
www.elecrow.com2020 ELECROW All Rights Reserved.C

User Guide
V2.0 2020.02

Crowtail Deluxe Kit
for Arduino

ContentContent

2020 ELECROW All Rights Reserved.C

Instruction
Modules List
Crowtail
 ● Crowtail - Motor Base Shield
 ● Crowtail - Module
Lessons
 ● Lesson 1 - LED control
 ● Lesson 2 - Collision experiment
 ● Lesson 3 - Hall speed test
 ● Lesson 4 - Motor control
 ● Lesson 5 - Tracing experiment
 ● Lesson 6 - Over temperature reminder
 ● Lesson 7 - Colorful RGB light
 ● Lesson 8 - Show text on OLED
 ● Lesson 9 - Ultrasonic ranging display
 ● Lesson 10 - Use of the joystick
 ● Lesson 11 - Servo control
 ● Lesson 12 - Smart door
 ● Lesson 13 - IR control
 ● Lesson 14 - Store data
 ● Lesson 15 - Calculation of acceleration
 ● Lesson 16 - Use of gyroscope
 ● Lesson 17 - Use of Bluetooth
 ● Lesson 18 - ESP8266 web server
 ● Lesson 19 - A naughty robot
 ● Lesson 20 - A remote control car

01
02
03
03
04
05
05
07
08
10
13
15
17
19
20
22
24
26
28
30
32
34
35
37
40
42

InstructionInstruction

Welcome to the user manual of the Crowtail-Deluxe kit for Arduino. The electronic world is
so exciting and amazing! Probably you can't wait to create more interesting works or even
realize your electronic dream. Just wait a minutes, let’s get to know this amazing kit first.
The Crowtail-Deluxe Kit for Arduino is a kit for advanced learners with a basic programming
foundation. It is designed to help learners diverge their ideas, learn how more complex
electronic components work and program, and ultimately help them achieve their dream
electronic project! The kit contains more than 20 creative and inspiring courses, from simple
to difficult, to guide you in detail to learn how these complex electronic modules work and
how to use them, and then program to achieve challenging and creative electronic projects
that will even teach you how to create your own artificial intelligence work! In all, by learning
this kit, you will learn how to build a smart car completely, including wireless remote control,
intelligent tracking or obstacle avoidance, etc. Of course, there are more complex move-
ment data acquisition, wifi and Bluetooth use!

The Crowtail-Deluxe kit for Arduino includes more than 20 electronic modules, which are
selected one by one from more than 100 Crowtail electronic modules. The kit is designed to
let you learn some complex electronic modules and learn how they work and how to use
them. In addition, the kit will broaden your thinking, help you inspire more novel ideas and
creations, and ultimately help you achieve your dream work!

For the programming part, we will use Arduino software for programming. As you know,
Arduino is an easy-to-use open source electronic prototyping platform. It is one of the most
popular open source hardware in the world, including hardware (various Arduino board
models) and software (Arduino IDE). This is the easiest and best choice for you to learn
programming and hardware and achieve creative work. In short, you will explore the core of
electronic device programming and creation, and help you create your own great work with
a more comprehensive mind.

01

02

Modules ListModules List

● Crowtail - Motor Base shield x1

● Crowtail - Buzzer x1

● Crowtail - Switch x1

● Crowtail - LED(Red) x1

● Crowtail - Bright LED x1

● Crowtail - RGB-LED x1

● Crowtail - OLED x1

● Crowtail - IR Reflective Sensor x3

● Crowtail - Thumb Joystick x1

● Crowtail - IR Receiver x1

● Crowtail - IR Emitter x1

● Crowtail - Hall Sensor x1

● Crowtail - One Wire Waterproof Temperature Sensor x1

● Crowtail - Collision Sensor x1

● Crowtail- Ultrasonic Ranging Sensor x1

● Crowtail- 3-Axis Digital Accelerometer(±16g) x1

● Crowtail - 9G Servo x1

● Crowtail - ESP8266 nodeMCU x1

● Crowtail - Analog Gyro x1

● Crowtail - I2C EEPROM x1

● Crowtail - Bluetooth Low Energy Module x1

● Micro-Speed Motor x2

● Small magnet x1

03

Crowtail

Crowtail – Base Shield

Welcome to the world of Crowtail! Crowtail is a modulated, ready-to-use toolset, it takes a building
block approach to assemble electronics. It simplifies and condenses the learning process significantly.
In our Crowtail warehouse, there are over 150 Crowtail modules and Crowtail shields!
The Crowtail products are basic-functional modules that consist of a Base Shield and various modules
with standardized connectors, each Crowtail module has its specific functions, such as light sensing
and temperature sensing. It will satisfy all you need for your project!
Crowtail is a series of products that we made to solve the messy jumper when connecting electronic
circuits. It consists of a Base Shield and some basic Crowtail modules, which help you create small,
simple, and easy-to-assemble circuits. In other words, when you use Crowtail, your electronic project
will not be messy wiring, instead, it will be a simple and easy to manage an electronic project!

For those who want to use Arduino to build their own DIY mobile platform, motor drive has always
been a problem. It need 2 DC motors at least to control their speed& direction of rotation because
you will want your platform forward, turn back, turn left or right. Besides, motors always need large
current, so, you will need some modules to help you control the large current, with a microcontroller
such as Arduino. Then, the Crowtail-Motor Base shield appears, it can meet your all demand to DIY
your mobile platform! The Crowtail-Motor Base Shield is a standard IO expansion motor driver board
for the Arduino. It regulate the IOs of Arduino to the standard Crowtail interface and have two
interfaces to drive motors or a interface to drive 4-wire stepper, which can be sorted into 4 kinds:
Analog(A), Digital(D), UART(D0&D1, D2&D3) and IIC(A4&A5):

 6 Digital I/O ports (D2~D7) that have a mark “D”. These ports can be used to read and control
digital Crowtail modules (Crowtail modules that have a mark “D”), such as the Button and LEDs.
Some of the digital I/O ports can also be used as PWM (pulse width modulation) outputs;

 3 Analog ports (A0~A2) that have a mark of “A”. Besides the functional of digital, these A
ports can read the analog signal, such as a potentiometer or light sensor;

1

2

3

42

1

04

Crowtail – Modules
We make more than 100 kinds of electronic modules into Crowtail modules. They include a variety of
sensors, displays, inputs and outputs modules, communication types include I2C, UART, digital or
analog, which aim to provide more options to fully meet all needs for your electronic projects! All
modules can be used by simply connecting them to the Crowtail-Motor Base shield using a Crowtail
cable, which is a huge improvement over the previously troublesome jumper connections.

 2 UART ports(D0&D1, D2&D3) that have a mark of “U”. These interfaces can be used for UART
communication such as the WIFI module or Bluetooth module;

 1 IIC ports(A4&A5) that have a mark of “I”. These interfaces are for the IIC Communication;

Besides, there is also two motor connector, which you can drive 2 motors simultaneously or drive a
4-wire stepper. Users can connect any electronic modules to the Base Shield with Crowtail cable
easily.

Compared with the traditional way of carrying out electronic projects, Crowtail has a huge performance
benefit. All Crowtail has the standard 4 pin connectors. Your creative idea can be realize easier and
faster just by plug and play. In addition, you don’t need to debug the electronic circuits!

3

4

Connect Crowtail- Motor Base shield
with your Arduino

Connect Crowtail- Motor Base shield
with your Crowduino

05

Crowtail bright LED is a bright LED light with high brightness
and a large angle. Then its low terminal resistance can be
applied to indoor lighting, commercial lighting. Unlike colored
LEDs, Crowtail bright led light is white, very similar to our
daily light source and you can use it to make your own table
lamp. It can provide a strong light source for your project,
lighting, or so on.

The Crowtail- Switch is a Latching switch. When the switch is pressed
for the first time, the switch maintains current regulation and the button
outputs a HIGH signal in the self-locking state. When the switch is
pressed for a second time, the switch button pops up and the switch
turns off and then outputs a LOW signal. In fact, it is very similar to the
button, except that the switch has a self-locking function so that it can
output logic high level signal without pressing it all the time.

In this lesson, we are going to use bright LED module and switch to make a corridor night lights,
which will produce a strong illumination light for those who need it. Let’s start playing and see the
difference form colored LEDs.

Lesson 1 – LED Control
Lessons

Introduction

Arduino Uno/Crowduino Uno x1
Crowtail - Motor Base Shield x1
Crowtail - Bright LED x1

Crowtail - Switch x1
Crowtail - Cable x2

Required Parts

STEP1: Plug the Crowtail-Motor Base Shield onto the
Arduino or Crowduino board.

Hardware Connection

STEP2: Connect the Crowtail-Switch and Crowtail-Bright
LED to the D2 and D3 ports of the Crowtail-Motor Base
Shield. The complete connection is as follows.

Open the P01_LED_Control with Arduino IDE
and upload it.

06

When you press the switch, the bright LED will immediately light up, and the LED will go out when
you press the switch again to make the switch button pop up.

What will you see

1. Declare the LED and switch pins, and the “switchstate” variable to store the state of the button
2. Setup the LED as output and switch as input.
3. Read the state of the switch.
4. If the switch is pressed(HIGH), turn the LED on.
5. If the switch is pressed again and switch button is pop up(LOW), turn the LED off.

Code overview

Code usage

A variable is a placeholder for a value that may change in your code.
Variables must be introduced or "declared" before using variables.
Here, we declare two variables that define which ports of the base shield
the module should connect to and a variable called ‘switchState’
of type int(integer) and assign it a value of 0 to record the status of
the switch. Don't forget that variable names are case-sensitive!

Input or Output

Before using one of the digital pins, you need to tell Arduino
whether it is an input (INPUT) or an output (OUTPUT).
We use a built-in "function" called pinMode() to make the pin
corresponding to the led as an output and switch as an input.

Digital Input

We use the digitalRead() function to read the value on a digital pin.
Check to see if an input pin is reading HIGH(5V) or LOW(0V).
Returns TRUE(1) or FALSE(0) depending on the reading.

If/else Statements

The if / else statement allows your code to make corresponding choices
for different results, running a set of code when the logical statement in
parentheses is true, and another set of code when the logical statement is
false. For example, if the switch is pressed, the LED will light on and when
the switch is pressed a second time and the switch button is pop up,
the LED will light off.

This is another logical operator. The "equal" symbol (==) can be confusing.
The two equal signs are equal to ask: “The two values are equal
to each other? “On the other hand, if you want to compare two values,
don't forget to add a second equal sign, because if it's just a "=",
it's an assignment method.

Is equal to

When you're using a pin as an OUTPUT, you can command it to be
HIGH (output 5 volts) or LOW (output 0 volts). When you set it to HIGH,
for digital output modules, it means work. When you set it to LOW,
for digital output modules, it means don't work. For example, the led will
light on(work) when it is set to HIGH and it will light off(don't work)
when it is set to LOW.

Digital Output

Integer Variables

07

This is a Robot model car crash or collision switch sensor module for
Arduino, it normally outputs a logic HIGH signal, but when the sensor
crash something such as the wall, the on-board switch will be pressed,
and the module outputs a logic LOW signal. This module can be
installed into any mobile platform to achieve collision detection function
via 4 pin sensor cable and Arduino sensor expansion board connector.
Do you know why the car opens the airbag immediately after the
impact? In fact, the collision sensor is used to detect collisions in the
car, so we will simulate a car detection project in this lesson, which will
be absolutely cool if installed in your own smart car.

Lesson 2 – Collision experiment

Introduction

Arduino Uno/Crowduino Uno x1
Crowtail - Motor Base Shield x1
Crowtail - Collision Sensor x1

Crowtail - LED x1
Crowtail - Buzzer x1
Crowtail - Cable x3

Required Parts

STEP1: Plug the Crowtail-Motor Base Shield
onto the Arduino or Crowduino board.

Hardware Connection

STEP2: Connect the Crowtail-Collision
Sensor to the D3 port of the Crowtail-Motor
Base Shield. Connect the Crowtail-LED and
Crowtail-Buzzer to the D5 and D6 ports of
the Crowtail-Motor Base Shield. The
complete connection is as follows.

Open the P02_Collision_Experiment with
Arduino IDE and upload it.

When you press the onboard switch, you can see the red indicator light on the collision sensor, led
and buzzer will work for 0.5 seconds, when you release the switch, the red indicator light on the
board Off, led and buzzer no longer light up and beep.

What will you see

08

The Crowtail-Hall Sensor uses the Allegro™ A1101 Hall-effect
switches are next-generation replacements for the popular
Allegro312x and 314x lines of unipolar switches. It measures the Hall
Effect, which is a production of a voltage difference across an
electrical conductor, transverse to an electric current in the conductor
as well as a magnetic field perpendicular to the current.

Lesson 3 – Hall speed test

Introduction

1. Macro definitions of PIR motion sensor pin, LED pin and buzzer pin.
2. Declare a variable to store the state of the collision sensor.
3. Setup led and buzzer as output.
4. Read the state of the collision sensor and store it to the variable collisionState.
5. If collision is detected(LOW), turn led and buzzer on for 0.5 seconds.
6. If a collision is not detected(HIGH), turn led and buzzer off.

Code overview

Code usage

The prototype of the macro definition constant is #define [MacroName] [MacroValue]. What is the
difference between a macro definition constant and a variable? First, Macro-defined constants
cannot be changed while the program is running. Variables can be changed. Second, the variable
can be used inside the function defined by it, but the life cycle end when the function ends. The
macro defines the constant until the entire program runs the life cycle ends.

Macro definition: #define collisionPin 3 #define ledPin 5 #define buzzerPin 6

It Causes the program to wait on this line of code for the amount of time in between brackets. After
the time has passed, the program will continue to the next line of code.

Delay: delay(500); delay(200);

The if / else statement allows your code to make corresponding choices for different results, running
a set of code when the logical statement in parentheses is true, and another set of code when the
logical statement is false. For the collision sensor, when the on-board switch of the collision sensor is
pressed, the state of the collision sensor is LOW which is different from most modules and it will be
HIGH when the on-board switch of collision sensor is not pressed.

If/else Statements: if(logic statement) {code to be run if the logic statement is true}
else {code to be run if the logic statement is false }

09

The output of the continuous-time switch Hall sensor output logic low(turns on) when a magnetic
field (south polarity) perpendicular to the Hall sensor exceeds the BOP threshold, and it output logic
high(turn off) when the magnetic field disappears.
The Hall sensor is a very practical electronic module. It can be applied in many aspects, such as
measuring displacement, measuring speed and so on. In this lesson, we will do a simple speed
measurement experiment with a hall sensor, let's start turning.

STEP1: Plug the Crowtail-Motor Base Shield
onto the Arduino or Crowduino board.

Hardware Connection

STEP2: Connect the Crowtail-Hall Sensor to
the D2 port of the Crowtail-Motor Base
Shield. Connect the Crowtail-LED to the D3
port of the Crowtail-Motor Base Shield. The
complete connection is as follows.

Open the P03_Hall_Speed_Test with Arduino
IDE and upload it.

Open the serial port monitor. When you use the magnet's S polar to approach the hall sensor, the
red indicator light on the hall sensor will light up and the speed count will increase by one. When
you repeat the action within the 5 second count time, the count will follow the number of times the
S-Class approaches the Hall sensor are superimposed and printed out after five seconds.If the
count of speed more than 20, the LED will lights on, otherwise, the LED will lights off.

What will you see

1. Declare the hall sensor and led pins.
2. Define the time interval of each measurement, a variable to timing and a variable to count.
3. Initialize the serial monitor and set the baud rate.
4. Call interrupt function to count speed.
5. Start timing and get the current system time.
6. If the count of speed more than 20, print the count of speed every 5 seconds and turn led on.
7. If the count of speed less than 20, print the count of speed every 5 seconds.

Code overview

Arduino Uno/Crowduino Uno x1
Crowtail - Motor Base Shield x1
Crowtail - Hall Sensor x1

Crowtail - LED x1
Crowtail - Cable x2

Required Parts

10

The 5V, 83rpm Micro DC Geared Motor with Back Shaft is ideal for DIY enthusiasts. This motor is
inexpensive, small, easy to install, and ideally suited for use in a mobile robot car. Its no-load speed
is 50rpm under 3V voltage operation and 83rpm under 5V voltage operation.

Lesson 4 – Motor control

Introduction

Code usage

'const' is the abbreviation of constants. If you use this to define variables, the variables are marked
as “read-only”, that is, they cannot be changed during the program. Constants are great for declaring
pin number variables that will not change throughout the program. Here we declare the “taketime”
constant and it assigned to 5000, which mean we will get the count of speed every 5 seconds.

Constant: const int taketime = 5000;

The prototype of the interrupt function is: attachInterrupt(interrupt，function，mode). “Interrupt”:
Interrupt source (In Arduino, the selectable value of the interrupt source is 0 or 1, generally
corresponding to pins 2 and 3 respectively). “function”: the name of the function that needs to be
interrupted. “mode”: LOW (low level trigger), CHANGE (trigger when change), RISING (low-level to
high-level trigger), FALLING (high-level to low-level trigger). We use a Hall sensor as the interrupt
source connected to the D3 port. When the interrupt occurs (the S level of the magnet is close to the
Hall sensor), this means that the high level signal of the Hall sensor will become a low level signal,
and then we run the code in the count function.

Interrupt function: attachInterrupt(digitalPinToInterrupt(interruptPin), count, FALLING);

Each type of integer is divided into two types: unsigned and signed (float and double are always
signed). In data types other than char, integers declared by default Type variables are all signed
types; char is always unsigned by default. The long keyword represents a long integer type, which is
a basic data type in a programming language. It is an abbreviation of long int. The default is a signed
long integer type.

Unsigned long integer: unsigned long time;

This function returns the number of milliseconds when the Arduino board starts running the current
program. This number overflows after about 50 days and returns to zero. By using this function, we
can precisely control the program to calculate the count of speed every 5 seconds and print it out in
the serial monitor.

Millis() function: time = millis();

11

STEP1: Plug the Crowtail-Motor Base Shield
onto the Arduino or Crowduino board.

Hardware Connection

STEP2: Connect the two Micro-Speed Motor
to motor interface of Crowtail-Motor Base
Shield. The OUT1 and OUT2 interfaces are
connected to the same motor positive and
negative poles, and the OUT3 and OUT4
interfaces are connected to the same motor
positive and negative poles.

Our Crowtail-Motor Base Shield includes 2 motor interfaces,
which can drive two motors at the same time! Of course, a
4-wire stepper motor can also be driven. After inserting the
Crowtail-Motor Base Shield into Arduino/Crowduino, the specific
method of controlling the motor is as follows:

In this course, we will use the Crowtail-Motor Base Shield motor interface to control two TT motors
simultaneously. This includes not only controlling the on or off of the motor, but also the speed of the
motor, which means that you can implement controls such as turning. Add "legs" to your smart car!

Arduino Uno/Crowduino Uno x1
Crowtail - Motor Base Shield x1

Micro-Speed Motor x2
Jumper wire x4

Required Parts

12

Be careful not to connect the motor to the interval interface, such as OUT1 and OUT3, otherwise, the
motor will not work properly. The complete connection is as follows.

Note: Because the motor consumes more power, after uploading the code, you need to provide additional
power for the Crowtail-Motor Base Shield (usually connect 9V power supply for the power input port of the
motor base shield) and then turn on the onboard power switch(you don’t have to power Crowduino/Arduino,
because the motor base shield will share the power with Crowduino/Arduino).

Open the P04_Motor_Control with Arduino IDE and upload it.

Assume that motors 1 connected to OUT1 and OUT3 are mounted on the left tire of the car, and
motors 2 connected to OUT3 and OUT4 are mounted on the right tire of the car. At the beginning,
you will see that motor 1 is faster than motor 2 so that the car can turn left. Then, the two motors
stopped rotating for two seconds. Finally, the motor1 motor is slower than the motor2 motor. This
way the car can turn right.

What will you see

1. Declare the pins to control the speed and direction of rotation of the two motors.
2. Setup the pins which are used to control motors as output.
3. Create three functions to control the two motors to turn left, turn right and stop.
4. Call left, stop and right functions we just created to control motor rotation.

Code overview

Code usage

'const' is the abbreviation of constants. Here, we will create 6 constant which mean the pins we use
to control the two motors. You can control the steering and speed of the motor through our motor
control usage chart.

Constant: const int pinI1=8; const int pinI2=11; const int speedpinA=9; const
int pinI3=12; const int pinI4=13; const int speedpinB=10;

Modular programming allows us to better manage and call our code, such as a module code
problem, we only need to modify the code inside the module, without modifying the code of the entire
program. In addition, modularizing the code allows us to implement functions with simpler logic. We
call these three functions in the loop() function to control the motor to turn left, stop and turn right.

Modular programming: void Test_Load_Left(){} void Test_Load_Right(){}
void clean_Output(){}

13

STEP1: Plug the Crowtail-Motor Base Shield
onto the Arduino or Crowduino board.

Hardware Connection

STEP2: Connect three Crowtail-IR Reflective
Sensor to D3, D5 and D7 port of Crowtail-Motor
Base Shield. Connect the two Micro-Speed
Motor to motor interface of Crowtail-Motor Base
Shield. The OUT1 and OUT2 interfaces are
connected to the same motor positive and
negative poles, and the OUT3 and OUT4
interfaces are connected to the same motor

Modular programming: void Test_Load_Left(){} void Test_Load_Right(){}
void clean_Output(){}

This IR reflective module emits the infrared light and then detects if the
echo received, to estimates if there is an obstacle or not. It utilizes
RPR-220 reflective photosensor modules, When no infrared light echo
received, that is, there is no black obstacle in front of the sensor, this
module output logic HIGH, and vice versa. There is also an on-board
potentiometer to adjust the sensitivity. This sensor is a basic and widely
used part in applications such as line-following cars, rotary speed
detection, auto data logging on utility meters.

This IR reflective module emits the infrared light and then
detects if the echo received, to estimates if there is an
obstacle or not. It utilizes RPR-220 reflective photosensor
modules, When no infrared light echo received, that is,
there is no black obstacle in front of the sensor, this module
output logic HIGH, and vice versa. There is also an
on-board potentiometer to adjust the sensitivity. This sensor
is a basic and widely used part in applications such as
line-following cars, rotary speed detection, auto data
logging on utility meters.

Lesson 5 – Tracing experiment

Introduction

Arduino Uno/Crowduino Uno x1
Crowtail - Motor Base Shield x1
Crowtail - IR Reflective Sensor x3
Crowtail - Cable x3
Micro-Speed Motor x2
Jumper wire x4

Required Parts

14

positive and negative poles, and the OUT3 and OUT4 interfaces are connected to the same motor
positive and negative poles. Be careful not to connect the motor to the interval interface, such as
OUT1 and OUT3, otherwise the motor will not work properly. The complete connection is as follows.

Note: Because the motor consumes more power, after uploading the code, you need to provide additional
power for the Crowtail-Motor Base Shield (usually connect 9V power supply for the power input port of the
motor base shield) and then turn on the onboard power switch(you don’t have to power Crowduino/Arduino,
because the motor base shield will share the power with Crowduino/Arduino).

Open the P05_Tracing_Experiment with Arduino IDE and upload it.

Assume that motors 1 connected to OUT1 and OUT3 are mounted on the left tire of the car, and
motors 2 connected to OUT3 and OUT4 are mounted on the right tire of the car. Place the IR
reflective sensors connected to D3, D5, and D7 at the left, middle, and right positions of the bottom
of the cart, respectively. When a black object is held only by the sensor of D3, motor2 rotates faster
than motor1(turn left). When using a black object to block only the D5 sensor, motor1 rotates as fast
as motor2 (forward). When using a black object to block only the sensor of D7, motor1 rotates faster
than motor2 (turn right). When none of the three sensors are blocked by a black object, the speed of
motor1 and motor2 becomes 0 (stopped).

What will you see

1. Declare the pins of three IR Reflective Sensors and variables to store the state of them.
2. Declare the pins to control the speed and direction of rotation of the two motors.
3. Setup the pins which are used to control motors as output.
4. Create functions to control the two motors to turn left, turn right, stop and forward.
5. Read the state of the three IR Reflective Sensors.
6. Use if statement to judge which function should be called to control motor.

Code overview

Code usage

'const' is the abbreviation of constants. The biggest difference between constants and variables is
that constants cannot change values while the program is running, while variables can be changed.
We use three constants to declare three IR reflective sensor pins because the pins of the three
sensors do not need to be changed during the program running. Then we use three variables to
declare the status of the three IR reflective sensors so that we can continuously read the status
values of the IR reflective sensors and update them.

Constant and integer Variables: const int irPin1 = 3; const int irPin2 = 5; const
int irPin3 = 7; int ir1State = 0; int ir2State = 0; int ir3State = 0;

"&&" stands for "AND", that is, the AND operation is performed on the pre and post operands. If the
before and after operands are true, the expression evaluates to true. In the formula, if the left operand
is false, the right operand is no longer calculated.

AND operation: if((ir1State == 0)&(ir2State != 0)&(ir3State != 0)){}

15

STEP1: Plug the Crowtail-Motor Base Shield onto the Arduino or Crowduino board.

Hardware Connection

STEP2: Connect Crowtail-One Wire Waterproof
Temperature Sensor and Crowtail-LED to D3 and
D5 port of Crowtail-Motor Base Shield.The
complete connection is as follows.

Note: Please pay attention to safety during use.

Open the downloaded folder “Crowtail Deluxe Kit for
Arduino demo code”, navigate to the folder “lib”, and
add “Ds18b20” and “OneWire” folder to the Arduino
library. Open the P06_Over_Temperature_Reminder
with Arduino IDE and upload it.

This is a waterproof version of the DS18B20 Temperature sensor.
Handy for when you need to measure something far away, or in wet
conditions. While the sensor is good up to 125 degrees, the cable is
jacketed in PVC so we suggest keeping it under 100 degrees.
Because they are digital, you don't get any signal degradation even
over long distances! The DS18B20 provides 9 to 12-bit (configurable)
temperature readings over a 1-Wire interface so that only one wire
(and ground) needs to be connected from a central microprocessor.
Usable with 3.0-5.5V systems. Because each DS18B20 contains a unique silicon serial number,
multiple DS18B20s can exist on the same 1-Wire bus. This allows for placing temperature sensors in
many different places. Applications where this feature is useful include HVAC environmental controls,
sensing temperatures inside buildings, equipment or machinery, and process monitoring and control.
Today, we will use this temperature sensor and LED as a temperature warning device. When the
temperature exceeds a certain value, the LED lights up to indicate that the water temperature is too hot.

Lesson 6 – Over temperature reminder

Introduction

Arduino Uno/Crowduino Uno x1
Crowtail - Motor Base Shield x1
Crowtail - One Wire Waterproof Temperature Sensor x1

Crowtail - LED
Crowtail - Cable x1

Required Parts

16

Upload the program and then open the serial monitor, you will see the temperature of one wire
waterproof temperature sensor is printing. When the temperature is higher than 40℃.the led will light
on and it will light off when the temperature is lower than 40℃.

What will you see

1. Import “OneWire.h” and “DallasTemperature.h” library for one wire waterproof temperature sensor.
2. Declare the pins of one wire waterproof temperature sensor and led.
3. Create a “oneWire” instance to communicate with any OneWire devices.
4. Pass instance we just created to Dallas temperature.
5. Initialize the serial and one wire waterproof temperature sensor and setup led as output.
6. Get temperature information and print.
7. Turn led on if temperature higher than 40, otherwise, turn led off.

Code overview

Code usage

'“OneWire.h” is a library for 1-Wire bus communication. The 1-Wire bus is a bus technology introduced
by Dallas Semiconductor (which has been acquired by Maxim). One line completes two-way data
communication. “DallasTemperature.h” is a library that has a layer on top of the “OneWire.h” library,
which is convenient for directly using temperature sensors such as DS18B20. Therefore, using these
two libraries, it will be very convenient for us to use one wire waterproof temperature sensor.

Import libraries: #include <OneWire.h> #include <DallasTemperature.h>

Create an instance called “oneWire”. Therefore, we can use this instance to communicate with any
OneWire devices.

Create an instance: OneWire oneWire(ONE_WIRE_BUS);

Pass the OneWire instance we just create to Dallas Temperature. This means that we can get the
temperature of the one wire waterproof temperature sensor connected to the OneWire bus.

Dallas Temperature: DallasTemperature sensors(&oneWire);

Initialize the serial monitor and set the baud rate to 9600, you can set other baud rates, but remember
to adjust the baud rate set in your own code in the serial monitor, otherwise garbled characters may
appear. Initialize the sensor to make the sensor start work.

Initialize serial and sensor: Serial.begin(9600); sensors.begin();

“getTempCByIndex()” is a function build-in “DallasTemperature.h” library. Using this function, we can
easily get temperatures for one wire waterproof temperature sensor. The 0 in the brackets means that
we only get the temperature from the first sensor.

Get temperature: t = sensors.getTempCByIndex(0);

17

STEP1: Plug the Crowtail-Motor Base Shield onto the Arduino or Crowduino board.

Hardware Connection

STEP2: Connect Crowtail-RGB-LED to D3 port
of Crowtail-Motor Base Shield. The complete
connection is as follows.

Open the downloaded folder
“Crowtail Deluxe Kit for Arduino
demo code”, navigate to the folder
“lib”, and add “Adafruit_NeoPixel”
folder to the Arduino library. Open
the P07_Colorful_RGB_Light with
Arduino IDE and upload it.

You will see that the dots on the Crowtail-RGB-LED will be filled with the same color in turn, first red,
then green, and finally blue. Next, the RGB LED will light up in different colors like a rainbow.

What will you see

The Crowtail- RGB-LED module with 4 pcs of WS2812B
which is a Chainable & Addressable LED. Users can
control all the LEDs with only one pin! Besides, the LED
bar can be also chainable, that is, you can connect
more than one LED bar to make your project more
dreamful. In this module, you can control every LED
with different colors at the same time.
Have you ever imagined that you have a colorful magic ball? Put this Crowtail-RGB-LED into a
transparent sphere to achieve this effect! Maybe with some music, you will feel like being at the concert.

Lesson 7 – Colorful RGB light

Introduction

Arduino Uno/Crowduino Uno x1
Crowtail - Motor Base Shield x1

Crowtail - RGB-LED x1
Crowtail - Cable x1

Required Parts

18

Note: RGB is very bright, please protect your eyes and avoid looking directly.

1. Import the RGB library.
2. Declare the pin of Crowtail-RGB-LED.
3. Create an RGB LED instance and select parameters for it.
4. Initialize the RGB strip.
5. Create functions that light up the RGB dots.
6. Call the function we create to show the RGB light.

Code overview

Code usage

Import the RGB library. “Adafruit_NeoPixel.h” import many convenient functions to use the RGB, so
we just need to import the library and use.

RGB library: #include <Adafruit_NeoPixel.h>

Create an RGB instance called strip. There are three parameters we need to pass to the instance.
Parameter 1 is the number of pixels in strip. Parameter 2 is the pin number. Parameter 3 is the pixel
type flags, you can add together as needed:
NEO_KHZ800 800 KHz bitstream (most NeoPixel products w/WS2812 LEDs)
NEO_KHZ400 400 KHz (classic 'v1' (not v2) FLORA pixels, WS2811 drivers)
NEO_GRB Pixels are wired for GRB bitstream (most NeoPixel products)
NEO_RGB Pixels are wired for RGB bitstream (v1 FLORA pixels, not v2)

Create instance: Adafruit_NeoPixel strip = Adafruit_NeoPixel(4, PIN, NEO_GRB +
NEO_KHZ800);

“strip.Color()” is the build-in function of “Adafruit_NeoPixel.h” library. You can use this function to set
the color of the RGB. For example, strip.Color(20,0,0) mean set RGB strip to red color. In addition,
you can change the brightness of the RGB dots by changing the first parameter which we set to 20 in
here.

Choose RGB color: strip.Color(20, 0, 0);

“strip.setPixelColor()” is a built-in function of “Adafruit_NeoPixel.h” library. We use this function to set
which pixel or color of RGB strip we need to show. The first parameter represents the number of pixels
of the RGB strip, and the second parameter represents the color.

Set pixel color: strip.setPixelColor(i, c);

After we have set up how to display the RGB strip, we need to call this function to display the RGB
strip we have set.

RGB show function: strip.show();

19

STEP1: Plug the Crowtail-Motor Base Shield
onto the Arduino or Crowduino board.

Hardware Connection

STEP2: Connect Crowtail-OLED to A4&A5 port
of Crowtail-Motor Base Shield. The complete
connection is as follows.

Open the downloaded folder “Crowtail Deluxe Kit
for Arduino demo code”, navigate to the folder “lib”,
and add “U8glib” folder to the Arduino library. Open
the P08_Show_Text_On_OLED with Arduino IDE
and upload it.

You can see a larger "Elecrow" LOGO in the middle of the OLED and a smaller "www.elecrow.com"
URL in the lower half of the OLED.

What will you see

1. Import the OLED library and create an instance of OLED.
2. Create a function to draw a big logo.
3. Create a function to draw the URL.
4. Call the function we created to show the Text.

Code overview

Crowtail- OLED is constructed from the 128 x 64 dot-matrix
OLED module. The display offers high brightness, self-emission,
high contrast ratio, slim/thin outline, wide viewing angle, wide
temperature range and low power consumption. You can almost
display anything with this OLED module, such as text and
pictures! This kind of OLED is very suitable to use in your project
which needs a small display to show data or pictures.
In this lesson, we will learn how to display text using OLED. Then let's use this tiny display at the door
of the company as a company's electronic business card, but a little different from ordinary business
cards is that you can modify it when you have any new ideas!

Lesson 8 – Show text on OLED

Introduction

Arduino Uno/Crowduino Uno x1
Crowtail - Motor Base Shield x1

Crowtail - OLED x1
Crowtail - Cable x1

Required Parts

20

Code usage

“U8glib.h” is a library of OLED, it has very comprehensive usage methods and functions for you to call
and use OLED. So, first to includes the U8glib.h library into your program and then you can call the
function directly inside the library to using the OLED.

OLED Library: #include "U8glib.h"

Before you start using OLED, you need to initialize the OLED object. In fact, you need to tell which
type of OLED is used(SSD1306), what is the pixel(128X64), and what is the type of communication
between Arduino and OLED(U8G_I2C_OPT_NONE). Therefore, your initialized OLED instance can
be used correctly by you.

Create instant object: U8GLIB_SSD1306_128X64 u8g(U8G_I2C_OPT_NONE);

We created a drawLogo() method to draw our logo and a drawURL() method to draw our URL. In
these two methods, we use the u8g.setFont() method to select the font we want to display and use
the u8g.drawStr() method to set what position and character we want to draw. There are three
parameters in the u8g.drawStr() function. The first parameter represents the abscissa position of the
character we need to draw, the second represents the ordinate position of the character to be drawn,
and the third represents the character to be drawn.

Draw text: void drawLogo(uint8_t d){//draw text you want} void drawURL(void)
{//draw text you want}

The drawing process must be performed in accordance with this framework, and the code displayed
by the drawing is executed in a loop composed of firstPage and nextPage.

Show the text you draw: u8g.firstPage();do{//put what you want to draw here} while
(u8g.nextPage()) ;

This HC-SR04 has stable performance and high ranging
accuracy. Compared to the Shap IR ranging module,
HC-SR04 is cheaper than it. But it has the same ranging
accuracy and longer ranging distance.

Lesson 9 – Ultrasonic ranging display

Introduction

21

STEP1: Plug the Crowtail-Motor Base Shield
onto the Arduino or Crowduino board.

Hardware Connection

STEP2: Connect Crowtail-Ultrasonic Ranging
Sensor to D2&D3 port of Crowtail-Motor Base
Shield. Connect Crowtail-OLED to A4&A5 port of
Crowtail-Motor Base Shield. The complete
connection is as follows.

Open the downloaded folder “Crowtail Deluxe Kit
for Arduino demo code”, navigate to the folder “lib”,
and add “Ultrasonic” folder to the Arduino library.
Open the P09_Ultrasonic_Ranging_Display with
Arduino IDE and upload it.

Move the object that the ultrasound is facing. You can see that the distance displayed by the OLED
will change as the distance between the ultrasound and the object facing changes.

What will you see

1. Import the libraries of ultrasonic ranging sensor and OLED.
2. Create instances of ultrasonic ranging sensor and OLED.
3. Create variables to store distance and characters array to change distance using characters.
4. Create a function to draw the distance on OLED.
5. Read the distance from the ultrasonic ranging sensor.

Code overview

Ultrasonic pulses travel outward until they encounter
an object, The object causes the wave to be
reflected back towards the unit. The ultrasonic
receiver would detect the reflected wave and stop
the stop timer. Now read the time of the counter,
which is the ultrasonic propagation time in the air.
According to the formula: Distance = ECHO high
level time X ultrasonic velocity (Speed of Sound in
air 340m/sec) / 2, you can calculate the distance to
the obstacle.

Arduino Uno/Crowduino Uno x1
Crowtail - Motor Base Shield x1
Crowtail - Ultrasonic Ranging Sensor x1

Crowtail - OLED x1
Crowtail - Cable x2

Required Parts

22

6. If the distance is different from the previous distance, clear OLED and displays the new distance
on OLED.
7. If the distance is the same as the previous distance, don’t need to upgrade the display on OLED.

Code usage

Import the libraries for using the ultrasonic ranging sensor and OLED. “Wire.h” is the library of I2C
devices, we need to import this library to tell Arduino IDE before we use I2C devices. "Ultrasonic.h" is
a library of ultrasonic ranging sensors. With the built-in method of this library, we no longer need to
perform complex distance calculations to obtain the distance. “U8glib.h” is the library of OLED.

Import libraries: #include <Wire.h> #include <Ultrasonic.h> #include "U8glib.h"

Create an ultrasonic instance object so we can use the function of the ultrasonic library to get the
distance. Inside the parentheses, there are two parameters we need to pass. The first one is the pin
of trig and the second one is the pin of echo.

Create ultrasonic instance: Ultrasonic ultrasonic(2,3);

Char is short for Character, which is to declare that we want to create character-related.“distance_
value_temp[5] = {0}” means that we are creating an array that can contain 5 elements. Since we used
char to declare it, it is 5 characters. Finally, we assign it a value of 0.

Character array: char distance_value_temp[5] = {0};

Since we need to display the distance value on the OLED, the OLED can only display strings, but the
distance value is an integer variable, so we have to convert it to a string to display on the OLED.
“value”: the data to be converted; “string”: the address of the target string; “radix”: the converted
hexadecimal number, which can be decimal, hexadecimal, etc.

Convert numbers to strings: itoa(int value, char *string,int radix);

"Ultrasonic.Ranging ()" is the function used to obtain the ultrasonic distance. You need to fill in the
brackets in which units you want to get the distance value. Optional parameters are CM (centimeter),
INC (feet). After getting the distance, we assign the distance to the variable "Distance".

Get distance: Distance=ultrasonic.Ranging(CM);

Crowtail- Thumb Joystick is a Crowtail compatible module that is very similar to the 'analog' joystick
on PS2 (PlayStation 2) controllers. Two direction movements will output different analog signals as

Lesson 10 – Use of the joystick

Introduction

23

STEP1: Plug the Crowtail-Motor
Base Shield onto the Arduino or
Crowduino board.

Hardware Connection

STEP2: Connect Crowtail-Thumb
Joystick to A4&A5 port of Crowtail-
Motor Base Shield. The complete
connection is as follows.

Open the P10_Use_Of_The_Joystick
with Arduino IDE and upload it.

Open the serial monitor, when you drag the joystick to different positions, you can see that the joystick
will print the corresponding value, and you will also see the direction prompts, including up and down,
left and right. But in fact, It can also detect the direction of the two axes at the same time! For
example, the upper right direction.

What will you see

1. Declare two variables to store x, y axes value of joystick.
2. Initialize the serial monitor and set the baud rate for it.
3. Read the value of x, y axes of the joystick and store them in two variables.
4. Print the x, y axes value of joystick in decimal.
5. Use if/else statement to judge the direction of the joystick and print them.

Code overview

they are actually two potentiometers. The resistor is 10k for each. The
joystick also has a push-button that is could be used for special
applications. When the module is in the working mode it will output two
analog values representing two directions. The value is restricted in a
little smaller range (e.g 200~800)compared to the normal joystick, while
it is around 1023 when the button is pushed so that the MCU can detect
the action of pressing.In this lesson,we will print the working status of
the joystick in different positions on the serial monitor,
so that we can use it later to control the small smart car made by yourselves, such as the head rotation
(servo), movement (motor), horn (buzzer), light (led), etc.

Arduino Uno/Crowduino Uno x1
Crowtail - Motor Base Shield x1

Crowtail - Thumb Joystick x1
Crowtail - Cable x1

Required Parts

24

STEP1: Plug the Crowtail-Motor Base Shield onto the Arduino or Crowduino board.

Hardware Connection

Code usage

Read the analog input of the thumb joystick. Why we don’t need to declare A4, A5 port as INPUT? As I
said before, because Arduino pins are the default input mode, when the pin is input, we do not need to
initialize the pin as input. Of course, you can also declare the pin as an input, which will be more
standardized and easier to understand for others.

Analog input: xValue = analogRead(A5); yValue = analogRead(A4);

We use 4 if statements to determine the values of the x and y axes so that we can print a direction
hint based on the position of the joystick. You may be confused by the value in the logical statement,
it is just the value that I distinguish and set when I observe the change in the value of the joystick
after changing the position of the joystick. So when you have a better idea, you can change your
value.

If Statements: if(logic statement) {code to be run if the logic statement is true}

Tower Pro SG90 is a high quality, low-cost servo for all
your mechatronic needs. It comes with a 4-pin power and
control cable, mounting hardware. Servo is used in many
intelligent situations, such as automatic doors, robots,
aerial models, etc.
It can be said that the servo is almost an indispensable
module in the field of intelligent control. Have you thought
about adding a rotatable part to your smart product, such as the robot's head and hands. In this
lesson, we will use servo and joystick to make a servo controller that allows you to use the joystick to
control the rotation of servo.

Lesson 11 – Servo control

Introduction

Arduino Uno/Crowduino Uno x1
Crowtail - Motor Base Shield x1
Crowtail - 9G Servo x1

Crowtail - Thumb Joystick x1
Crowtail - Cable x1

Required Parts

25

STEP2: Connect Crowtail-9G
Servo to D5 port of Crowtail-
Motor Base Shield. Connect
Crowtail-Thumb Joystick to
A4&A5 port of Crowtail-Motor
Base Shield. The complete
connection is as follows.

Open the downloaded folder “Crowtail Deluxe Kit for Arduino demo code”, navigate to the folder “lib”,
and add “Servo” folder to the Arduino library. Open the P11_Servo_Control with Arduino IDE and
upload it.

At first, the servo will rotate to 90 degrees of its midpoint. When you rock the joystick left and right
along the x-axis, you can see that the servo will rotate to the corresponding angle as the joystick
moves. Whenever you press the joystick cap, the servo will rotate its midpoint 90 degrees.

What will you see

1. Import the servo library and create an instance of the servo.
2. Declare two variables to store the joystick value and servo angle value.
3. Attaches the servo instance object on pin 5 and initialize it with 90 degrees.
4. Read the joystick value
5. If the joystick button is pressed, let the servo rotate to 90 degrees.
6. If the joystick button is not pressed, let the servo rotate to the corresponding angle as the joystick
moves using map() function.

Code overview

Code usage

Import the servo library. Servo.h is a wonderful library of the servo, it provides a very convenient
function to control the rotation of servo. With using this library, we don't need to bother to check the
contrast between the rotation angle of the PWM and the servo, we only need to input the angle we
want the servo to rotate in the rotation function.

Servo library: #include <Servo.h>

Create a servo object to control the servo. After import the servo library, we need to create a servo
object to tell that we need to control this servo.

Create servo instance: Servo myservo;

Declare which pin the servo is connected to. Different from the other modules which use variable to
initialize which pin them should be connected to, servo use ServoObject.attach() function to tell which

Attach function: myservo.attach(5);

26

STEP1: Plug the Crowtail-Motor Base Shield onto
the Arduino or Crowduino board.

Hardware Connection

STEP2: Connect Crowtail-9G Servo and Crowtail-LED
to D5 and D7 port of Crowtail-Motor Base Shield.
Connect Crowtail-Ultrasonic Ranging Sensor to D2&D3
port of Crowtail-Motor Base Shield. The complete
connection is as follows.

The function of servo rotation. The prototype of this function is “ServoObject.write()”, The parameter in
parentheses is the angular position you need the servo to rotate to, for our 180 degrees servo, the
range of parameters you can enter is 0-180 degrees.

Servo rotation function: myservo.write(90); myservo.write(angle);

Remap numbers from one range to another. That is, if the value is "fromLow", the mapped value will
be "toLow". If the value is "fromHigh", then the mapped value will be "toHigh". When "value" is from
other values from fromLow to fromHigh, it is also mapped to between toLow and toHigh in equal
proportions. So here we map the value of pos (between 200 and 800) to angle(between 0 and 180).
For example, if the value of joystick pos is 300, after using the map() function, it will become about 30
and be assigned to the variable: angle.

Arduino math function map():int gapValue = map(value, fromLow, fromHigh,
toLow, toHigh)

pin it is connected to. For example, our code is to connect the servo to D5 port.

When we go to some commercial buildings, the gate will open automatically when we walk to the door.
Very convenient, right? In this lesson, we will use our own way to make a mini smart door using
ultrasonic, servo and led modules. When we stand in front of the door, the door can open automatically.
In addition, the red led can indicate the opening and closing of the door.

Lesson 12 – Smart door

Introduction

Arduino Uno/Crowduino Uno x1
Crowtail - Motor Base Shield x1
Crowtail - 9G Servo x1

Crowtail - Ultrasonic Ranging Sensor x1
Crowtail - LED x1
Crowtail - Cable x2

Required Parts

27

Open the P12_Smart_Door with Arduino IDE and upload it.

When you put your hand in front of the ultrasonic ranging sensor and make sure the distance between
your hand and ultrasonic ranging sensor should less than 10 cm, you will see the servo will rotate to
170 degrees. And the LED will light off to indicate the door is opened. Until you move your hand away
in front of the ultrasonic ranging sensor, the servo will rotate to 10 degrees and the LED will light on to
indicate the door is closed.

What will you see

1. Import the ultrasonic ranging sensor and servo library.
2. Create instances of ultrasonic ranging sensor and servo.
3. Declare the port of led and some variables to store the distance and servo angle.
4. Attach the servo to D5 port and initialize the servo and setup the led as output.
5. Read the distance from the ultrasonic ranging sensor.
6. If the value of distance less than 10 cm, make the servo rotate to 170 degrees and turn led off.
7. If the value of distance more than 10 cm, make the servo rotate to 10 degrees and turn led on.

Code overview

Code usage

Create an ultrasonic ranging sensor and servo instance object so we can get the distance and make
the servo rotate to the angle we want. For ultrasonic object, there are two parameters inside the
parentheses we need to pass. The first one is the pin of trig and the second one is the pin of echo.

Instances: Ultrasonic ultrasonic(2,3); Servo myservo;

Declare which pin the servo is connected to. Different from the other modules which use variable to
initialize which pin them should be connected to, servo use ServoObject.attach() function to tell which
pin it is connected to. For example, our code is to connect the servo to D5 port.

Attach function: myservo.attach(5);

We use if / else statements to run the corresponding code based on the different distances detected
by the ultrasonic ranging sensor. When the distance is less than 10 cm(no people are detected), first
determine that the servo is at 170 degrees. If not, rotate the server to a 170-degree angle. If it is, then
there is nothing to do. When the distance is more than 10 cm(people are detected), first determine
that the servo is at 10-degrees. If not, rotate the server to a 10 degree angle. If it is, then there is
nothing to do.

If/else Statements: if(logic statement) {code to be run if the logic statement is true}
else {code to be run if the logic statement is false }

28

STEP1: Plug two Crowtail-Motor Base Shields onto two Arduino or Crowduino boards respectively.

Hardware Connection

STEP2: Open the downloaded folder “Crowtail Deluxe Kit for Arduino demo code”, navigate to the
folder “lib”, and add “IRSendRev” folder to the Arduino library.

STEP3: Connect Crowtail-Infrared Emitter and Crowtail-Collision Sensor to D3 and D2 port of
Crowtail-Motor Base Shield. Open the P13_IR_Emitter inside the P13_IR_Control folder with Arduino
IDE and upload it.

STEP4: Connect Crowtail-Infrared Receiver, Crowtail-LED and Crowtail-Buzzer to D2, D3 and D4
port of Crowtail-Motor Base Shield. Open the P13_IR_Receiver inside the P13_IR_Control folder
with Arduino and upload it.

The Infrared Emitter is an LED make from gallium arsenide, with
its color centered around 940nm. It's used to transmit infrared
signals through an infrared LED, while there is an Infrared
receiver to get the signals on the other side. We can not only use
the emitter to transmit data or commands, but also to emulate
remotes to control your home appliance using an Arduino.

The Crowtail- IR Receiver module uses the HS0038B which is miniaturized
receivers for infrared remote control systems and it is the standard IR
remote control receiver series, supporting all major transmission codes.
The IR detector has a demodulator inside that looks for modulated IR at 38
kHz. The Infrared Receiver can receive signals well within 10 meters. If
more than 10 meters, the receiver may not get the signals. We often use
the Crowtail-Infrared Receiver and the Crowtail-Infrared Emitter to work
together.

Infrared control allows people to wirelessly control various electronic devices, especially widely used
by household appliances, such as your TV remote control, air conditioner remote control, etc. In
addition, it would be a good idea to use Infrared control to control your smart car. Therefore, in this
lesson, we will use Crowtail- Infrared Emitter and Crowtail- Infrared Receiver to make our own IR
control system to control led and buzzer.

Lesson 13 – IR control

Arduino Uno/Crowduino Uno x2
Crowtail - Motor Base Shield x2
Crowtail - Infrared Emitter x1
Crowtail - Infrared Receiver x1

Crowtail - Collision Sensor x1
Crowtail - LED x1
Crowtail - Buzzer x1
Crowtail - Cable x5

Required Parts

Introduction

29

Point the infrared transmitter towards the infrared receiver. When you press the collision sensor for the
first time, the LED is on. When you press the collision sensor a second time, the buzzer will sounds.
When you press the collision sensor a third time, the led goes out and the buzzer no longer beeps.

What will you see

Infrared Emitter code:
1. Import the IR library and declare the pin of the collision sensor.
2. Declare three arrays to store the data we want to send.
3. Setup the collision sensor as input.
4. Create a function to scan if the collision sensor is pressed.
5. If the collision sensor is pressed for the first time, the data LED1 is sent.
6. If the collision sensor is pressed for the second time, the data LED2 is sent.
7. If the collision sensor is pressed for the third time, the data OFF is sent.

Infrared Receiver code:
1. Import IR library and declare led, buzzer and IR receiver pins.
2. Set the led and buzzer as outputs and initialize the IR receiver and serial monitor.
3. Receive data.
4. If the seventh bit of the data is equal to 1, turn on the LED.
5. If the seventh bit of the data is equal to 2, make the buzzer work.
6. If the seventh bit of the data is equal to 3, turn off the LED and stop the buzzer.

Code overview

Code usage

Import the IR library. Calling this library file can greatly simplify the complicated process when the
infrared transmitter and infrared receiver send and receive data. It enables us to implement infrared
data transmission and reception with simple functions.

IR library: #include <IRSendRev.h>

The complete connection is as follows.

30

Create unsigned char array. Its prototype is: Array name[].Arrays are a form of programming that
organizes a set of elements of the same type in an unordered form for ease of processing. Unsigned
char is an unsigned byte type. The size of a char type variable is usually 1 byte and it is an integer.
Here we create three unsigned char arrays to store the data we want to send.

Array: unsigned char LED1[] = {15, 70, 70, 20, 60, 5, 1, 0, 0, 0,0};

“IR.Send(Parameter1, Parameter2)” is an infrared send data function built-in the IR library. The
parameter1 is the data we want to send and parameter2 is the frequency we send this data. You may
confuse why IR emitter is connected to D3 port(pin3), that is because the D3 port is the PWM output
port.

Send data: IR.Send(LED1, 38); IR.Send(LED2, 38); IR.Send(OFF, 38);

“IR.init()” is the initialize function of the IR receiver. Before we receiver the data sent by the emitter,
we have to initialize the IR receiver to tell which pin to obtain the data. Therefore, we need to enter
the pin of the receiver in the parentheses.

IR Receiver initialize: IR.Init(IR_Receiver);

“IR.Recv()” is the IR receive function of IR receiver that built-in the IR library. The parameter in
parentheses is the address where the data is stored after the receiver receives the data. Here we
store the data in the “dta” array we created.

Receive data: IR.Recv(dta);

Arduino Uno/Crowduino Uno x1
Crowtail - Motor Base Shield x1

Crowtail - I2C EEPROM x1
Crowtail - Cable x1

Required Parts

If you need to do some data storage in Arduino but found that the
EEPROM in ATmega chip too limited, then this Crowtail-I2C EEPROM
is your best choice. This module is based on the EEPROM chip
AT24C256, which has 256k bit capacity. It communicates with Arduino
with the I2C bus, helps you do much more data storage easily.
In this lesson, we will learn how to use it as a memory, store some data
in it and read it out.

Lesson 14 – Store data

Introduction

31

STEP1: Plug the Crowtail-Motor Base Shield onto
the Arduino or Crowduino board.

Hardware Connection

STEP2: Connect Crowtail-I2C EEPROM to A4&A5
port of Crowtail-Motor Base Shield. The complete
connection is as follows.

Open the P14_Store_Data with Arduino and upload it.

Open the serial monitor and you will see 20 "." are printed in the writing test. In the reading test, you
can see that a total of 20 letters were printed from A to T. These 20 letters are exactly the data we
write in the EEPROM.

What will you see

1. Import the I2C library and macro define an I2C address for EEPROM.
2. Initialize the I2C and serial monitor and set baud to 9600.
3. Create the function of writing data and reading data.
4. Call the writing function to write the data into the EEPROM.
5. Call the reading function to read the data from the EEPROM and print.

Code overview

Code usage

Micro defines the I2C address of EEPROM. The reason why I2C devices can be cascaded is that the
address of each I2C device is unique, which allows the I2C device to not cause confusion when
communicating. Here, the EEPROM default I2C address is 0x50.

Micro define: #define EEPROM_ADDR 0x50

This is the function we create to write the data into the EEPROM. There are three parameters we
need to pass for this function. Here, we will write 20 letters from A-T into the EEPROM.

Write data: void i2c_eeprom_write_byte(int deviceaddress, unsigned int eeaddress,
byte data){ }

This function is created to read the data we write in the EEPROM. We need to pass two parameters
for this function. After we read the data from EEPROM, we will print them in the serial monitor.

Read data: byte i2c_eeprom_read_byte(int deviceaddress, unsigned int eeaddress){ }

32

STEP1: Plug the Crowtail-Motor Base Shield
onto the Arduino or Crowduino board.

Hardware Connection

STEP2: Connect Crowtail-3-Axis Digital
Accelerometer(±16g) to A4&A5 port of
Crowtail-Motor Base Shield. The complete
connection is as follows.

Open the downloaded folder “Crowtail Deluxe Kit
for Arduino demo code”, navigate to the folder
“lib”, and add “DigitalAccelerometer_ADXL345”
folder to the Arduino library. Open the P15_
Calculation_Of_Acceleration with Arduino and
upload it.

Open the serial monitor, and you will see that the accelerometer values for the X, Y, and Z axes are
printed first, and then the acceleration values in the three axis directions are converted into G units
and printed. When you swipe the accelerometer quickly along an axis, you will see the accelerometer
value of that axis will change.

What will you see

Arduino Uno/Crowduino Uno x1
Crowtail - Motor Base Shield x1

Crowtail - 3-Axis Digital Accelerometer(±16g) x1
Crowtail - Cable x1

Required Parts

The Crowtail- 3-Axis Digital Accelerometer(±16g) is base on an advanced
3-axis IC ADXL345. This is a high-resolution digital accelerometer
providing you at max 3.9mg/LSB resolution and large ±16g measurement
range. Have no worry to implement it into your free-fall detection project,
cause it's robust enough to survive up to 10,000g shock. Meanwhile, it's
agile enough to detect single and double taps. It's ideal for motion
detection, Gesture detection as well as robotics.this digital 3-axis
accelerometer has excellent EMI protection.
Its variable output makes it suitable for a wide range of applications, such as HDD shock protection,
Robotics, Smart vehicles and etc. Therefore, in this lesson, we will learn how to use this accelerome-
ter and apply this accelerometer data to our project.

Lesson 15 – Calculation of acceleration

Introduction

33

1. Import the I2C and accelerometer libraries and create an instance of ADXL345 accelerometer.
2. Initialize serial monitor and ADXL345 accelerometer.
3. Read the accelerometer values of three axis and store them in variables.
4. Print the accelerometer values of three axis.
5. Get the accelerometer values of three axis in G units and print.

Code overview

Code usage

Import the library of ADXL345 accelerometer. The calculation of acceleration is relatively complicated.
Fortunately, we can use the functions in this library to simplify the difficulty of using the accelerometer.
The I2C address of the accelerometer has been defined in the library file, so we will not declare the
I2C address of the accelerometer again in the program.

ADXL345 library: #include <ADXL345.h>

Sets the byte which holds the threshold value for detecting activity/inactivity. The data format is
unsigned, so the magnitude of the activity/inactivity event is compared with the value is compared with
the value in the THRESH_ACT/THRESH_INACT register. The scale factor is 62.5mg/LSB. A value of
0 may result in undesirable behavior if the activity/inactivity interrupt is enabled. The maximum value
is 255.

Activity and inactivity threshold: adxl.setActivityThreshold(75);
adxl.setInactivityThreshold(75);

The function of reading the acceleration data from the ADXL345. We need to pass the address of
three axis to this function. Each axis reading comes in 10-bit resolution, ie 2 bytes. Least Significant
Byte first!! Thus we are converting both bytes into one int.

Read acceleration data: adxl.readXYZ(&x, &y, &z);

Read the acceleration data in G unit. The parameters filled in the brackets are the arrays in which we
need to store the accelerometers of the three axes read. The first, second and third elements of the
array store the x-axis, y-axis and z Acceleration data.

Read acceleration in G unit: adxl.getAcceleration(xyz);

34

STEP1: Plug the Crowtail-Motor Base Shield
onto the Arduino or Crowduino board.

Hardware Connection

STEP2: Connect Crowtail-Analog Gyro to A0 port
of Crowtail-Motor Base Shield. The complete
connection is as follows.

Open the P16_Use_Of_Gyroscope with Arduino
and upload it.

Put the analog gyro on your desk horizontally and
press the reset button on the Crowduino/Arduino to
calibrate the sensor. Open the serial monitor, as you
see the prompt “Now you can begin your test”, that
means the calibration done. Then you will see the
monitor is printing the angular velocity of the analog
gyro. Try to turn the analog gyro sensor and you will
see the angular velocity changing.
Rotating direction can reference the following picture:

What will you see

Arduino Uno/Crowduino Uno x1
Crowtail - Motor Base Shield x1

Crowtail - Analog Gyro x1
Crowtail - Cable x1

Required Parts

The Crowtail- Analog Gyro is based on an angular velocity
sensor(Murata-ENC-03R) that uses the phenomenon of Coriolis
force, which is generated when a rotational angular velocity is
applied to. It provides 1-axis velocity with analog output. with
precision and quick-response measurements, this module
suitable for applications with position& posture controlling.

This Crowtail- Analog Gyro is very easy to use, you can get the gyro angle data after transfer the
analog values read from the gyro. The gyroscope is widely used in many areas, such as balance
trolley, mobile phone and etc. If you have such a gyroscope, what would you use it for? Well, before
thinking about this, let's start the subject of this lesson, that is how to use this analog gyro to get the
angular velocity.

Lesson 16 – Use of gyroscope

Introduction

35

1. Import the math library and declare the pin of the analog gyro.
2. Declare variables to store the values of the analog gyro.
3. Setup the analog gyro as input and initialize the serial monitor.
4. In the setup() function, read the value from the analog gyro and use it as a reference value.
5. Read the value from analog gyro and convert it to angular velocity and print.

Code overview

Code usage

"Float" is a floating-point data type. The FLOAT data type is used to store single-precision
floating-point numbers or double-precision floating-point numbers. Single-precision values of
floating-point types have 4 bytes. "Double" (double precision floating point) is a data type used by
computers. Rather than a single-precision floating-point number (float), a double (double-precision
floating-point number) uses 64 bits (8 bytes) to store a floating-point number.

Float and double: float reference_Value=0; double angularVelocity;

To obtain the reference value is the reason why we need to calibrate the analog gyro in beginning. We
use for() statement to get the analog gyro data 1000 time in 2 seconds and then get the average of
the value as a reference value. Therefore, within 2 seconds after uploading the program, you should
not move the sensor because the sensor is being calibrated.

Reference value: reference_Value = sum/1000.0;

Arduino Uno/Crowduino Uno x1 Crowtail - LED x1

Required Parts

Crowtail- Bluetooth Low Energy Module HM-13 is an easy
module to use and designed for transparent wireless serial
connection setup. The serial port Bluetooth module is fully
qualified BT Version V4.0 EDR + BLE dual mode with
complete 2.4GHz radio transceiver and baseband.

Bluetooth devices are widely used in our daily life, and they are powerful! Such as Bluetooth function
of your mobile phone, Bluetooth headset, Bluetooth speaker and so on. In this lesson, we will learn
how to use this bluetooth to control the led.

Lesson 17 – Use of Bluetooth

Introduction

36

STEP1: Plug the Crowtail-Motor Base Shield
onto the Arduino or Crowduino board.

Hardware Connection

STEP2: Connect Crowtail-Bluetooth
Low Energy Module to D2&D3 port of
Crowtail-Motor Base Shield. Connect
Crowtail-LED to D7 port of Crowtail-
Motor Base shield. The complete
connection is as follows.

Open the P17_Use_Of_Bluetooth with Arduino and upload it. Extract the compressed package named
"HMPCComAssistant_en.rar" and open the serial port assistant software "HMComAssistant.exe" in
the unzipped folder. You will see the software interface as shown below:

Then you should set the software as the following picture to control the led with bluetooth:

Crowtail - Motor Base Shield x1
Crowtail - Bluetooth Low Energy Module x1

Crowtail - Cable x2

37

Open the serial port assistant software "HMComAssistant.exe" and select the Arduino port and set
baud(115200) for bluetooth, then press “Open Com” and enter the data you want to send to
bluetooth(1 or 0 in our demo code). Finally, press “Send” to send the data to control the LED on and
off. When you enter the data ‘1’ and send it, the LED will light on and receive the prompt “LED ON”.
When you send the data "0", the LED will lights off and receive the prompt "LED OFF".

What will you see

1. Declare the pin of led, and a variable to store the data we send from the serial port.
2. Setup the led as output and initialize the serial monitor and set the baud(115200) that correspond
to our bluetooth.
3. Check if the serial port has received the data from bluetooth. If yes, store the data in the variable
“state”.
4. If data received is “0”, turn LED off.
5. If data received is “1”, turn LED on.

Code overview

Code usage

Set the baud for serial monitor correspond to our bluetooth module. “115200” is the default baud rate
for our bluetooth module. If we set the wrong baud for Arduino serial monitor, it may cause
communication failure or garbled communication between Bluetooth and Arduino.

Serial baud rate: Serial.begin(115200);

Determine if the serial monitor has received data. We send the data to Bluetooth, and then Bluetooth
sends the data to the Arduino serial monitor. If we send data, the expression "Serial.available ()> 0" is
true, otherwise it is false.

Received data: Serial.available()>0

Function to read data from the serial monitor. Then, we store the data in the variable "state", and we
turn on or off the led based on the value of this variable.

Read serial data: state = Serial.read();

This is Crowtail- ESP8266 Node MCU, it adds six crowtail interfaces on the board, so you can easily
use this board with other crowtail modules. We intergrate a USB-Serial chip that can upload code.

Lesson 18 – ESP8266 web server

Introduction

38

STEP1: Connect Crowtail-Bright LED and
Crowtail-Buzzer to D1 and D2 port of
Crowtail-ESP8266 Node MCU.

Hardware Connection

STEP2: Connect Crowtail-ESP8266 Node
MCU to PC with a micro USB cable. The
complete connection is as follows.

For ESP8266 Node MCU, We will
use luaEditor to edit the code and
use LuaLoader to compile and upload
the code file. Go to the
"P18_ESP8266_Web_Server"
directory, then go to the "Tool"
directory and open the application
named "LuaLoader.exe" located in
the "LuaLoader (version 0.90)" folder.
Then, you will see the software
window as below:

It also has auto-reset so no noodling with pins and reset button
pressings. To make it easy to use for portable projects, we added a
connector for 3.7V Lithium polymer batteries and built-in battery
charging. You don't need a battery, it will run just fine straight from the
micro USB connector. But, if you do have a battery, you can take it on
the go, then plug in the USB to recharge. The board will automatically
switch over to USB power when it's available. Comes fully assembled
and tested, with a USB interface that lets you quickly use it with the
Arduino IDE or NodeMCU Lua. (It comes preprogrammed with the Lua
interpreter) We also toss in some header so you can solder it in and
In this lesson, we will learn how to use the wifi function of Crowtail- ESP8266 Node MCU module to
control the LED and buzzer, but actually you can control more other devices you want.

plug into a solderless breadboard.

Crowtail - ESP8266 Node MCU x1
Crowtail - Bright LED x1
Crowtail - Buzzer x1

Crowtail - Cable x2
Micro USB Cable x1

Required Parts

39

Copy the IP of Crowtail-ESP8266 Node MCU and open it with browser, you could see the web page
shown below. You can use the button on the web page to control the LED and buzzer:

What will you see

1. Click the menu “Setting”, choose the ‘Comm Port Settings”, and it’ll popup an interface “Serial
Advanced Setting”, you should set the port(The port of my board is 4, but yours may be different,
you can check the port of the board in the port of your computer) for Crowtail-ESP8266 Node MCU
and baud rate there. After correctly set, click the “Connect” option on the top of the menu.

2. Connect the wireless networks around you. We can click the “Survey” option to see all WIFI can
obtain around you. Then enter the WIFI name and password and click “Set AP” option. Finally, click
“Get IP” option to get the IP for Crowtail-ESP8266 Node MCU.

3. Click “Upload File...” option, open “P18_ESP8266_Web_Server" folder, then choose “init.lua” and
“webserver.lua” in the “Program” folder for uploading.

40

1. Open “LuaLoader.exe” software and set port and baud for Crowtail-ESP8266 Node MCU.
2. We can use “luaEditor.exe” software to open .lua file and edit code to control buzzer and LED
through Crowtail-ESP8266 Node MCU. Of course, you can also program and control other electronic
modules.
3. Set WIFI for Crowtail-ESP8266 Node MCU and get it IP.
4. Upload the "webserver.lua" program to Crowtail-ESP8266 Node MCU.
5. Copy the IP and use the browser to web page of Crowtail-ESP8266 Node MCU server.
6. Click the button on the web page to turn LED and buzzer on or off.

Use overview

Arduino Uno/Crowduino Uno x1
Crowtail - Motor Base Shield x1
Crowtail - OLED x1
Crowtail - Ultrasonic Ranging Sensor x1

Micro-Speed Motor
Crowtail - Cable x2
Jumper Wire x4

Required Parts

Can OLED display only strings? Of course not! OLED can also display pictures, just need to simply
convert the picture into a bitmap to display the picture. So in this course, we will learn how to display
pictures on an OLED module. Used in combination with Crowtail-ultrasonic distance sensor and
Micro-Speed Motor, it can create a naughty robot. If nothing stops him in front, he will run endlessly.

Lesson 19 – A naughty robot

Introduction

41

STEP1: Plug the Crowtail-Motor Base Shield onto the Arduino or Crowduino board.

Hardware Connection

STEP2: Connect Crowtail-OLED to A4&A5
port of Crowtail-Motor Base Shield.
Connect Crowtail-Ultrasonic Ranging
Sensor to D2&D3 port of Crowtail-Motor
Base Shield. Connect the two Micro-Speed
Motor to the motor interface of Crotail-
Motor Base Shield. The OUT1 and OUT2
interfaces are connected to the same motor
positive and negative poles, and the OUT3
and OUT4 interfaces are connected to the
same motor positive and negative poles.
Be careful not to connect the motor to the
interval interface, such as OUT1 and
OUT3, otherwise the motor will not work
properly. The complete connection is as
follows.

Note: Because the motor consumes more power, after uploading the code, you need to provide additional
power for the Crowtail-Motor Base Shield (usually connect 9V power supply for the power input port of the
motor base shield) and then turn on the onboard power switch(you don’t have to power Crowduino/Arduino,
because the motor base shield will share the power with Crowduino/Arduino).

Open the P19_A_Naughty_Robot with
Arduino and upload it.

If there is nothing in front of the ultrasonic ranging sensor, the two micro-speed motors will always run,
and a smiling face will be displayed on the OLED, just like a naughty robot. Put your hand or other
obstacles in front of the ultrasonic ranging sensor, you will stop the two micro-speed motors and an
angry expression will be displayed on the OLED.

What will you see

1. Import the I2C, ultrasonic ranging sensor and OLED libraries.
2. Create an instance object for ultrasonic ranging sensor and OLED.
3. Declare the bitmap of a happy and angry image.
4. Declare some variables for the motor pin and ultrasonic ranging sensor.
5. Setup all the pins of the motor as output.
6. Create functions to control the motor and draw images on OLED.
7. Read the value of the distance from the ultrasonic ranging sensor.
8. If the distance’s value lower than 10 cm, draw an angry image and make the two motors stop.
9. If the distance’s value more than 10 cm, draw a smile image and make the two motors keep running.

Code overview

42

Code usage

Before you start using OLED, you need to initialize the OLED object. In fact, you need to tell which
type of OLED is used(SSD1306), what is the pixel(128X64), and what is the type of communication
between Arduino and OLED(U8G_I2C_OPT_NONE). Therefore, your initialized OLED instance can
be used by you normally.

Create instant object: U8GLIB_SSD1306_128X64 u8g(U8G_I2C_OPT_NONE);

Declare the bitmap and assign it. This is the U8glib library method. Generally, we will make a
modification to the name, such as happy and angry, and then the content in {} is the font of the image
you generated with the bitmap software. You only need to put The generated font is copied here and
the bitmap can be called in the program to display on the OLED.

Bitmap: static const unsigned char happy[] U8G_PROGMEM={} static const
unsigned char angry[] U8G_PROGMEM={}

“u8g.drawXBMP()” is a function of draw bitmap, Its function prototype is: void drawXBMP(u8g_uint_t
x, u8g_uint_t y, u8g_uint_t w, u8g_uint_t h, const u8g_pgm_uint8_t * bitmap), x: the abscissa of the
upper left corner of the bitmap, y: the ordinate of the upper left corner of the bitmap, w: the width of
the bitmap, h: the height of the bitmap, *bitmap: bitmap object.
Here we use this function to draw the two bitmaps happy and angry in the area where the abscissa is
0 pixels, the ordinate is 0 pixels to the abscissa is 128 pixels, and the ordinate is 68 pixels (ie, the
entire OLED screen area).

Draw a bitmap: u8g.drawXBMP(0,0,128,64,happy); u8g.drawXBMP
(0,0,128,64,angry);

Arduino Uno/Crowduino Uno x2
Crowtail - Motor Base Shield x2

Crowtail - Buzzer x1
Crowtail - Switch x1

Required Parts

If you have a good understanding of our electronic modules, then you must know that our modules
can almost meet all your needs for making your own smart car! It's time to start making our own car!
In this lesson, we will use the infrared remote control method to control the car, and make a simple
remote control car through the infrared emitter and receiver, button, buzzer, motors, LED and so on.
Less gossip, let's start making!

Lesson 20 – A remote control car

Introduction

43

STEP1: Plug the Crowtail-Motor Base Shield onto the Arduino or Crowduino board.

Hardware Connection

STEP2: Connect Crowtail-Thumb Joystick to A4&A5 port of Crowtail-Motor Base Shield. Connect
Crowtail-IR Emitter, Crowtail-Collision Sensor and Crowtail-Switch to D3, D2 and D5 port of Crowtail-
Motor Base Shield. Open the P20_IR_Emitter_Code inside the P20_A_Remote_Control_Car folder
with Arduino IDE and upload it.

STEP3: Connect Crowtail-IR Receiver, Crowtail-Bright LED and Crowtail-Buzzer to D2, D3 and D4
port of Crowtail-Motor Base Shield. Connect the two Micro-Speed Motor to the motor interface of
Crowtail-Motor Base Shield. The OUT1 and OUT2 interfaces are connected to the same motor
positive and negative poles, and the OUT3 and OUT4 interfaces are connected to the same motor
positive and negative poles. Be careful not to connect the motor to the interval interface, such as
OUT1 and OUT3, otherwise the motor will not work properly. Open the P20_IR_Receiver_Code
inside the P20_A_Remote_Control_Car folder with Arduino IDE and upload it.

Note: Because the motor consumes more power, after uploading the code, you need to provide additional
power for the Crowtail-Motor Base Shield (usually connect 9V power supply for the power input port of the
motor base shield) and then turn on the onboard power switch(you don’t have to power Crowduino/Arduino,
because the motor base shield will share the power with Crowduino/Arduino).

Crowtail - IR Emitter x1
Crowtail - IR Receiver x1
Crowtail - Thumb Joystick x1
Crowtail - Bright LED x1

Crowtail - Collision Sensor x1
Crowtail - Cable x7
Micro-Speed Motor x2
Jumper Wire x4

The complete connection is as follows.

44

Point the infrared transmitter towards the infrared receiver. When you press the collision sensor, the
buzzer will beep and when the collision sensor is released, the buzzer will stop beeping. When you
press the switch, the bright led will light on and when the switch button is pop up, the bright led will
light off. When you push the joystick forward along the y-axis, you will see two micro-speed motors
turn clockwise. When you push the joystick backward along the y-axis, you will see two micro-speed
The motor will rotate counterclockwise. When you release the joystick and the joystick returns to the
middle position, you will see that the two micro-speed motors will stop rotating.

What will you see

IR_Emitter_Code:
1. Import IR library and declare the pin of collision sensor and switch.
2. Declare some variables to store the joystick, collision sensor and switch state.
3. Declare some data we going to send.
4. Setup the collision sensor and switch as output.
5. Create functions to check if the switch and collision sensor are pressed.
6. Send related data according to the actions of collision sensor, switch and joysticks.

IR_Receiver_Code:
1. Import IR library and define the pin of IR receiver, led and buzzer.
2. Declare the pins of the motor pin and array to store the data received.
3. Setup all motor pins as output and initialize the IR receiver.
4. Create some motor working functions to be called when different data is received.
5. According to the received data, the motor working method is called.
6. The motor working functions are called according to the received data.

Code overview

Code usage

Create unsigned char array. Its prototype is: Array name[].Arrays are a form of programming that
organizes a set of elements of the same type in an unordered form for ease of processing. Unsigned
char is an unsigned byte type. The size of a char type variable is usually 1 byte and it is an integer.
Here we create seven unsigned char arrays to store the data we want to send.

Array: unsigned char LED[] = {15, 70, 70, 20, 60, 5, 1, 0, 0, 0,0};

Switch statement is similar to if/else statement, it is a judgment selection code. Its function is to control
the flow of processes. When the quantity expressed by the variable expression matches the constant
in one of the case statements, the statements following the case statement are executed, and the
statements in all subsequent case statements are executed in turn, unless a break; statement is found
out of the switch statement... If the amount of the constant expression does not match the constants
of all case statements, the statements in the default statement are executed.

Switch case statement: switch(variable){case constantExpression1:statement1;break;
 case constantExpression2:statement2:break; default:statement2;break;}

Switch case statement: switch(variable){case constantExpression1:statement1;break;
 case constantExpression2:statement2:break; default:statement2;break;}

