

THE NEW GENERATION LORAWAN SENSORS OF SENSECAP

S210X Sensors User Guide

Table of Contents

1. Product Introduction	4
2. Part List	5
3. Key Parameters of the Sensor	6
4. LED of Sensor Working Status	7
5. SenseCAP Mate App	9
5.1 Download App	9
5.2 How to connect sensor to App	9
5.2.1 Create a New Account	9
5.2.2 Connect to Sensor to App	10
5.3 Configure parameters through App	12
5.3.1 Select the Platform and Frequency	12
5.3.2 Set the Interval	17
5.3.3 Set the EUI and Key	17
5.3.4 Set the Packet Policy	
5.3.5 Set the Activation Type	
5.3.6 Restore Factory Setting	
5.3.7 Set 3 temperature channels for S2107	
5.3.8 Set S2108 for measuring different soil types	
6. Connect to the SenseCAP Portal	
6. Connect to the SenseCAP Portal 6.1 SenseCAP Portal	
6.1 SenseCAP Portal 6.1.1 Create a New Account 6.1.2 Other Functions	
6.1 SenseCAP Portal 6.1.1 Create a New Account 6.1.2 Other Functions 6.1.3 API Instruction	
6.1 SenseCAP Portal 6.1.1 Create a New Account 6.1.2 Other Functions	
 6.1 SenseCAP Portal 6.1.1 Create a New Account 6.1.2 Other Functions 6.1.3 API Instruction 6.2 Connect to SenseCAP with Helium Network 6.2.1 Quick Start 	
 6.1 SenseCAP Portal 6.1.1 Create a New Account 6.1.2 Other Functions 6.1.3 API Instruction 6.2 Connect to SenseCAP with Helium Network 6.2.1 Quick Start 6.2.2 Preparation 	
 6.1 SenseCAP Portal 6.1.1 Create a New Account 6.1.2 Other Functions 6.1.3 API Instruction 6.2 Connect to SenseCAP with Helium Network 6.2.1 Quick Start 6.2.2 Preparation 6.2.3 Bind Sensor to SenseCAP Portal 	22 22 23 23 23 24 24 24 24 24 24 25
 6.1 SenseCAP Portal 6.1.1 Create a New Account 6.1.2 Other Functions 6.1.3 API Instruction 6.2 Connect to SenseCAP with Helium Network 6.2.1 Quick Start 6.2.2 Preparation 6.2.3 Bind Sensor to SenseCAP Portal 6.2.4 Setup the Sensor 	
 6.1 SenseCAP Portal 6.1.1 Create a New Account 6.1.2 Other Functions 6.1.3 API Instruction 6.2 Connect to SenseCAP with Helium Network 6.2.1 Quick Start 6.2.2 Preparation 6.2.3 Bind Sensor to SenseCAP Portal 6.2.4 Setup the Sensor 6.2.5 Set Frequency of Sensor via SenseCAP Mate App 	22 23 23 23 24 24 24 24 24 25 27 28
 6.1 SenseCAP Portal 6.1.1 Create a New Account 6.1.2 Other Functions 6.1.3 API Instruction 6.2 Connect to SenseCAP with Helium Network 6.2.1 Quick Start 6.2.2 Preparation 6.2.3 Bind Sensor to SenseCAP Portal 6.2.4 Setup the Sensor 6.2.5 Set Frequency of Sensor via SenseCAP Mate App 6.2.6 Check Data on SenseCAP Portal 	
 6.1 SenseCAP Portal 6.1.1 Create a New Account 6.1.2 Other Functions 6.1.3 API Instruction 6.2 Connect to SenseCAP with Helium Network 6.2.1 Quick Start 6.2.2 Preparation 6.2.3 Bind Sensor to SenseCAP Portal 6.2.4 Setup the Sensor 6.2.5 Set Frequency of Sensor via SenseCAP Mate App 6.2.6 Check Data on SenseCAP Portal 6.3 Connect to SenseCAP with private TTN 	22 23 23 23 24 24 24 24 24 25 27 27 28 29
 6.1 SenseCAP Portal 6.1.1 Create a New Account	
 6.1 SenseCAP Portal 6.1.1 Create a New Account 6.1.2 Other Functions 6.1.3 API Instruction	22 22 23 23 23 24 24 24 24 24 24 25 27 28 29
 6.1 SenseCAP Portal 6.1.1 Create a New Account 6.1.2 Other Functions 6.1.3 API Instruction	
 6.1 SenseCAP Portal 6.1.1 Create a New Account 6.1.2 Other Functions 6.1.3 API Instruction 6.2 Connect to SenseCAP with Helium Network 6.2.1 Quick Start 6.2.2 Preparation	22 23 23 23 24 24 24 24 24 25 27 28 29
 6.1 SenseCAP Portal 6.1.1 Create a New Account 6.1.2 Other Functions 6.1.3 API Instruction	

7. Connect to Helium Network	34
8. Connect to The Things Network	
9. Payload Decoder	
9.1 Decoder Code	35
9.2 Packet Parsing	
9.2.1 Packet Initialization	
9.3 Data Parsing Example	36
9.3.1 Measurements List	
9.3.2 Example – S2101 Air Temperature and Humidity Sensor	
9.3.1 Example – S2102 Light Intensity Sensor	39
9.3.2 Example – S2103 CO2, Temperature and Humidity Sensor	
9.3.3 Example – S2104 Soil Moisture and Temperature Sensor	
9.3.4 Example – S2105 Soil Moisture, Temperature and EC Sensor	
9.3.5 Example – S2106 pH Sensor	
9.3.6 Example - S2107 Temperature Sensor 9.3.7 Example - S2108 Soil Moisture, Temperature and EC Sensor	
9.4 Battery Information	
-	
10. LoRaWAN Downlink Command	
10.1 Set the Data Uplink Interval	
10.2 Reboot the device	51
10.3 How to send downlink	
11. Error code	52
11.1 Details	52
12. Device Installation	53
12.1 The Do's and Don'ts	53
12.2 Installing Bracket	54
12.2.1 Installing the Sensor Bracket	
12.2.1 Mount on Pole and Wall	
12.2.2 Antenna Installation Direction	
12.3 Installation Considerations for Sensors	56
12.3.1 Install the S2101/S2103	56
12.3.1 Install the S2102	56
12.3.1 Install the S2104/S2105	57
12.4 Replace the Battery	
12.4.1 How to Buy the Battery	
12.4.2 How to Replace a New Battery	58
13. Calibration Sensor	61

13.1 S2101/S2103: Temperature and Humidity	61
13.2 S2103: Calibration of CO2	61
13.3 S2104 and S2105: Calibration of Soil Moisture and EC	63
13.4 S2106: Calibration of pH	63
14. Trouble Shooting	
14.1 Sensors can't join LoRa network, how to do?	66
14.2 Why is the new sensor's battery not 100%?	66
14.3 Battery Life Prediction	66
14.4 Support	66
14.5 Document Version	66

IoT into the Wild

1. Product Introduction

Among the first launch of Seeed Industrial IoT product series, SenseCAP is focusing on wireless environmental sensing applications: smart agriculture, precision farming, smart city and so on. It consists of hardware products (sensors, data-loggers & gateways, etc.), software services (SenseCAP portal, mobile App, open dashboard), and API for device & data management.

The next generation of SenseCAP LoRaWAN sensors, the S210X series offers users' industrial long-distance data acquisition via LoRa. The S210x series is suitable for a wide variety of different industries such as smart agriculture, smart buildings and industrial control.

With the IP66 rating, -40 ~ +85C ° operating temperature and built-in 19Ah highcapacity battery, combined with the devices' low power consumption, the S210X series can operate in harsh outdoor environments for up to 10 years with a range of up to 10km. The built-in Bluetooth facilitates setup and greatly reduces largescale deployment costs. Users can focus on application development with the easy set-up and start retrieving data in a few steps. Just install the device, bind it using the QR code and configure the network, then data can be viewed from the SenseCAP portal, which supports popular IoT protocols such as HTTP and MQTT.

2. Part List

Before installing, please check the part list to ensure nothing is missing.

Picture	Name	Quantity
	Sensor Node	1
	Bracket	1
Quick Start for SenseCAP S210X Sensors	Quick Start Guide	1
	KA4*20mm Self-drilling Screw	4

Ĭ

3. Key Parameters of the Sensor

Using the LoRaWAN protocol generally involves the following parameters.

Parameters	Description
LoRaWAN MAC Version	v1.0.3
Join Type	OTAA (Default) ABP (It can be modified via App)
Device EUI	Unique identification of device, one of the join network parameters on OTAA mode. (It can be got via App)
Device Code (KEY)	On the device label, for device binding and API call.
App EUI	Unique identification of application, one of the join network parameters on OTAA mode. (It can be got via App)
Арр Кеу	Application key, one of the join network parameters on OTAA mode. (It can be got via App)
DevAddr	This parameter is available only in ABP mode, one of the join network parameters.
NwkSkey	This parameter is available only in ABP mode, one of the join network parameters.
AppSkey	This parameter is available only in ABP mode, one of the join network parameters.

4. LED of Sensor Working Status

You can refer to the LED indicator for the Sensor Node for its working status. Please see the status explanations in the chart below:

Actions	Description	Green LED Status
First power up, press and hold for 3s	Power on and activate the Bluetooth	LED flashes at 1s frequency, waiting for Bluetooth connection. If Bluetooth not connected within 1 minute, the machine would shut down again.
Press once	Reboot device and join LoRa network	 The LED will be on for 5 seconds for initialization Waiting for join LoRa network: breathing light flashing Join LoRa network success: LED flashes fast for 2s LoRa network join failure: LED suddenly stop.

7

Ĩ

		1. Waiting for Bluetooth connection: LED flashes at 1s frequency
Press and hold for 3s	Activate Bluetooth again	2. Enter configuration mode after Bluetooth connection is successful: LED flashes at 2s frequency
		If Bluetooth is not connected within 1 minute, the device will reboot and join LoRa network.
Press and hold for 9s	Power off	In the 3rd seconds will start flashing at 1s frequency, until the light is steady on, release the button, the light will go out.

1.After power off, you need to **reconfigure the frequency band**. Power off is recommended when not deployed.

2. If the frequency is not configured after power on, the device will be power off again.

5. SenseCAP Mate App

5.1 Download App

As a tool, SenseCAP Mate App is used to config LoRa parameters, set interval, bind devices to your account and check device basic information.

(1) For iOS, please search for "SenseCAP Mate" in the App Store and download it.

Download SenseCAP Mate App

(2) For Android, please search for "SenseCAP Mate" in the Google Store and download it.

You can also download App from https://www.pgyer.com/sensecapmate

5.2 How to connect sensor to App

5.2.1 Create a New Account

SenseCAP Mate supports device configuration and remote management. To use the SenseCAP Portal platform and other functions, please register an account.

SenseCAP Mate supports offline functionality, and you can opt out of an account if you only use the configuration sensor. Just click Skip.

Please select **Global** of Server Location.

Skip	16:09
SENSECAP	SENSECAP Global
Email Enter Your Email here	Email Enter Your Email here
Password	Password
Enter Your Password here	Enter Your Password here
O I have read and agree to Privacy Policy	O I have read and agree to Privacy Policy
Login	Login
Register	Register
	Forgot Password
Forgot Password	Forgot Password

You can also create an account via the SenseCAP Portal: <u>http://sensecap.seeed.cc</u>

- 1) Select register account, enter email information and click "register", the registered email will be sent to the user's mailbox.
- 2) Open the "SenseCAP..."Email, click the jump link, fill in the relevant information, and complete the registration.
- 3) Return to the login interface and complete the login.

<u> ∧ Note</u>

If you can't find the email, it may be automatically identified as "spam" and put in the "trash can".

5.2.2 Connect to Sensor to App

1) Press button and hold for **3 seconds**, the LED will flash at 1s frequency. Please use the App to connect the sensor within 1 minute; otherwise, the device will power off or reboot.

IoT into the Wild

2) "User">"Device Bluetooth Configuration". Please select "S210X Sensor", it includes S210X series products.

Please click the "Setup" and "Advanced Configuration" button to turn on Bluetooth and click "Scan" to start scanning the sensor's Bluetooth.

3) Select the Sensor by S/N (S/N is on the front label of the sensor). Then, the basic information of the sensor will be displayed after entering.

IoT into the Wild		
15:50 🕈 💷	15:52	🗢 🔳
< Setup	< 114992846221600	009
	General	Settings
	Basic	
•((((())))).	Device Model Sens	seCAPS2101
	Device EUI 2CF7F1C	04160000B
	Sensor Type Air Temp Humidity	erature and Sensor
Select Device	Backup Firmware Version	1.1.5
114992846221600009 > Air Temperature and Humidity Sensor	Software Version	1.1.5
Scan	Hardware Version	V1.1
Coun	LoRaWAN Version	V1.0.3
	Class Type	ClassA
	Battery	100%
	Measurement	
	Measure	

4) Enter configuration mode after Bluetooth connection is successful: LED flashes at 2s frequency.

5.3 Configure parameters through App

5.3.1 Select the Platform and Frequency

S210x Sensors are manufactured to support universal frequency plan from 863MHz ~928MHz in one SKU. That is to say, every single device can support 7 frequency plans.

Ъ.					
15:53	🗢 🔳	15	5:54		🗢 🔳
< 1149928	46221600009	<	114992	846221600009	
General	Settings		General	Setti	ngs
Platform	Other Platform	Pla	atform	Other Platform	~
Frequency Plan	US915 V	Fre	equency Plan	US915	~
Sub-Band	Sub-Band2 V	Su	ib-Band	Sub-Band2	~
Uplink Interval (min)	6	Up	olink Interval (mii	n)	60
Activation Type	OTAA ~	EL	J868	_	
Device EUI	2CF7F1C04160000B	U	S915		
SenseCAP for The	Things Network	A	U915		
SenseCAP for Heliu	ım	A	5923		
Helium		IN	1865		
The Things Networl	k	K	R920		
Other Platform		R	U864		

Ĭ

IoT into the Wild

Platform	Description
	Default platform.
SenseCAP for The Things Network	It must be used with SenseCAP Outdoor Gateway (https://www.seeedstudio.com/LoRaWAN-Gateway- EU868-p-4305.html). SenseCAP builds a proprietary TTN server that enables sensors to be used out of the box when paired with an SenseCAP outdoor gateway.
SenseCAP for Helium	When there is the Helium network around the user, data can be uploaded using sensors. Devices run on a private Helium console of SenseCAP. Users do not need to create devices on Helium console, right out of the box.
Helium	Connect Sensor to public Helium console.
The Things Network	Connect Sensor to your TTN(TTS) server.
Other Platform	Other LoRaWAN Network Server.

1) SenseCAP for Helium:

We provide the SenseCAP Portal to manage devices and data: sensecap.seeed.cc

We built a private Helium Console with an embedded SenseCAP Portal. When users get the SenseCAP sensors, you can use it by scanning the code and binding it to the Portal.

"SenseCAP for Helium" is selected by default. The device runs in a fixed main frequency and sub-band, refer to Helium Frequency Plan (<u>https://docs.helium.com/lorawan-on-helium/frequency-plans/</u>). You only need to select the main frequency, such as EU868 and US915.

SenseCAP for Helium supports the following frequency plan:

EU868 / US915 / AU915 / KR920 / IN865 / AS923-1 / AS923-2 / AS923-3 / AS923-4

2) SenseCAP for The Things Network

SenseCAP Portal also builds the TTN private server, and the sensor must be used together with the SenseCAP Outdoor Gateway (<u>https://www.seeedstudio.com/LoRa WAN-Gateway-EU868-p-4305.html</u>).

Due to the limitation of the SenseCAP outdoor gateway frequency, "SenseCAP for TTN" supports the following frequency plan(The sensor is capable of supporting all frequency plan):

Gateway Frequency	Description
EU868	It must be used with SenseCAP EU868 Gateway (<u>https://www.seeedstudio.com/LoRaWAN-Gateway-</u> <u>EU868-p-4305.html</u>)
US915	It must be used with SenseCAP US915 Gateway (<u>https://www.seeedstudio.com/LoRaWAN-Gateway-</u> <u>US915-p-4306.html</u>)

AU915	Need to contact sales to purchase.
AS923-1	Need to contact sales to purchase.
AS923-2	Need to contact sales to purchase.

3) Helium

Users can choose sensors to use on the public helium console:

https://console.helium.com/

4) The Things Network

Users can choose sensors to use on the public The Things Network server:

https://console.cloud.thethings.network/

5) Other Platform:

When you use other LoRaWAN network server, please select Other Platform.

At this point, you need to determine the sensor frequency band according to the gateway frequency and sub-band.

S210x Sensors support the following frequency plan:

loT into the Wild

Sensor Frequency	Common Name	Sub-band
EU863-870	EU868	
US902-928	US915	Sub band from 1 to 8 (default sub-band 2)
AU915-928	AU915	Sub band from 1 to 8 (default sub-band 2)
KR920-923	KR920	
IN865-867	IN865	
AS923	AS923-1	
	AS923-2	Frequency plan for Holium
	AS923-3	Frequency plan for Helium
	AS923-4	
RU864-867	RU864	

<u> ∧ Notel:</u>

Different countries and LoRa WAN network servers use different frequency plans. For Helium network, please refer to:

https://docs.helium.com/lorawan-on-helium/frequency-plans

For The Things Network, please refer to:

https://www.thethingsnetwork.org/docs/lorawan/frequency-plans/

- 1) When using the SenseCAP platform, the EUI, APP EUI and APP Key are fixed and are the same as the sensor label.
- 2) When the sensor is selected to be used with a public platform such as Helium or TTN, the EUI will not change, and the sensor will generate a new fixed App EUI and App Key for network access.

5.3.2 Set the Interval

The working mode of device: wake up the device every interval and collect measurement values and upload them through LoRa. For example, the device collects and uploads data **every 60 minutes by default**.

Parameter	Туре
Uplink Interval	Unit: minutes, number from 1 to 1440.

Uplink Interval (min)	60	

<u> ∧ Note</u>:

The SenseCAP portal has a limit on uplink interval: minimum interval is **5** minutes.

The interval using the other platforms ranges from 1 to 1440 minutes.

5.3.3 Set the EUI and Key

The device uses OTAA to join the LoRaWAN network by default. So, it can set the device EUI and App EUI.

Parameter	Туре
Device EUI	16, hexadecimal from 0 ~ F
App EUI	16, hexadecimal from 0 ~ F
Арр Кеу	32, hexadecimal from 0 ~ F

Device EUI	2CF7F1C04160000B
APP EUI	577D1C6ECDCC3B8D
АРР Кеу	466F991B963100CC478

Ĩ

5.3.4 Set the Packet Policy

The sensor uplink packet strategy has three modes.

Packet Policy	1N	~
Restore Factory		Send

Parameter	Description
2C+1N (default)	2C+1N (2 confirm packets and 1 none-confirm) is the best strategy, the mode can minimize the packet loss rate, however the device will consume the most data packet in TTN, or date credits in Helium network.
1C	1C (1 confirm) the device will sleep after get 1 received confirm packet from server.
١N	1N (1 none-confirm) the device only send packet and then start to sleep, no matter the server received the data or not.

5.3.5 Set the Activation Type

The sensor supports two network access modes, OTAA by default.

Parameter	Description
OTAA (default)	Over The Air Activation, it joins the network through Device EUI, App EUI, and App Key.
ABP	Activation By Personalization, it joins the network through DevAddr, NwkSkey, and AppSkey.

When using ABP mode, you need to configure the following information:

Parameter	Description
DevAddr	32, hexadecimal from 0 ~ F
NwkSkey	32, hexadecimal from 0 ~ F

-18

IoT into the Wild			
AppSkey		8, hexadecimal from	ר 0 ~ F
Activation Type	AB	P	\sim
Nwk Skey	D65	CF04A554CB71ECCC0	D58C40

Only hexadecimal numbers of 0-F with a maximum of 32 digits are allowed to be filled in.

APP Skey 24CEAFD65CF04A554CB71ECCC0

Only hexadecimal numbers of 0-F with a maximum of 32 digits are allowed to be filled in.

Dev Addr	010000A		
Only hexadecimal numbers of 0-F with a maximum of 8 digits are allowed to be filled in.			

The factory defaults to a fixed value.

5.3.6 Restore Factory Setting

When selecting the SenseCAP platform, you must use the fixed EUI/App EUI/App Key. Therefore, you need to restore the factory Settings before switching back to the SenseCAP platform from other platforms.

When we make a mistake or want to reset everything, we can click the button. The device will be restored to the factory's default configuration.

5.3.7 Set 3 temperature channels for S2107

Wire 3 PT1000 sensors as shown in the diagram

Use SenseCAP Mate App to set the 3 PTI000 sensors.

16:07	::!! 5G 85	16:07	::!! 5G 85	16:07	::!! 50 85	16:07	::!! 50 85)	16:08	1111 5G 85
kewei.li@seeed.cc		← Back	Template	< S210x Sen	sor	< 112233445	566778898	< 11223	3445566778898
Giobal —		Select the type of device	you want to configure 💿			Information	Settings	Information	Settings
윤 Device Bluetooth Configuration	n >	Professional Bluetooth confi communication and function		Step 1. Press and hold the	20	Platform	SenseCAP for T	Basic	
Language	en >	0	E	for 3 seconds until the indicator blinks slowly,	19.	Frequency Plan	US915 V	Device Model	SenseCAPS2107
Unit Setting	*C >	S210x Sensor	Vision Al Sensor	indicator binks slowly, then release.		Uplink Interval (minutes)	5	Device EUI	1122334455667787
Documentation Center	>	Sensor device type	Al identifies device types	Step 2.	1	Packet Policy	2C+1N ~	Sensor Type	Temperature Sensor (S2107)
Change password	>			Click setup to connect your sensor via	19	Channel Channel	1	Backup Firmware Ve	
Security Center	2	0	ŤŢ	Bluetooth.		Channel Chann	el1, Channel2, Channel3 🗸	Software Version	1.0 V0.0
Privacy setting	>	S2100 Data Logger	S2120 Weather Station	Step 3.		Restore Factory	Send	LoRaWAN Version	V1.0.3
Clear cache	3.59M >		equipment	Please choose a configuration mo	de: 🛞			Class Type	ClassA
Current Version	2.7.5.6	100						Battery	0%
			i i i i i	Quick Configura		1	0	Measurement	
Log Out		Tracker T1000 Clinbal positioning device type	reComputer Jetson reComputer Jetson	Т	and the second	2	0	Temperature -1	25.83 °C
				Advanced Conf For experienced up	iguration Iers, you can configure all		0	Temperature -2	25.88 *C
				device parameters	in this mode.			Temperature -3	25.58 °C re' to show the Temp
	2 😔					Con	firm		Measure

Use SeneCAP Mate App to set 3 PT1000 sensors

16:07	::!! 5G 85	16:07	::!! 5G 85	16:07	::!! 5G 85	13:58	::!! 🗢 🖽	13:59	::!! 🕆 🖽
kewei.li@seeed.cc		← Back	Template	K S210x Ser	sor	< 1010700212	30000009	< 10107002123000	00009
Giobai		Select the type of device	you want to configure 🔞			Information	Settings	Information	Settings
A Device Bluetooth Configuration	>	Professional Bluetooth config communication and function		Step 1. Press and hold the	9	Platform	SenseCAP for T V	Sensor Type Soil Moisture, Te	emperature and Pore EC Sensor
Language	en >		E.	button on your device for 3 seconds until the	0.00	Frequency Plan	EU868 ~	Soil Type Selection	Sand Soil
Unit Setting	*C >	S210x Sensor	T Vision Al Sensor	indicator blinks slowly, then release.		Uplink Interval (minutes)	5	Backup Firmware Version	1.2
Documentation Center	>	Sensor device type	Al identifies device types	Step 2.		Packet Policy	10 ~	Software Version	1.2 V1.1
Change password	>		م ب	Click setup to connect your sensor via Bluetooth.	a de	Soil Type Selection	Mineral Soil V	LoRaWAN Version	V1.0.3
Security Center	>	U	, in the second s	bidetooth.		Restore Factory	Send	Class Type	ClassA
Privacy setting	>	S2100 Data Logger Data acquisition equipment	S2120 Weather Station Meteorological monitoring	Step 3.				Battery	100%
Clear cache	3.59M >		equipment	Please choose a configuration mo	ide: 🛞			Measurement	
Current Version	2.7.5.6	11		- 23		_	-	Soil Temperature	26.34 °C
		-		Quick Configur Configure device		Mineral Soil		Soll Moisture	0 %
Log Out		Tracker T1000 Global positioning device type	reComputer Jetson	Configure device	quickly and easily	Sand Soil		Electrical Conductivity	0 mS/cm
				Advanced Cont	Figuration sers, you can configure all	Clay Soil		Soil Pore Water Eletrical Conde	uctivity 0 mS/cm
				device parameter		Organic Soll		Tap"Measure' to show the	he measuremer
Device AIOC Mail	(D) User							Measure	

5.3.8 Set S2108 for measuring different soil types

Use SeneCAP Mate App to set modes for measuring different soil types

6. Connect to the SenseCAP Portal

6.1 SenseCAP Portal

The main function of the SenseCAP Portal is to manage SenseCAP devices and to store data. It is built on Azure, a secure and reliable cloud service from Microsoft. You can apply for an account and bind all devices to this account. SenseCAP provides the web portal and API. The web portal includes Dashboard, Device Management, Data Management, and Access Key Management, while API is open to users for further development.

					English - 🙎 xfactory.SZ@seeed.cc 🔻 🗧 🌲
 Dashboard Devices 	Dashboard Add+	R.			Data update interval: Manual - G
Gateway	Devices Overview			Monitoring	Announcement
Node Group Sensor Node III Data ~ Table Graph	1 LoRad	Galeway	8 Sensor Node	Gateway Offline 0 Node Offline 0 Low Battery 0	Welcome
🏾 Security 🗸 🗸	Current Value /		+ H X	CO2 //	\bullet Chart Settings $\frac{5.7}{6.9}$ \times
Access AP1 keys	UL 99529Pa AirPressure (2CF.7F.12210400074) •Online 2019-08-08 14:12:03	28°C Air Temperature (2CF7F12210400083) •Online 2019-08-08 13:53:11	68%/FIH Air Humidity (2057#12210400083) «Online 2019-08-08 13:53:11	500 400 200 100	CO2 (2CF7F12210400070) 生前 (2)
	172.8Lux Light (2077F1221040007E)	CO2 3855ppm CO2 (2CF7F12210400070)		0 119-08-05 10.50.00 2019-08-08 0 Light //	13800 2019-08-09 1626-00 2019-08-11 07:1400 2019-08-12 22 2010
	•Online 2019-08-08 13:37:41	•Online 2019-08-08 13:31:09		250	\wedge

6.1.1 Create a New Account

Portal Website: <u>http://sensecap.seeed.cc</u>

- 4) Select register account, enter email information and click "register", the registered email will be sent to the user's mailbox.
- 5) Open the "SenseCAP..."Email, click the jump link, fill in the relevant information, and complete the registration.
- 6) Return to the login interface and complete the login.

<u> ∧ Note:</u>

If you can't find the email, it may be automatically identified as "spam" and put in the "trash can".

6.1.2 Other Functions

- **Dashboard:** Including Device Overview, Announcement, Scene Data, and Data Chart, etc.
- Device Management: Manage SenseCAP devices.
- Data Management: Manage data, including Data Table and Graph section, providing methods to search for data.
- Subaccount System: Register subaccounts with different permissions.
- Access Key Management: Manage Access Key (to access API service), including Key Create, Key Update, and Key Check.

<u> ∧ Note</u>:

SenseCAP Portal User Guide: <u>https://sensecap-docs.seeed.cc/quickstart.html</u>

6.1.3 API Instruction

SenseCAP API is for users to manage IoT devices and data. It includes 3 types of API methods: HTTP protocol, MQTT protocol, and Websocket protocol.

- With HTTP API, users can manage LoRa devices, to get raw data or historical data.
- With MQTT API, users can subscribe to the sensor's real-time measurement data through the MQTT protocol.
- With Websocket API, users can get real-time measurement data of sensors through Websocket protocol.

Please refer to this link for API User Guide: <u>https://sensecap-docs.seeed.cc/</u>

the second	
API	SesseCAP Portal
Introduction > List of Sensor Information >	Ovick Start > Data Management >
иттрарт >	Daphteerd > SenestCAP APP >
Date OperStream AP1 >	Davice Management 3
LoRaWAN Berke	Boltware Tools
LeRaWAN Gateway and Weeless Senser Catalog VLA pdf >	SenseGAP Node Configuration Tool 1
SemeCAP Product User Oxide(LoFu8000 Series)-VL3.pdf >	Seren/CAP Serene Hub Configuration Tool >
SenseCAP LoRaWAN Senser User Manual-V1.0.pdf F	

6.2 Connect to SenseCAP with Helium Network

6.2.1 Quick Start

Follow this process to quickly use the sensor, see the following section for details.

Preparation: 1. Log into SenseCAP Portal. 2. Download SenseCAP Mate App. 3. Coverage of Helium network. 4. S210X Sensors.
↓
Bind sensor to SenseCAP Portal by using SenseCAP Mate App scan QR code.
\
Power on: Hold the button of sensor for 3 seconds
Open SenseCAP Mate App and Bluetooth, and enter the configure mode:1. Set the Platform: SenseCAP for Helium.2. Set the Frequency.3. Set the Upload interval.
Disconnect the Bluetooth and sensor will reboot
↓
The sensor will request and join the helium network
↓
The sensor starts to upload data at the interval

6.2.2 Preparation

1) SenseCAP Mate App

Download the App, please refer to <u>section 5</u> for using.

2) Coverage of Helium network

Option 1: Use the Helium network that already exists nearby.

Please refer to the map, search your location to see if there's any helium network around: <u>https://explorer.helium.com/</u>

A green hexagon indicates the presence of the network.

Option 2: Deploy a new Helium gateway.

You can purchase M1, M2 gateways to cover your surroundings with the Helium network: <u>https://www.sensecapmx.com/</u>

6.2.3 Bind Sensor to SenseCAP Portal

Please open SenseCAP Mate App.

(1) Scan QR Code

1) Click "Add device" on the upper-right corner of device page to enter the device binding page.

2) Scan the QR code on the device to bind the device to your account. If you do not set it to a designated group, the device will be put into the "default" group.

loT into the Wild

(2) Manually fill in the EUI

If the QR code sticker is damaged, you can manually fill in the EUI of the device to bind the device to your account. Please make sure you put in the EUI in the format suggested by the system and then click "confirm".

26

6.2.4 Setup the Sensor

- 1) Open the SenseCAP Mate App
- 2) Press button and hold for **3 seconds**, the LED will flash at 1s frequency.

3) Please click the "Setup" and "Advanced Configuration" button to turn on Bluetooth and click "Scan" to start scanning the sensor's Bluetooth.

16:10	::!! ? 🖽	16:11	::!! † 🚥	16:11	::!! 후 36)
← Back	Template	< \$210x S	ensor	< \$21	Dx Sensor
€ back Select the type of device Professional Bluetooth config communication and function S210X Sensor Sensor device type Sensor device type S210D tata Logger Data acquisition equipment	you want to configure 👔	S2104 S Step 1. Step 2. Step 4. Step 2. Step 2. Step 2. Step 2. Step 3. Update sensor	ensor	 Step 1. Step 1. Press the button on your device for 3 seconds until indicator blinks slowly and release. Step 2. Click setup to connect your sensor via Bluetooth. Step 3. Undists sensor. 	Dx Sensor
Tracker T1000 Global positioning device type	reComputer Jetson reComputer Jetson	firmware when there is update. Setup	Update	Configure d Advanced For experier	In mode: ③

4) Select the Sensor by S/N (label). Then, the basic information of the sensor will be displayed after entering.

IoT	into the Wild			
15:50 <	Setup	🗢 🗩	15:52	२ ■) 46221600009
(.			General	Settings
)).	Device Model Device EUI	SenseCAPS2101 2CF7F1C04160000B	
/.			Sensor Type	Air Temperature and Humidity Sensor
Select	Device		Backup Firmware	Version 1.1.5
	2846221600009 erature and Humidity Sensor	>	Software Version	1.1.5
	Scan		Hardware Version	V1.1
			LoRaWAN Version	V1.0.3
			Class Type	ClassA
			Battery	100%
			Measurement	
				Measure

6.2.5 Set Frequency of Sensor via SenseCAP Mate App

Set the corresponding frequency band based on the frequency band of the gateway.

Please refer to <u>section 5</u> for detail.

 \bigtriangledown

1) Click the "Setting" and select the platform is "SenseCAP for Helium".

15:53	🗢 🔳	15:54	🗢 🔳
11499	2846221600009	< 11499	2846221600009
General	Settings	General	Settings
Platform	Other Platform V	Platform	Other Platform V
Frequency Plan	US915 V	Frequency Plan	US915 V
Sub-Band	Sub-Band2 V	Sub-Band	Sub-Band2 V
Uplink Interval (m	in) 6	Uplink Interval (m	nin) 60
Activation Type		EU868	_
Device EUI	2CF7F1C04160000B	US915	
SenseCAP for Th	e Things Network	AU915	
SenseCAP for He	lium	AS923	
Helium		IN865	
The Things Netw	ork	KR920	
Other Platform		RU864	

- 2) Select the Frequency Plan, if the gateway is US915, set the sensor to US915.
- 3) Click the "Send" button, send the setting to the sensor for it to take effect.

4) Click the "Home" button, the App will disconnect the Bluetooth connection.

Then, the sensor will reboot.

- 5) When the device is disconnected from Bluetooth, the LED lights up for 5 seconds and then flashes as a breathing light.
- 6) After joining the network successfully, LED flashes fast for 2s.

6.2.6 Check Data on SenseCAP Portal

On the SenseCAP App or the website <u>http://sensecap.seeed.cc/</u>, you can check the device online status and the latest data. In the list for each Sensor, you can check its online status and the time of its last data upload.

IoT into	the Wild							•
📚 SENSECAP 📃					E	nglish 🔹 🗌 🔔 xfa	ctory.SZ@seeed.cc 🍷 📑	
 Dashboard 	Devices / Sensor Node							
🖶 Devices 🛛 🗸	All La	Ra NB-loT						
Node Group	EUI Device EUI	Frequency(MHz)	Frequency		•			
Sensor Node	Device Group Device Group	 Online Status 	Online Status					
🏨 Data 🛛 🗸	Registration Time From	📅 — То.		10	Day 7Days 30Day			
Table								
Graph	Search Clear C	ne number of search results: 4						
Access API keys	NO. EUI	Device Name	Sensor Count	Device Group	Online Status	Operation	Last Message Time	50
	1 2CF7F12210400070	CO2 Sensor	1	station-1	Online	Move	2019-11-15 10:28:16	
	2 2CE7E12210400074	Barometric Pressure Sensor	1	station-1	Online	Move	2019-11-15 10:09:27	
	3 2CE7E1221040007E	Light Intensity Sensor	1	station-1	Online	Move	2019-11-15 09:43:47	
	4 2CF7F12210400083	Air Temperature and Humidity Sensor	1	station-1	Online	Move	2019-11-15 10:02:47	

6.3 Connect to SenseCAP with private TTN

6.3.1 Quick Start

Follow this process to quickly use the sensor, see the following section for details.

Preparation : 1. Log into SenseCAP Portal. 2. Download SenseCAP Mate App. 3. Coverage of SenseCAP for TTN network. 4. S210X Sensors.
t
Bind sensor to SenseCAP Portal by using SenseCAP Mate App scan QR code.
Power on: Hold the button of sensor for 3 seconds
Open SenseCAP Mate App and Bluetooth, and enter the configure mode:1. Set the Platform: SenseCAP for The Things Network.2. Set the Frequency.3. Set the Upload interval.
Disconnect the Bluetooth and sensor will reboot
The sensor will request and join the helium network
The sensor starts to upload data at the interval

6.3.2 Preparation

1) SenseCAP Mate App

Download the App, please refer to section 5 for using.

2) SenseCAP Outdoor Gateway

Now, the sensor needs to be used with the SenseCAP Outdoor Gateway (<u>https://www.seeedstudio.com/LoRaWAN-Gateway-EU868-p-4305.html</u>) to transmit data to the SenseCAP Portal.

- a) Setup the Gateway, connect to power cable and Internet.
- b) Bind the gateway to SenseCAP Portal.
- c) Ensure the gateway indicator is steady on.

loT into the Wild

d) Ensure the gateway is displayed online on the portal.

Online status	Online
---------------	--------

6.3.3 Bind Sensor to SenseCAP Portal

Please refer to the section 6.2.3

6.3.4 Setup the Sensor

Please refer to the section 6.2.4

6.3.5 Set Frequency of Sensor via SenseCAP Mate App

Set the corresponding frequency band based on the frequency band of the gateway.

Please refer to <u>section 5</u> for detail.

1) Click the "Setting" and select the platform is "SenseCAP for The Things Network".

15:53			15:54		···· ? •
114993	2846221600009		< 114992	846221600009	
General	Settings		General	Settin	gs
Platform	Other Platform	~	Platform	Other Platform	~
Frequency Plan	US915	~	Frequency Plan	US915	~
Sub-Band	Sub-Band2	~	Sub-Band	Sub-Band2	~
Uplink Interval (m	in) 6		Uplink Interval (m	n) 6	10
Activation Type	ΟΤΑΑ	~	EU868	_	
Device EUI	2CF7F1C04160000B		US915		
SenseCAP for Th	e Things Network		AU915		
SenseCAP for He	lium		AS923		
Helium			IN865		
The Things Netw	ork		KR920		
Other Platform			RU864		

- 2) Select the Frequency Plan, if the gateway is US915, set the sensor to US915.
- 3) Click the "Send" button, send the setting to the sensor for it to take effect.

4) Click the "Home" button, the App will disconnect the Bluetooth connection.

Then, the sensor will reboot.

- 5) When the device is disconnected from Bluetooth, the LED lights up for 5 seconds and then flashes as a breathing light.
- 6) After joining the network successfully, LED flashes fast for 2s.

6.3.6 Check Data on SenseCAP Portal

Please refer to the section 6.2.6

7. Connect to Helium Network

Please refer to the manual to connect sensors to Helium public console:

https://files.seeedstudio.com/products/SenseCAP/S210X/How%20to%20Connect% 20SenseCAP%20S210X%20to%20Helium%20Network.pdf

8. Connect to The Things Network

Please refer to this manual:

https://files.seeedstudio.com/products/SenseCAP/S210X/How%20to%20Connect% 20SenseCAP%20S210X%20to%20The%20Things%20Network.pdf

Please refer to the link to use the TTN platform:

The Things Network website: <u>https://www.thethingsnetwork.org</u>

The Things Industries login: <u>https://accounts.thethingsindustries.com/login</u>

TTN Quick Start: https://www.thethingsnetwork.org/docs/quick-start/

9. Payload Decoder

9.1 Decoder Code

TTN payload decoding script for SenseCAP LoRaWAN:

https://github.com/Seeed-Solution/SenseCAP-Decoder/blob/main/S210X/TTN/SenseCAP_S210X_TTN_Decoder.js

ilters	uplink	downlink	activation	n ack	error
	time	counter	port		
• 1	11:19:12		0		
^ 1	11:19:16	5	2	confirmed	payload: 01 01 10 B0 68 00 00 01 02 10 88 F4 00 00 8C FF Measurement Data packets
	11:18:58		Ũ		
^ 1	11: <mark>19:0</mark> 2	4	2	confirmed	payload: 00 19 00 58 68 43 00 00 00 AB 5E
• 1	11:18:42		0		Initial Packets
▲ 1	11: 1 8:46	3	2	confirmed	payload: 01 06 00 00 00 00 02 F 87
• 1	11: <mark>1</mark> 8:28		0		
A 1	11:18:32	2	2	confirmed	payload: 00 00 00 01 01 00 01 00 07 00 64 00 05 00 01 01 00 01 01 00 01 01 02 00 54 00 00 15 01 03 0
• •	11:18:15		0		
^ 1	11:18:19	1	2	confirmed	payload: 00 00 00 00 00 00 00 00 00
• 1	11:17:57		0		
• 1	11: <mark>1</mark> 8:01	0	2	confirmed	payload: 00 00 00 00 00 00 00 00 00 00
+ 1	11:17:52				dev addr: 26 02 22 C0 app eui: 80 00 00 00 00 00 00 00 8 dev eui: 2C F7 F1 21 10 70 00 54

Helium Decoder:

https://github.com/Seeed-Solution/SenseCAP-Decoder/blob/main/S210X/Helium/SenseCAP_S210X_Helium_Decoder.js

9.2 Packet Parsing

9.2.1 Packet Initialization

After being powered on or reboot, SenseCAP Sensors will be connected to the network using the OTAA activation method. Each Sensor Node will send data packets to the server, including the following data:

Initial packets (no need to learn about these initial packets)

One packet with device info including hardware version, software version, battery level, sensor hardware & software version, sensor EUI, power, and sensor power time counter at each channel.

Measurement data packets

The only thing we should pay attention to is the sensor measurement data packets.

PPLIC	ATION	DATA						ll <u>pause</u> 🛍
Filters	uplink	downlink	activation	n ack	error			
	time	counter	port					
▼ 11	1:19:12		0					
• 11	1:19:16	5	2	confirmed	payload: 01	01 10 B0 68 00 00 01 02 10 88 F4 00 00 8C FF	Measurement dat	a packets
• 11	1:18:58		0					

Packet Structure

The structure of the frame is shown in the image below.

channel	frame type	frame content
1 byte	2 bytes	≥ 4 bytes

1 byte for channel, default as 1, means the sensor has been well connected.

2 bytes for frame type, in this case, it will be 0110 and 0210, means temperature value and humidity value

4 bytes for content, is the sensor value with CRC

The frame content is sent in little-endian byte order.

9.3 Data Parsing Example

9.3.1 Measurements List

Measurements	Measurement ID(I	HEX/DEC)	Resolution	Unit
Air Temperature	0x1001	4097	0.01	°C
Air Humidity	0x1002	4098	0.01	%RH
Light Intensity	0x1003	4099	1	Lux
CO2	0x1004	4100	1	ppm
Soil Temperature	0x1006	4102	0.1	°C

ĬĬ

Soil Moisture	0x1007	4103	0.1	%
Soil EC (Electrical Conductivity)	0x100C	4108	0.01	dS/m
Soil Pore Water Eletrical Conductivity	0x106c	4204	0.01	mS/cm
Epsilon	0x106d	4205		

For the complete list, see: <u>https://sensecap-docs.seeed.cc/measurement_list.html</u>

9.3.2 Example – S2101 Air Temperature and Humidity Sensor

Air Temperature and Humidity Sensor measurement packet:

<mark>01</mark> 0110 B0680000 <mark>01</mark> 0210 88F40000 <mark>8CFF</mark>

Part	Value	Raw Data	Description
1	Air	01 0110 B0680000	01 is the channel number. 0110 is 0x1001 (little-endian byte order) , which is the measurement ID for air temperature.
	Temperature		B0680000 is actually 0x000068B0, whose equivalent decimal value is 26800. Divide it by 1000, and you will get the actual measurement value for air temperature as 26.8°C.
	Air Humidity 01 0210 88F40000 B88F40000 62600. get the	01 is the channel number. 0210 is 0x1002 (little-endian byte order), which is the measurement ID for air humidity.	
2		7 01 0210 88F40000	88F40000 is actually 0x0000F488, whose equivalent decimal value is 62600. Divide it by 1000, and you will get the actual value for air humidity as 62.6%RH.
3	CRC	8CFF	The CRC verification part.

9.3.1 Example – S2102 Light Intensity Sensor

Light Intensity Sensor measurement packet:

Part	Value	Raw Data	Description
1	Light Intensity	<mark>01</mark>	 O is the channel number. O is 0x1003 (little-endian byte order), which is the measurement ID for Light Intensity. A8550200 is actually 0x000255A8, whose equivalent decimal value is 153000. Divide it by 1000, and you'll get the actual measurement value for Light Intensity as 153 Lux.
3	CRC	E3E9	The CRC verification part.

9.3.2 Example – S2103 CO2, Temperature and Humidity Sensor

CO2, Temperature and Humidity Sensor measurement packet:

<mark>01</mark> 0410 80140700 <mark>01</mark> 0110 F4650000 <mark>01</mark> 0210 7C7D0100 <mark>3C4D</mark>

Part	Value	Raw Data	Description
1	CO2	<mark>01</mark>	 Olis the channel number. Olis 0x1004 (little-endian byte order), which is the measurement ID for CO2. 80140700 is actually 0x00071480, whose equivalent decimal value is 464000. Divide it by 1000, and you will get the actual measurement value for CO2 as 464 ppm.
2	Air Temperature	<mark>01</mark> 0110 F4650000	 OI is the channel number. OIIC is 0x1001 (little-endian byte order), which is the measurement ID for air temperature. F4650000 is actually 0x000065F4, whose equivalent decimal value is 26100. Divide it by 1000, and you will get the actual measurement value for air temperature as 26.1 ℃.
3	Air Humidity	<mark>01</mark> 0210 7C7D0100	 OI is the channel number. O210 is 0x1002 (little-endian byte order), which is the measurement ID for air humidity. 7C7D0100 is actually 0x00017D7C, whose equivalent decimal value is 97660. Divide it by 1000, and you will get the actual measurement value for air humidity as 97.66 %RH.
4	CRC	3C4D	The CRC verification part.

9.3.3 Example – S2104 Soil Moisture and Temperature Sensor

Soil Moisture and Temperature Sensor measurement packet:

<mark>01</mark> 0610 245E0000 <mark>01</mark> 0710 BCB10000 <mark>A3D9</mark>

Part	Value	Raw Data	Description
1	Soil	01 0610 245E0000	01 is the channel number. 0610 is 0x1006 (little-endian byte order), which is the measurement ID for soil temperature.
1	Temperature	UI UBIU 245E0000	245E0000 is actually 0x00005E24, whose equivalent decimal value is 24100. Divide it by 1000, and you will get the actual measurement value for soil temperature as 24.1°C.
			01 is the channel number. 0710 is 0x1007 (little-endian byte order), which is the measurement ID for soil moisture.
2	Soil Moisture	<mark>01</mark>	BCB10000 is actually 0x0000B1BC, whose equivalent decimal value is 45500. Divide it by 1000, and you will get the actual measurement value for soil moisture as 45.5%RH.
3	CRC	A3D9	The CRC verification part.

9.3.4 Example – S2105 Soil Moisture, Temperature and EC Sensor

Soil Moisture, Temperature and EC Sensor measurement packet:

<mark>01</mark> 0610 5C5D0000 <mark>01</mark> 0710 48A30000 <mark>01</mark> 0C10 B4000000 DD0A

Part	Value	Raw Data	Description
1	Soil Temperature	<mark>01</mark> 0610 5C5D0000	 O is the channel number. O is 0x1006 (little-endian byte order), which is the measurement ID for soil temperature. SC5D0000 is actually 0x00005D5C, whose equivalent decimal value is 23900. Divide it by 1000, and you will get the actual measurement value for soil temperature as 23.9℃.
2	Soil Moisture	<mark>01</mark>	 Ol is the channel number. O710 is 0x1007 (little-endian byte order), which is the measurement ID for soil moisture. 48A30000 is actually 0x0000A348, whose equivalent decimal value is 41800. Divide it by 1000, and you will get the actual measurement value for soil moisture as 41.8%RH.
3	Soil Electrical Conductivity	<mark>01</mark> 0C10 B4000000	 Olis the channel number. OC10 is 0x100C (little-endian byte order), which is the measurement ID for soil EC. B4000000 is actually 0x000000B4, whose equivalent decimal value is 180. Divide it by 1000, and you will get the actual measurement value for soil EC as 0.18 dS/m.
4	CRC	DD0A	The CRC verification part.

9.3.5 Example – S2106 pH Sensor

pH Sensor measurement packet:

<mark>01 0110</mark> 72650000 <mark>01 0a10</mark> 8f1a0000 <mark>e191</mark>

Part	Value	Raw Data	Description
1	Air Temperature	<mark>01</mark> 0110 72650000	 I is the channel number. III is 0x1001 (little-endian byte order), which is the measurement ID for air temperature. 72650000 is actually 0x00006572, whose equivalent decimal value is 25970. Divide it by 1000, and you will get the actual measurement value for temperature as 25.97°C.
2	рН	<mark>01</mark>	 I is the channel number. I is 0x100A (little-endian byte order), which is the measurement ID for soil moisture. 8fla0000 is actually 0x00001A8F, whose equivalent decimal value is 6799. Divide it by 1000, and you will get the actual measurement value for pH as 6.799.
3	CRC	<mark>e]9]</mark>	The CRC verification part.

Ĩ

9.3.6 Example - S2107 Temperature Sensor

Temperature Sensor measurement packet:

<mark>47</mark> 09c9 09ec 0a00

Part	Value	Raw Data	Description
1	47	<mark>47</mark>	<mark>47</mark> is the packet ID.
2	Temperature Channel 1	<mark>09c9</mark>	<mark>09c9</mark> is actually 0x09c9, whose equivalent decimal value is 2505. Divide it by 100, and you will get the actual measurement value for temperature as 25.05.
3	Temperature Channel 2	<mark>09ec</mark>	09c9 is actually 0x09c9, whose equivalent decimal value is 2540. Divide it by 100, and you will get the actual measurement value for temperature as 25.40.
4	Temperature Channel 3	<mark>0a00</mark>	09c9 is actually 0x09c9, whose equivalent decimal value is 2560. Divide it by 100, and you will get the actual measurement value for temperature as 25.60.

Note: If this channel is not opened, 0x8000 will be used.

when offline one packet of data:

<mark>7f Od 46</mark> 6526fabf 09c9 09ec 0a00

when offline two packets of data:

<mark>7f 18 46 65273c5c</mark> 0a18 ec78 ec78 <mark>46 65273d8b</mark> 0a1d ec78 ec78

when offline three packets of data:

<mark>7f 23 46 65265c92</mark> 0a3c ec78 ec78 <mark>46 65265ee2</mark> 0a3d ec78 ec78 <mark>46 65266018</mark> 0a41 ec78 ec78

Part	Value	Raw Data	Description
1	7f	<mark>7f</mark>	<mark>7f</mark> is the packet ID.
2	Total length of package	Od	Total length of package: <mark>Od</mark> is actually 0x0d, whose equivalent decimal value is 13.

||

3	46	<mark>46</mark>	<mark>46</mark> is the packet ID
4	Timestamp	6526fabf	Timestamp: <mark>6526fabf</mark> is actually 0x6526fabf, whose equivalent decimal value is 1697053375.
5	Temperature Channel 1	<mark>09c9</mark>	<mark>09c9</mark> is actually 0x09c9, whose equivalent decimal value is 2505. Divide it by 100, and you will get the actual measurement value for temperature as 25.05.
6	Temperature Channel 2	<mark>09ec</mark>	09c9 is actually 0x09c9, whose equivalent decimal value is 2540. Divide it by 100, and you will get the actual measurement value for temperature as 25.40.
7	Temperature Channel 2	<mark>0a00</mark>	09c9 is actually 0x09c9, whose equivalent decimal value is 2560. Divide it by 100, and you will get the actual measurement value for temperature as 25.60.

Battery Information for S2107:

49 5f	01000100	0005

Part	Value	Raw Data	Description
1	Battery	<mark>49</mark> 5f <mark>01000100</mark> 0005	 00 is the channel number. 5f is actually 0x5f, whose equivalent decimal value is 95. the actual battery value for device is 95%. 01000100 is 0x01000100 -> 1.0-1.0 Software Version 1.0 Hardware Version 1.0. 0005 is 0x0005 (little-endian byte order) , whose equivalent decimal value is 5. Upload interval is 5 minutes.

ĬĬ

9.3.7 Example - S2108 Soil Moisture, Temperature and EC Sensor

Soil Moisture, Temperature and Pore EC Sensor measurement packet:

<mark>01 0610</mark> 7a670000 <mark>01 0710</mark> 48a30000 <mark>01 0c10</mark> 64000000 <mark>01 6d10</mark> 9e480000 <mark>01 6c10</mark> 6c020000 <mark>1c12</mark>

Part	Value	Raw Data	Description
1	Soil Temperature	<mark>01</mark>	 OI is the channel number. O610 is 0x1006 (little-endian byte order), which is the measurement ID for soil temperature. 7a670000 is actually 0x0000677a, whose equivalent decimal value is 26490. Divide it by 1000, and you will get the actual measurement value for soil temperature as 26.49°C.
2	Soil Moisture	<mark>01</mark> 0710 <mark>48a30000</mark>	 is the channel number. is 0x1007 (little-endian byte order), which is the measurement ID for soil moisture. 48a30000 is actually 0x0000a348, whose equivalent decimal value is 41800. Divide it by 1000, and you will get the actual measurement value for soil moisture as 41.8%RH.
3	Soil Electrical Conductivity	<mark>01</mark>	 is the channel number. is 0x100C (little-endian byte order), which is the measurement ID for soil EC. 64000000 is actually 0x00000064, whose equivalent decimal value is 100. Divide it by 1000, and you will get the actual measurement value for soil EC as 0.10 dS/m.
4	Epsilon	<mark>01</mark> <mark>6d10</mark> 9e480000	 Ol is the channel number. Golio is 0x106d (little-endian byte order), which is the measurement ID for Epsilon. 9e480000 is actually 0x0000489e, whose equivalent decimal value is 18590. Divide it by 1000, and you will

			get the actual measurement value for Epsilon as 18.59.
5	Soil Pore Water Eletrical Conductivity	<mark>01</mark> <mark>6c10</mark> 6c020000	 Ol is the channel number. GCIO is 0x106c (little-endian byte order), which is the measurement ID for Soil Pore Water EC. GC020000 is actually 0x0000026c, whose equivalent decimal value is 620. Divide it by 1000, and you will get the actual measurement value for soil pore EC as 0.62 mS/cm.
6	CRC	1c12	The CRC verification part.

9.4 Battery Information

Please note the counter number. After 20 packets, it will follow one special packet with battery info.

You can either ignore this packet or get rid of the battery info in your code.

0.000000					
↓ 18:09:48	Successfully scheduled data downlink $_$	DevAddr:	27 00 59 27		
↓ 18:09:48	Schedule data downlink for transmissi_	FPort: 5			
↑ 18:09:48	Forward data message to Application $\ensuremath{S_{-\!\!-}}$	DevAddr:	27 00 59 27	FRMPayload: FE 39 78 39 59 DE 1E A8 C5 5F 0D 63 BE F6 5E 7E DB 0E 13 4F 44 87 D7 FPort:	2 SNR: 7.5 Bandwidth: 125000
↑ 18:09:48	Forward uplink data message	DevAddr:	27 00 59 27	FRMPayload: 00 07 00 64 00 05 00 01 06 10 B4 5F 00 00 01 07 10 A4 1F 00 00 32 59 FPort:	2 SNR: 7.5 Bandwidth: 125000
↑ 18:09:48	Receive uplink data message	DevAddr:	27 00 59 27	Battery Package	
↑ 18:09:48	Successfully processed data message	DevAddr:	27 00 59 27	FPort: 2 FCnt: 5 FRMPayload: FE 39 78 39 59 DE 1E A8 C5 5F 0D 63 BE F6 5E 7E DB 0E 13 44	F 44 87 D7 Bandwidth: 125800 SNR: 7.5 Raw payload: 80 27 59
<→ 18:09:48	Link ADR accept received	DevAddr:	27 00 59 27		
↑ 18:89:48	Receive data messade	DevAddr:	27 00 59 27	FPort: 2 FCnt: 5 FRMPavload: FE 39 78 39 59 DE 1E A8 C5 5F 0D 63 BE F6 5E 7E DB 0E 13 4	F 44 87 D7 Bandwidth: 125000 SNR: 7.5 Raw payload: 80 27 59

Original Info:

<mark>00070064000500<mark>010610B45F0000</mark>010710A41F0000<mark>3259</mark></mark>

Battery Package: 00070064000500

Example:

Battery & Soil Moisture and Temperature Sensor(S2104) measurement packet:

<mark>00070064000500<mark>010610B45F0000</mark>010710A41F0000<mark>3259</mark></mark>

Part	Value	Raw Data	Description
1	Battery	00 0700 <mark>6400</mark> 0500	00 is the channel number.

47

0700 is 0x0007 (little-endian byte order), which is the measurement ID for battery. 6400 is 0x0064 (little-endian byte order), whose equivalent decimal value is 100. Battery level is 100%. 0500 is 0x0005 (little-endian byte order), whose equivalent decimal value is 5. Upload interval is 5 minutes. 01 is the channel number. 0610 is 0x1006 (little-endian byte order), which is the measurement ID for soil temperature. Soil 2 01 0610 B45F0000 Temperature B45F0000 is actually 0x00005FB4, whose equivalent decimal value is 24500. Divide it by 1000, and you will get the actual measurement value for soil temperature as 24.5° C. 01 is the channel number. 0710 is 0x1007 (little-endian byte order), which is the measurement ID for soil moisture. 3 Soil Moisture 01 0710 A41F0000 A41F0000 is actually 0x00001FA4, whose equivalent decimal value is 8100. Divide it by 1000, and you will get the actual measurement value for soil moisture as 8.1%RH.

The CRC verification part.

IoT into the Wild

4

CRC

<mark>3259</mark>

loT into the Wild

10. LoRaWAN Downlink Command

10.1 Set the Data Uplink Interval

- (1) Using the Network Server's portal or API to send downlink command, then the Node will respond to the ack. The downlink command takes effect and responds the next time the node uploads data.
- (2) Downlink as follow:

0x00	0x89	0x00	prepareld_L	prepareId_H	duty_L	duty_H	crc-L	crc-H
------	------	------	-------------	-------------	--------	--------	-------	-------

0x00	Fixed field
0x89	Fixed field
0x00	Fixed field
prepareId_L	Command ID low byte, you can customize the values, it allows each
prepareiu_L	command ID to be the same
prepareld_H	Command ID high byte, you can customize the values, it allows each
	command ID to be the same
duty_L	Data interval low byte, you can set the data interval, unit: minute
duty_H	Data interval high byte, you can set the data interval, unit: minute
crc-L	CRC low byte, it's calculated by the CRC-16/CCITT
crc-H	CRC low byte, it's calculated by the CRC-16/CCITT

(3) When you send the downlink command, the Node responds to the ack command.

0x00	0x1F	0x00	prepareId_L	prepareId_H	result	0x00	crc-L	crc-H

0x00	Fixed field
0x1F	Fixed field
0x00	Fixed field
prepareId_L	Command ID low byte, it is the same as the downlink command
prepareId_H	Command ID high byte, it is the same as the downlink command
result	If the downlink command is in force, it responds 0x01, else it responds
	0x00
0x00	Fixed field
crc-L	CRC low byte, it's calculated by the CRC-16/KERMIT
crc-H	CRC low byte, it's calculated by the CRC-16/ KERMIT

(3) Use the FPort = 2

CRC Tool: <u>https://crccalc.com/</u>, select the algorithm of CRC-16/KERMIT.

Example: Set the Node's data interval is 10 minutes.

Send the downlink command (HEX) via FPort=2:

<mark>00 89 00 11 22 0A 00 38 B4</mark>

0x00	0x89	0x00	prepareld_L	prepareId_H	duty_L	duty_H	crc- L	crc- H
00	89	00	11	22	0A	00	38	B4

ACK Response:

<mark>00 1F 00 11 22 01 00 78 0F</mark>

0x00	0x1F	0x00	prepareId_L	prepareld_H	result	0x00	crc-L	crc-H
00	٦F	00	11	22	01	00	78	OF

Command List:

Description	Command
Set Uplink interval = 1 minute	008900112201009050
Set Uplink interval = 5 minutes	00890011220500F037
Set Uplink interval = 10 minutes	00890011220A0038B4
Set Uplink interval = 15 minutes	00890011220F0080CA
Set Uplink interval = 20 minutes	00890011221400B9BB
Set Uplink interval = 30 minutes	00890011221E00C946
Set Uplink interval = 60 minutes	00890011223C004A56

50

10.2 Reboot the device

FPort = 2

Command: 00C80000000002B26

10.3 How to send downlink

Example: use the Helium Console to send

duling	FPort	Region		
st Last	2	US915		\sim
8900112205	00F037		Base64	Text
ad 8900112205	00F037		Base64	

11. Error code

11.1 Details

If you're experiencing these error code, you could contact us for debugging:

sensecap@seeed.cc

Туре	Error code(Dec)
SENSOR_NOT_RESPONSE	2000001
SENSOR_DATA_HEAD_ERROR	2000002
SENSOR_ARG_INVAILD	2000003
SENSOR_DATA_ERROR_UNKONW	2000257

Example:

2023-06-01 15:55:01	2023-06-01 15:55:01	010610e8973577010710e89735773901
2023-06-01 15:49:57	2023-06-01 15:49:57	010610e8973577010710e89735773901
2023-06-01 15:45:05	2023-06-01 15:45:05	010610e8973577010710e89735773901
2023-06-01 15:44:59	2023-06-01 15:44:59	000000301000100020013002045000300

Raw data **E8973577** is actually 0x773597E8, whose equivalent decimal value is 2000001000. Divide it by 1000, and you will get the actual error code **2000001**.

12. Device Installation

12.1 The Do's and Don'ts

1. Do not remove the sensor probe. Otherwise, it will cause leaks and wire fracture. If accidentally unscrewed, it needs to be tightened to ensure waterproof performance. (like the 12)

2. Do not open the inside of the sensor unless the battery needs to be replaced. This may result in abnormal waterproofing. If it is opened, make sure the waterproofing gasket is properly installed and tighten the screws.

12.2 Installing Bracket

12.2.1 Installing the Sensor Bracket

Specially designed for installing SenseCAP Sensors, the bracket is a sliding cap. With designated screw-holes, the bracket helps fasten the Sensor Node firmly onto a pole or a wall.

- 1) With the sensor in one hand and a bracket in the other, find an unobstructed direction along the back of the sensor.
- 2) One hand holds the clasp while the other holds the device. Pull outward with opposite force. Press the upper part of the buckle with your finger.

12.2.1 Mount on Pole and Wall

12.2.2 Antenna Installation Direction

When installing, pay attention to the antenna installation direction for better signal strength and longer communication range between sensor and gateway.

Aim the antenna towards the gateway and install both sensor and gateway at higher elevations to reduce obstructions in line of sight between them. This will result in stronger signal strength.

12.3 Installation Considerations for Sensors

12.3.1 Install the S2101/S2103

Temperature and humidity sensors are generally installed on walls or pillars with the probe facing downwards.

If the device is installed outdoors, it is important to avoid direct sunlight as it can cause thermal effects and result in higher temperature readings. To ensure more accurate measurements:

- 1) Install the device in an area that cannot be directly exposed to sunlight.
- 2) Use shades or shields to block out sunlight.

12.3.1 Install the S2102

The light sensor should be oriented towards the light source as much as possible, and if installed outdoors, it should face upwards.

Note that:

IoT into the Wild

- 1) There should be no obstructions above or in front of the sensor facing the light source.
- 2) Orienting the probe directly towards the light source during installation can improve accuracy.

12.3.1 Install the S2104/S2105

Soil sensors need to be installed into the soil and ensure good contact between the sensor and soil. The measurement range for soil probes is a cuboid with dimensions of $7 \text{cm} \times 7 \text{cm} \times 7 \text{cm}$.

- 1) Select a soil monitoring site and dig a pit with a monitoring depth of 15cm or above.
- 2) Insert the probe horizontally or vertically into the soil, taking care to avoid hard rocks.
- 3) Mix some pure water with excavated soil, stir well, and fill the hole around the sensor with mud to ensure full contact between the sensor and soil.

12.4 Replace the Battery

12.4.1 How to Buy the Battery

We suggest buying it from Amazon.

- 1) EEMB ER34615: <u>Click here</u>
- 2) Search the key word: LiSOCI2 ER34615 battery. Compare the batteries that meet the following parameters. The most important thing is to match the voltage.

Battery Specification			
Nominal capacity	19000mAh		
Model	Li-SOCI2, ER34615		
Nominal voltage	3.6V		
Max. continuous current	230mA		
Max. pulse current capability	400mA		
Dimension	ø 34.0*61.5mm (D size)		
Operating temperature range	-60°C to 85°C		

12.4.2 How to Replace a New Battery

1) Remove three screws.

The sensor and PCBA are connected by wire, please disassemble carefully.

3*PWM3.0x20.0MM

2) Install a new battery.

Pay attention to the positive and negative terminals of the battery.

3) Install screws.

13. Calibration Sensor

13.1 S2101/S2103: Temperature and Humidity

The sensor uses high-precision chips and complex accuracy compensation algorithms, so annual drift is very small. In most cases, users do not need to calibrate the sensor.

Long-term drift: typ. value <0.03 °C/y, Max. value is < 0.04°C/y

13.2 S2103: Calibration of CO2

The CO2 sensor is calibrated using single-point calibration. Place the S2103 in standard gas or near a standard instrument and use the app to input the current CO2 concentration value from your environment into the sensor, completing calibration.

If standard gas or an instrument is not available, place the sensor outdoors in a ventilated area. The outdoor CO2 concentration is generally considered to be 400ppm. Let the sensor sit for 5-10 minutes and use the app to input this value into the sensor as calibration.

A Note:

1. To avoid invalid calibration caused by sudden changes in CO2 levels due to exhalation from nearby people, ensure that no one is exhaling near the sensor during calibration.

2. CO2 has a small annual drift, and calibration is generally recommended every 1-2 years. Depending on the specific usage scenario, it may be necessary to calibrate more or less frequently.

- 1) Place the S2103 sensor in an environment with a known CO2 concentration and let it sit for 5-10 minutes.
- 2) Use the app to connect to Bluetooth and open the configuration page.

114993002000000	007	11:27	國 朱山(宗: "川 國)	11:27	10 \$ 10 °\$ "
General	Setting	← 1149930	0200000007	← 11499300	200000007
		General	Setting	General	Setting
asic		Calibration Set	tings	Calibration Sett	ings
Device Model SenseCAPS	52103-CN470				
Device EUI 2CF7F1C	244810015回	CO2	2736ppm 🕑	CO2	2736ppm 🥝
	nperature and midity Sensor	Target Value	rget Value	Target Value	.00
Backup Firmware Version	0.0	Cancel	Confirm	Cancel	Confirm
Software Version	1.2				
Hardware Version	V1.0				
LoRaWAN Version	V1.0.3				
Class Type	ClassA				
Battery	100%				

- 3) Input the CO2 value of current CO2 level.
- 4) If you click to get the current measurement value, please wait for 2 minutes as the sensor needs to be warm-up before accurate measurements can be obtained.

11:25	10 * 10 * 10 *				
← 1149	93002000000007				
General	Setting				
Calibration S	Calibration Settings				
CO2	ppm				
Target Value	Target Value				
1	\sim ×				
	Loading				

13.3 S2104 and S2105: Calibration of Soil Moisture and EC

A Note:

The device has been calibrated before delivery. In most scenarios, calibration is not required.

We initially opened calibration options, but due to user error operation leading to measurement algorithm errors, we have disabled user calibration functions. If special calibration is required, users need to contact the SenseCAP team. Alternatively, users can choose to use the S2100 Data Logger with RS485 soil sensors for calibration purposes.

13.4 S2106: Calibration of pH

When performing the PH calibration, you should guarantee the temperature of the standard PH calibration solution is around 25°C. And wait a while for temperature and PH equilibrium after immersing the sensor into the standard solution. Please use PH=4.01, 7.00, 10.01 standard PH solution for calibration.

Get these things ready:

Picture	Туре	Quantity
	S2106 pH Sensor	1
	pH Standard Liquid: pH 4.01, pH7.00, pH10.01	1

Ĩ

	Graduated Cylinder	1
--	--------------------	---

1) Use the app to connect to Bluetooth and open the configuration page.

14:34	#!! ≎ ■
< 101070001	1231000050
General	Setting
Basic	
Device Model	SenseCAPS2106
Device EUI	2CF7F1C051100032
Sensor Type	pH Sensor
Backup Firmware Versio	on 1.0
Software Version	1.0
Hardware Version	V1.1
LoRaWAN Version	V1.0.3
Class Type	ClassA
Battery	100%
Measurement	
Air Temperature	24.289 °C
pH	10.01 PH
Measure	Calibrate

2) Prepare the standard liquid and pour an appropriate amount of the liquid into the graduated cylinder. Insert the pH probe electrode into the liquid in the graduated cylinder.

3) Click the Calibrate button and select the corresponding pH value.

- 4) Click icon to measure the current pH Value. Click "Confirm" to complete the calibration.
- 5) Calibrate the remaining two liquid in the same way.

14. Trouble Shooting

14.1 Sensors can't join LoRa network, how to do?

- 1) Check the gateway frequency configuration. Make sure the gateway and Sensor Node have the same uplink and downlink frequency.
- 2) Check the real-time log and RESET the sensor to see if there are any sensor data packets. If there are packets, check whether the gateway is sending downlink packets.
- 3) If the channels and other configurations are correct and the gateway logs do not have packets, please contact technical support.

14.2 Why is the new sensor's battery not 100%?

Battery power detection is not high precision. Its principle is to measure the supply voltage, when the power is turned on and repeatedly RESET, the voltage is unstable, so it is not 100%. When the sensor is stable, the power will be more accurate.

14.3 Battery Life Prediction

The power consumption table is for reference only. The battery life depends on various factors, such as frequency band, distance from the gateway, and ambient temperature.

https://files.seeedstudio.com/products/SenseCAP/S210X/SenseCAP_S21XX_Sensor __Battery_Life_Prediction.xlsx

14.4 Support

Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.

Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc.) and send a mail to: <u>sensecap@seeed.cc</u>

14.5 Document Version

Version	Date	Description	Editor
V1.0.0	5/01/2022	First edition	Jenkin Lu
V1.0.1	6/14/2022	Add App description	Jenkin Lu
V1.0.2	7/21/2022	Delete some steps	Jenkin Lu

66

V1.0.3	11/11/2022	Add Platform in 6.2,6.3	Lee
V1.0.4	6/1/2023	Add calibration method	Jenkin Lu
V1.0.5	6/25/2023	Add Error code	Lee
V1.0.6	7/25/2023	Update App setting	Lee
vl.0.7	10/13/2023	Add S2107/S2108 description	Lee