AtlasScientific Environmental Robotics

V 1.6 Revised 10/21

EZO-CO2^T Embedded NDIR CO2 Sensor

Reads Range Calibration Response time Resolution Accuracy Connector

Warmup time

Cable length

Data protocol

Default I²C address

Data format

Operating voltage

Life expectancy

Written by Jordan Press Designed by Noah Press

Gaseous CO2 0-10,000 ppm **Factory calibrated** 1 reading per second 1 ppm +/- 5% +/- 50 ppm 5 lead data cable 10 seconds 1 meter UART & I²C 105 (0x69) **ASCII** 3.3V - 5V

~5.5 years

Table of contents

Operating principle	
Physical properties	
Sensor properties	
Pin out	

UART mode	14
Receiving data from device	15
Sending commands to device	16
LED color definition	17
UART quick command page	18
LED control	19
Find	20
Continuous mode	21
Single reading mode	22
Alarm	23
Custom calibration	24
Export calibration	25
Import calibration	26
Enable/disable internal temp	27
Naming device	28
Device information	29
Response codes	30
Reading device status	31
Sleep mode/low power	32
Change baud rate	33
Protocol lock	34
Factory reset	35
Change to I2C mode	36
Manual switching to I2C	37

Sensor warm-up	9
Calibration theory	10
Custom calibration	10
Default state	11
Available data protocol	12

²C

I ² C mode	39
Sending commands	40
Requesting data	41
Response codes	42
Processing delay	42
LED color definition	43
I ² C quick command page	44
LED control	45
Find	46
	40
Taking reading	
Alarm	48
Custom calibration	49
Export calibration	50
Import calibration	51
Enable/disable internal temp	52
Naming device	53
Device information	54
Reading device status	55
Sleep mode/low power	56
Protocol lock	57
I ² C address change	58
Factory reset	59
Change to UART mode	60
Manual switching to UART	61

Datasheet change log	62
Firmware updates	62
Warranty	63

Attention

The EZO-CO2[™] is 100% operational out of the box. CALIBRATION IS UNNECESSARY

This sensor detects GASEOUS CO2

This sensor does not read dissolved CO2. DO NOT SUBMERGE!

Attention

Do not point the sensor <u>directly</u> at bright lights

This CO2 sensor uses IR light to detect CO2.

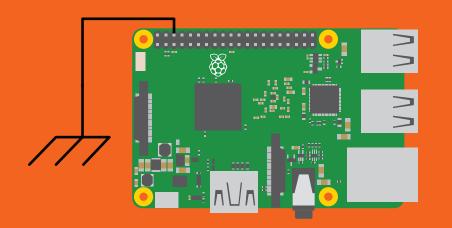
Pointing the sensor directly at a bright light will give false readings. (it will not damage the sensor.)

If the CO2 sensor is returning false readings when in a bright environment, try attaching a PVC Tee to the sensor, to block the direct light.

(or just don't point the sensor at bright lights.)

Attention

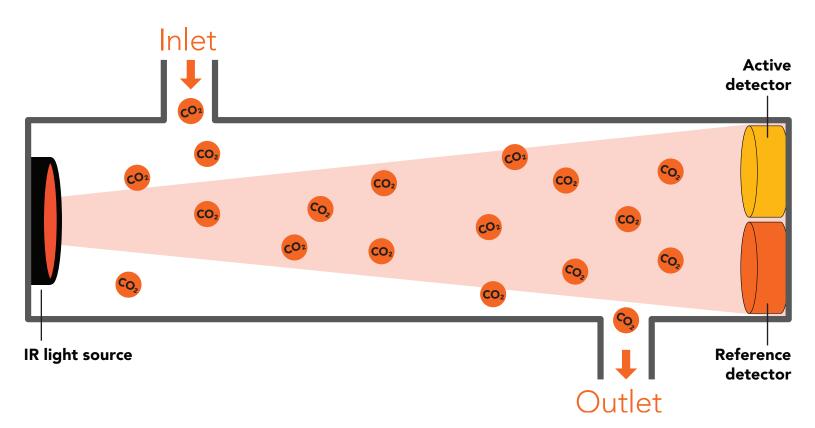
This CO2 sensor is sensitive to ground loops.

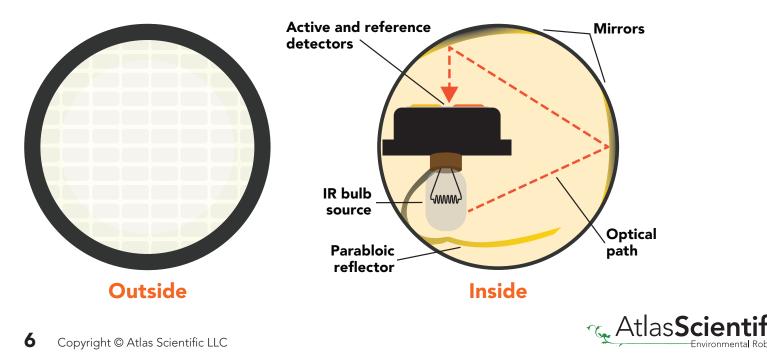

Put simply, a ground loop is when the ground line is not actually 0 volts. (It's the buzzing you hear in audio equipment)

If your system has a ground loop you will see readings that are between 100 and 250 ppm higher than expected. Atlas Scientific has detected ground loops on many different Raspberry Pi's. If this sensor is connected to a Raspberry Pi you should expect to have a ground loop.

There are two ways to fix this problem

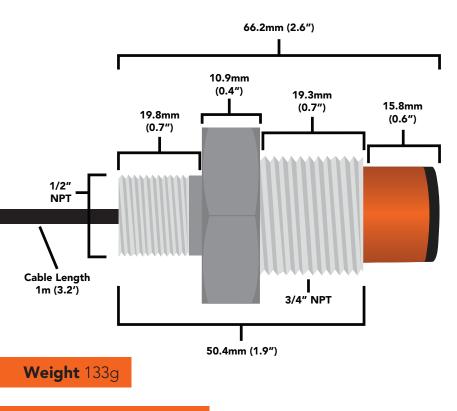
1. Connect a ground pin from the Raspberry Pi (or other device) to an earth ground.


2. Connect the body of the CO2 sensor to a metal object that is connected to an earth ground.


Atlas Scientific

Operating principle

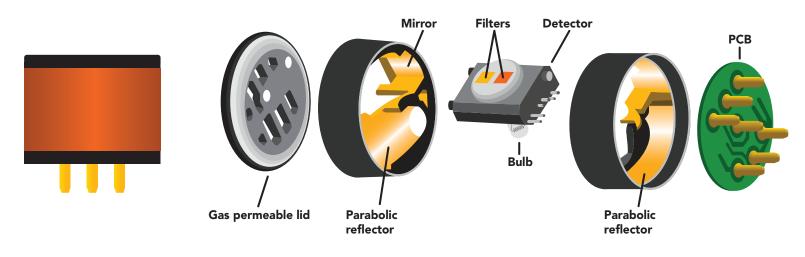
The Atlas Scientific EZO-CO2[™] Embedded CO2 Sensor uses a non-dispersive infra-red (NDIR) gas detection cell to derive CO2 content in a gaseous matrix. The NDIR detection cell is a single wavelength spectrophotometer that has been specifically designed to detect 4.2µm infrared radiation.



Gaseous CO2 has a prominent absorption band centered at 4.2µm. CO2 content is derived by quantifying how much light energy has been lost when it travels through a gaseous matrix over a fixed distance.

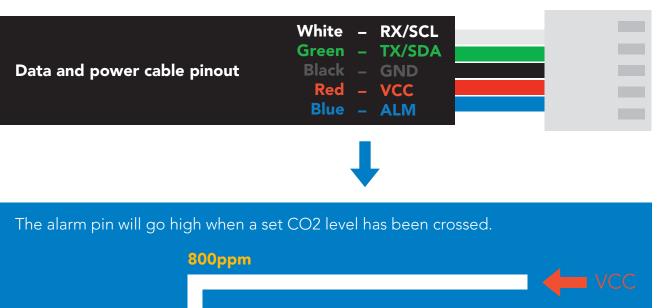
Physical properties

The EZO-CO2[™] sensor only detects gaseous CO2 levels. This device cannot read dissolved CO2 levels. *DO NOT SUBMERGE IN LIQUID*.



1¹/₁₆" 27mm Adjustable Wrench •

Body 316 Stainless Steel


Sensor properties

Pin out

0V |

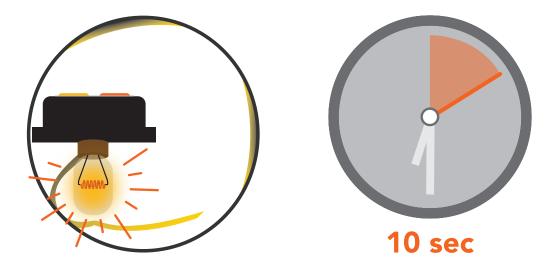
If unused leave **ALM** floating. Do not connect **ALM** to **VCC** or **GND**.

See page **23** to enable CO2 level alarm in UART mode. See page 48 to enable CO2 level alarm in I2C mode.

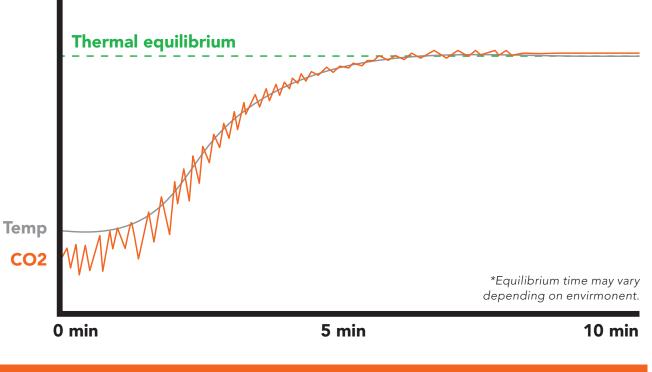
	LED	MAX	SLEEP	
5V	ON	45 mA	3.4 mA	
	OFF	44 mA	5.4 MA	
3.3V	ON	42 mA	3.0 mA	
	OFF	41 mA	0.0 m/4	

Power consumption Absolute max ratings

*Alarm set to 800ppm


Parameter	MIN	ТҮР	MAX
Storage temperature	-65 °C		75 °C
Operational temperature	-20 °C	25 °C	50 °C
VCC	3.3V	3.3V	5.5V

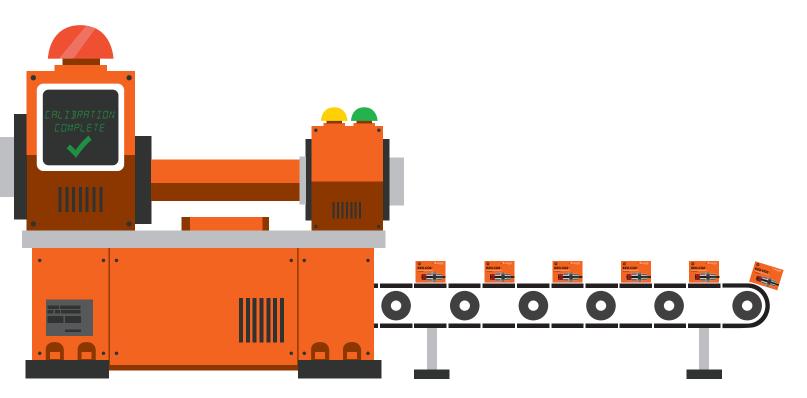
Humidity Range 0 to 95% rh non-condensing


Sensor warm-up

When the Atlas Scientific EZO-CO2[™] Embedded CO2 Sensor is first powered on (*or wakes up from sleep mode*) the sensor must warm-up before it can output readings. The warm-up process takes 10 seconds to complete.

During the first 10 seconds of operation the output will be: ***warm**

Once warming is finished, CO2 readings will be output. The device will continue to warm-up over several minutes. As the internal temperature stabilizes, so will the CO2 readings.



To see the internal temperature of the sensor and watch as it stabilizes, use the 'O' command found on page 24.

Calibration theory

The Atlas Scientific EZO-CO2[™] Embedded CO2 Sensor comes pre-calibrated, and does not need to be recalibrated. Atlas Scientific performs a two-point factory calibration as part of the manufacturing process.

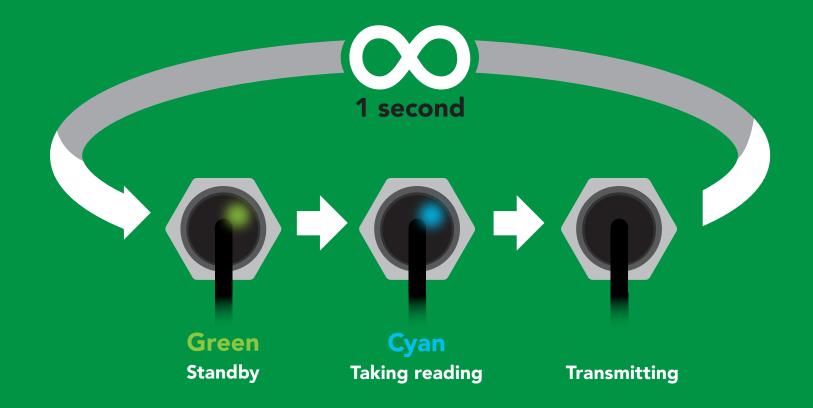
Low point calibration = 0 ppm High point calibration = 4,000 ppm

The factory calibration data is permanently stored in the sensor and cannot be erased.

Custom calibration

One or two-point calibration can be done at any time. When custom calibration is used, factory calibration will be ignored. To revert back to the factory calibration simply clear the custom calibration.

See page 24 or 49 for custom calibration commands.


Default state UART mode Baud 9,600

Readings Speed

LED

9,600 continuous 1 second

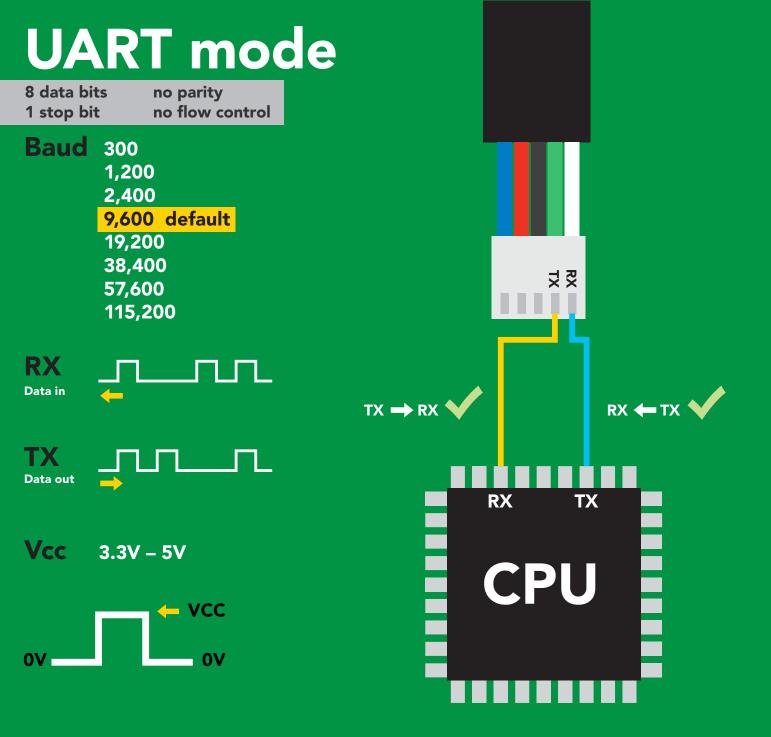
on

default

1²C

X Unavailable data protocols SPI Analog RS-485 Mod Bus 4–20mA

12 Copyright © Atlas Scientific LLC


UART mode

Settings that are retained if power is cut

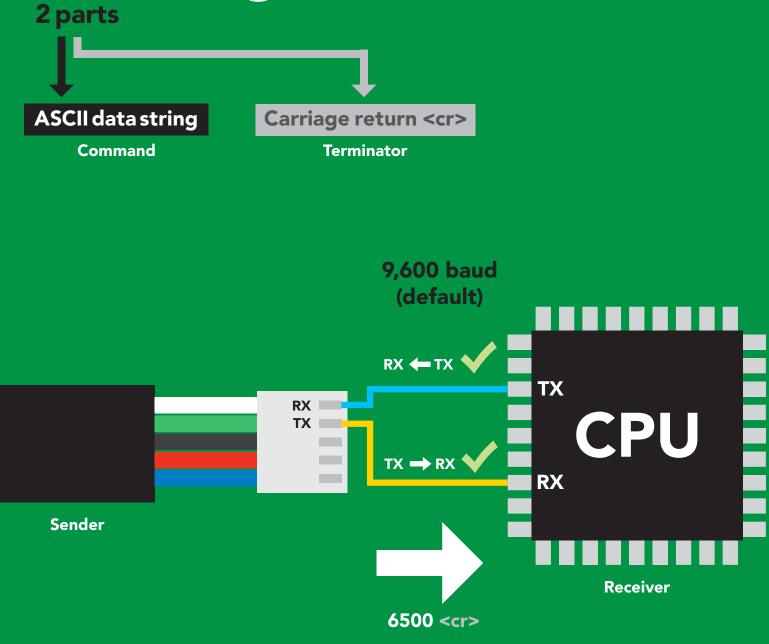
Baud rate Calibration Continuous mode Device name Enable/disable response codes Hardware switch to I²C mode LED control Protocol lock Software switch to I²C mode

Settings that are **NOT** retained if power is cut

Sleep mode

Data format

Reading	Gaseous CO2
Units	PPM
Encoding	ASCII
Format	string
Terminator	carriage return


Data type **Decimal places** 0 Smallest string 2 characters Largest string

unsigned int

12 characters

Advanced

ASCII:	6	5	0	0	<cr></cr>
Hex:	36	35	30	30	0D
Dec:	54	53	48	48	13

Sending commands to device ^{2 parts}

Command (not case sensitive)

Carriage return <cr>

ASCII data string

Terminator

Advanced

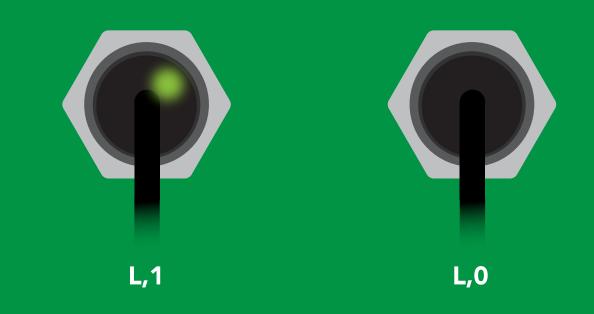
ASCII:	S		е	е	р	<cr></cr>
Hex:	53	6C	65	65	70	0D
Dec:	83	108	101	101	112	13

LED color definition

UART mode command quick reference

All commands are ASCII strings or single ASCII characters.

Command	Function		Default state
Alarm	enable/disable alarm	pg. 23	n/a
Baud	change baud rate	pg. 32	9,600
С	enable/disable continuous mode	pg. 21	enabled
Cal	performs custom calibration	pg. 24	n/a
Export	export calibration	pg. 25	n/a
Factory	enable factory reset	pg. 35	n/a
Find	finds device with blinking white LED	pg. 20	n/a
i	device information	pg. 29	n/a
I2C	change to I ² C mode	pg. 36	not set
Import	import calibration	pg. 26	n/a
L	enable/disable LED	pg. 19	enabled
Name	set/show name of device	pg. 28	not set
0	enable/disable internal temperature	pg. 27	disabled
Plock	enable/disable protocol lock	pg. 34	n/a
R	returns a single reading	pg. 22	n/a
Sleep	enter sleep mode/low power	pg. 32	n/a
Status	retrieve Status Information	pg. 31	n/a
*OK	enable/disable response codes	pg. 30	n/a


LED control

Command syntax

L,1 <cr>> LED on default</cr>

- L,0 <cr>> LED off
- L,? <cr>> LED state on/off?

Example	Response
L,1 <cr></cr>	*OK <cr></cr>
L,0 <cr></cr>	*OK <cr></cr>
L,? <cr></cr>	?L,1 <cr> or ?L,0 <cr> *OK <cr></cr></cr></cr>

Command syntax

This command will disable continuous mode Send any character or command to terminate find.

Find <cr> LED rapidly blinks white, used to help find device

ExampleResponseFind <cr>*OK <cr>

Continuous mode

Command syntax

- C,1 <cr> enable continuous readings once per second default
- C,n <cr> continuous readings every n seconds (n = 2 to 99 sec)
- C,0 <cr> disable continuous readings
- C,? <cr> continuous reading mode on/off?

Example	Response
C,1 <cr></cr>	*OK <cr> CO2 (1 sec) <cr> CO2 (2 sec) <cr> CO2 (n sec) <cr></cr></cr></cr></cr>
C,30 <cr></cr>	*OK <cr> CO2 (30 sec) <cr> CO2 (60 sec) <cr> CO2 (90 sec) <cr></cr></cr></cr></cr>
C,0 <cr></cr>	*OK <cr></cr>
C,? <cr></cr>	?C,1 <cr> or ?C,0 <cr> or ?C,30 <cr> *OK <cr></cr></cr></cr></cr>

Single reading mode

Command syntax

R <cr>> takes single reading

ExampleResponseR <cr>6500 <cr>*OK <cr>

1 second

Alarm

Command synt	The alarm pin will = 1 when CO2 levels are > alarm set point. Alarm tolerance sets how far below the set point CO2 levels need to drop before the pin will = 0 again.	
Alarm,en,[1,0] <cr>enable / disable alarmAlarm,n<cr>sets alarmAlarm,tol,n<cr>sets alarm tolerance (0-500 ppm)Alarm,?<cr>alarm set?</cr></cr></cr></cr>		
Example	Response	
Alarm,en,1 < <r></r>	*OK <cr> Enable alarm</cr>	
Alarm,1200 <cr></cr>	*OK <cr></cr>	
Alarm,tol,100 <cr></cr>	*OK <cr> CO2 level must fall 100 ppm below set point for alarm to reset.</cr>	
Alarm,? <cr></cr>	?,alarm,1200,100,1 < <r> if all are enabled</r>	
Alarm		
CO2	(Alarm set point - tolerance)	
Alarm 23 Copyright © Atlas Scientific LLC	(1200 - 100) Alarm on Alarm off AlarScientific Environmental Robotics	

Custom calibration

Command syntax

High point calibration can be from 3,000 ppm to 5,000 ppm. Calibration outside of that range my lead to accuracy issues.

- Cal,n <cr> calibrates the high point
- Cal,0 <cr> calibrates the zero point
- Cal, clear <cr> restores calibration to factory settings
- Cal,? <cr> device calibrated?

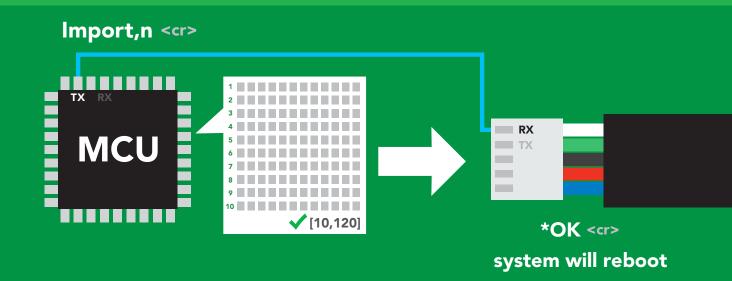
Example	Response
Cal,3900 <cr></cr>	*OK <cr></cr>
Cal,0 <cr></cr>	*OK <cr></cr>
Cal,clear < <r></r>	*OK <cr></cr>
Cal,? <cr></cr>	<pre>?Cal,0 <cr> or ?Cal,1 <cr> or ?Cal,2 <cr> or only zero point calibration</cr></cr></cr></pre> ?Cal,2 <cr> or only high point calibration ?Cal,3 <cr> *OK <cr> zero and high point calibration</cr></cr></cr>

This device comes pre-calibrated.

Custom calibration should not be performed without scientific grade calibration gasses.

Export calibration

Command sy	ntax	
Command Sy	Export: U	Jse this command to download calibration settings
Export,? <cr></cr>	calibration stri	ng info
Export <cr></cr>	export calibrat	ion string from calibrated device
Example	Response	
Export,? <cr></cr>	10,120 <cr></cr>	Response breakdown 10, 120
		# of strings to export # of bytes to export
		Export strings can be up to 12 characters long, and is always followed by <cr></cr>
Export < <r></r>	59 6F 75 20	61 72 <cr> (1 of 10)</cr>
Export < <r></r>	65 20 61 20 63 6F <cr> (2 of 10)</cr>	
(7 more)	:	
Export < <r></r>	6F 6C 20 67 75 79 <cr> (10 of 10)</cr>	
Export < <r></r>	*DONE	Disabling *OK simplifies this process
Export < <r></r>	1 2 3	
25 Copyright © Atlas Scientific LLC		Atlas Scientific Environmental Robotics


Import calibration

Command syntax

Import: Use this command to upload calibration settings to one or more devices.

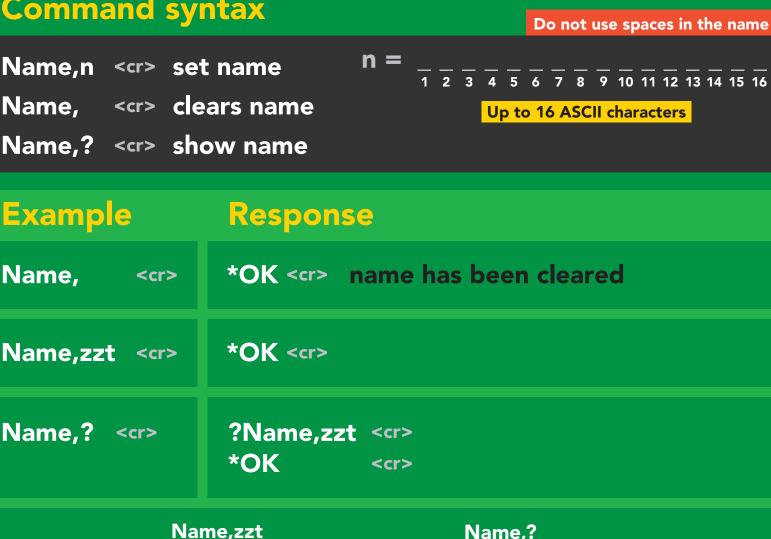
Import,n <cr> import calibration string to new device

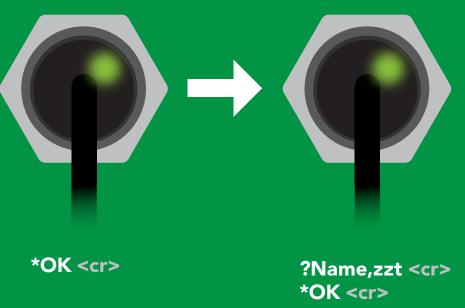
Example Response Import, 59 6F 75 20 61 72 <cr> (1 of 10) *OK <cr> Import, 65 20 61 20 63 6F <cr> (2 of 10) *OK <cr> i i Import, 6F 6C 20 67 75 79 <cr> (10 of 10) *OK <cr> *OK <cr> *OK <cr> i i

* If one of the imported strings is not correctly entered, the device will not accept the import, respond with *ER and reboot.

Enable/disable internal temperature from output string

Command syntax


enable or disable internal temperature		
Response		
*OK <cr> enable temperature</cr>		
*OK < <r> disable temperature</r>		
?O,ppm,t < <r> if internal temp is enabled</r>		


Enabling the internal temperature should only be used to confirm that the device is at thermal equilibrium. Refer to page 6

Naming device

Command syntax

Device information

Command syntax

i <cr> device information</cr>		
Example	Response	
i <cr></cr>	?i,CO2,1.0 <cr> *OK <cr></cr></cr>	

Response breakdown

Response codes

Command syntax

*OK,1 <cr> enab *OK,0 <cr> disat *OK,? <cr> resp</cr></cr></cr>	
Example	Response
R <cr></cr>	6,500 <cr> *OK <cr></cr></cr>
*OK,0 <cr></cr>	no response, *OK disabled
R <cr></cr>	6,500 <cr> *OK disabled</cr>
*OK,? <cr></cr>	?*OK,1 <cr> or ?*OK,0 <cr></cr></cr>

Other response codes

- *ER unknown command
- ***OV** over volt (VCC>=5.5V)
- *UV under volt (VCC<=3.1V)
- *RS reset
- *RE boot up complete, ready
- *SL entering sleep mode
- *WA wake up

These response codes cannot be disabled

Reading device status

Command syntax

Status <cr> voltage at Vcc pin and reason for last restart

Example	Response	
Status <cr></cr>	?Status,P,5.038 <cr> *OK <cr></cr></cr>	
Response breakdown		

?Status,	Ρ,	5.038
	1	1
Reas	on for restart	Voltage at Vcc

Restart codes

- P powered off
- **S** software reset
- B brown out
- W watchdog
- U unknown

Sleep mode/low power

Command syntax

Send any character or command to awaken device.

Sleep <cr> enter sleep mode/low power</cr>			
Exam	ole	Respons	e
Sleep <	<cr></cr>	*OK <cr> *SL <cr></cr></cr>	
Any cor	nmand	*WA <cr></cr>	wakes up device
5V	MAX 45 mA	SLEEP 3.4 mA	
3.3V	42 mA	3.0 mA	

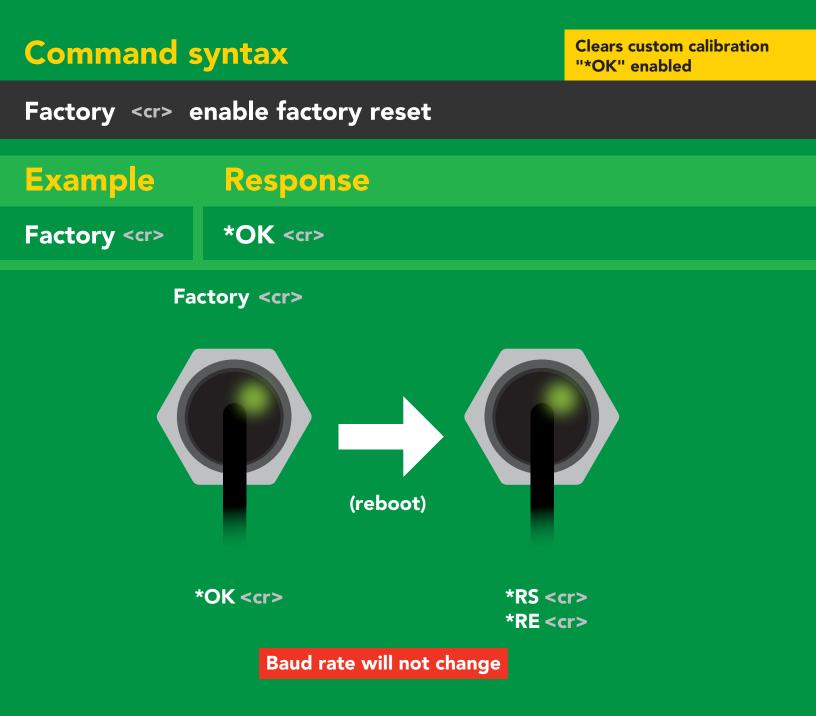
Change baud rate

Command syntax

Baud,n <cr> change baud rate

Example	Response	
Baud,38400 <cr></cr>	*OK <cr></cr>	
Baud,? <cr></cr>	?Baud,38400 <cr> *OK <cr></cr></cr>	
n = 300 1200 2400 9600 default 19200 38400 57600 115200		
Baud,38	A00 < cr>	
Standby	Changing Standby baud rate *OK <cr></cr>	

Protocol lock


Command syntax

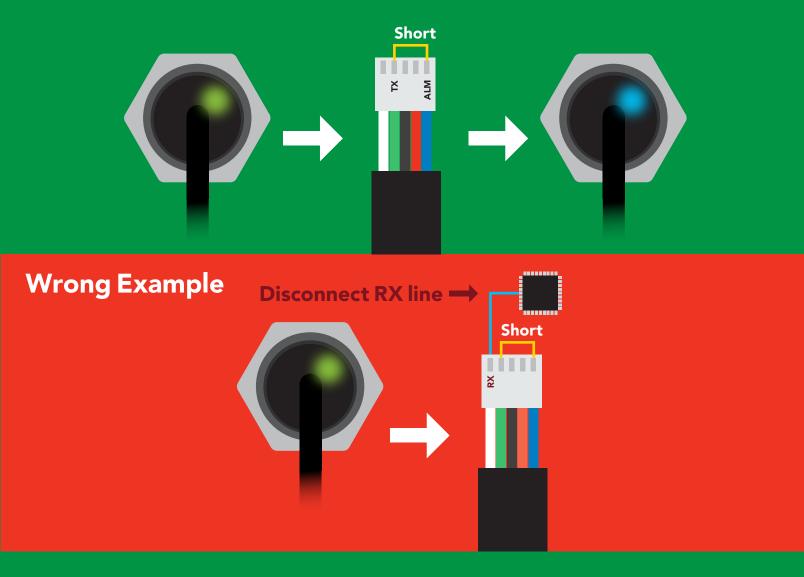
Locks device to UART mode.

Plock,1 <cr> e Plock,0 <cr> e Plock,? <cr> l</cr></cr></cr>	disable Plock <mark>default</mark>	
Example	Response	
Plock,1 <cr></cr>	*OK <cr></cr>	
Plock,0 <cr></cr>	*OK <cr></cr>	
Plock,? <cr></cr>	?Plock,1 << <mark>r> or</mark> ?Plock,0 <<	:r>
Plock,1	I2C,100	
		TX ALM
*OK <cr></cr>	cannot change to I²C *ER <cr></cr>	cannot change to I ² C

Factory reset

Change to I²C mode

Default I²C address 105 (0x69)



Manual switching to I²C

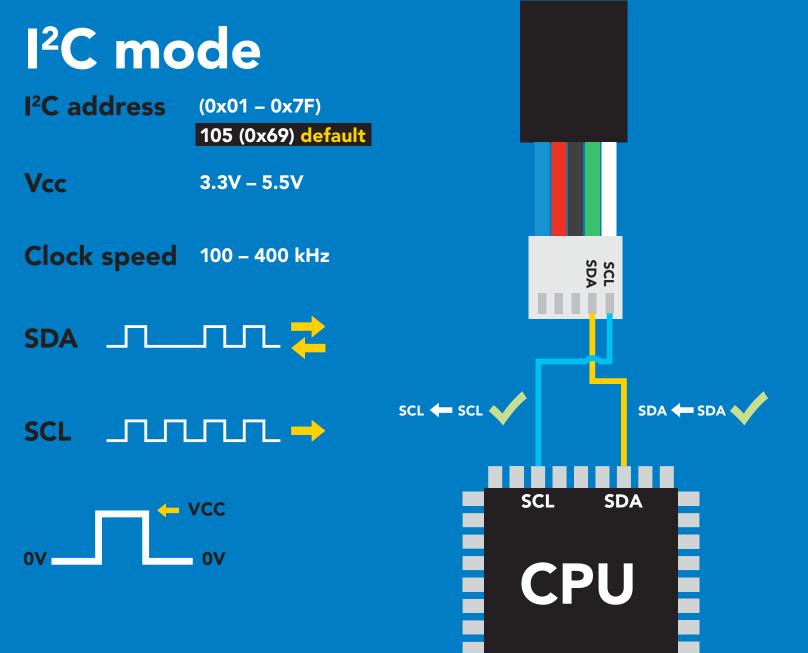
- Disconnect ground (power off)
- Disconnect TX and RX
- Connect TX to ALM
- Confirm RX is disconnected
- Connect ground (power on)
- Wait for LED to change from Green to Blue
- Disconnect ground (power off)
- Reconnect all data and power

Manually switching to I²C will set the I²C address to 105 (0x69)

Example

1²C mode

The I²C protocol is **considerably more complex** than the UART (RS-232) protocol. Atlas Scientific assumes the embedded systems engineer understands this protocol.

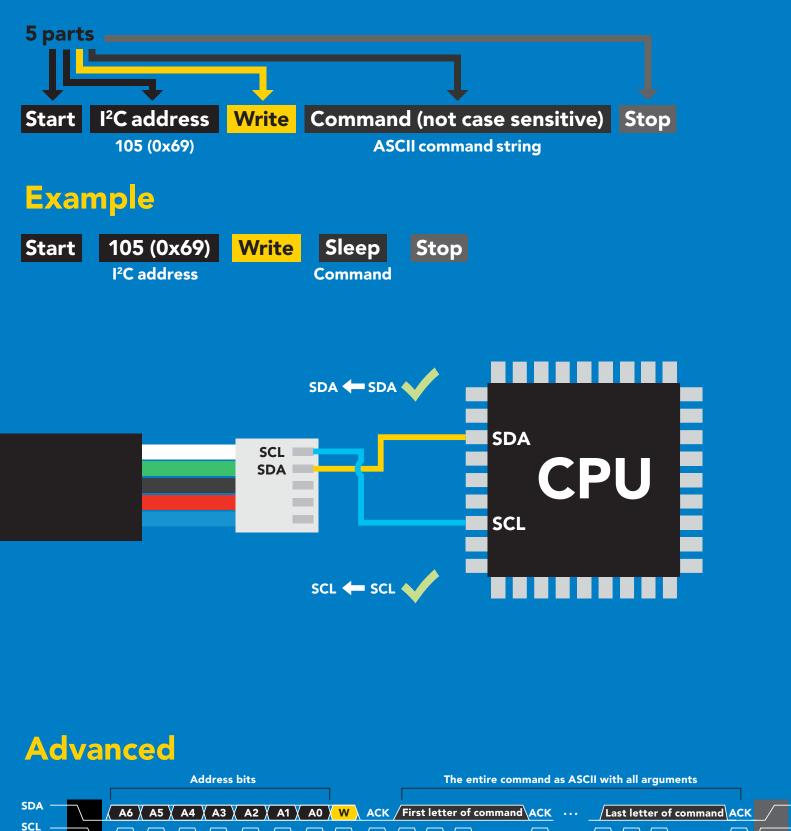

To set your EZO[™] device into I²C mode click here

Settings that are retained if power is cut

Calibration Change I²C address Hardware switch to UART mode LED control Protocol lock Software switch to UART mode Settings that are **NOT** retained if power is cut

Sleep mode

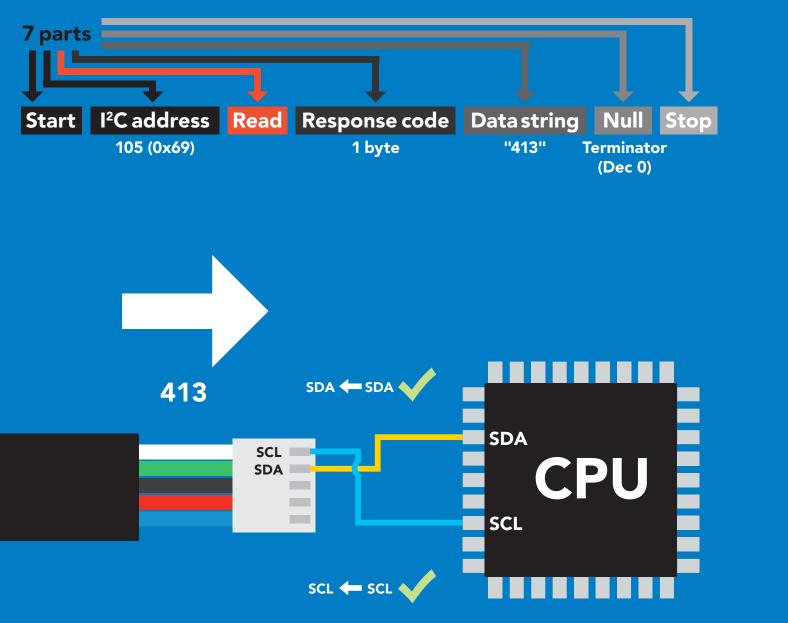
Data format


Reading	Gaseous CO2
Units	PPM
Encoding	ASCII
Format	string

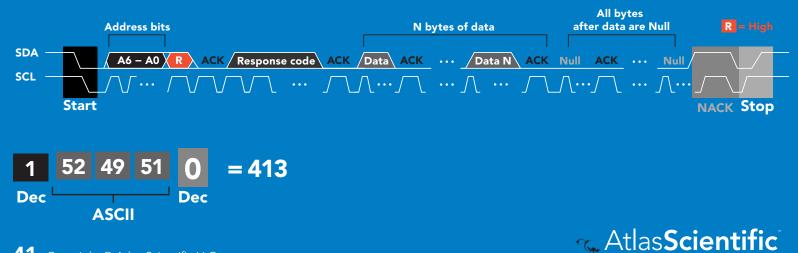
Data type	u
Decimal places	0
Smallest string	2
Largest string	1

unsigned int 0 2 characters 12 characters

Sending commands to device

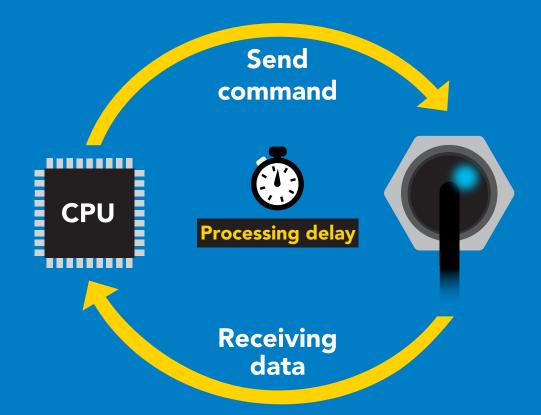

Stop

W = low


🔨 Atlas**Scient**i

Start

Requesting data from device


Advanced

Response codes & processing delay

After a command has been issued, a 1 byte response code can be read in order to confirm that the command was processed successfully.

Reading back the response code is completely optional, and is not required for normal operation.

Example

I2C_start; I2C_address; I2C_write(EZO_command); I2C_stop;

delay(300);

I2C_start; I2C_address; Char[] = I2C_read; I2C_stop; If there is no processing delay or the processing delay is too short, the response code will always be 254.

Response codes Single byte, not string

- 255 no data to send
- 254 still processing, not ready
- 2 syntax error
- 1 successful request

LED color definition

I²C standby

Green

Taking reading

Purple Changing I²C address Y

Ked Command not understood White Find

5V	LED ON +2.5 mA
3.3V	+1 mA

I²C mode command quick reference

All commands are ASCII strings or single ASCII characters.

Command	Function	
Alarm	enable/disable alarm	pg. 48
Baud	switch back to UART mode	pg. 60
Cal	performs custom calibration	pg. 49
Export	export calibration	pg. 50
Factory	enable factory reset	pg. 59
Find	finds device with blinking white LED	pg. 46
i	device information	pg. 54
I2C	change I ² C address	pg. 58
Import	import calibration	pg. 51
L	enable/disable LED	pg. 45
Name	set/show name of device	pg. 53
0	enable/disable internal temp	pg. 52
Plock	enable/disable protocol lock	pg. 57
R	returns a single reading	pg. 47
Sleep	enter sleep mode/low power	pg. 56
Status	retrieve status information	pg. 55

LED control

Command syntax

L,1 LED on default

- L,0 LED off
- L,? LED state on/off?

300ms 💮 processing delay

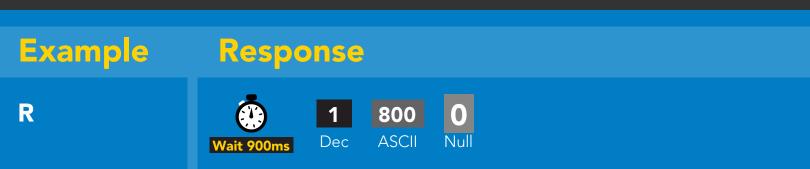
L,0

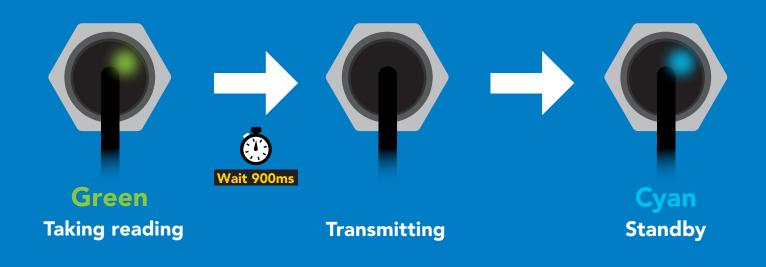
Find

300ms 🕐 processing delay

Command syntax

Find LED rapidly blinks white, used to help find device




Taking reading

Command syntax

900ms 🕐 processing delay

R return 1 reading

Alarm

300ms 🕐 processing delay

Command syn	tax	The alarm pin will = 1 when CO2 levels are > alarm set point. Alarm tolerance sets how far below the set point CO2 levels need to drop before the pin will = 0 again.
Alarm,n Alarm,tol,n	sets ala	arm tolerance (0-500 ppm)
Example	Res	sponse
Alarm,en,1	Wait 30	
Alarm,1200	Wait 30	
Alarm,tol,100	Wait 30	set point for alarm to reset.
Alarm,?	Wait 30	
Alarm (1200) 1100 CO2		(Alarm set point - tolerance)
Alarm	Alarm	(1200 - 100)
48 Copyright © Atlas Scientific LLC		Alarm off Alarm off Environmental Robotics

Custom calibration 900ms (*) processing delay

Command	syntax	High point calibration can be from 3,000 ppm to 5,000 ppm. Calibration outside of that range my lead to accuracy issues.
Cal,n Cal,0 Cal,clear Cal,?	calibrates the high point calibrates the zero point restores calibration to device calibrated?	t
Example	Response	
Cal,3900	Wait 900ms 1 Dec Null	
Cal,0	Wait 900ms 1 Dec Null	
Cal,clear	Wait 300ms 1 Dec Null	
Cal,?	Wait 300ms1?CaDecASCno calibOr1?CaDecASCDecASC	CIINullDecASCIINull only zero point calibrationII,20or1?Cal,30
	only high poir	nt calibration zero and high point calibration

This device comes pre-calibrated.

Custom calibration should not be performed without scientific grade calibration gasses.

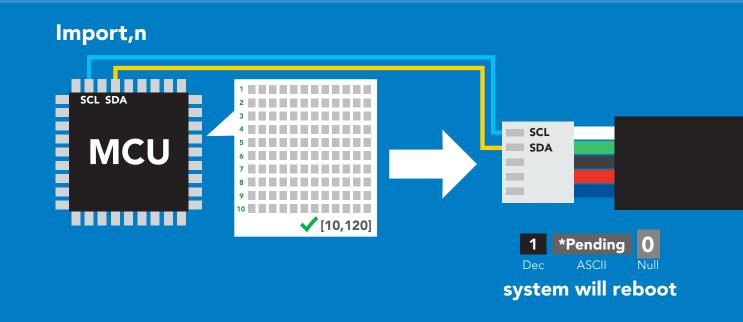
Export calibration

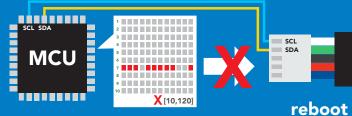
300ms 🕐 processing delay Command syntax Export: Use this command to download calibration settings calibration string info Export,? export calibration string from calibrated device **Export** Example Response Export,? **Response breakdown** 10,120 Null 10. 120 ASCII Wait 300ms Dec # of strings to export # of bytes to export Export strings can be up to 12 characters long 59 6F 75 20 61 72 (1 of 10) $(\mathbf{0})$ **Export** Null Dec ASCII Wait 300ms 65 20 61 20 63 6F (2 of 10)0 **Export** ASCI Dec • (7 more) 6F 6C 20 67 75 79 (10 of 10) [N] 0 Export Nul ASCII Wait 300ms Dec ***DONE** Export Dec ASCII Nul

Import calibration 300ms (*) processing delay

Command syntax

Import: Use this command to upload calibration settings to one or more devices.


Import,n import calibration string to new device


Example

Response

Null

* If one of the imported strings is not correctly entered, the device will not accept the import and reboot.

Atlas Scientific

Enable/disable internal temperature from output string

300ms 🕐 processing delay **Command syntax** O,t,[1,0] enable or disable internal temperature Example Response enable temperature **O**,t,1 : T : disable temperature **O.t.0** Dec Nul if internal temp ?O,ppm,t 0,? is enabled ASCII Dec Null Enabling the internal temperature should

Atlas Scientific

only be used to confirm that the device is at thermal equilibrium. Refer to page 6

Naming device

Command syntax

300ms 💮 processing delay

Do not use spaces in the name

Environmental Robotics

-	ame $n = \frac{1}{1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16}$ s name Up to 16 ASCII characters ame Up to 16 ASCII characters
Example	Response
Name,	Wait 300ms Image: Dec Null Null
Name,zzt	Wait 300ms 1 0
Name,?	Image: Name,zztImage: OutputWait 300msDecASCIINull
Name,zzt Name,?	
52	Atlas Scientific

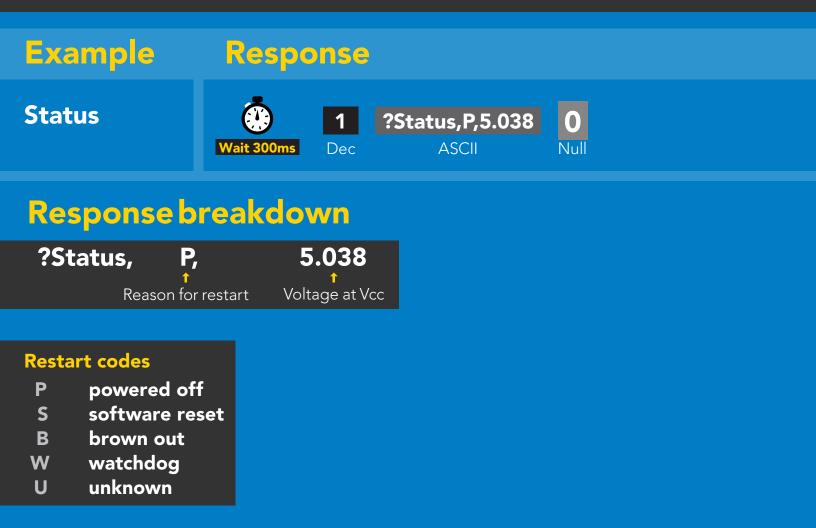
Device information

Command syntax

300ms 🕐 processing delay

i device information

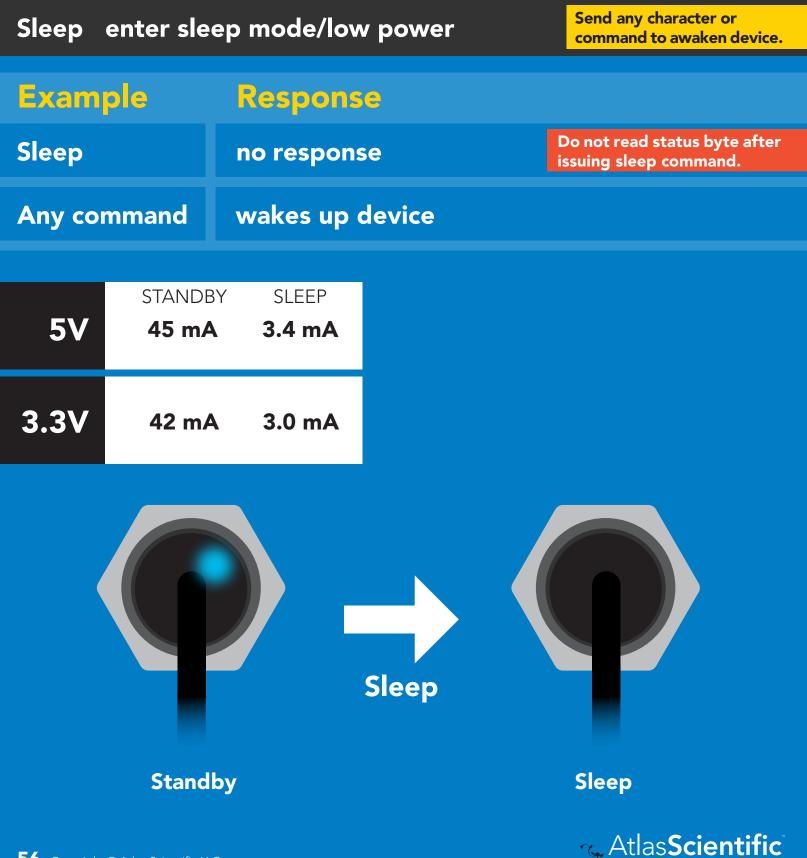
Response breakdown

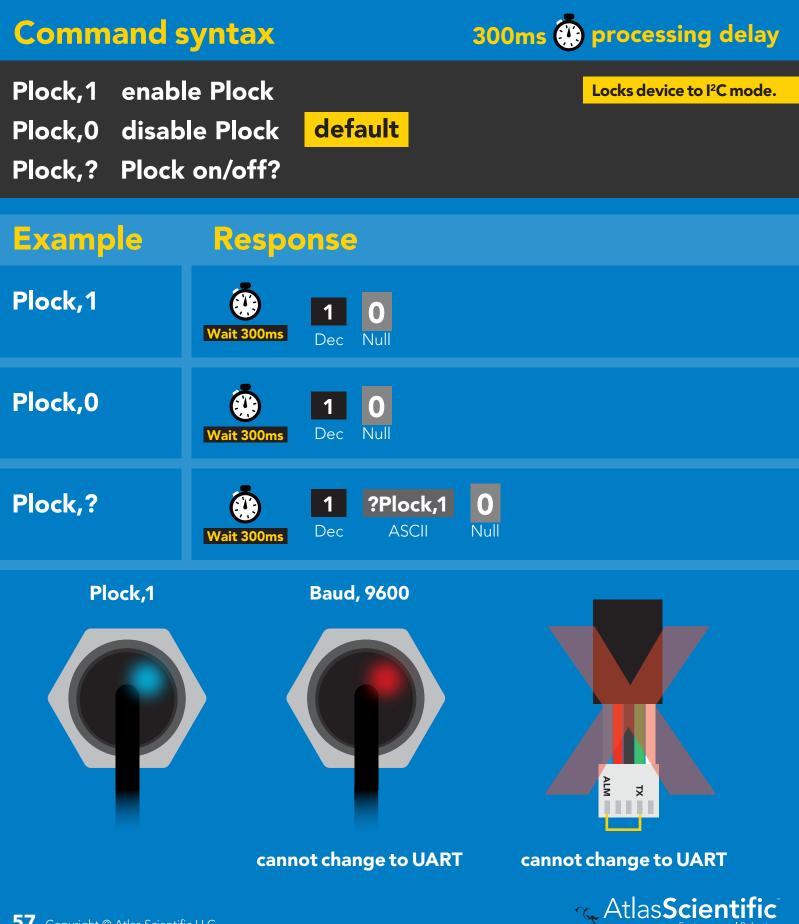


Reading device status

Command syntax

300ms 💮 processing delay

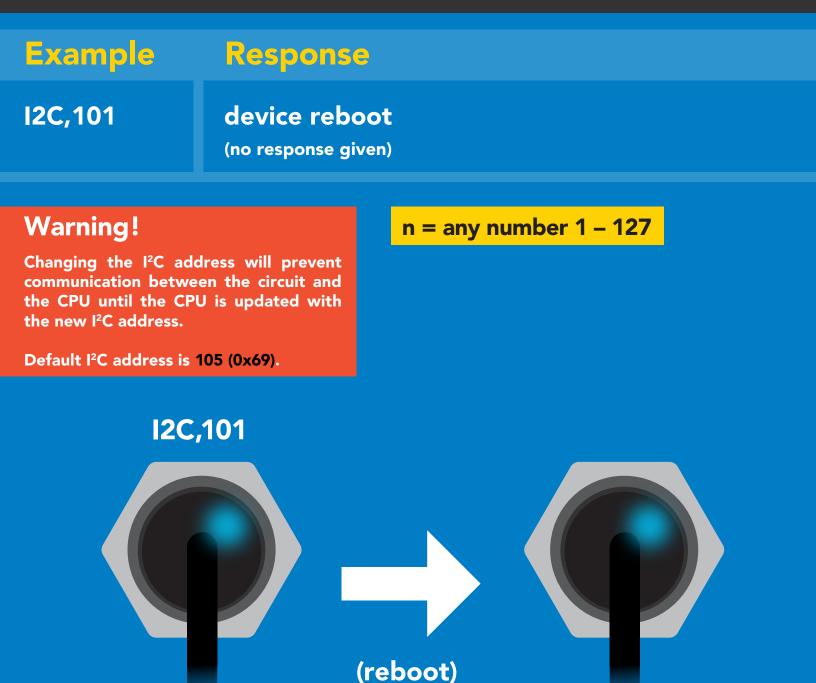

Status voltage at Vcc pin and reason for last restart



Sleep mode/low power

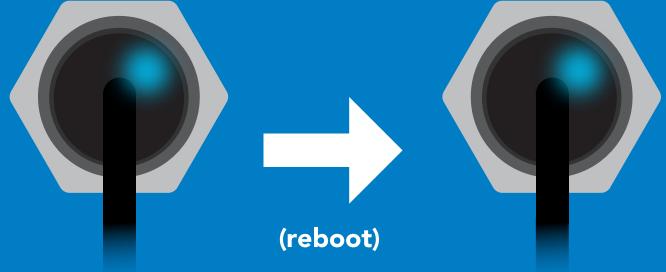
Command syntax

Protocol lock



I²C address change

Command syntax


300ms 💮 processing delay

I2C, n sets I²C address and reboots into I²C mode

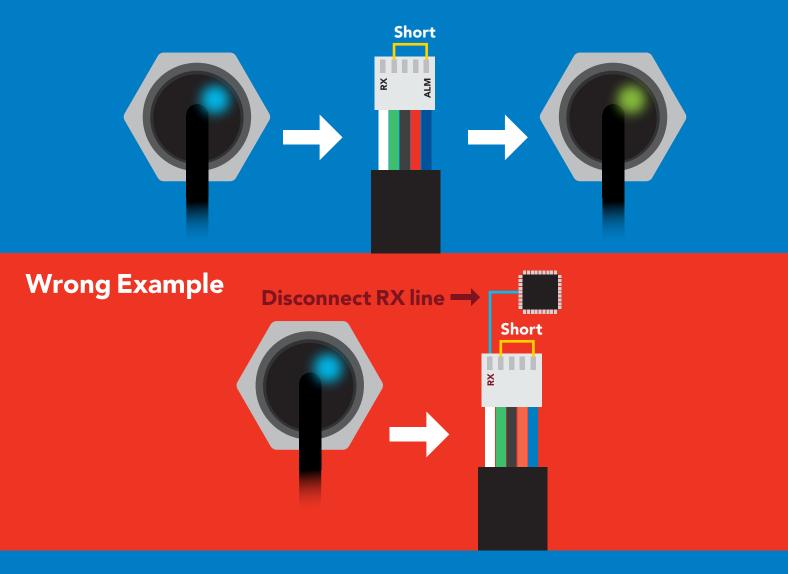
Factory reset

Command yrtax Factory reset will not take the device out of l²C mode. Factory enable factory reset Bacample Response Factory device reboot (no response given)

Change to UART mode

Command syntax

Baud,n switch from I²C to UART


Example Response Baud,9600 reboot in UART mode (no response given) 300 1200 2400 9600 **n** = 19200 38400 57600 115200 Baud,9600 (reboot) **Changing to UART** mode

Manual switching to UART

- Disconnect ground (power off)
- Disconnect TX and RX
- Connect TX to ALM
- Confirm RX is disconnected
- Connect ground (power on)
- Wait for LED to change from Blue to Green
- Disconnect ground (power off)
- Reconnect all data and power

Example

Datasheet change log

Datasheet V 1.6

Revised naming device info on pages 28 & 53.

Datasheet V 1.5

Revised info for "Pin out" on page 8.

Datasheet V 1.4

Added life expectancy to the cover page, and moved Default state to pg 11.

Datasheet V 1.3

Added page about pointing the CO2 sensor at bright lights on pg 4.

Datasheet V 1.2

Revised response for the sleep command in UART mode on pg 29.

Datasheet V 1.1

Added more information on the Export calibration and Import calibration commands.

Datasheet V 1.0

New datasheet

Firmware updates

V1.00 – (Sept 12, 2018)

• Initial release

V2.00 - (Jan 24, 2020)

• Changes the lamp power supply to 5V with boost converter, stops CO2 readings from going below 0.

V2.01 - (Nov 06, 2020)

• Adjusts lamp frequency to fit the lamp signal into the ADC range more consistently.

Warranty

Atlas Scientific[™] Warranties the EZO-CO2[™] Embedded NDIR CO2 Sensor to be free of defect during the debugging phase of device implementation, or 30 days after receiving the EZO-CO2[™] Embedded NDIR CO2 Sensor (which ever comes first).

The debugging phase

The debugging phase as defined by Atlas Scientific[™] is the time period when the EZO-CO2[™] Embedded NDIR CO2 Sensor is connected into a bread board, or shield. If the EZO-CO2[™] Embedded NDIR CO2 Sensor is being debugged in a bread board, the bread board must be devoid of other components. If the EZO-CO2[™] Embedded NDIR CO2 Sensor is being connected to a microcontroller, the microcontroller must be running code that has been designed to drive the EZO-CO2[™] Embedded NDIR CO2 Sensor exclusively and output the EZO-CO2[™] Embedded NDIR CO2 Sensor data as a serial string.

It is important for the embedded systems engineer to keep in mind that the following activities will void the EZO-CO2[™] Embedded NDIR CO2 Sensor warranty:

- Soldering any part to the EZO-CO2[™] Embedded NDIR CO2 Sensor.
- Running any code, that does not exclusively drive the EZO-CO2[™] Embedded NDIR CO2 Sensor and output its data in a serial string.
- Embedding the EZO-CO2[™] Embedded NDIR CO2 Sensor into a custom made device.
- Removing any potting compound.

Reasoning behind this warranty

Because Atlas Scientific[™] does not sell consumer electronics; once the device has been embedded into a custom made system, Atlas Scientific[™] cannot possibly warranty the EZO-CO2[™] Embedded NDIR CO2 Sensor, against the thousands of possible variables that may cause the EZO-CO2[™] Embedded NDIR CO2 Sensor to no longer function properly.

Please keep this in mind:

- 1. All Atlas Scientific[™] devices have been designed to be embedded into a custom made system by you, the embedded systems engineer.
- 2. All Atlas Scientific[™] devices have been designed to run indefinitely without failure in the field.
- 3. All Atlas Scientific[™] devices can be soldered into place, however you do so at your own risk.

Atlas Scientific[™] is simply stating that once the device is being used in your application, Atlas Scientific[™] can no longer take responsibility for the EZO-CO2[™] Embedded NDIR CO2 Sensor continued operation. This is because that would be equivalent to Atlas Scientific[™] taking responsibility over the correct operation of your entire device.

