value 148 is returned, which is 10 times the square root of 220.

answer = sqr (num * 100)

Alternately,

answer = sqr (num * 10000)

the above example will return the value 1483, which is 100 times the square root of 220.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 132

BIN2BCD
This command let you convert binary to “packed” binary coded decimal (BCD). A BCD number
is one in which each decimal digit is represented by a 4 bit binary number (from 0 to 9). Packed
BCD packs two 4 bit decimal digits in a single byte of memory.

For example, the decimal number 93 is represented in binary as:

Values 128 64 32 16 8 4 2 1
Binairy 0 1 0 1 1 1 0 1

The same number is expressed in packed BCD as:

Values 8 4 2 1 8 4 2 1
Binairy 1 0 0 1 0 0 1 1

Assuming that “answer” is a byte variable and “num” has the decimal value of 93, the statement

answer = bin2bcd num

will set answer to a binary value of 10010011 (which is 93 in packed BCD).

RANDOM
Random generates a 32 bit (Long) random number from the seed value. As with most random
number generators, the random numbers generated will follow a predictable pattern depending
on the seed value(ie: it is psuedo random), and each time the program is run the random
number sequence will be the same if the seed value is the same. The code snippet below will
return a pseudo random set of numbers by re-seeding from the results:

seed var long

seed = 123456
seed = random seed

There are steps that can be taken to avoid repeating random number sequences. This is typically
done using hardware based features. One common method is using an internal hardware timer
for the seed value and asking the user to press a button at the beginning of a game. Each time
the button is pressed the timer value will likely be different. Another method is reading an A/D
pin that is left floating and near a noisy signal trace.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 133

Subtraction (-)
Subtract a value (integer or floating point) from another value. The resulting number is not
signed unless a signed variable is used. An example of subtraction:

time var byte
time = 100
time = time - 1

The variable time will now equal 99 since we subtracted 1 from 100.

Addition (+)
Add one value (integer or floating point) to another value. The resulting number is not signed
unless a signed variable is used. An example of addition:

time var byte
time = 100
time = time + 1

The variable time will now equal 101 since we added 1 to 100.

Multiplication (*)
Multiply one value (integer or floating point) by another value. The resulting number is not
signed unless a signed variable is used. An example of multiplication:

time var byte
time = 100
time = time * 1

The variable time will now equal 100 since we multiplied 100 by 1.

Division (/)
Divide one value (integer or floating point) by another value. Integer division discards fractional
results. For example:

result = 76/7

will set the variable “result” to a value of 10. (The actual decimal result would be 10.857, but the
decimal part is discarded, rounding is not done.) If your application requires fractional results
you can use floating point numbers or the following solution.

Use a floating point variable instead to get the full precision.

result var float
result = 76.0/7.0

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 134

Alternatively, when using integer variables multiply the dividend by 10, 100, 1000 etc. before
dividing. The result will gain extra digits of precision but must be interpreted correctly. Using the
previous example we can gain three digits of precision as follows. This is known as fixed point
division:

temp = dividend * 1000 ;dividend is now 76000
result = temp/7

The example sets “result” to a value of 10857.

High Multiplication (**)
If two long variables or constants are multiplied, the result may exceed 32 bits. Normally, the
multiply function will return the least significant (lowest) 32 bits. The ** function will, instead,
return the most significant 32 bits.

time = 80000 ** 80000 ; result returns high 32 bits

The value of time would be equal to 0x1 which is the high 32 bits of the result 6,400,000,000.

Fractional Multiplication (*/)
Fractional multiplication will multiply a number with a fractional part. The multiplier must be a
long value which is handled by a special method. The high 16 bits are the integer portion of the
multiplier, the low 16 bits are the fractional part (expressed as a fraction of 65536). The result
will be an integer with any fractional remainder discarded (not rounded).

Let us say we want to multiply the number 346 x 2.5. The multiplier must be constructed as
follows. The high 16 bits will have a value of 2. We can do this with:

mult.highword = 2

The low 16 bits will have a value that is half of 65535 or 32782 so:

mult.lowword = 32782

Then we do the fractional multiply:

a = 346 */ mult

The example will give “a” the value 865. A similar procedure will let you multiply by any fraction
by expressing that fraction with a denominator of 65535 as closely as possible.

Notice that half of 65535 is actually 32782.5; a number we can not enter as the fractional part.
This means that multiplication by exactly half is not possible. However, the difference is so small
that it has no effect on the actual outcome of the integer result.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 135

Mod (//)
The mod function (short for “modulo”) returns the remainder after an integer division. So, for
example, 13 modulo 5 is 3 (the remainder after dividing 13 by 5).

The mod function can be used to determine if a number is odd or even, as shown here:

x var word
 y var word
 (code that sets the value of x)
 y = x//2
 if y=0 goto even ;zero indicates an even number
 if y=1 goto odd ;one indicates an odd number
even
 (more code)
odd
 (more code)

Similarly, the mod function can be used to determine if a number is divisible by any other
number.

MAX
The MAX function returns the smaller of two expressions (integer or floating point). For example:

x var word
y var word
code to set value of y
x = y max 13

The example above will set x to the value of y or 13, whichever is smaller. Think of this as x
equals y up to a maximum value of 13.

MIN
The MIN function returns the larger of two expressions (integer or floating point). For example:

x var word
y var word
code to set value of y
x = y min 9

The example will set y to the value of x or 9, whichever is larger. Think of this as x equals y
down to a minimum value of 9.

DIG
The DIG (digit) function is used to isolate a single digit of a decimal number. For example:

x var word
y var byte
(code to set y) ;say the result is y=17458
x = y dig 4 ;gives the 4th digit of y, which is 7

Digits are counted from the right, starting with 1. The DIG function will work with numbers in
decimal format only. If you need to find a specific digit in a hex or binary number, use a variable
modifier.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 136

Shift Left (<<)
The Shift Left operator shifts all the bits of a value to the left by a specified amount. Shifting left
is the same as multiplying the value by 2 to the nth power. Bits shifted off the left end are lost.
Zeros are added to the right for vacant bits. The example program will display the value of time
before and after shifting left by 4. The results will be displayed in binary:

time var byte

serout sout, i9600,[bin time]
time = time << 4
serout sout, i9600,[bin time]

Important: The sign bit is not preserved so this function should not be used with signed
numbers.

Shift Right (>>)
The Shift Right operator shifts all the bits of a value to the right by a specified amount. Shifting
right is the same as dividing the value by 2 to the nth power. Bits shifted off the right end are
lost. Zeros are added to the left for vacant bits. The example program will display the value of
time before and after shifting right by 4. The results will be displayed in binary:

time var byte

serout sout, i9600,[bin time]
time = time >> 4
serout sout, i9600,[bin time]

Important: The sign bit is not preserved so this function should not be used with signed
numbers.

AND (&)
The AND (&) function is a binary operator. It sets the result to 1 if both bits are 1’s or 0 if either
or both bits are 0’s.

1 & 1 = 1
1 & 0 = 0
0 & 1 = 0
0 & 0 = 0

Value1 0 1 0 1 1 1 0 1

Value2 1 0 0 1 0 0 1 1

Result 0 0 0 1 0 0 0 1

One useful function for AND is to “mask” certain bits of a number. For example, if we are
interested only in the low 4 bits of a number, and wanted to ignore the high 4 bits, we could AND
(&) the number with 00001111 as shown here:

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 137

Value1 0 1 0 1 1 1 0 1

Value2 0 0 0 0 1 1 1 1

Result 0 0 0 0 1 1 0 1

As you can see, the high 4 bits are now all set to 0’s, regardless of their original state, but the
low 4 bits retain their original state.

OR (|)
The OR (|) function is a binary operator. It sets the bit to 1 if either or both of the matching bits
are 1 or to 0 if both bits are 0’s.

1 | 1 = 1
1 | 0 = 1
0 | 1 = 1
0 | 0 = 0

Value1 0 1 0 1 1 1 0 1

Value2 1 0 0 1 0 0 1 1

Result 1 1 0 1 1 1 1 1

Exclusive OR (^)
The ^ function is a binary operator. It sets the resulting bits to a 1 if either, but not both, of the
matching bits are 1 or to 0 otherwise.

1 ^ 1 = 0
1 ^ 0 = 1
0 ^ 1 = 1
0 ^ 0 = 0

Value1 0 1 0 1 1 1 0 1

Value2 1 0 0 1 0 0 1 1

Result 1 1 0 0 1 1 1 0

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 138

NAND (&/)

The NOT AND function is a binary operator. It compares the bits of two values. It sets the result
bits to 1 if neither bit is set or to a 1 for all other cases.

1 &/ 1 = 1
1 &/ 0 = 1
0 &/ 1 = 1
0 &/ 0 = 0

Value1 0 1 0 1 1 1 0 1

Value2 1 0 0 1 0 0 1 1

Result 1 1 1 0 1 1 1 0

NOR (|/)
The NOT OR function is a binary operator. It compares two values bit by bit and sets the result to
a 1 if neither bit is a 1, all other conditions will return a 0.

1 |/ 1 = 0
1 |/ 0 = 0
0 |/ 1 = 0
0 |/ 0 = 1

Value1 0 1 0 1 1 1 0 1

Value2 1 0 0 1 0 0 1 1

Result 0 0 1 0 0 0 0 0

NXOR (^/)
The NOT XOR function is a binary operator, It compares two values bit by bit and sets the result
to a 1 if neither bit is a 0 or both bits are a 1. All other conditions will return a 0.

1 ^/ 1 = 1
1 ^/ 0 = 0
0 ^/ 1 = 0
0 ^/ 0 = 1

Value1 0 1 0 1 1 1 0 1

Value2 1 0 0 1 0 0 1 1

Result 0 0 1 1 0 0 0 1

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 139

Equal (=)
The Equal (=) is a logic operator and also is used to set a variable to some value.

if(temp = 10)then
endif

or

temp = 10

The two examples compares the value of temp to 10 and sets temp to 10 using “=”.

NOT Equal To (<>)
The NOT Equal (<>) is a logic operator and compares to see if a value is not equal to another
value.

if temp <> 10 then

The conditional statement will check to see if temp is not equal to 10. If the value of temp is
lower or greater the comparison will be true.

Less Than (<)
The Less Than (<) is a logic operator and compares to see if a value is less than another value.

if temp < 10 then

The conditional statement will check to see if temp is less than 10. If the value of temp is lower
the comparison is true. Therefore, any value equal to or over 10 will be false.

Greater Than (>)
The Greater Than (>) is a logic operator and compares to see if a value is greater than another
value.

if temp > 10 then

The conditional statement will check to see if temp is greater than 10. If the value of temp is
higher, the comparison is true. Therefore, any value from 0 to 10 will be false (Less Than or
Equal To).

The Less Than or Equal To (<=) is a logic operator and compares if something is less than or
equal to some value.

if temp <= 10 then

The conditional statement will check to see if temp is less than or equal to 10. If the value of
temp is less than 10 or equal to 10 the comparison is true. Therefore, any value from 11 and up
is false.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 140

Greater Than or Equal To (>=)
The Greater Than or Equal To (>=) is a logic operator and compares to see if a value is greater
than or equal to another value.

if temp >= 10 then

The conditional statement will check to see if temp is greater than or equal to 10. If the value of
temp is greater than 10 or equal to 10 the comparison is true. Therefore, any value from 0 to 9
is false.

AND
The AND operator is a logic comparison operator. It compares two conditions to make a single
true or false statement. The AND operator will return a true only if both conditions are true. If
one condition is false then a false is returned. The truth table demonstrates all combinations:

Condition 1 Condition 2 Result

True True True

True False False

False True False

False False False

The AND operator is used in decision making commands such as IF..THEN, DO..WHILE and so
on. It differs from the & operator which is used in binary math functions. Example of the AND
operator:

if minute = 10 AND hour = 1 then alarm

The conditional statement will check to see if both expressions are true before returning a true
and jumping to the alarm label. If one of the expressions is not true, a false is returned and the
label is skipped. The IF..THEN only jumps to the label if the statement is true.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 141

OR
The OR operator is a logic comparison operator. It compares two conditions to make a single
true or false statement. The OR operator will return a true if one or both conditions are true.
If both conditions are false then a false is returned. The truth table belwo demonstrates all
combinations:

Condition 1 Condition 2 Result

True True True

True False True

False True True

False False False

The OR operator is used in decision making commands such as IF..THEN, DO..WHILE and so
on. It differs from the | operator which is used in binary math functions. Example of the OR
operator:

if hour = 12 OR minute = 30 then ding

The conditional statement will check to see if either expression is true before returning a true
and jumping to the ding label. If both of the expressions are false the label is skipped. The IF..
THEN only jumps to the label if the statement is true.

XOR
The XOR operator is a logic comparison operator. It compares two conditions to make a single
true or false statement. The XOR operator will return a true if one but not both conditions
are true. If both conditions are true or false then a false is returned. The truth table below
demonstrates all combinations:

Condition 1 Condition 2 Result

True True False

True False True

False True True

False False False

The XOR operator is used in decision making commands such as IF..THEN, DO..WHILE and so
on. It differs from the ^ operator which is used in binary math functions. Example of the XOR
operator:

if hour > 5 XOR hour = 5 then QuitTime

The conditional statement will check to see if either expression is true before returning a true
and jumping to the quittime label. If both of the expressions are false or true the label is
skipped. The IF..THEN only jumps to the label if the statement is true.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 142

NOT
The NOT operator is a logic operator that inverts a condition. When used, true becomes false and
false becomes true. The truth table demonstrates all combinations:

Condition Result

True False

False True

The NOT operator is used in decision making commands such as IF..THEN, DO..WHILE and so on.
Example of the NOT operator:

if hour = 5 then Quit_Time
if NOT hour < 5 then Over_Time

If hour is not equal to 5 the first conditional statement will skip Quit_Time. In the second
conditional statement if hour is not less than 5 it jumps to the label Over_Time since the
NOT operator inverted the result of the condition. The IF..THEN only jumps to the label if the
statement is true.

Floating Point Operators
Operator Description

TOINT Convert a Floating Point value to a Integer

TOFLOAT Convert an Integer value to a Floating Point

FSQRT Floating Point Square Root

FSIN Floating Point Sine

FCOS Floating Point Cosine

FTAN Floating Point Tangent

FASIN Floating Point ArcSine

FACOS Floating Point ArcCosine

FATAN Floating Point Arc Tangent

FSINH Floating Point Hyperbolic Sine

FCOSH Floating Point Hyperbolic Cosine

FTANH Floating Point Hyperbolic Tangent

FATANH Floating Point Hyperbolic ArcTangent

FLN Floating Point Natural Log

FEXP Floating Point Exponent

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 143

TOINT
The TOINT operator explicitly converts a floating point value into an integer value. The decimal
point of the floating point number is truncated.

myfloat var float
myint var long

myfloat = 10.0 ;myfloat now equals 10.0
myfloat = myfloat * 123.123 ;myfloat now equals 1231.23
myint = TOINT myfloat ;myint now equals 1231
serout s_out,i9600,[“result = “,sdec myint,13]

TOFLOAT
The TOFLOAT operator explicitly converts an integer value into a floating point value.

myint var long
myfloat var float

myint = 10
myfloat = TOFLOAT myint / 100.0 ;myfloat now equals 0.1
serout s_out,i9600,[“result = “,real myfloat,13]

FABS
The Absolute Value (ABS) converts a signed number to its absolute value. The absolute value of
a number is the value that represents its difference from 0. The absolute value of -4 is 4. If the
number is positive the result will always be the same number returned:

temp = fabs(-1234.1234)
temp = fabs(1234.1234)

In the example above, the result will always be 1234.1234.

FSQRT
FSQRT returns the floating point square root of the argument. A square root is the number, that
when multiplied by itself will equal the original argument.

If the value of “num” is 2, the following statement will return the value of 1.4142:

myfloat var float

myfloat = FSQRT 2.0
serout s_out,i9600,[“result = “,real myfloat,13]

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 144

FSIN
The FSIN operator calculates the floating point Sine of an angle in radians. FSIN gives the ratio
of the length of the side opposite of the angle to the length of the hypotenuse in a right triangle.

myangle var float
mysin var float

myangle = 3.14159/2.0 ;myangle now equals PI/2 degrees in radians
mysin = FSIN myangle ;mysin now equals 1.0
serout s_out,i9600,[“mysin = “,real mysin,13]

FCOS
The FCOS operator calculates the floating point cosine of an angle in radians. FCOS gives the
ratio of the length of the side adjacent the angle, to the length of the hypotenuse in a right
triangle.

myangle var float
mycos var float

myangle = 0.0 ;myangle now equals 0 degrees in radians
mycos = FCOS myangle ;mycos now equals 1.0
serout s_out,i9600,[“mycos = “,real mycos,13]

FTAN
The FTAN operator calculates the floating point tangent of an angle in radians. FTAN gives the
ratio of the length of the side opposite the angle to the length of the side adjacent to the angle in
a right triangle

myangle fcon 3.14159/4 ;myangle is 45 degrees in radians
myadj fcon 100.0
myopp var float

;This calcualtion finds the triangles opposite side length
;for a right triangle with angle of 45 degrees and
;adjacent side of 100.
myopp = FTAN myangle * myadj ;myopp now equals 100.0
serout s_out,i9600,[“myopp = “,real myopp,13]

FASIN
The FASIN operator calculates the floating point arc sine of a value. FASIN returns the angle
in radians given the ratio of the length of the side opposite the angle and the length of the
hypotenuse in a right triangle.

mysin fcon 1.0
myangle var float

myangle = FASIN mysin ;myfloat equals PI/2
serout s_out,i9600,[“myangle = “,real myangle,13]

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 145

FACOS
The FACOS operator calculates the floating point arc cosine of a value. FACOS returns the angle
in radians given the ratio of the length of the side adjacent the angle and the length of the
hypotenuse in a right triangle.

mycos fcon 0.0
myangle var float

myangle = FACOS mycos ;myfloat equals 0
serout s_out,i9600,[“myangle = “,real myangle,13]

FATAN
The FATAN operator calculates the floating point arc tangent of a value. FATAN returns the angle
in radians given the ratio of the length of the side opposite the angle and the length of the side
adjacent to the angle in a right triangle.

mytan fcon 1.0
myangle var float

myangle = FATAN mytan ; myfloat equals PI/4
serout s_out,i9600,[“myangle = “,real myangle,13]

FLN
The FLN operator calculates the floating point natural log of a value. The natural log is used to
calculate the time it takes for compound growth to reach the specified amount. For example
FLN 20.08 will equal approximately 3. This means it takes 3 growth cycles (the amount of time it
takes to grow 100%) to reach 20.08 times the original amount.

result var float

result = FLN 2.0 ;result now equals 0.69315
serout s_out,i9600,[“result = “,real result,13]

FEXP
The FEXP operator calculates the Floating Point Natural Exponent of a value. The natural
exponent calculates the inverse of the natural log. Given time how much will something grow.
FEXP 3 will equal approximately 20.08 times the original quantity.

result var float

result = FEXP 0.693115 ;result now equals 2.0
serout s_out,i9600,[“result = “,real result,13]

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 146

FSINH
The FSINH operator calculates the floating point hyperbolic Sine of the value.

param var float
result var float

param = FLN 2.0
result = FSINH param
serout s_out,i9600,[“The hyperbolic sine of “,real param,” is “,real result,13]

FCOSH
The FCOSH operator calculates the floating point hyperbolic cosine of the value.

param var float
result var float

param = FLN 2.0
result = FCOSH param
serout s_out,i9600,[“The hyperbolic cosine of “,real param,” is “,real result,13]

FTANH
The FTANH operator calculates the floating point hyperbolic tangent of the value.

param var float
result var float

param = FLN 2.0
result = FTANH param
serout s_out,i9600,[“The hyperbolic tangent of “,real param,” is “,real result”,13]

FATANH
The FATANH operator calculates the floating point hyperbolic arc tangent of the value.

param var float
result var float

param = 0.6
result = FEXP (FATANH param)
serout s_out,i9600,[“The result is “,real result,13]

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 147

3.3 MCL Modifiers
3.3.1 Output Modifiers
Modifiers can be use when outputing data using the PUTS command or when storing data in a
variable using the LET(=) command.

An example of a command modifier is formatting a decimal value into a printable string. The
decimal value 32 would output to a terminal window as a space character(ASCII code 32 is a
space). Instead, to display the actual decimal value of the variable in a human readable format
you would use the DEC modifier:

Temp Var Byte
Temp = 32

puts 0,[DEC TEMP] ;send the ascii characters “32” to the USB port

This code snippet above will send the ascii characters “3” and “2” to the USB port. If the DEC
modifier was not used, a space character (“ “), binary value 32, would be sent instead

Modifiers can be used to modify values stored in arrays with the LET(=) commands:

string var byte(100)

string = “Hello World” ;string(0-10)=”Hello World”
string = dec 1234567 ;string(0-6)=”1234567”
string = ihex 0x3456 ;string(0-4)=”$3456”

3.2.2 Modifiers
Name Description

DEC Decimal

SDEC Signed Decimal

HEX Hexadecimal

IHEX Indicated ($) Hexadecimal

REP Repeat character n times

REAL Floating point number with decimal point

STR Write specified number of characters(can be used to copy arrays)

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 148

DEC
DEC{#max} expression{\#min}

 #max: optional maximum number of digits to send
 #min: optional minimum number of digits to send

The DEC modifier when used in an output command will convert a stored values to ASCII
characters. The example will format the value of temp so it prints out the number in a terminal
window. The output would display 1234.

temp var word
temp = 1234

puts 0, [DEC temp] ;prints “1234”

DEC(#max) variable

 #max: optional maximum number of digits to receive

The DEC modifier for input commands will format incoming ASCII characters into a numeric
value. The example will read in ASCII characters that represent decimal numbers up to 9
characters long and store the converted value in a variable. Until a numeral is received (e.g. “0”
to “9”) any incoming characters are ignored. Once a numeral has been received any character
not a numeral will cause the conversion to finish before 9 characters have been received.

temp var word

puts 0, [DEC temp]

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 149

SDEC
SDEC{#max} expression{\#min}

 #max: optional maximum number of digits to send
 #min: optional minimum number of digits to send

The SDEC modifier when used in an output command will convert a stored values to ASCII
characters. The example will format the value of temp so it prints out the number in a terminal
window. The output would display 1234.

temp var sword
temp = -1234

puts 0, [SDEC temp] ;prints “-1234”

SDEC(#max) variable

 #max: optional maximum number of digits to receive

The SDEC modifier for input commands will format incoming ASCII characters into a numeric
value. The example will read in ASCII characters that represent decimal numbers up to 9
characters long and store the converted value in a variable. Until a negative sign or numeral
is received (e.g. “0” to “9”) any incoming characters are ignored. Once a numeral has been
received any character not a numeral will cause the conversion to finish before 9 characters have
been received.

temp var sword

puts 0, [SDEC temp]

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 150

HEX
HEX{#max} expression{\#min}

 #max: optional maximum number of digits to send
 #min: optional minimum number of digits to send

The HEX modifier, in output commands, converts stored values to ASCII characters. The example
will format the value of temp so it prints out the number in a terminal window. The output would
display 12ab.

temp var word
temp = 0x12ab

puts 0, [HEX temp] ;prints “0x12ab”

HEX(#max) variable

 #max: optional maximum number of digits to receive

The HEX modifier, for input commands, formats incoming ASCII characters into a numeric
value. The example will read in ASCII characters that represent hexidecimal numbers up to 8
characters long and store the converted value in a variable. Until a numeral is received (e.g. “0”
to “9” or “a” to “f”) any incoming characters are ignored. Once a numeral has been received
any character not a numeral will cause the conversion to finish before 8 characters have been
received.

temp var word

puts 0, [HEX temp]

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 151

IHEX
IHEX{#max} expression{\#min}

 #max: optional maximum number of digits to send
 #min: optional minimum number of digits to send

The IHEX modifier, in output commands, converts stored values to ASCII characters. The
example will format the value of temp so it prints out the number in a terminal window. The
output would display $12ab.

temp var word
temp = 0x12ab

puts 0, [SHEX temp] ;prints “$12ab”

IHEX(#max) variable

 #max: optional maximum number of digits to receive

The IHEX modifier, for input commands, formats incoming ASCII characters into a numeric
value. The example will read in ASCII characters that represent hexidecimal numbers up to 8
characters long and store the converted value in a variable. Until the indicator ($) is received,
any incoming characters are ignored. Once the indicator has been received any character not a
numeral will cause the conversion to finish before 8 characters have been received.

temp var word

puts 0, [IHEX temp]

REP
The REP modifier will output the character n a specified number of times. The example will
repeat the specified character “A” 10 times.

puts 0, [REP “A”\10] ;prints A 10 times

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 152

REAL
REAL{#maxint} expression{\#maxdec}

 #maxint: optional maximum number of integer digits to send
 #maxdec: optional maximum number of decimal point digits to send

The REAL modifier, in output commands, converts stored values to ASCII characters. The
example will format the value of temp so it prints out the number in a terminal window. The
output would display 3.14159.

temp var float
temp = 3.14159

puts 0, [REAL temp] ;prints “3.14159”

REAL variable

The REAL modifier, for input commands, formats incoming ASCII characters into a numeric value.
The example will read in ASCII characters that represent floating point numbers and store the
converted value in a variable. Until a numeral is received any incoming characters are ignored.
Once a numeral has been received any character not a numeral will cause the conversion to
finish before 8 characters have been received.

temp var float

puts 0, [REAL temp]

STR
STR array\length{\eol}

The STR modifier will output Length amount of characters from specified constant or variable
array until the end of the array or until an optional specified EOL character is found.

temp var byte(20)
temp = “Hello world”,0

puts 0,[str temp\20\0] ;output “Hello world”

STR array\length{\eol}

The STR modifier, in input commands, will receive Length number of characters and store them
in the variable array specified. An optional end of line (EOL) character can be specified to tell
STR to stop receiving characters.

 temp var byte(20)

 puts 0,[str temp\20\13] ; receive upto 20 characters

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 153

3.4 MCL Commands
3.4.1 Command Reference
The syntax and example is provided for each command in the command reference section of this
manual. In addition, Ion Studio MCL editor has built in syntax help. As a command is typed, The
editor will show the syntax for that command as its being typed.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 154

BRANCH

Syntax
branch index, [label1, label2, label3, ..., labelN]
• Index - is a variable, constant or expression that is used to reference a label in a list. The index

is 0 based.

• Label - is a list of constant labels that are jump points in a program.

Description
The BRANCH command will jump to a label defined within the brackets. The label used for the
jump is determined by the pointer index. The only limits to the number of labels within the
brackets is the available program memory.

Example
Connect to the following program with the terminal window at 9600 baud. Enter a value from 0
to 4. The program will jump to the label specified by the value typed in. The BRANCH command
is a great way to build a long conditional jump list based on some value range. User interactive
menu systems are one possibility.

Index var word

Main
 Pause 1000
 for Index = 0 to 4
 gosub jumptable
 next
 Goto Main

jumptable
 branch Index, [label0, label1, label2, label3, label4]

Label0
 puts 0, [13, “Label 0”]
 return
Label1
 puts 0, [13, “Label 1”]
 return
Label2
 puts 0, [13, “Label 2”]
 return
Label3
 puts 0, [13, “Label 3”]
 return
Label4
 puts 0, [13, “Label 4”]
 returnCLEAR

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 155

CLEAR

Syntax
clear

Description
The clear command sets all user memory to zero. The CLEAR function is typically used in the
beginning of a program to set all memory to a know state. In some situations CLEAR is used in
place of several statements like variable = 0.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 156

DIST

Syntax
dist motor,speed,accel,distance,buffer

• Motor - is a variable, constant or expression that specifies which motor to access.

• Speed - is a variable, constant or expression that sets the speed to run the motor at.

• Accel - is a variable, constant or expression that sets the acceleration/decceleration to
 use when the motor speeds up or slows down to the specified speed.

• Distance - is a variable, constant or expression that specifies the distance to move the motor.

• Buffer - is a variable, constant or expression that determines if the command will be buffered(0)
 or execute immediately(1) overriding any currently running command on the motor.

Description
The DIST command is used to control a motor using an encoder with a Velocity PID control
algorithm. The user must have tuned the Velocity PID settings for the motor before using the
DIST command. With a properly tuned Velocity PID accurate relative movments can be made
by the motor. Note that multiple DIST commands can be chained together by buffering the
commands. As each command finishes the next will start executing.

;code assumes the velcoity PID settings for the specific motor are correctly tuned.
main
 dist 0,12000,12000,12000,0
 dist 0,-12000,12000,12000,0

 ;wait until second command has started to execute and repeat
 while(MOTORBUFFER(0)&0x7F<>0)
 wend

 goto main

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 157

DIST2

Syntax
dist speed1,accel1,distance1,speed2,accel2,distance2,buffer

• Speed1 & Speed2 - is a variable, constant or expression that sets the speed to run the
 motor at.

• Accel1 & Accel2 - is a variable, constant or expression that sets the acceleration/decceleration
 to use when the motor speeds up or slows down to the specified speed.

• Distance1 & Distance2 - is a variable, constant or expression that specifies the distance
 to move the motor.

• Buffer - is a variable, constant or expression that determines if the command will be buffered(0)
 or execute immediately(1) overriding any currently running command on the motor.

Description
The DIST2 command is used to control both motors using encoders with a Velocity PID control
algorithm. The user must have tuned the Velocity PID settings for both motors before using the
DIST2 command. With a properly tuned Velocity PID accurate relative movments can be made
by the motor. Note that multiple DIST2 commands can be chained together by buffering the
commands. As each command finishes the next will start executing.

;code assumes the velcoity PID settings for the motors are correctly tuned.
main
 dist2 12000,12000,12000,-12000,12000,12000,0
 dist2 -12000,12000,12000,12000,12000,21000,0

 ;wait until second command has started to execute and repeat
 while(MOTORBUFFER(0)&0x7F<>0)
 wend

 goto main

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 158

DO - WHILE

Syntax
do program statements while condition

• Statements - any group of commands to be run inside the loop.

• Condition - can be a variable or expression

Description
The DO - WHILE loop executes commands nested inside of it while some condition is true. The
condition can be any variable or expression that is tested every loop until it is false. Zero (0) is
false, not zero (0) is true. By default DO - WHILE will test this condition. The loop will continue
until its value equals zero (0). DO - WHILE will always run at least once since the condition is
checked at the end of the loop. Multiple DO - WHILE commands can be nested within each other.
However you can not nest DO - WHILE with a WHILE - WEND together.

temp var long

main
 temp = 0;
 do
 puts 0,[dec temp,13]
 temp = temp + 1
 pause 100
 while(temp<10);
 goto main

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 159

END

Syntax
end

Description
END stops program execution until the unit is reset.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 160

FOR...NEXT

Syntax
for countVal = startVal to finishVal {step increment}
 ...code...
next
• CountVal - a variable used to store the current count.

• StartVal - the starting value to count from.

• FinishVal - a value to count up or down to.

• Increment - the value to increment the variable by through each loop.

Description
Repeats a block of instructions and increments a variable counter with a value specified each
time through the loop. The FOR...NEXT loop will exit when the count value is no longer between
start and finish. When no step increment is defined the default increment value is 1. If the
finishVal is modified by the instructions in the FOR...NEXT block the loop can be forced to
exit early. You can safely jump out of a FOR...NEXT loop.

Example
The example below will send the results to the USB port. It will count up from 0 to 9 then exit.

value var long
main
 for value = 0 to 9
 pause 1000
 puts 0,["Value=",dec value,13]
next
end

The example below will print the results to a terminal window at 9600 baud. It will count down
from 9 to 0 then exit.

value var long
main
 for value = 9 to 0
 pause 1000
 puts 0,["Value=",dec value,13]
next
end

The example below will print the results to a terminal window at 9600 baud. It will count up from
0 to 54 using 5 as the increment value then exit.

value var long
main
 for value = 0 to 54 step 5
 pause 1000
 puts 0,["Value=",dec value,13]
next
end

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 161

GETS

Syntax
gets stream,[variable1,...,variableN]

• Stream - is a variable, constant or expression that specifies which stream to read.

• Variabl1...VariablN - is a list of variables to store the read values in.

Description
The GETS command is used to read bytes from a data stream and store them in user variables.

Stream Types
USB Virtual Communications Port 0
CAN (CANOpen or raw CAN) 1
TTL UART 2
RS232 UART 3

Example
The example reads 4 bytes from the USB stream and stores them in a long variable:

value var long

main
 gets 0,[value.byte3, value.byte2, value.byte1, value.byte0]
 puts 0,[dec value,13]
end

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 162

GOSUB

Syntax
gosub label{[argument1,...,argumentN]}{,DataResult}

• Label - the go to label of the subroutine to be executed.

• Argument - is user defined arguments to send to the called subroutine. The only limit to the
 amount of arguments used is program memory.

• DataResult - is an optional variable to store the value returned from called subroutine.

Description
The GOSUB command will jump to a specified label. After executing the code at the jump label a
RETURN command is then used to return the program to the next command after the last called
GOSUB.

There is no limit to this with Basic Micro Studio other than the size of the available stack
memory. GOSUB stores the address of the next command on the stack and jumps to the
specified label. User specified arguments can be defined in the subroutine. A return value
from the subroutine can be stored in the variable that is specified by the GOSUB DataResult
argument.

Notes
Subroutines must always exit via the RETURN command, which clears the saved address from
the stack and returns to the command following the calling GOSUB.
User defined arguments must match the number of arguments defined at the subroutine. If they
 do not match, a stack overflow or underflow will happen.
If a subroutine returns a value, the GOSUB is not required to use it.

Example
The program below will print the results to the terminal window at 9600 baud. The results will be
110. The GOSUB command has two arguments and includes the DataResult variable. The values
10 and 100 are passed to the subroutine MyAdd. The values are then loaded into the variables
arg1 and arg2. Since RETURN can have an expression the variables arg1 and arg2 are added and
returned to the variable result.

Result var long

Main
 Gosub myadd[10,100],result
 puts 0,["Result =",dec result]
End

Arg1 var long
Arg2 var long

MyAdd [arg1,arg2]
Return arg1+arg2

See Also
RETURN

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 163

GOTO

Syntax
goto label
• Label - is a label the program will jump to.

Description
The GOTO command tells the program to jump to some label.

Examples
The following program is a simple loop using GOTO that will repeat forever.

basic
 Pause 800
 puts 0,[0, “Basic”]
 pause 800
 goto micro
 goto basic

micro
 puts 0,[2, “ Micro”]
 pause 800
 Goto rules
 goto basic

rules
 puts 0,[2, “ Rules!”]
 pause 800
 goto basic

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 164

IF...THEN...ELSEIF...ELSE...ENDIF

Simple Syntax
if expression then label
if expression then goto label
if expression then gosub label

Extended Syntax
if expression then
 ...code...
endif

if expression then
 ...code...
else
 ...code...
endif

if expression then
 ...code...
elseif expression
 ...code...
endif

if expression then
 ...code...
elseif expression
 ...code...
else
 ...code...
endif

Description
IF..THEN commands are the decision makers of MBasic. IF..THEN evaluates a condition to
determine if it is true. If you want to test the value of a variable against another variable or a
known value, you would use the IF..THEN commands. When the results are true, the code after
THEN is executed. If it returns false, the code after THEN will be ignored. A simple example
would be to increment a variable in a loop and each time through the loop test if the variable
equals 10. This lets us control how many times through the loop we want to run. We can also
test if our variable is greater than, less than or not equal too. Several math expressions can be
used for the test condition.

main
if temp = 10 then label
goto main

label
goto main

The above statement is looking for the variable temp to equal 10. If the comparison is true then
we will jump to label. If the comparison is not true, then lets keep looping. Since there is nothing
to make the variable equal to 10 the code snippet would loop forever.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 165

Notes
Multiple ELSEIF blocks may be used in a single IF...THEN block.
ELSE will only execute following code if no conditions were true.
ENDIF is required to close a block of conditionals.

Example
This first example demonstrates using the IF...THEN argument with a goto label. If something is
true jump to the label after the THEN statement. Otherwise, if the condition is false execute the
commands on the next line after the THEN statement. You can follow the program flow with a
terminal window connected at 9600 baud.

value var long
value = 0

main
 value = value+1
 if value = 10 then reset

 ;display the value on the PC terminal window
 puts 0,["Value=",dec value,13]
 pause 1000
goto main

reset
 value = 0
goto main

GOSUB Example
A GOSUB statement can be used after a THEN command. When the condition is true a GOSUB
will send the program to the GOSUB label. Eventually a RETURN statement is expected. This
will return the program to the next line of code after the GOSUB statement was used. It is an
easy way to create conditional branching in a main program loop. The program will increment
value by 1 each loop. Once value is equal to 10 the condition becomes true and the GOSUB
label is executed. This resets value to 0 starting the process over. The program was written to
be followed using a terminal window connected to it at 9600 baud. Follow the results until you
understand the decision making process. Can you guess what the terminal window will show?

value var long
value = 0

main
 value = value+1
 if value = 10 then gosub reset

 ;display the value on the PC terminal window
 puts 0,["Value=",dec value,13]
 pause 1000
goto main

reset
 value = 0
return

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 166

Advanced Arguments
Now that we have covered the basics of the IF..THEN commands we can explore optional syntax.
The next section will explain each with sample code that will display the result so you can follow
along.

ENDIF Example
In some cases you may want to run a block of code when the condition is true. MCL can execute
a command or commands directly after a THEN statement, instead of jumping to a label. The
ENDIF is used to tell MCL run the following commands after THEN if the condition is true. So
ENDIF literately mean what it says, lets end the IF. When the IF..THEN condition is false ENDIF
tells MBasic to instead, run the commands after ENDIF. This simply resumes normal program
operation. ENDIF is an easy way to execute a group of commands based on some condition
returning true or completely skipping them if the condition is false.

value var long
value = 0

main
 value = value+1
 if value = 10 then
 value = 0
 endif

 ;display the value on the PC terminal window
 puts 0,["Value=",dec value,13]
 pause 1000
goto main

ELSEIF Example
In some cases you may want to test for several possible conditions. ELSEIF allows you to check
multiple possible conditions until one of them is true using a single IF..ENDIF block. Until one of
the ELSEIF conditions is found to be true each condition will be tested. As soon as one is found
to be true, the code in that section will execute and the program execution will continue starting
after the ENDIF.

if temp = 10 then
 temp = 20
elseif temp = 20
 temp = 10
endif

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 167

There is no limit to how many ELSEIF statements you can have in any single IF...THEN block. The
following program shows an example using multiple ELSEIF statements.

value var long
value = 0

main
 if value = 0 then
 value = 1

 elseif value = 1
 value = 2

 elseif value = 2
 value = 3

 elseif value = 3
 value = 4

 elseif value = 10
 value = 0
 endif

 ;display the value on the PC terminal window
 puts 0,["Value=",dec value,13]
 pause 1000
goto main

ELSE
In previous examples we tested several conditions that were determined as being false, which
would cause the program will resume normal operation, skipping any code found enclosed
within the IF..THEN / ENDIF statements unless an ELSE statement was added. The ELSE block
will execute when everything else was FALSE. The following program was written to be followed
using a terminal window connected at 9600 baud. See if you can you guess the results?

value var long
value = 0

main
 if value = 1 then
 value = 1

 elseif value = 2
 value = 2

 else
 value = 3

endif

 ;display the value on the PC terminal window
 serout s_out,i9600,[“Value=”,dec value,13]
 pause 1000
goto main

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 168

I2COUT..I2COUTNS

Syntax
i2cout {label,timeout}, [databyte1, ..., databyteN]
i2coutns {label,timeout}, [databyte1, ..., databyteN]

• Label - is a label to jump to if the timeout triggers.

• Timeout - is the time in milliseconds to wait for a byte to transfer.

• DataBytes - is a list of byte sized variables or expressions that are the
values to be sent to an attached I2C device. The only limit to the number of data
 bytes in one command is determined by the device itself.

Description
The I2COUT command combined with the I2COUTNS and I2CIN command can communicate
with any I2C compatible devices. The specific data to send and receive from any particular I2C
device will depend on the device. In general you will send an address/control byte that lets the
I2C device know you are trying to talk to it, since multiple devices can be on one bus, and in
what direction you will be talking to it, sending or receiving. The difference between I2COUT and
I2COUTNS is that I2COUTNS does not send a stop signal when it finishes. This allows the user to
send a repeated start by executing another I2COUT/I2COUTNS orI2CIN command.

;example to read a value from an MPU-6050
temp var long

main
 pause 10

 ;send WHOAMI command
 i2cout error,10,[0xd0,0x75]

 ;read reply
 i2coutns error,10,[0xd1]
 i2cin error,10,[temp]

 puts 0,[dec temp,13]

 goto main

error
 puts 0,[“I2C Error:”,dec i2cerror,13]
 goto main

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 169

I2CIN

Syntax
i2cin {label, timeout}, [databyte1,...,databyteN]

• Label - is a label to jump to if the timeout triggers.

• Timeout - is the time in milliseconds to wait for a byte to transfer.

• DataBytes - is a list of byte sized variables that store the
 values read from an attached I2C device. The only limit to the number of data bytes in one
 command is determined by the device itself.

Description
The I2CIN command is used to received data back from an I2C device after an appropriate
I2COUT or I2COUTNS command has been sent. The exact format of the data to be received will
depend on the I2C device being used.

Example
See I2COUT

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 170

MOVE

Syntax
move motor,speed,accel,deccel,position,buffer

• Motor - is a variable, constant or expression that specifies which motor to access.

• Speed - is a variable, constant or expression that sets the speed to run the motor at.

• Accel - is a variable, constant or expression that sets the acceleration to use when
 the motor start its movement.

• Deccel - is a variable, constant or expression that sets the decceleration to use when
 the motor stops its movement.

• Position - is a variable, constant or expression that sets the position for the motor
 to move to.

• Buffer - is a variable, constant or expression that determines if the command will be buffered(0)
or execute immediately(1) overriding any currently running command on the motor.

Description
The MOVE command is used to control a motor using an encoder with a Position PID control
algorithm. The user must have tuned the Position PID settings for the motor before using the
MOVE command. With a properly tuned Position PID accurate absolute movments can be made
by the motor. Note that multiple Move commands can be chained together by buffering the
commands. As each command finishes the next will start executing.

;example assumes velocity/position PID settings are correct for the specified motor
main
 move 0,1000,0,0,1000,0
 pause 2000 ;move should take 1 second then stops for 1 second
 move 0,1000,0,0,-1000,0
 pause 2000 ;move should take 1 second then stops for 1 second
 goto main

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 171

MOVE2

Syntax
move2 speed1,accel1,deccel1,position1, speed2,accel2,deccel2,position2, buffer

• Motor1...Motor2 - is a variable, constant or expression that specifies which motor to
 access.

• Speed1...Speed2 - is a variable, constant or expression that sets the speed to run the
 motor at.

• Accel1...Accel2 - is a variable, constant or expression that sets the acceleration to use
 when the motor start its movement.

• Deccel1...Deccel2 - is a variable, constant or expression that sets the decceleration to
 use when the motor stops its movement.

• Position1...Position2 - is a variable, constant or expression that sets the position for the
 motor to move to.

• Buffer - is a variable, constant or expression that determines if the command will be buffered(0)
 or execute immediately(1) overriding any currently running command on the motor.

Description
The MOVE2 command is used to control both motors using encoders with a Position PID control
algorithm. The user must have tuned the Position PID settings for the motors before using the
MOVE2 command. With a properly tuned Position PID accurate absolute movments can be made
by the motors. Note that multiple Move2 commands can be chained together by buffering the
commands. As each command finishes the next will start executing.

;example assumes velocity/position PID settings are correct for the motors
main
 move2 1000,0,0,1000,1000,0,0,-1000,0
 pause 2000 ;move should take 1 second then stops for 1 second
 move2 1000,0,0,-1000,1000,0,0,1000,0
 pause 2000 ;move should take 1 second then stops for 1 second
 goto main

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 172

PAUSE

Syntax
pause time

• Time - is a variable, constant or expression that specifies the number of milliseconds to wait.

Description
The PAUSE command is used to create a predetermined delay in a program. The amount of delay
is specified in milliseconds. There are 1000 milliseconds in 1 second. If a value of 500 is used for
time, it would be a half second. If 1000 is used for time, the program would wait 1 second.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 173

POWER

Syntax
power motor,duty,accel

• Motor - is a variable, constant or expression that specifies which motor to access.

• Duty - is a variable, constant or expression that sets the duty to run the motor at.

• Accel - is a variable, constant or expression that sets the acceleration/decceleration to
 use when the motor powers up/down to the specified power.

Description
The POWER command is used to control a motor using just a PWM duty cycle percentage. This is
the simplest method of controlling a DC motor but does not compensate for changes in the load
on the motor.

;Simple PWM control of motor
main
 power 0,32767,32767 ;should take 1 second to accel to specific power(100% duty)
 pause 1000
 power 0,0,32767 ;should take 1 second to deccel to 0% power.
 pause 1000
 goto main

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 174

POWER2

Syntax
power2 duty1,accel1,duty2,accel2

• Duty1...Duty2 - is a variable, constant or expression that sets the duty to run the motor at.

• Accel1...Accel2 - is a variable, constant or expression that sets the acceleration/decceleration
 to use when the motor powers up/down to the specified power.

Description
The POWER2 command is used to control both motors using just PWM duty cycle percentages.
This is the simplest method of controlling a DC motor but does not compensate for changes in
the load on the motors.

;Simple PWM control of motor
main
 power2 32767,32767,0,32676er(100% duty)
 pause 1000
 power2 0,32767,32767,32767
 pause 1000
 goto main

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 175

PUTS

Syntax
puts stream,[{modifiers}data1,...,{modifiers}dataN]

• Stream - is a variable, constant or expression that specifies the stream to send data to.

• Modifiers - see the Modifiers section of the manual for specific syntax and usage.

• Data1...DataN - are variables, constants or expressions that specifies the data to be sent
 to the specified stream.

Description
The PUTS command is used to send data to an active stream, for communciations with with
microcontrollers, computers or networks(see CAN). The PUTS command is also usefull when
debugging your MCL script.

Stream Types
USB Virtual Communications Port 0
CAN (CANOpen or raw CAN) 1
TTL UART 2
RS232 UART 3

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 176

READ

Syntax
read address, databyte

• Address - is a byte sized variable or constant that specifies what address to read the on-board

EEPROM from.

• DataByte - is a byte sized variable (0-255) which stores the data returned from the on-board
EEPROM.

Description
All modules except the BasicATOM Pro 24 and BasicATOMPro ONE come with built in EEPROM.
The READ / WRITE commands were created to access the built-in memory. READ will read a
single byte from the built in EEPROM at the address specified in the command.

Example
The example program will write the string “Hello” starting at the first location to the on-board
EEPROM. Next, it will read the EEPROM locations 0 to 10 and print the contents to the terminal
window.

index var byte
char var byte

write 0,”H”
write 1,”e”
write 2,”l”
write 3,”l”
write 4,”o”

for index = 0 to 10
 read index,char
 puts 0,[char]
next
end

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 177

REPEAT...UNTIL

Syntax
repeat
 program statements
until condition

• Statements - any group of commands to be run inside the loop.

• Condition - can be a variable or expression

Description
The REPEAT - UNTIL loop executes commands nested inside of it until some condition is false.
This is the opposite of DO - WHILE and WHILE - WEND. The condition can be any variable or
expression and is tested every loop until true.

Notes
The loop will continue until it’s value is NOT equal to 0. REPEAT - UNTIL checks the condition at
the end of the loop. This means the loop will always execute atleast once. You can nest multiple
REPEAT - UNTIL commands within each other. You can nest DO - WHILE or WHILE - WEND loops
within a REPEAT - UNTIL loop.

Example
The program will start counting up from 0 to 100. Once the index reaches a value of 101, the
condition is no longer false. The greater than symbol (>) was used for the condition and 101 is
now greater than 100 making the condition true. Since REPEAT - UNTIL loops while a statement
is false the program will now exit.

;ALL - all_repeat_until.bas

Index var word

Main
 Index = 0

 Repeat
 index = index + 1

 ;lets print the value index
 puts 0,[0, “Couting: “, dec index]
 pause 75

 Until index > 100 ;run until index is greater than 100

 puts 0, [13,13, “Index = “, dec index]
 puts 0, [13, “My condition is no longer false.”]
 puts 0, [13, “Index is now greater than 100”]
End

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 178

RETURN

Syntax
return {DataResult}

• DataResult - an optional value to return to the gosub statement, that can be an expression,
constant or variable.

Description
GOSUB stores the address of the next command on the stack and jumps to the specified label.
After executing the code at the jump label a RETURN command is used to remove, from the
stack, the address stored by GOSUB and then jumps to that address.

Notes
Subroutines must exit via the RETURN command, which clears the saved address from the
stack and returns to the command following the GOSUB. User defined arguments must match
the number of arguments defined at the subroutine. If they do not match, a stack overflow or
underflow will happen. If a subroutine returns a value, the GOSUB is not required to use it or
specify a return value variable.

Example
The result will be 110. The GOSUB command has two arguments and includes a DataResult
variable. The values 10 and 100 are passed to the subroutine MyAdd. The values are then loaded
into the variables arg1 and arg2. RETURN can have an expression, so the variables arg1 and
arg2 are added and returned to the variable result.

Result var long

Main
 Gosub myadd[10,100],result
 puts 0,[“Result =”,dec result]
End

Arg1 var long
Arg2 var long

MyAdd [arg1,arg2]
Return arg1+arg2

See Also:
GOSUB

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 179

SPEED

Syntax
speed motor,speed,accel

• Motor - is a variable, constant or expression that specifies which motor to access.

• Speed - is a variable, constant or expression that sets the speed to run the motor at.

• Accel - is a variable, constant or expression that sets the acceleration/decceleration to
use when the motor speeds up or slows down to the specified speed.

• Buffer - is a variable, constant or expression that determines if the command will be buffered(0)
or execute immediately(1) overriding any currently running command on the motor.

Description
The SPEED command is used to control a motor using an encoder with a Velocity PID control
algorithm. The user must have tuned the Velocity PID settings for the motor before using the
SPEED command. With a properly tuned Velocity PID accurate speed control can be acheived
by the motor. Note that multiple SPEED commands can be chained together by buffering the
commands. As each command finishes the next will start executing.

;example assumes velocity PID settings are correct set.
main
 speed 0,12000,12000
 pause 1000
 speed 0,0,12000
 pause 1000
 speed 0,-12000,12000
 pause 1000
 speed 0,0,12000
 pause 1000
 goto main

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 180

SPEED2

Syntax
speed2 speed1,accel1, speed2,accel2

• Speed1...Speed2 - is a variable, constant or expression that sets the speed to run the motor at.

• Accel1...Accel2 - is a variable, constant or expression that sets the acceleration/decceleration
to use when the motor speeds up or slows down to the specified speed.

• Buffer - is a variable, constant or expression that determines if the command will be buffered(0)
or execute immediately(1) overriding any currently running command on the motor.

Description
The SPEED2 command is used to control both motors using encoders with a Velocity PID control
algorithm. The user must have tuned the Velocity PID settings for the motors before using the
SPEED2 command. With a properly tuned Velocity PID accurate speed control can be acheived
by the motors. Note that multiple SPEED2 commands can be chained together by buffering the
commands. As each command finishes the next will start executing.

;example assumes velocity PID settings are correct set.
main
 speed2 12000,12000,0,12000
 pause 1000
 speed2 0,12000,12000,12000
 pause 1000
 speed2 -12000,12000,0,12000
 pause 1000
 speed2 0,12000,-12000,12000
 pause 1000
 goto main

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 181

STOP

Syntax
stop

Description
Stops program execution until a reset occurs. This is an alias to END.

Example
The following example will only run once. The program will only restart if the unit is reset.

value var long

 puts 0,[“This program just stops.”,13]
 puts 0,[“Press reset to see it again.”,13]
stop

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 182

WHILE - WEND

Syntax
while condition
 program statements
wend

• Condition - can be a variable or expression

• Statements - any group of commands to be run inside the loop.

Description
The WHILE - WEND loop executes commands nested inside of it while some condition is true.
The condition is tested before the WHILE - WEND loop is run. This is opposite of DO - WHILE
which will test the condition for true after running once. The condition can be any variable or
expression and is tested every loop until false. A simple example would be using the WHILE -
WEND loop to test the state of an input pin. If the pin is low “go do something” until pin is high.

Notes
The loop will continue until its value equals 0.
WHILE - WEND checks the condition first. If the condition is false the WHILE - WEND statements
 and all program code nested within them will not run.
You can nest multiple WHILE - WEND commands within each other. However, you can not nest
DO - WHILE with a WHILE - WEND together or the compiler will get the WHILE statements
 confused.

Example
Connect to the following program with the terminal window set to 9600 baud. The program will
start counting up from 0 to 100. Once index reaches a value of 100 the condition is no longer
true. The less than symbol (<) was used for the condition and 100 is no longer less than 100
making the condition false. Since WHILE - WEND loops if a statement is true the program exits.

;ALL - all_while_wend2.bas

Index var word

Main
 Index = 0

 While Index < 100 ;run until no longer less than 100
 index = index + 1

 ;print the value of index
 puts 0,[0, “Couting: “, dec index]
 pause 75

 wend

 puts 0, [13,13, “Index = “, dec index]
 puts 0, [13, “My condition is no longer true.”]
 puts 0, [13, “Index is no longer less than 100”]
End

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 183

WRITE

Syntax
write address, data

• Address - address of EEPROM to store data

• Data - is a byte value that will be written to the address specified. It can be an expression,

constant or variable.

Description
All modules except the BasicATOM Pro 24 come with built in EEPROM. The READ / WRITE
commands were created to access the built-in memory. WRITE will write a signal byte to the
built-in EEPROM at the address specified in the command.

Example
The example program will write the string “Hello” starting at the first location to the built-in
memory. Next, it will read built-in memory locations 0 through 10 and print the contents to the
terminal window.

index var byte
char var byte

write 0,”H”
write 1,”e”
write 2,”l”
write 3,”l”
write 4,”o”

for index = 0 to 10
 read index,char
 puts 0,[char]
next
end

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 184

3.4 Compile Time Directives

3.4.1 Compiler Directives
MCL supports compile time directives. Compile time directives can be used to selectively include
or exclude parts of a program which can be very useful. During compile time you can define
parts of the program to compile or not.

3.4.2 Conditional Compiling
If you’ve written a program to display temperature from a sensor, you may want versions
for Celsius and Fahrenheit. Most of the code is identical, but some constants, variables and
subroutines may differ.

Conditional compiling lets you set a “switch” in your program that controls compiling. You can
have different constants, variables, or even different sections of code compiled depending on the
switch or switches that you set.

#IF .. #ENDIF
#IF expression
 optional code
 #ENDIF

Example
Similar to IF..THEN conditional branch, but specifies code to be compiled if the expression is true.
In the example below the constant temp is set to 1. During compile time the #IF will test temp
to see if it is true. In the example below will return true so the following block of code is included
during compile time.

temp con 1
#IF temp=1
 ..optional code..
#ENDIF
..rest of program..

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 185

#IFDEF .. #ENDIF
#IFDEF name
 ..optional code..
#ENDIF
..rest of program..

Example
Compiles the code (up to #ENDIF) if the constant or variable (name) is defined, or if the label
appears previously in the code.

temperature var byte
#IFDEF temperature
 ..optional code..
#ENDIF
..rest of program..

This will compile “optional code” because “temperature” has been defined.

#IFNDEF .. #ENDIF
#IFNDEF name
 ..optional code..
#ENDIF
..rest of program..

Example
Compiles the code between #IFNDEF and #ENDIF only if the constant or variable has not been
defined, or the label has not been previously used in the program. In effect, it is the opposite of
#IFDEF.

temperature var byte
#IFDEF temperature
 ..optional code..
#ENDIF
..rest of program..

This will NOT compile “optional code” because “temperature” has been defined.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 186

#ELSE
#IF expression
 ..optional code..
#ELSE
 ..use this code if the other code wasnt used..
#ENDIF
..rest of program..

Example
Allows you to have two code snippets and compile one or the other depending on the result of
the #IF, #IFDEF or #IFNDEF directive.

temp con 1
#IF temp=1
 ..optional code..
#ELSE
 ..more optional code..
#ENDIF
 ..rest of program..

Compiles “optional code” if “temp = 1” and “more optional code” if “temp” is equal to any other
value.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 187

#ELSIF
#IF expression
 ..optional code..
#ELSEIF
 ..more optional code..
#ELSEIF
 ..even more optional code..
#ELSE
 ..if nothing else was used, then use this code..
#ENDIF
..rest of program..

Example
Allows multiple snippets of code to be compiled based on multiple tests. ELSEIF is an extension
of #ELSE and allows multiple conditional tests to run during compile time.

screentype con 1

#IF screentype=1
 ..optional code..
#ELSEIF screentype=2
 .. more optional code..
#ELSEIF screentype=3
 ..even more optional code..
#ENDIF
... rest of program ...

Compiles “optional code”, “more other code”, or “even more optional code” depending on what
the constant “screentype” is set to (1, 2 or 3). If “screentype” has some value other than 1,2 or
3 compilation simply continues with “rest of program” and none of the optional code is compiled.

#ELSEIFDEF, #ELSEIFNDEF
#ELSEIFDEF name
#ELSEIFNDEF name

Example
Equivalents of #ELSEIF for the #IFDEF and #IFNDEF directives. Similar to the example given for
#ELSEIF.

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 188

ASCII Table

Dec Hex Char Function Dec Hex Char Dec Hex Char

0 0x00 NUL Null 43 0x2B + 86 0x56 V

1 0x01 SOH Start of Heading 44 0x2C , 87 0x57 W

2 0x02 STX Start of Text 45 0x2D - 88 0x58 X

3 0x03 ETX End of Text 46 0x2E . 89 0x59 Y

4 0x04 EOT End of Transmit 47 0x2F / 90 0x5A Z

5 0x05 ENQ Enquiry 48 0x30 0 91 0x5B [

6 0x06 ACK Acknowledge 49 0x31 1 92 0x5C \

7 0x07 BEL Bell 50 0x32 2 93 0x5D]

8 0x08 BS Basckspace 51 0x33 3 94 0x5E ^

9 0x09 HT Horizontal Tab 52 0x34 4 95 0x5F _

10 0x0A LF Line Feed 53 0x35 5 96 0x60 `

11 0x0B VT Vertical Tab 54 0x36 6 97 0x61 a

12 0x0C FF Form Feed 55 0x37 7 98 0x62 b

13 0x0D CR Carriage Return 56 0x38 8 99 0x63 c

14 0x0E SO Shift Out 57 0x39 9 100 0x64 d

15 0x0F SI Shift In 58 0x3A : 101 0x65 e

16 0x10 DLE Data Line Escape 59 0x3B ; 102 0x66 f

17 0x11 DC1 Device Cntrl 1 60 0x3C < 103 0x67 g

18 0x12 DC2 Device Cntrl 2 61 0x3D = 104 0x68 h

19 0x13 DC3 Device Cntrl 3 62 0x3E > 105 0x69 i

20 0x14 DC4 Device Cntrl 4 63 0x3F ? 106 0x6A j

21 0x15 NAK Non Acknowledge 64 0x40 @ 107 0x6B k

22 0x16 SYN Synchronous Idle 65 0x41 A 108 0x6C l

23 0x17 ETB End Transmit Block 66 0x42 B 109 0x6D m

24 0x18 CAN Cancel 67 0x43 C 110 0x6E n

25 0x19 EM End of Medium 68 0x44 D 111 0x6F o

26 0x1A SUB Substitute 69 0x45 E 112 0x70 p

27 0x1B ESC Escape 70 0x46 F 113 0x71 q

28 0x1C FS File Separator 71 0x47 G 114 0x72 r

29 0x1D GS Group Separator 72 0x38 H 115 0x73 s

30 0x1E RS Record Separator 73 0x49 I 116 0x74 t

31 0x1F US Unit Separator 74 0x4A J 117 0x75 u

32 0x20 SPACE 75 0x4B K 118 0x76 v

33 0x21 ! 76 0x4C L 119 0x77 w

34 0x22 “ 77 0x4D M 120 0x78 x

35 0x23 # 78 0x4E N 121 0x79 y

36 0x24 $ 79 0x4F O 122 0x7A z

37 0x25 % 80 0x50 P 123 0x7B {

38 0x26 & 81 0x51 Q 124 0x7C |

39 0x27 ‘ 82 0x52 R 125 0x7D }

40 0x28 (83 0x53 S 126 0x7E ~

41 0x29) 84 0x54 T 127 0x7F Delete

42 0x2A * 85 0x55 U

MCP Series
Brushed DC Motor Controllers

MCP Series User Manual 189

Warranty
Ion Motion Control warranties its products against defects in material and workmanship for a
period of 1 year. If a defect is discovered, IonMC will, at our discretion, repair, replace, or refund
the purchase price of the product in question. Contact us at support@ionmc.com. No returns will
be accepted without the proper authorization.

Copyrights and Trademarks
Copyright© 2014 by Ion Motion Control, Inc. All rights reserved. RoboClaw and USB RoboClaw
are trademarks of Ion Motion Control, Inc. Other trademarks mentioned are registered
trademarks of their respective holders.

Disclaimer
Ion Motion Control cannot be held responsible for any incidental, or consequential damages
resulting from use of products manufactured or sold by Ion Motion Control or its distributors.
No products from Ion Motion Control should be used in any medical devices and/or medical
situations. No product should be used in a life support situation.

Contacts
 Email: sales@ionmc.com
 Tech support: support@ionmc.com
 Web: http://www.ionmc.com

Discussion List
A web based discussion board is maintained at http://forums.ionmc.com.

Technical Support
Technical support is available by sending an email to support@ionmc.com, by opening a support
ticket on the Ion Motion Control website or by calling 800-535-9161 during normal operating
hours. All email will be answered within 48 hours.

