

LiDAR STL-27L

Development Manual

 STL-27L Development Manual V0.2

 2

Content:

1. PRODUCT DESCRIPTION ... 3

2. COMMUNICATION INTERFACE ... 4

3. DATA PROTOCOL ... 6

3.1. Data packet format .. 6

3.2. Measurement data analysis .. 9

3.3. Example ... 10

4. COORDINATE SYSTEM ... 11

5. DEVELOPMENT KIT INSTRUCTIONS .. 12

5.1. How to use the assessment tool ... 12

5.1.1. Hardware cable connection and description............................. 12

5.1.2. Driver installation under Windows .. 13

5.1.3. Using LdsPointCloudViewer software under Windows 15

5.2. Operation based on ROS under Linux ... 16

5.2.1. ROS environment introduction and installation 16

5.2.2. Get the source code of the ROS Package 16

5.3. Operation based on ROS2 under Linux ... 17

5.3.1. ROS2 environment introduction and installation 17

5.3.2. Get the source code of ROS2 Package 17

5.4. Instructions for using SDK under Linux ... 18

5.4.1. Get the source code of SDK ... 18

6. REVISION HISTORY .. 19

 STL-27L Development Manual V0.2

 3

1. PRODUCT DESCRIPTION

The STL-27L is mainly composed of laser ranging core, wireless telex unit,

wireless communication unit, angle measurement unit, motor drive unit and

mechanical casing.

The STL-27L ranging core uses DTOF technology, which can measure 21,600

times per second. Each time the distance is measured, the STL-27L emits an infrared

laser forward, and the laser is reflected to the single-photon receiving unit after

encountering the target object. From this, we obtained the time when the laser was

emitted and the time when the single-photon receiving unit received the laser. The

time difference between the two is the time of flight of light. The time of flight can

be combined with the speed of light to calculate the distance.

After obtaining the distance data, the STL-27L will combine the angle values

measured by the angle measurement unit to form point cloud data, and then send

the point cloud data to the external interface through wireless communication.

STL-27L supports internal speed control, the speed can be stabilized to 10±0.1Hz

within 3 seconds after power-on. At the same time, PWM external input interface is

provided to support external speed control. After the external control unit obtains

the speed, it is controlled by PID algorithm closed-loop, and the PWM signal is input

to make the STL-27L reach the specified speed.

An illustration of the environmental scan formed by the STL-27L point cloud

data is shown below:

 STL-27L Development Manual V0.2

 4

2. COMMUNICATION INTERFACE

The STL-27L uses ZH1.5T-4P 1.5mm connector to connect with external system

to realize power supply and data reception. The specific interface definition and

parameter requirements are shown in the following figure/table:

The STL-27L has a

motor driver with stepless

speed regulation, which supports internal speed control and external speed control.

When the PWM pin is grounded, the default is internal speed regulation, and the

default speed is 10±0.1Hz. For external speed control, a square wave signal needs to

be connected to the PWM pin, and the start, stop and speed of the motor can be

controlled through the duty cycle of the PWM signal. Conditions for triggering

external speed control: a. Input PWM frequency 20-50K, recommended 30K; b. Duty

cycle is within (45%, 55%) interval (excluding 45% and 55%), and at least 100ms

continuous input time. After the external speed control is triggered, it is always in the

external speed control state, and the internal speed control will be restored unless

the power is turned off and restarted; at the same time, the speed control can be

performed by adjusting the PWM duty cycle. Due to the individual differences of

each product motor, the actual speed may be different when the duty cycle is set to a

typical value. To accurately control the motor speed, it is necessary to perform

closed-loop control according to the speed information in the received data. Note:

When not using external speed control, the PWM pin must be grounded.

port

number

signal

name
type

descript

ion

mini

mum
typical

maxi

mum

1 Tx output

LiDAR

data

output

0V 3.3V 3.5V

2 PWM input
motor

control
0V - 3.3V

3 GND
power

supply
negative - 0V -

4 P5V
power

supply
positive 4.5V 5V 5.5V

 STL-27L Development Manual V0.2

 5

The data communication of STL-27L adopts standard universal asynchronous

serial port (UART) one-way transmission, and its transmission parameters are shown

in the following table:

baud rate data length stop bit parity bit flow control

921600bit/s 8 Bits 1 none none

 STL-27L Development Manual V0.2

 6

3. DATA PROTOCOL

3.1. Data packet format

The STL-27L adopts one-way communication. After stable operation, it starts to

send measurement data packets without sending any commands. The measurement

packet format is shown in the figure below.

Header VerLen Speed Start angle Data End angle Timestamp CRC check

54H 1 Byte LSB MSB LSB MSB …… LSB MSB LSB MSB 1 Byte

⚫ Header：The length is 1 Byte, and the value is fixed at 0x54, indicating the

beginning of the data packet;

⚫ VerLen：The length is 1 Byte, the upper three bits indicate the packet type,

which is currently fixed at 1, and the lower five bits indicate the number of

measurement points in a packet, which is currently fixed at 12, so the byte

value is fixed at 0x2C;

⚫ Speed：The length is 2 Byte, the unit is degrees per second, indicating the

speed of the lidar;

⚫ Start angle: The length is 2 Bytes, and the unit is 0.01 degrees, indicating

the starting angle of the data packet point;

⚫ Data：Indicates measurement data, a measurement data length is 3 bytes,

please refer to the next section for detailed analysis;

⚫ End angle：The length is 2 Bytes, and the unit is 0.01 degrees, indicating the

end angle of the data packet point;

⚫ Timestamp：The length is 2 Bytes, the unit is milliseconds, and the

maximum is 30000. When it reaches 30000, it will be counted again,

indicating the timestamp value of the data packet;

 STL-27L Development Manual V0.2

 7

⚫ CRC check：The length is 1 Byte, obtained from the verification of all the

previous data except itself. For the CRC verification method, see the

following content for details;

The data structure reference is as follows:

#define POINT_PER_PACK 12

#define HEADER 0x54

typedef struct __attribute__((packed)) {

uint16_t distance;

uint8_t intensity;

} LidarPointStructDef;

typedef struct __attribute__((packed)) {

uint8_t header;

uint8_t ver_len;

uint16_t speed;

uint16_t start_angle;

LidarPointStructDef point[POINT_PER_PACK];

uint16_t end_angle;

uint16_t timestamp;

uint8_t crc8;

}LiDARFrameTypeDef;

The CRC check calculation method is as follows:

static const uint8_t CrcTable[256] ={

0x00, 0x4d, 0x9a, 0xd7, 0x79, 0x34, 0xe3,

0xae, 0xf2, 0xbf, 0x68, 0x25, 0x8b, 0xc6, 0x11, 0x5c, 0xa9, 0xe4, 0x33,

0x7e, 0xd0, 0x9d, 0x4a, 0x07, 0x5b, 0x16, 0xc1, 0x8c, 0x22, 0x6f, 0xb8,

0xf5, 0x1f, 0x52, 0x85, 0xc8, 0x66, 0x2b, 0xfc, 0xb1, 0xed, 0xa0, 0x77,

0x3a, 0x94, 0xd9, 0x0e, 0x43, 0xb6, 0xfb, 0x2c, 0x61, 0xcf, 0x82, 0x55,

0x18, 0x44, 0x09, 0xde, 0x93, 0x3d, 0x70, 0xa7, 0xea, 0x3e, 0x73, 0xa4,

 STL-27L Development Manual V0.2

 8

0xe9, 0x47, 0x0a, 0xdd, 0x90, 0xcc, 0x81, 0x56, 0x1b, 0xb5, 0xf8, 0x2f,

0x62, 0x97, 0xda, 0x0d, 0x40, 0xee, 0xa3, 0x74, 0x39, 0x65, 0x28, 0xff,

0xb2, 0x1c, 0x51, 0x86, 0xcb, 0x21, 0x6c, 0xbb, 0xf6, 0x58, 0x15, 0xc2,

0x8f, 0xd3, 0x9e, 0x49, 0x04, 0xaa, 0xe7, 0x30, 0x7d, 0x88, 0xc5, 0x12,

0x5f, 0xf1, 0xbc, 0x6b, 0x26, 0x7a, 0x37, 0xe0, 0xad, 0x03, 0x4e, 0x99,

0xd4, 0x7c, 0x31, 0xe6, 0xab, 0x05, 0x48, 0x9f, 0xd2, 0x8e, 0xc3, 0x14,

0x59, 0xf7, 0xba, 0x6d, 0x20, 0xd5, 0x98, 0x4f, 0x02, 0xac, 0xe1, 0x36,

0x7b, 0x27, 0x6a, 0xbd, 0xf0, 0x5e, 0x13, 0xc4, 0x89, 0x63, 0x2e, 0xf9,

0xb4, 0x1a, 0x57, 0x80, 0xcd, 0x91, 0xdc, 0x0b, 0x46, 0xe8, 0xa5, 0x72,

0x3f, 0xca, 0x87, 0x50, 0x1d, 0xb3, 0xfe, 0x29, 0x64, 0x38, 0x75, 0xa2,

0xef, 0x41, 0x0c, 0xdb, 0x96, 0x42, 0x0f, 0xd8, 0x95, 0x3b, 0x76, 0xa1,

0xec, 0xb0, 0xfd, 0x2a, 0x67, 0xc9, 0x84, 0x53, 0x1e, 0xeb, 0xa6, 0x71,

0x3c, 0x92, 0xdf, 0x08, 0x45, 0x19, 0x54, 0x83, 0xce, 0x60, 0x2d, 0xfa,

0xb7, 0x5d, 0x10, 0xc7, 0x8a, 0x24, 0x69, 0xbe, 0xf3, 0xaf, 0xe2, 0x35,

0x78, 0xd6, 0x9b, 0x4c, 0x01, 0xf4, 0xb9, 0x6e, 0x23, 0x8d, 0xc0, 0x17,

0x5a, 0x06, 0x4b, 0x9c, 0xd1, 0x7f, 0x32, 0xe5, 0xa8

};

uint8_t CalCRC8(uint8_t *p, uint8_t len){

uint8_t crc = 0;

uint16_t i;

for (i = 0; i < len; i++){

crc = CrcTable[(crc ^ *p++) & 0xff];

}

return crc;

}

 STL-27L Development Manual V0.2

 9

3.2. Measurement data analysis

Each measurement data point consists of a 2-byte distance value and a 1-byte

confidence value, as shown in the figure below.

Header VerLen Speed Start angle Data End angle Timestamp CRC check

54H 2CH LSB MSB LSB MSB …… LSB MSB LSB MSB 1Byte

Measuring point 1 Measuring point 2 … Measuring point n

distance intensity distance intensity distance intensity

LSB MSB 1 Byte LSB MSB 1 Byte … LSB MSB 1 Byte

The unit of distance value is mm. The signal intensity value reflects the light

reflection intensity. The higher the intensity, the larger the signal intensity value; the

lower the intensity, the smaller the signal intensity value.

The angle value of each point is obtained by linear interpolation of the starting

angle and the ending angle. The angle calculation method is as follows:

step = (end_angle – start_angle)/(len – 1);

angle = start_angle + step*i;

where len is the number of measurement points in a data packet, and the value range of i is [0,

len).

 STL-27L Development Manual V0.2

 10

3.3. Example

Suppose we receive a piece of data as shown below.

54 2C 68 08 AB 7E E0 00 E4 DC 00 E2 D9 00 E5 D5 00 E3 D3 00 E4 D0 00 E9 CD

00 E4 CA 00 E2 C7 00 E9 C5 00 E5 C2 00 E5 C0 00 E5 BE 82 3A 1A 50

We analyze it as follows:

Header VerLen Speed Start angle Data End angle Timestamp CRC check

54H 2CH 68H 08H ABH 7EH …… BEH 82H 3AH 1AH 50H

Measuring point 1 Measuring point 2 … Measuring point 12

distance intensity distance intensity distance intensity

E0H 00H E4H DCH 00H E2H … B0H 00H EAH

Field information Parsing process

Speed 0868H = 2152 degrees per second;

Start angle 7EABH = 32427, or 324.27 degrees;

End angle 82BEH = 33470, or 334.7 degrees;

Measuring point 1 distance 00E0H = 224mm

Measuring point 1 intensity E4H = 228

Measuring point 2 distance 00DCH = 200mm

Measuring point 2 intensity 00E2H = 226

… …

Measuring point 12 distance 00B0H = 176mm

Measuring point 12 intensity EAH = 234

 STL-27L Development Manual V0.2

 11

4. COORDINATE SYSTEM

The STL-27L uses a left-handed coordinate system, the rotation center is the

coordinate origin, the front of the sensor is defined as the zero-degree direction, and

the rotation angle increases clockwise, as shown in the figure below.

 STL-27L Development Manual V0.2

 12

5. DEVELOPMENT KIT INSTRUCTIONS

5.1. How to use the assessment tool

5.1.1. Hardware cable connection and description

1) LiDAR, wire, USB adapter board, as shown in the following figure:

2) Connection diagram, as shown in the figure below:

 STL-27L Development Manual V0.2

 13

5.1.2. Driver installation under Windows

When evaluating the company's products under Windows, it is necessary to

install the serial port driver of the USB adapter board. The reason is that the USB

adapter board in the development kit provided by the company adopts the CP2102

USB to serial port adapter chip, and its driver can be obtained from Silicon Download

from Labs' official website:

https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers

Or download it from the company's repository:

https://github.com/ldrobotSensorTeam/ld_desktop_tool/releases

After decompressing the CP210x_Universal_Windows_Driver driver package,

execute the exe file in the driver installation package directory, and select X86 (32-bit)

or X64 (64-bit) according to the Windows system version.

Double-click the exe file and follow the prompts to install it.

https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers
https://github.com/ldrobotSensorTeam/ld_desktop_tool/releases

 STL-27L Development Manual V0.2

 14

After the installation is complete, connect the USB adapter board in the

development kit to the computer, right-click [My Computer], select [Properties], and

in the opened [System] interface, select [Device Manager] in the left menu to enter

Go to the device manager, expand [Ports], you can see the serial port number

corresponding to the recognized CP2102 USB adapter, that is, the driver is installed

successfully, and the figure below is COM4.

 STL-27L Development Manual V0.2

 15

5.1.3. Using LdsPointCloudViewer software under Windows

The point cloud visualization software LdsPointCloudViewer can display the

scanned data of this product in real time, and developers can use this software to

visually observe the scanning renderings of this product. Before using this software,

it is necessary to distinguish that the driver of the USB adapter board of this product

has been installed successfully, and the product is interconnected with the USB port

of the Windows system PC, then double-click the LdsPointCloudViewer.exe, and

select the corresponding product model and port number, click the Start point cloud

refresh button, as shown in the following figure.

In the above figure, 'Speed' represents the lidar scanning frequency, unit: Hz;

'Rate' represents the lidar data packet resolution rate; 'Valid' represents the valid

point for the lidar to measure a circle.

The LdsPointCloudViewer software binary package can be downloaded from the

company's repository:

 STL-27L Development Manual V0.2

 16

https://github.com/ldrobotSensorTeam/ld_desktop_tool/releases

5.2. Operation based on ROS under Linux

5.2.1. ROS environment introduction and installation

ROS (Robot Operating System) is an open source meta-operating system for

robots and middleware built on Linux. It provides the services expected of an

operating system, including hardware abstraction, low-level device control,

implementation of commonly used functions, message passing between processes,

and package management. It also provides the tools and library functions needed to

obtain, compile, write, and run code across computers. For the installation steps of

each version of ROS, please refer to the official ROS website:

 http://wiki.ros.org/ROS/Installation

The ROS function package of this product supports the following versions and

environments:

⚫ ROS Kinetic(Ubuntu16.04);

⚫ ROS Melodic(Ubuntu18.04);

⚫ ROS Noetic(Ubuntu20.04).

5.2.2. Get the source code of the ROS Package

The source code of the ROS function package of this product needs to be

obtained by contacting the company's FAE and other marketing personnel. The

README document in the source code has relevant instructions for use. If you want

to use private libraries for related development and docking through hosting

platforms such as Github or Gitee, please also give feedback to the company's FAE

and other marketers, and we will try our best to meet your development needs.

https://github.com/ldrobotSensorTeam/ld_desktop_tool/releases
http://wiki.ros.org/ROS/Installation

 STL-27L Development Manual V0.2

 17

5.3. Operation based on ROS2 under Linux

5.3.1. ROS2 environment introduction and installation

ROS (Robot Operating System) is an open source meta-operating system for

robots and middleware built on Linux. It provides the services expected of an

operating system, including hardware abstraction, low-level device control,

implementation of commonly used functions, message passing between processes,

and package management. It also provides the tools and library functions needed to

obtain, compile, write, and run code across computers. The robotics and ROS

community has changed a lot since ROS was launched in 2007. The goal of the ROS2

project is to adapt to these changes, leveraging the strengths of ROS1 and improving

on the weaknesses. For the installation steps of ROS2, please refer to the official

website of ROS2:https://docs.ros.org/en/foxy/Installation.html

The ROS2 function package of this product supports the use of the ROS2 foxy

version and above.

5.3.2. Get the source code of ROS2 Package

The source code of the ROS2 function package of this product needs to be

obtained by contacting the company's FAE and other marketing personnel. The

README document in the source code has relevant instructions for use. If you want

to use private libraries for related development and docking through hosting

platforms such as Github or Gitee, please also give feedback to the company's FAE

and other marketers, and we will try our best to meet your development needs.

https://docs.ros.org/en/foxy/Installation.html

 STL-27L Development Manual V0.2

 18

5.4. Instructions for using SDK under Linux

5.4.1. Get the source code of SDK

The Linux SDK source code of this product needs to be obtained by contacting

the company's FAE and other marketing personnel. The README document in the

source code has relevant instructions for use. If you want to use private libraries for

related development and docking through hosting platforms such as Github or Gitee,

please also give feedback to the company's FAE and other marketers, and we will try

our best to meet your development needs.

 STL-27L Development Manual V0.2

 19

6. REVISION HISTORY

version revision date modify the content

0.1 2022-07-15 Initial creation

0.2 2022-08-08 Lidar model changed from STL-19P to STL-27L

