# 

# ICP-10125 Datasheet

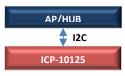
High Accuracy, Low Power, 10atm Waterproof Barometric Pressure

# and Temperature Sensor IC

#### **GENERAL INFORMATION**

The ICP-10125 pressure sensor is based on MEMS capacitive technology, which provides ultra-low noise at the lowest power, enabling industry leading relative accuracy, sensor throughput, and temperature stability. The pressure sensor can measure pressure differences with an accuracy of  $\pm 1$  Pa, an accuracy enabling altitude measurement differentials as small as 8.5 cm, less than the height of a single stair step.

Consuming only 1.3  $\mu$ A @1 Hz, the device is available in a small footprint 3.55 mm x 3.55 mm x 1.45 mm chimney package with waterproofing gel providing IPx8 waterproofing to 10 ATM. The ICP-10125 is ideally suited for wearable fitness monitoring and battery powered IoT.


The ICP-10125 offers an industry leading temperature coefficient offset of  $\pm 0.5$  Pa/°C. The combination of high accuracy, low power, temperature stability, waterproofing in a small footprint enables higher performance barometric pressure sensing for sports activity identification and mobile indoor/outdoor navigation.

### **DEVICE INFORMATION**

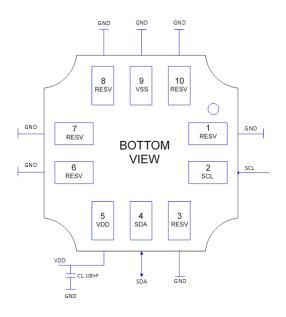
| PART<br>NUMBER | PACKAGE                      | LID OPENING                                                                   |
|----------------|------------------------------|-------------------------------------------------------------------------------|
| ICP-10125      | 3.55x3.55x1.45mm<br>HTCC-10L | Gel filled HTCC package with<br>machined lid; IPx8<br>waterproofing to 10 ATM |

Denotes RoHS and Green-Compliant Package

### **BLOCK DIAGRAMS**



### **APPLICATIONS**


- Smart watches
- Leisure, Sports, and Fitness Activity Monitoring for Wearable Sensors
- Altimeters and barometers for portable devices
- Indoor/Outdoor Navigation (dead-reckoning, floor/elevator/step detection)
- Home and Building Automation
- Weather Forecasting

InvenSense, Inc. reserves the right to change specifications and information herein without notice unless the product is in mass production and the datasheet has been designated by InvenSense in writing as subject to a specified Product / Process Change Notification Method regulation. InvenSense, a TDK Group Company 1745 Technology Drive, San Jose, CA 95110 U.S.A +1(408) 988–7339 invensense.tdk.com

FEATURES

- Pressure operating range: 30 to 110 kPa
  - Noise and current consumption
    - 0.4 Pa @ 10.4 μA (ULN mode)
    - 0.8 Pa @ 5.2 μA (LN mode)
    - 3.2 Pa @ 1.3 μA (LP mode)
- Pressure Sensor Relative Accuracy: ±1 Pa for any 10 hPa change over 950 hPa-1050 hPa at 25°C
- Pressure Sensor Absolute Accuracy: ±1 hPa over 950 hPa-1050 hPa, 0°C to 65°C
- Pressure Sensor Temperature Coefficient Offset: ±0.5 Pa/°C over 25°C to 45°C at 100 kPa
- Temperature Sensor Absolute Accuracy: ±0.4°C
- IPx8: Waterproof to 10 ATM
- Temperature operating range: -40 °C to 85 °C
- Host Interface: I<sup>2</sup>C at up to 400 kHz
- Single Supply voltage: 1.8V ±5%
- RoHS and Green compliant

### **TYPICAL OPERATING CIRCUIT**



Document Number: DS-000329 Revision: 1.1 Release Date: 04/09/2021



# **TABLE OF CONTENTS**

| G | Genera     | AL INFORMATION                                                     | 1    |
|---|------------|--------------------------------------------------------------------|------|
| D | DEVICE     | INFORMATION                                                        | 1    |
| В | BLOCK [    | Diagrams                                                           | 1    |
| Α | APPLICA    | ITIONS                                                             | 1    |
| F | EATUR      | ES                                                                 | 1    |
| Т | YPICAL     | OPERATING CIRCUIT                                                  | 1    |
| 1 |            | RODUCTION                                                          | 5    |
| _ |            |                                                                    |      |
| - | 1          | Purpose and Scope                                                  |      |
| 1 | 2          | Product Overview                                                   | 5    |
| 2 | PRE        | SSURE AND TEMPERATURE SENSOR SPECIFICATIONS                        | 6    |
| 2 | 2.1        | OPERATION RANGES                                                   | 6    |
| _ | 2.2        | OPERATION MODES                                                    |      |
| _ | 2.3        | Pressure Sensor Specifications                                     |      |
| _ | 2.4        | TEMPERATURE SENSOR SPECIFICATIONS                                  |      |
|   | 2.5        | RECOMMENDED OPERATION CONDITIONS                                   |      |
|   | -          |                                                                    |      |
| 3 | ELEC       | CTRICAL SPECIFICATIONS                                             | 8    |
| 3 | 8.1        | ELECTRICAL CHARACTERISTICS                                         | 8    |
| 3 | 3.2        | Absolute Maximum Ratings                                           | 9    |
| 3 | 3.3        | SENSOR SYSTEM TIMING                                               | 9    |
| 3 | 8.4        | I <sup>2</sup> C TIMING CHARACTERIZATION                           | 10   |
| 4 | APP        | LICATIONS INFORMATION                                              | . 11 |
| 4 | l.1        | INTERFACE SPECIFICATIONS                                           | 11   |
| - | ⊧.⊥<br>⊦.2 | INTERFACE SPECIFICATIONS<br>PIN OUT DIAGRAM AND SIGNAL DESCRIPTION |      |
| - | ⊦.∠<br>⊦.3 | TYPICAL OPERATING CIRCUIT                                          |      |
|   | 1.3<br>1.4 | BILL OF MATERIALS FOR EXTERNAL COMPONENTS                          |      |
|   |            |                                                                    |      |
| 5 | OPE        | RATION AND COMMUNICATION                                           | . 14 |
| 5 | 5.1        | POWER-UP AND COMMUNICATION START                                   | 14   |
| 5 | 5.2        | MEASUREMENT COMMANDS                                               | 14   |
| 5 | 5.3        | STARTING A MEASUREMENT                                             | 14   |
| 5 | 5.4        | SENSOR BEHAVIOR DURING MEASUREMENT                                 | 14   |
| 5 | 5.5        | READOUT OF MEASUREMENT RESULTS                                     | 15   |
| 5 | 5.6        | SOFT RESET                                                         | 15   |
| 5 | 5.7        | READ-OUT OF ID REGISTER                                            | 15   |
| 5 | 5.8        | CHECKSUM CALCULATION                                               | 16   |
| 5 | 5.9        | CONVERSION OF SIGNAL OUTPUT                                        | 16   |
| 5 | 5.10       | READ-OUT OF CALIBRATION PARAMETERS                                 | 18   |
|   | 5.11       | SAMPLE CODE: EXAMPLE C SYNTAX                                      | -    |
| - | 5.12       | SAMPLE CODE: CONVERSION FORMULA (EXAMPLE PYTHON SYNTAX)            |      |
| - | 5.13       | SAMPLE CODE: USING CONVERSION FORMULA (EXAMPLE PYTHON SYNTAX)      |      |
| 5 | 5.14       | COMMUNICATION DATA SEQUENCES                                       | 22   |
| 6 | ASS        | EMBLY                                                              | . 23 |
| 6 | 5.1        | Implementation and Usage Recommendations                           | 23   |
| 0 | 6.1        |                                                                    |      |
|   | 0.1.       | 2 Soluting                                                         | .25  |



# ICP-10125

|    | 6.1.2   | Chemical Exposure and Sensor Protection | 23 |
|----|---------|-----------------------------------------|----|
| 7  | РАСКА   | E DIMENSIONS                            | 24 |
| 8  | TAPE AN | ND REEL SPECIFICATION                   | 26 |
| 9  | ORDERI  | NG GUIDE                                | 27 |
| 10 | REFER   | RENCES                                  | 28 |
| 11 | REVIS   | SION HISTORY                            | 29 |



# **LIST OF FIGURES**

| Figure 1. Digital I/O Pads Timing                                      | 10 |
|------------------------------------------------------------------------|----|
| Figure 2. Pin Out Diagram for ICP-10125, 3.55mm x 3.55mm x 1.45mm HTCC | 11 |
| Figure 3. ICP-10125 Application Schematic                              | 12 |
| Figure 4. Typical Application Circuit                                  | 13 |
| Figure 5. Communication Data Sequences                                 | 22 |
| Figure 6. ICP-10125 Package Diagram                                    | 24 |
| Figure 7. ICP-10125 recommended PCB land pattern                       | 25 |
| Figure 8. ICP-10125 Artwork                                            | 25 |
| Figure 9. ICP-10125 Tape Dimensions                                    | 26 |
| Figure 10. Tape and Reel Orientation                                   | 26 |
|                                                                        |    |

### **LIST OF TABLES**

| Table 1. Operation Ranges                           | 6    |
|-----------------------------------------------------|------|
| Table 2. Operation Modes                            | 6    |
| Table 3. Pressure Sensor Specifications             | 7    |
| Table 4. Temperature Sensor Specifications          | 7    |
| Table 5. Electrical Specifications                  | 8    |
| Table 6. Absolute Maximum Ratings                   | 9    |
| Table 7. System Timing Specifications               | 9    |
| Table 8. I <sup>2</sup> C Parameters Specification  | .10  |
| Table 9. Signal Descriptions                        | .11  |
| Table 10. Bill of Materials                         | .13  |
| Table 11. ICP-10125 I <sup>2</sup> C Device Address | .14  |
| Table 12. Measurement Commands                      | .14  |
| Table 13. Soft Reset Command                        | .15  |
| Table 14. Read-Out Command of ID Register           | . 15 |
| Table 15. 16-bit ID Structure                       | .16  |
| Table 16. ICP-10125 I <sup>2</sup> C CRC Properties | .16  |

# **1** INTRODUCTION

### 1.1 PURPOSE AND SCOPE

This document is a preliminary product specification, providing a description, specifications, and design related information for the ICP-10125 Pressure Sensor.

Specifications are subject to change without notice. Final specifications will be updated based upon characterization of production silicon.

### **1.2 PRODUCT OVERVIEW**

The ICP-10125 is an ultra-low power, low noise, digital output barometric pressure and temperature sensor IC. It is based on an innovative MEMS capacitive pressure sensor technology that can measure pressure differences with an accuracy of  $\pm 1$  Pa at the industry's lowest power. The high accuracy MEMS capacitive pressure sensor is capable of measuring altitude differentials down to 8.5 cm without the penalty of increased power consumption or reduced sensor throughput.

The capacitive pressure sensor has a  $\pm 1$  hPa absolute accuracy over its full range of 300 hPa -1100 hPa. The pressure sensor has an embedded temperature sensor and 400 kHz l<sup>2</sup>C bus for communication. For power-critical applications, the ICP-10125 features a low power mode of 1.3  $\mu$ A at a noise of 3.2 Pa or for high performance applications, it features a low noise mode of 0.8 Pa while only consuming 5.2  $\mu$ A.

The device is available in a small footprint 3.55 mm x 3.55 mm x 1.45 mm chimney package with waterproofing gel providing IPx8 waterproofing to 10 ATM.

The ICP-10125 also offers industry leading temperature stability of the pressure sensor with a temperature coefficient offset of  $\pm 0.5$  Pa/°C. The high accuracy, temperature stability, and market leading low power consumption of 1.3  $\mu$ A @1 Hz offered by ICP-10125 makes it ideally suited for applications such as mobile phones, drone flight control and stabilization, indoor/outdoor navigation (elevator, floor, and stair step detection), sports and fitness activity monitoring, and battery-powered IoT.

# **2 PRESSURE AND TEMPERATURE SENSOR SPECIFICATIONS**

### 2.1 **OPERATION RANGES**

The sensor shows best performance when operated within the recommended temperature and pressure range (hereafter called normal conditions) of  $0^{\circ}C - 45^{\circ}C$  and 95 kPa - 105 kPa, respectively. The following ranges are defined for the device:

| OPERATION RANGE | PRESSURE (KPA) | TEMPERATURE (°C) |
|-----------------|----------------|------------------|
| Normal          | 95 to 105      | 0 to 45          |
| Extended        | 30 to 110      | -20 to 65        |
| Maximum         | 25 to 115      | -40 to 85        |

**Table 1. Operation Ranges** 

#### 2.2 OPERATION MODES

The sensor can be operated in up to four different measurement modes to satisfy different requirements for power consumption vs. noise, accuracy, and measurement frequency. An overview of the operation modes is given in Table 2.

| PARAMETER              | CONDITIONS                                           | SENSOR MODE              | ТҮР  | MAX  | UNITS | NOTES |
|------------------------|------------------------------------------------------|--------------------------|------|------|-------|-------|
|                        |                                                      | Low Power (LP)           | 1.6  | 1.8  |       | 1     |
|                        | Time between sending last bit                        | Normal (N)               | 5.6  | 6.3  |       | 1     |
| Conversion Time        | of measurement command,<br>and sensor data ready for | Low Noise (LN)           | 20.8 | 23.8 | ms    | 1     |
|                        | measurement                                          | Ultra Low Noise<br>(ULN) | 83.2 | 94.5 |       | 1     |
|                        | 1 Hz ODR                                             | Low Power (LP)           | 1.3  |      |       |       |
| Current                |                                                      | Normal (N)               | 2.6  |      |       |       |
| Current<br>Consumption |                                                      | Low Noise (LN)           | 5.2  |      | μA    |       |
| consumption            |                                                      | Ultra Low Noise<br>(ULN) | 10.4 |      |       |       |
|                        |                                                      | Low Power (LP)           | 3.2  |      |       |       |
|                        | Valid for $D = 100 k D_2$ T = 25°C                   | Normal                   | 1.6  |      |       |       |
| Pressure RMS<br>Noise  | Valid for P = 100 kPa, T = 25°C,<br>and U = 1.8V     | Low Noise (LN)           | 0.8  |      | Ра    |       |
| NOISE                  | anu U = 1.8V                                         | Ultra Low Noise<br>(ULN) | 0.4  |      |       |       |

#### **Table 2. Operation Modes**

Notes:

1. Guaranteed by design.

Low Power modes supports ODR greater than 500 Hz while the Low Noise mode provides industry leading RMS noise at a fast 40 Hz ODR. Further decrease in noise may be achieved by software oversampling and filtering through customer's software implementation or custom TDK InvenSense operation modes available upon request.

### 2.3 PRESSURE SENSOR SPECIFICATIONS

Pressure sensor specifications are given in Table 3. Default conditions of 25 °C and 1.8V supply voltage apply, unless otherwise stated.

| PARAMETER                      | CONDITIONS               | ТҮР          | UNITS | NOTES |
|--------------------------------|--------------------------|--------------|-------|-------|
| Absolute Accuracy              | Normal range             | ±1           | hPa   | 1     |
| Absolute Acculacy              | Extended range           | ±1.5         | liFa  | 1     |
|                                | Any step ≤ 1 kPa, 25 °C  | ±1           | _     |       |
| Relative Accuracy              | Any step ≤ 10 kPa, 25 °C | ±3           | Ра    |       |
| Long-term drift                | Normal range             | ±35          | Pa/v  |       |
| During 1 year                  | Extended range           | ±40          | Pd/y  |       |
| Solder drift                   |                          | 1.5          | hPa   | 1, 2  |
| Temperature coefficient offset | P = 100 kPa              | ±0.5         | Pa/°C |       |
| remperature coefficient offset | 25°C 45°C                | <u>r</u> 0.5 | Fd/ C |       |
| Resolution                     | Maximum range            | 0.01         | Ра    |       |

#### Table 3. Pressure Sensor Specifications

#### Notes:

- 1. Absolute accuracy may be improved through One Point Calibration
- 2. Sensor accuracy post Solder reflow may be improved through One Point Calibration

#### 2.4 TEMPERATURE SENSOR SPECIFICATIONS

Specifications of the temperature sensor are shown in Table 4.

| PARAMETER         | CONDITIONS     | ТҮР   | UNITS |
|-------------------|----------------|-------|-------|
| Absolute Accuracy | Extended range | ±0.4  | °C    |
| Repeatability     | Extended range | ±0.1  | °C    |
| Resolution        | Maximum range  | 0.01  | °C    |
| Long-term drift   | Normal range   | <0.04 | °C/y  |

**Table 4. Temperature Sensor Specifications** 

#### 2.5 **RECOMMENDED OPERATION CONDITIONS**

The pressure sensor exhibits best performance when operated within the normal pressure and temperature range  $0^{\circ}C < T < 45^{\circ}C$  and 95 kPa < P < 105 kPa.

Injected photo current due to strong light sources can influence the sensor performance and should be avoided to guarantee best operation.

The sensor should not be exposed to high mechanical stress, the resulting deformation of the package can alter internal dimensions and therefore falsify the sensor signal. Solder reflow may affect device performance. One-point calibration can improve the sensor accuracy post solder reflow.

# **3** ELECTRICAL SPECIFICATIONS

### 3.1 ELECTRICAL CHARACTERISTICS

Default conditions of 25 °C and 1.8V supply voltage apply to values in Table 5, unless otherwise stated.

| PARAMETER                | SYMBOL            | CONDITIONS                                                       | MIN                  | ТҮР  | МАХ                 | UNITS | COMMENTS                                                                |
|--------------------------|-------------------|------------------------------------------------------------------|----------------------|------|---------------------|-------|-------------------------------------------------------------------------|
| Supply voltage           | V <sub>DD</sub>   |                                                                  | 1.71                 | 1.8  | 1.89                | v     |                                                                         |
| Power-up/down level      | V <sub>POR</sub>  | Static power supply                                              | 1.0                  | 1.25 | 1.5                 | v     |                                                                         |
| Supply Ramp Time         | T <sub>ramp</sub> | Monotonic ramp. Ramp rate<br>is 10% to 90% of the final<br>value | 0.01                 |      | 100                 | ms    |                                                                         |
|                          |                   | Idle state                                                       | -                    | 1.0  | 2.5                 | μA    |                                                                         |
|                          | IDD               | Measurement                                                      | -                    | 210  | 300                 | μΑ    | Current consumption while sensor is measuring.                          |
| Supply current           |                   | Average                                                          | -                    | 1.3  | -                   | μΑ    | Current consumption in<br>continuous operation @ 1 Hz<br>ODR in LP Mode |
|                          |                   |                                                                  | -                    | 5.2  | -                   | μΑ    | Current consumption in<br>continuous operation @1 Hz<br>ODR in LN Mode  |
| Low level input voltage  | VIL               |                                                                  | 0                    | -    | $0.3 V_{DD}$        | v     |                                                                         |
| High level input voltage | V <sub>IH</sub>   |                                                                  | $0.7  V_{\text{DD}}$ | -    | $V_{DD}$            | v     |                                                                         |
| Low level output voltage | V <sub>OL</sub>   | 0 < IOL < 3 mA                                                   | -                    | -    | $0.2 V_{\text{DD}}$ | v     |                                                                         |
| Quitaut Sink Cumont      | 1                 | V <sub>OL</sub> = 0.4V                                           | 3.1                  | 4.1  | -                   | mA    |                                                                         |
| Output Sink Current      | I <sub>OL</sub>   | V <sub>OL</sub> = 0.6V                                           | 3.5                  | 4.5  | -                   | mA    |                                                                         |

**Table 5. Electrical Specifications** 

#### 3.2 ABSOLUTE MAXIMUM RATINGS

Stress levels beyond those listed in Table 6 may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions cannot be guaranteed. Exposure to the absolute maximum rating conditions for extended periods may affect the reliability of the device.

| PARAMETER                       | RATING            |
|---------------------------------|-------------------|
| Supply voltage, VDD             | -0.3V to 2.16V    |
| Supply Voltage, SCL & SDA       | -0.3V to VDD 0.3V |
| Operating temperature range     | -40°C to 85°C     |
| Storage temperature range       | -40°C to 125°C    |
| ESD HBM                         | 2.0 kV            |
| ESD CDM                         | 250V              |
| Latch up, JESD78 Class II, 85°C | 100 mA            |
| Overpressure                    | >600kPa           |

Table 6. Absolute Maximum Ratings

### **3.3 SENSOR SYSTEM TIMING**

Default conditions of 25°C and 1.8V supply voltage apply to typ. values listed in Table 7, unless otherwise stated. Max. values apply over the specified operating range of VDD and over the operating temperature range.

| PARAMETER            | SYMBOL            | CONDITIONS                             | MIN | ТҮР  | ΜΑΧ  | UNITS | COMMENTS                                                                             |
|----------------------|-------------------|----------------------------------------|-----|------|------|-------|--------------------------------------------------------------------------------------|
| Power-up time        | t <sub>PU</sub>   | After hard reset, $V_{DD} \ge V_{POR}$ | -   | 170  | -    |       | Time between $V_{\text{DD}}$ reaching $V_{\text{PU}}$ and sensor entering idle state |
| Soft reset time      | t <sub>sr</sub>   | After soft reset                       | -   | 170  | -    | μs    | Time between ACK of soft reset<br>command and sensor entering<br>idle state          |
| Measurement duration | t <sub>MEAS</sub> | LN Mode                                | -   | 20.8 | 23.8 | ms    | Duration for a pressure and temperature measurement                                  |

Table 7. System Timing Specifications

### 3.4 I<sup>2</sup>C TIMING CHARACTERIZATION

Default conditions of 25°C and 1.8V supply voltage apply to values in Table 8, unless otherwise stated.

| PARAMETER                                  | SYMBOL              | CONDITIONS                                            | MIN | ТҮР | МАХ | UNITS |
|--------------------------------------------|---------------------|-------------------------------------------------------|-----|-----|-----|-------|
| SCL clock frequency                        | f <sub>SCL</sub>    |                                                       | 0   | -   | 400 | kHz   |
| Hold time (repeated) START condition       | t <sub>HD;STA</sub> | After this period, the first clock pulse is generated | 0.6 | -   | -   | μs    |
| LOW period of the SCL clock                | $t_{\text{LOW}}$    |                                                       | 1.3 | -   | -   | μs    |
| HIGH period of the SCL clock               | t <sub>HIGH</sub>   |                                                       | 0.6 | -   | -   | μs    |
| Set-up time for a repeated START condition | t <sub>su;sta</sub> |                                                       | 0.6 | -   | -   | μs    |
| SDA hold time                              | t <sub>hd;dat</sub> |                                                       | 0   | -   | -   | μs    |
| SDA set-up time                            | t <sub>su;dat</sub> |                                                       | 100 | -   | -   | ns    |
| SCL/SDA rise time                          | t <sub>R</sub>      |                                                       | 20  | -   | 300 | ns    |
| SCL/SDA fall time                          | t <sub>F</sub>      |                                                       | -   | -   | 300 | ns    |
| SDA valid time                             | t <sub>vd;dat</sub> |                                                       | -   | -   | 0.9 | μs    |
| Set-up time for STOP condition             | t <sub>su;sto</sub> |                                                       | 0.6 | -   | -   | μs    |
| Capacitive load on bus line                | C <sub>B</sub>      |                                                       | -   | -   | 400 | pF    |

#### Table 8. I<sup>2</sup>C Parameters Specification

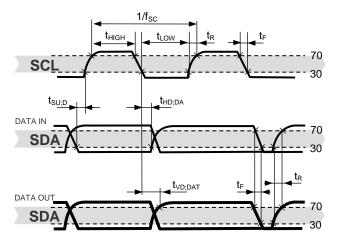
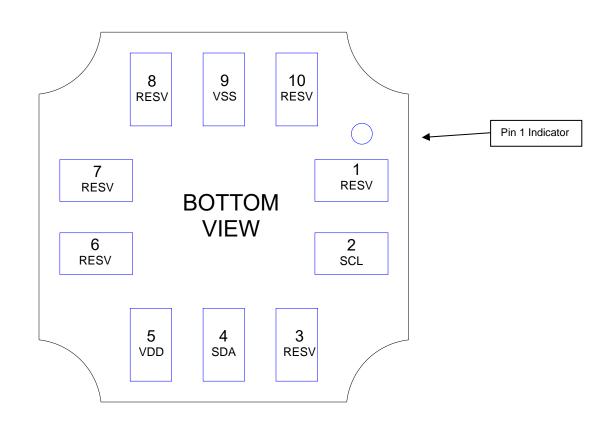



Figure 1. Digital I/O Pads Timing

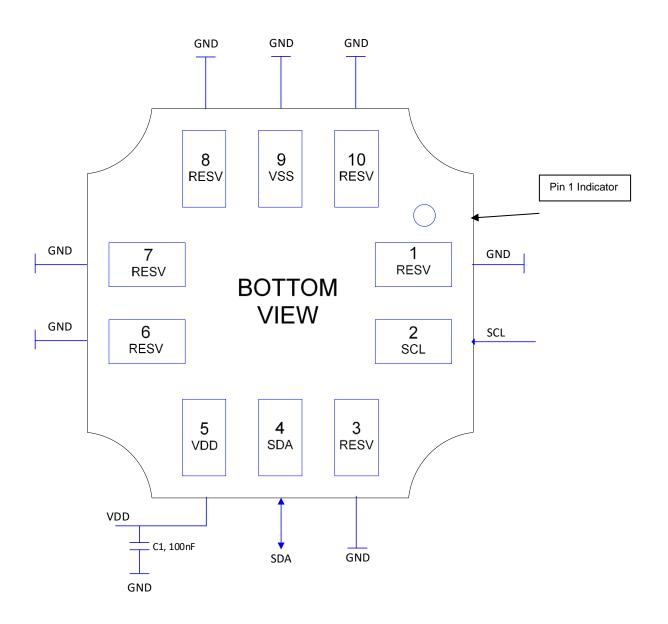
# **4** APPLICATIONS INFORMATION


### 4.1 INTERFACE SPECIFICATIONS

The ICP-10125 supports I<sup>2</sup>C fast mode, SCL clock frequency from 0 to 400 kHz.

### 4.2 PIN OUT DIAGRAM AND SIGNAL DESCRIPTION

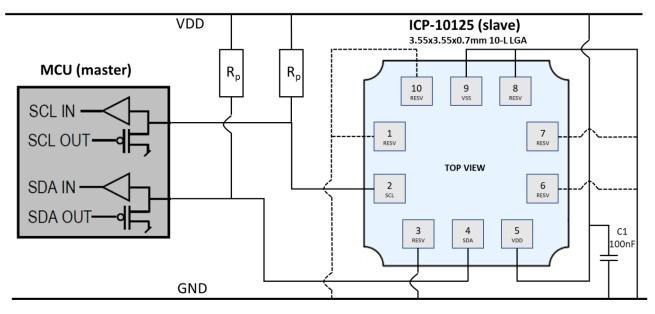
| PIN NUMBER | PIN NAME | DESCRIPTION                       |
|------------|----------|-----------------------------------|
| 1          | RESV     | No Connect (NC) or Connect to GND |
| 2          | SCL      | I <sup>2</sup> C Serial Clock     |
| 3          | RESV     | Connect to Ground                 |
| 4          | SDA      | I <sup>2</sup> C Serial Data      |
| 5          | VDD      | Power Supply VDD                  |
| 6          | RESV     | No Connect (NC) or Connect to GND |
| 7          | RESV     | No Connect (NC) or Connect to GND |
| 8          | RESV     | Connect to Ground                 |
| 9          | VSS      | Connect to Ground                 |
| 10         | RESV     | No Connect (NC) or Connect to GND |


**Table 9. Signal Descriptions** 



#### Figure 2. Pin Out Diagram for ICP-10125, 3.55mm x 3.55mm x 1.45mm HTCC




### 4.3 TYPICAL OPERATING CIRCUIT





Power supply pins supply voltage (VDD) and ground (VSS) must be decoupled with a 100 nF capacitor that shall be placed as close to the sensor as possible. Connections shown as dashed lines are recommended for mechanical stability of the sensor (see Figure 4).





Connections shown as dashed lines are recommended for mechanical stability of the sensor

#### Figure 4. Typical Application Circuit

SCL is used to synchronize the communication between the microcontroller and the sensor. The master must keep the clock frequency within 0 to 400 kHz as specified in Table 8.

The SDA pin is used to transfer data in and out of the sensor. For safe communication, the timing specifications defined in the  $I^2C$  manual must be met.

To avoid signal contention, the microcontroller must only drive SDA and SCL low. External pull-up resistors (i.e.  $10 \text{ k}\Omega$ ) are required to pull the signal high. For dimensioning resistor sizes, user should also consider bus capacity requirements. It should be noted that pull-up resistors may be included in I/O circuits of microcontrollers.

### 4.4 BILL OF MATERIALS FOR EXTERNAL COMPONENTS

| COMPONENT            | LABEL | SPECIFICATION             | QUANTITY |
|----------------------|-------|---------------------------|----------|
| VDD Bypass Capacitor | C1    | Ceramic, X7R, 100 nF ±10% | 1        |

Table 10. Bill of Materials

# 5 OPERATION AND COMMUNICATION

All commands and memory locations of the ICP-10125 are mapped to a 16-bit address space which can be accessed via the I<sup>2</sup>C protocol.

| ICP-10125                | BINARY   | DECIMAL | HEXADECIMAL |
|--------------------------|----------|---------|-------------|
| I <sup>2</sup> C address | 110'0011 | 99      | 0x63        |

| Table 11. ICP-10125 | I <sup>2</sup> C Device Address |
|---------------------|---------------------------------|
|---------------------|---------------------------------|

### 5.1 POWER-UP AND COMMUNICATION START

When VDD reaches the power-up voltage level V<sub>POR</sub>, the ICP-10125 enters idle state after a duration of t<sub>PU</sub>. In idle state, the ICP-10125 is ready to receive commands from the master (microcontroller).

Each transmission sequence begins with START condition (S) and ends with an (optional) STOP condition (P) as described in the I<sup>2</sup>C-bus specification. Whenever the sensor is powered up, but not performing a measurement or communicating, it automatically enters idle state for energy saving.

### 5.2 MEASUREMENT COMMANDS

The ICP-10125 provides the possibility to define the sensor behavior during measurement as well as the transmission sequence of measurement results. These characteristics are defined by the appropriate measurement command.

Each measurement command triggers both a temperature and a pressure measurement.

| OPERATION MODE        | TRANSMIT T FIRST | TRANSMIT P FIRST |
|-----------------------|------------------|------------------|
| Low Power (LP)        | 0x609C           | 0x401A           |
| Normal (N)            | 0x6825           | 0x48A3           |
| Low Noise (LN)        | 0x70DF           | 0x5059           |
| Ultra-Low Noise (ULN) | 0x7866           | 0x58E0           |

#### **Table 12. Measurement Commands**

#### **5.3 STARTING A MEASUREMENT**

A measurement communication sequence consists of a START condition followed by the I<sup>2</sup>C header with the 7-bit I<sup>2</sup>C device address and a write bit (write W: '0', 8-bit word including I<sup>2</sup>C header: 0xC6). The sensor indicates the proper reception of a byte by pulling the SDA pin low (ACK bit) after the falling edge of the 8th SCL clock. Then the sensor is ready to receive a 16-bit measurement command. Again, the ICP-10125 acknowledges the proper reception of each byte with ACK condition. A complete measurement cycle is presented in Figure 5.

With the acknowledgement of the measurement command, the ICP-10125 starts measuring pressure and temperature.

#### 5.4 SENSOR BEHAVIOR DURING MEASUREMENT

In general, the sensor does not respond to any I<sup>2</sup>C activity during measurement, i.e. I<sup>2</sup>C read and write headers are not acknowledged (NACK).

### 5.5 READOUT OF MEASUREMENT RESULTS

After a measurement command has been issued and the sensor has completed the measurement, the master can read the measurement results by sending a START condition followed by an I<sup>2</sup>C read header (8-bit word including I<sup>2</sup>C header: 0xC7). The sensor will acknowledge the reception of the read header and send the measured data in the specified order to the master. The MSB of the corresponding data is always transmitted first. Temperature data is transmitted in two 8-bit words and pressure data is transmitted in four 8-bit words. Regarding the pressure data, only the first three words MMSB, MLSB and LMSB contain information about the ADC pressure value  $p_dout$ . Therefore, for retrieving the ADC pressure value, LLSB must be disregarded:

 $p\_dout = MMSB \ll 16 | MLSB \ll 8 | LMSB.$ 

Two bytes of data are always followed by one byte CRC checksum, for calculation see section 5.8. Each byte must be acknowledged by the microcontroller with an ACK condition for the sensor to continue sending data. If the ICP-10125 does not receive an ACK from the master after any byte of data, it will not continue sending data.

Whether the sensor sends out pressure or temperature data first depends on the measurement command that was sent to the sensor to initiate the measurement (see Table 12).

The I<sup>2</sup>C master can abort the read transfer with a NACK condition after any data byte if it is not interested in subsequent data, e.g. the CRC byte or the second measurement result, to save time.

### 5.6 SOFT RESET

The ICP-10125 provides a soft reset mechanism that forces the system into a well-defined state without removing the power supply. If the system is in idle state (i.e. if no measurement is in progress) the soft reset command will be accepted by ICP-10125. This triggers the sensor to reset all internal state machines and reload calibration data from the memory.

| COMMAND    | HEXADECIMAL CODE | BINARY CODE         |
|------------|------------------|---------------------|
| Soft reset | 0x805D           | 1000'0000'0101'1101 |

#### Table 13. Soft Reset Command

#### 5.7 READ-OUT OF ID REGISTER

The ICP-10125 has an ID register which contains a specific product code. The read-out of the ID register can be used to verify the presence of the sensor and proper communication. The command to read the ID register is shown in Table 14.

| COMMAND          | HEXADECIMAL CODE | BINARY CODE         |
|------------------|------------------|---------------------|
| Read ID register | 0xEFC8           | 1110'1111'1100'1000 |

#### Table 14. Read-Out Command of ID Register

It needs to be sent to the ICP-10125 after an  $I^2C$  write header. After the ICP-10125 has acknowledged the proper reception of the command, the master can send an  $I^2C$  read header and the ICP-10125 will submit the 16-bit ID followed by 8 bits of CRC. The structure of the ID is described in Table 15. Bits 15:6 of the ID contain unspecified information (marked as "x"), which may vary from sensor to sensor, while bits 5:0 contain the ICP-10125 specific product code.

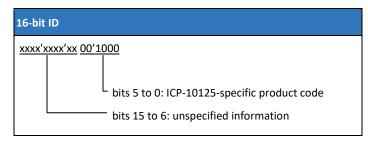



Table 15. 16-bit ID Structure

#### 5.8 CHECKSUM CALCULATION

The 8-bit CRC checksum transmitted after each data word is generated by a CRC algorithm with the properties displayed in Table 16. The CRC covers the contents of the two previously transmitted data bytes.

| PROPERTY       | VALUE                                                       |
|----------------|-------------------------------------------------------------|
| Name           | CRC-8                                                       |
| Width          | 8 bits                                                      |
| Polynomial     | 0x31 (x <sup>8</sup> + x <sup>5</sup> + x <sup>4</sup> + 1) |
| Initialization | 0xFF                                                        |
| Reflect input  | false                                                       |
| Reflect output | false                                                       |
| Final XOR      | 0x00                                                        |
| Examples       | CRC(0x00) = 0xAC<br>CRC(0xBEEF) = 0x92                      |

Table 16. ICP-10125 I<sup>2</sup>C CRC Properties

### 5.9 CONVERSION OF SIGNAL OUTPUT

Pressure measurement data is always transferred as 4 8-bit words; temperature measurement data is always transferred as two 8-bit words. Please see section 5.5 for more details.

Temperature measurement values  $t_{dout}$  are linearized by the ICP-10125 and must be calculated to °C by the user via the following formula:

$$T = -45^{\circ}\text{C} + \frac{175^{\circ}\text{C}}{2^{16}} \times t_{dout}.$$

For retrieving physical pressure values in Pa the following conversion formula has to be used:

$$P = A + \frac{B}{C + \rho_{\text{dout}}},$$

where  $p\_dout$  is the sensor's raw pressure output. The converted output is compensated for temperature effects via the temperature dependent functions *A*, *B* and *C*. Besides the raw temperature output  $t\_dout$ , the calculation of *A*, *B* and *C* requires to access calibration parameters OTP0, OTP1, OTP2, OTP3 stored in the OTP of the sensor. Read-out of OTP parameters is described in section 5.10.

Full sample code for calculating physical pressure values is given in section 5.11. The general workflow of the conversion is done by:

- 1) Import class Invensense\_pressure\_conversion
- 2) Read out values OTPO, ..., OTP3 and save to c1, ..., c4
- 3) Create object name for an individual sensor with parameter values c1, ..., c4 name = Invensense\_pressure\_conversion ([c1,c2,c3,c4])
- 4) Get raw pressure *p\_dout* and temperature *t\_dout* data from the sensor as described in chapter 5.5.
- 5) Call function get\_pressure: name.get\_pressure(p\_dout, t\_dout)

The sample code from section 5.13 gives an example of this workflow.

#### 5.10 READ-OUT OF CALIBRATION PARAMETERS

For converting raw pressure data to physical values, four calibration parameters have to be retrieved from the OTP of the sensor.

#### Set up of OTP read:

- 1) Send I<sup>2</sup>C write header 0xC6
- 2) Send command 0xC595 (move pointer in address register)
- 3) Send address parameter together with its CRC 0x00669C

Steps 1) – 3) can be executed on many platforms by a single  $I^2C$  write of the value 0xC59500669C.

#### **Read out parameters:**

Repeat the following procedure 4 times:

- a) Send I<sup>2</sup>C write header 0xC6
- b) Send command 0xC7F7 (incremental read-out of OTP)
- c) Send I<sup>2</sup>C read header 0xC7
- d) Read 3B (2B of data and 1B of CRC)
- e) Decode data as 16bit big endian signed integer and store result into n-th calibration parameter *c*n.

Steps a) to d) can be executed on many platforms by a single write 0xC7F7 to the chip address followed by a single read of 3 B from the chip address.

#### 5.11 SAMPLE CODE: EXAMPLE C SYNTAX

```
/* data structure to hold pressure sensor related parameters */
typedef struct inv_invpres
ł
  struct inv_invpres_serif serif;
 uint32_t min_delay_us;
 uint8_t pressure_en;
 uint8 t temperature en;
  float sensor_constants[4]; // OTP values
  float p_Pa_calib[3];
  float LUT_lower;
  float LUT_upper;
  float quadr_factor;
  float offst_factor;
} inv_invpres_t;
int inv_invpres_init(struct inv_invpres * s)
ł
  short otp[4];
 read_otp_from_i2c(s, otp);
 init_base(s, otp);
  return 0;
3
int read_otp_from_i2c(struct inv_invpres * s, short *out)
  unsigned char data_write[10];
  unsigned char data_read[10] = {0};
  int status;
  int i;
 // OTP Read mode
```





```
data_write[0] = 0xC5;
  data_write[1] = 0x95;
  data_write[2] = 0x00;
  data_write[3] = 0x66;
  data_write[4] = 0x9C;
  status = inv_invpres_serif_write_reg(&s->serif, ICC_ADDR_PRS, data_write, 5);
  if (status)
            return status:
  // Read OTP values
 for (i = 0; i < 4; i++) {</pre>
            data_write[0] = 0xC7;
data_write[1] = 0xF7;
            status = inv_invpres_serif_write_reg(&s->serif, ICC_ADDR_PRS, data_write, 2);
            if (status)
                      return status:
            status = inv_invpres_serif_read_reg(&s->serif, ICC_ADDR_PRS, data_read, 3);
            if (status)
                      return status;
            out[i] = data_read[0]<<8 | data_read[1];</pre>
  }
  return 0:
}
void init_base(struct inv_invpres * s, short *otp)
{
  int i;
 for(i = 0; i < 4; i++)</pre>
            s->sensor_constants[i] = (float)otp[i];
  s->p_Pa_calib[0] = 45000.0;
  s->p_Pa_calib[1] = 80000.0;
  s->p_Pa_calib[2] = 105000.0;
 s->LUT_lower = 3.5 * (1<<20);
 s->LUT_upper = 11.5 * (1<<20);
s->quadr_factor = 1 / 16777216.0;
  s->offst_factor = 2048.0;
}
// p_LSB -- Raw pressure data from sensor
// T_LSB -- Raw temperature data from sensor
int inv_invpres_process_data(struct inv_invpres * s, int p_LSB, int T_LSB,
                                                               float * pressure, float * temperature)
{
  float t;
  float s1,s2,s3;
  float in[3];
  float out[3];
  float A,B,C;
  t = (float)(T_LSB - 32768);
  s1 = s->LUT_lower + (float)(s->sensor_constants[0] * t * t) * s->quadr_factor;
s2 = s->offst_factor * s->sensor_constants[3] + (float)(s->sensor_constants[1] * t * t) * s->quadr_factor;
  s3 = s->LUT_upper + (float)(s->sensor_constants[2] * t * t) * s->quadr_factor;
  in[0] = s1;
  in[1] = s2;
  in[2] = s3;
  calculate_conversion_constants(s, s->p_Pa_calib, in, out);
 A = out[0];
 B = out[1];
 C = out[2];
  *pressure = A + B / (C + p_LSB);
  *temperature = -45.f + 175.f/65536.f * T_LSB;
 return 0:
}
// p_Pa -- List of 3 values corresponding to applied pressure in Pa
// p_LUT -- List of 3 values corresponding to the measured p_LUT values at the applied pressures.
void calculate_conversion_constants(struct inv_invpres * s, float *p_Pa,
```

float \*p\_LUT, float \*out)



```
{
    float A,B,C;
  C = (p\_LUT[0] * p\_LUT[1] * (p\_Pa[0] - p\_Pa[1]) + p\_LUT[1] * p\_LUT[2] * (p\_Pa[1] - p\_Pa[2]) + p\_LUT[2] * p\_LUT[0] * (p\_Pa[2] - p\_Pa[0])) / (p\_LUT[2] * (p\_Pa[0] - p\_Pa[1]) + p\_LUT[0] * (p\_Pa[1] - p\_Pa[2]) + p\_LUT[0] * (p\_Pa[2] - p\_Pa[0]));
A = (a = b\_LUT[1] * (p\_Pa[2] - p\_Pa[0]));
   A = (p_Pa[0] * p_LUT[0] - p_Pa[1] * p_LUT[1] - (p_Pa[1] - p_Pa[0]) * C) / (p_LUT[0] - p_LUT[1]);
   B = (p_Pa[0] - A) * (p_LUT[0] + C);
   out[0] = A;
   out[1] = B;
   out[2] = C;
```

#### 5.12 SAMPLE CODE: CONVERSION FORMULA (EXAMPLE PYTHON SYNTAX)

```
class InvensensePressureConversion:
```

```
""" Class for conversion of the pressure and temperature output of the Invensense sensor"""
```

def \_\_init\_\_(self, sensor\_constants):

```
""" Initialize customer formula
```

```
Arguments:
```

```
sensor_constants -- list of 4 integers: [c1, c2, c3, c4]
....
```

self.sensor\_constants = sensor\_constants

```
# configuration for ICP-10125 Samples
self.p_Pa_calib = [45000.0, 80000.0, 105000.0]
self.LUT_lower = 3.5 * (2**20)
self.LUT_upper = 11.5 * (2**20)
self.quadr_factor = 1 / 16777216.0
self.offst_factor = 2048.0
```

```
def calculate_conversion_constants(self, p_Pa, p_LUT):
```

```
""" calculate temperature dependent constants
```

```
Arguments:
```

```
p_Pa -- List of 3 values corresponding to applied pressure in Pa
p_LUT -- List of 3 values corresponding to the measured p_LUT values at the applied pressures.
```

```
....
```

```
C = (p_LUT[0] * p_LUT[1] * (p_Pa[0] - p_Pa[1]) +
    p_LUT[1] * p_LUT[2] * (p_Pa[1] - p_Pa[2]) +
    p_LUT[2] * p_LUT[0] * (p_Pa[2] - p_Pa[0])) / \
    (p_LUT[2] * (p_Pa[0] - p_Pa[1]) +
    p_LUT[0] * (p_Pa[1] - p_Pa[2]) +
    p_LUT[1] * (p_Pa[2] - p_Pa[0]))
```

A = (p\_Pa[0] \* p\_LUT[0] - p\_Pa[1] \* p\_LUT[1] - (p\_Pa[1] - p\_Pa[0]) \* C) / (p\_LUT[0] - p\_LUT[1])





```
B = (p_Pa[0] - A) * (p_LUT[0] + C)
return [A, B, C]

def get_pressure(self, p_LSB, T_LSB):
    """ Convert an output from a calibrated sensor to a pressure in Pa.

Arguments:
    p_LSB -- Raw pressure data from sensor
    T_LSB -- Raw temperature data from sensor
    """
    t = T_LSB - 32768.0
    s1 = self.LUT_lower + float(self.sensor_constants[0] * t * t) * self.quadr_factor
    s2 = self.offst_factor * self.sensor_constants[3] + float(self.sensor_constants[1] * t * t) * self.quadr_factor
    s3 = self.LUT_upper + float(self.sensor_constants[2] * t * t) * self.quadr_factor
    A, B, C = self.calculate_conversion_constants(self.p_Pa_calib, [s1, s2, s3])
    return A + B / (C + p_LSB)
[end of the pseudocode]
```

#### 5.13 SAMPLE CODE: USING CONVERSION FORMULA (EXAMPLE PYTHON SYNTAX)

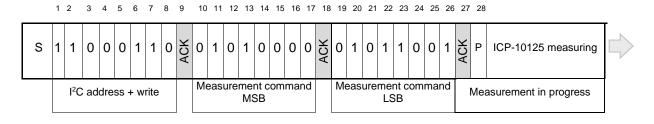
```
def read_otp_from_i2c():
```

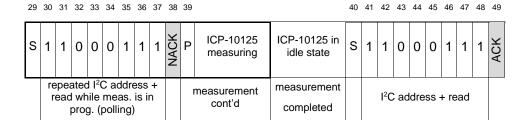
```
# TODO: implement read from I2C
```

- # refer to data sheet for I2C commands to read OTP
- return 1000, 2000, 3000, 4000

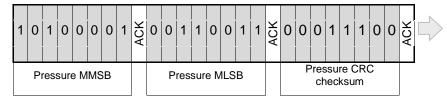
def read\_raw\_pressure\_temp\_from\_i2c():

# TODO: implement read from I2C # refer to data sheet for I2C commands to read pressure and temperature return 8000000, 32000


# Sample code to read
from Invensense\_pressure\_conversion import Invensense\_pressure\_conversion


# -- initialization
c1, c2, c3, c4 = read\_otp\_from\_i2c()
conversion = Invensense\_pressure\_conversion([c1, c2, c3, c4])

# -- read raw pressure and temp data, calculate pressure
p, T = read\_raw\_pressure\_temp\_from\_i2c()
pressure = conversion.get\_pressure(p, T)
print 'Pressure: %f' % pressure
[end of the pseudocode]




#### 5.14 COMMUNICATION DATA SEQUENCES





50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76



77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

| 1 | 0 | 1   | 0   | 0   | 0   | 0  | 1 | ACK | 0 | 0 | 1   | 1   | 0    | 0  | 1 | 1 | ACK | 0 | 0 | 0         | 1 | 1           | 1 | 0 | 0 | ACK |   |
|---|---|-----|-----|-----|-----|----|---|-----|---|---|-----|-----|------|----|---|---|-----|---|---|-----------|---|-------------|---|---|---|-----|---|
|   | Ρ | res | sur | e L | .MS | вB |   |     |   | Ρ | res | sui | re L | LS | В |   |     |   | F | res<br>ch |   | re (<br>ksu |   | С |   |     | - |

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

| 0 | 1  | 1  | 0   | 0    | 1  | 0  | 0 | ACK | 1 | 0  | 0  | 0   | 1   | 0   | 1  | 1 | ACK | 1 | 1  | 0         | 0 | 0           | 1 | 1  | 1 | NACK | Ρ |
|---|----|----|-----|------|----|----|---|-----|---|----|----|-----|-----|-----|----|---|-----|---|----|-----------|---|-------------|---|----|---|------|---|
|   | Те | mp | era | ture | эM | SB |   |     |   | Те | mp | era | tur | e L | SB |   |     |   | Те | mpo<br>ch |   | ture<br>ksu |   | RC |   |      |   |

Figure 5. Communication Data Sequences



# 6 ASSEMBLY

This section provides general guidelines for assembling TDK-InvenSense Micro Electro-Mechanical Systems (MEMS) pressure sensors.

### 6.1 IMPLEMENTATION AND USAGE RECOMMENDATIONS

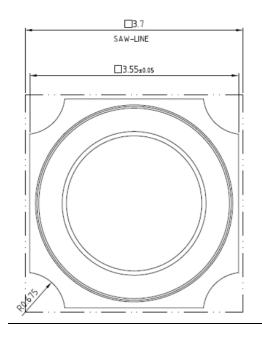
#### 6.1.1 Soldering

When soldering, use the standard soldering profile IPC/JEDEC J-STD-020 with peak temperatures of 260°C. ICP-10125 may exhibit a pressure offset after soldering, some settling time may be required depending on soldering properties, PCB properties, and ambient conditions.

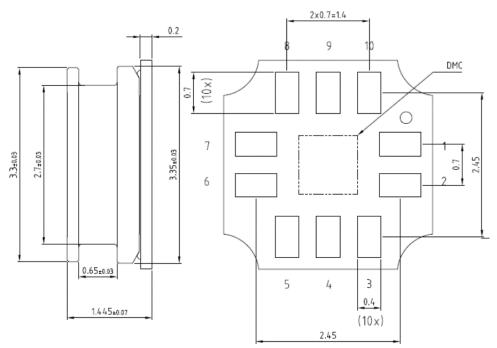
The ICP-10125 package consists of a chimney port that opens to the sensing element. Special care must be taken during soldering process to avoid contaminating the sensor through the open chimney.

- 1. Solder the sensor as a second soldering operation, after other components have been soldered
- 2. Use No-Clean solder paste
- 3. Sensor must not be subjected to board washing of any kind (critical)

#### 6.1.2 Chemical Exposure and Sensor Protection


The ICP-10125 must not be exposed to particulates or liquids. If any type of protective coating must be applied to the circuit board, the sensor must be protected during the coating process.

For further information on assembly, please refer to AN-000140 *TDK-InvenSense Pressure Sensor PCB Design Guidelines*.

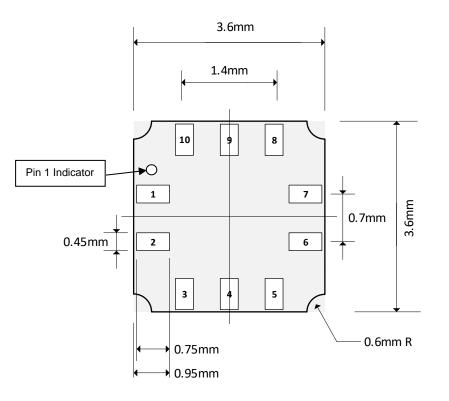



# 7 PACKAGE DIMENSIONS

Package dimensions for the ICP-10125:

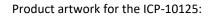


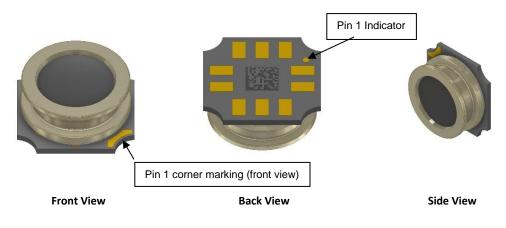


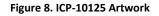



Side & Bottom View

Figure 6. ICP-10125 Package Diagram





#### Recommended PCB land pattern for the ICP-10125:




Top View

Figure 7. ICP-10125 recommended PCB land pattern









# 8 TAPE AND REEL SPECIFICATION

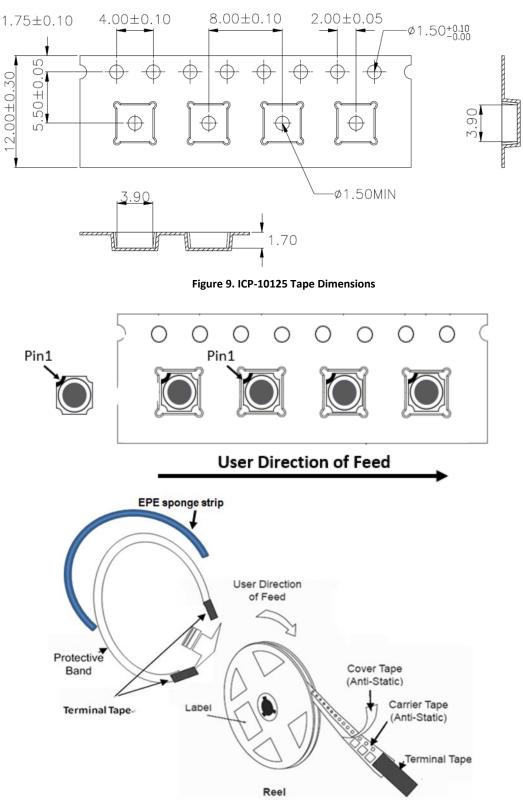



Figure 10. Tape and Reel Orientation





# 9 ORDERING GUIDE

| PART       | TEMP RANGE     | PACKAGE BODY              | QUANTITY | PACKAGING         |
|------------|----------------|---------------------------|----------|-------------------|
| ICP-10125+ | -40°C to +85°C | 3.55x3.55x1.45mm HTCC-10L | 3000     | 13" Tape and Reel |

<sup>†</sup>Denotes RoHS and Green-Compliant Package





# **10 REFERENCES**

Please refer to "InvenSense MEMS Handling Application Note (AN-IVS-0002A-00)" for the following information:

- Manufacturing Recommendations
  - Assembly Guidelines and Recommendations
  - PCB Design Guidelines and Recommendations
  - MEMS Handling Instructions
  - o ESD Considerations
  - o Reflow Specification
  - Storage Specifications
  - Package Marking Specification
  - Tape & Reel Specification
  - o Reel & Pizza Box Label
  - $\circ$  Packaging
  - o Representative Shipping Carton Label
- Compliance
  - Environmental Compliance
  - o DRC Compliance
  - o Compliance Declaration Disclaimer





# **11 REVISION HISTORY**

| REVISION DATE | REVISION | DESCRIPTION                                                                                                |
|---------------|----------|------------------------------------------------------------------------------------------------------------|
| 09/04/2020    | 1.0      | Initial Release                                                                                            |
| 04/09/2021    | 1.1      | Formatting Updates; Updated Pressure Sensor Specs (Table 3); Added Tape and Reel Specification (Section 8) |



This information furnished by InvenSense or its affiliates ("TDK InvenSense") is believed to be accurate and reliable. However, no responsibility is assumed by TDK InvenSense for its use, or for any infringements of patents or other rights of third parties that may result from its use. Specifications are subject to change without notice. TDK InvenSense reserves the right to make changes to this product, including its circuits and software, in order to improve its design and/or performance, without prior notice. TDK InvenSense makes no warranties, neither expressed nor implied, regarding the information and specifications contained in this document. TDK InvenSense assumes no responsibility for any claims or damages arising from information contained in this document, or from the use of products and services detailed therein. This includes, but is not limited to, claims or damages based on the infringement of patents, copyrights, mask work and/or other intellectual property rights.

Certain intellectual property owned by InvenSense and described in this document is patent protected. No license is granted by implication or otherwise under any patent or patent rights of InvenSense. This publication supersedes and replaces all information previously supplied. Trademarks that are registered trademarks are the property of their respective companies. TDK InvenSense sensors should not be used or sold in the development, storage, production or utilization of any conventional or mass-destructive weapons or for any other weapons or life threatening applications, as well as in any other life critical applications such as medical equipment, transportation, aerospace and nuclear instruments, undersea equipment, power plant equipment, disaster prevention and crime prevention equipment.

©2020—2021 InvenSense. All rights reserved. InvenSense, MotionTracking, MotionProcessing, MotionProcessor, MotionFusion, MotionApps, DMP, AAR, and the InvenSense logo are trademarks of InvenSense, Inc. The TDK logo is a trademark of TDK Corporation. Other company and product names may be trademarks of the respective companies with which they are associated.

