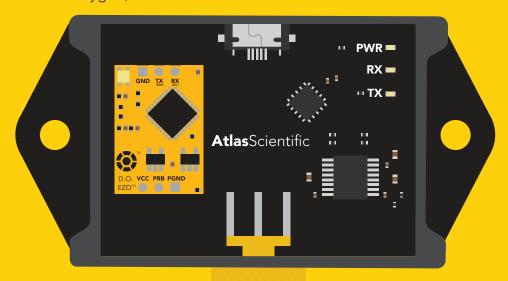


Revised 10/24


EZO Complete-DO

USB Dissolved Oxygen meter

Datasheet for engineers

ISO 5814 Compliant

(determination of dissolved oxygen)

Reads

Dissolved Oxygen

1 or 2 point

Normal range

 $0.00 - 100 \, \text{mg/L}$

Recalibration frequecy ~8-12 months

0 - 350% saturation

Temperature, salinity, and pressure compensation Yes

Accuracy

+/- 0.05

Data protocol

Data format

Calibration

Serial data through

Resolution

.01

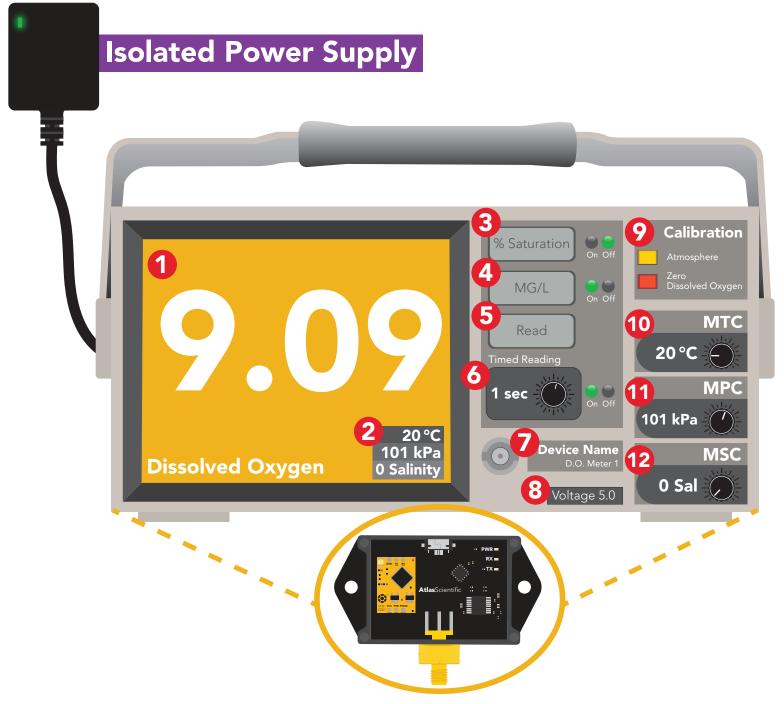
FTDI virtual comport

DO reading time

600ms

ASCII

Supported probes Any galvanic probe


Ingress protection

IP62

Written by Jordan Press Designed by Noah Press

PATENT PROTECTED

The EZO Complete-DO™ has all the features of this bench top meter.

- 1 Two decimal D.O. reading
- **2** Temperature, pressure, and salinity compensation value
- 3 Percent saturation
- 4 Milligrams per liter
- 5 Immediate reading
- 6 Timed readings

- 7 Set device name
- **8** Voltage usage
- 9 Multi point calibration
- **10** Temperature compensation
- **11** Pressure compensation
- **12** Salinity compensation

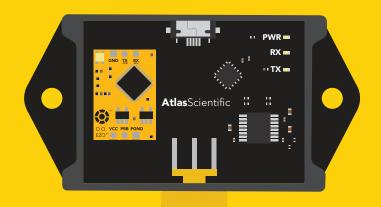
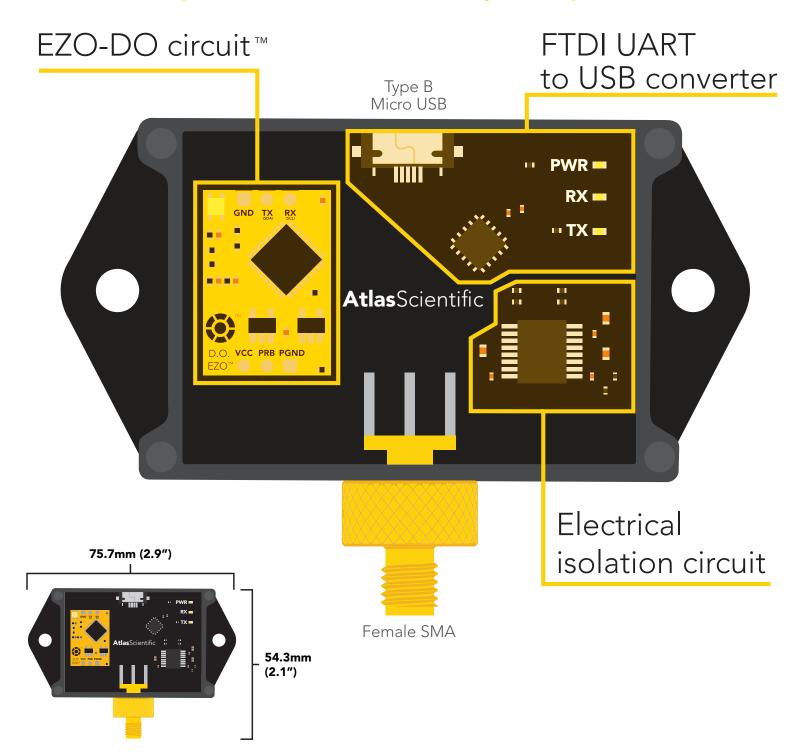

The EZO Complete-DO™ is compatible with any brand of galvanic D.O. probe.

Table of contents

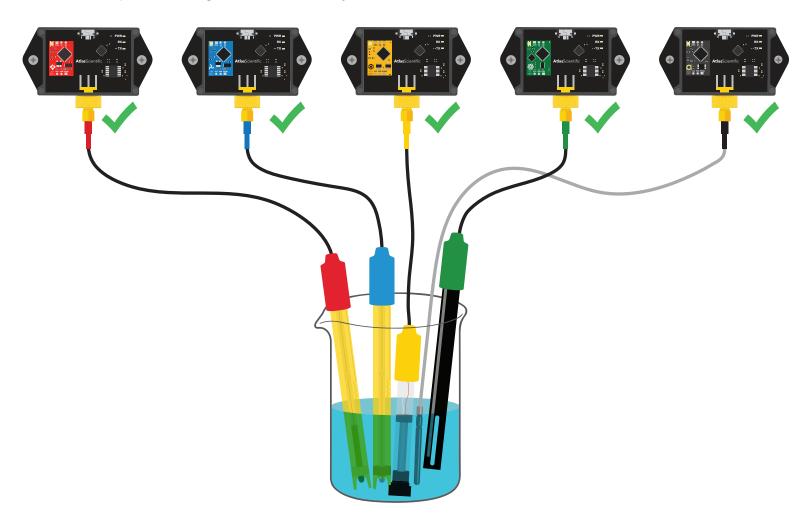
Power consumption	4
Absolute max ratings	4
Interference free	5
Ingress protection – IP62	5
Default state	7


LED color definition	8
Receiving data from device	9
Sending commands to device	10
Simple serial monitor	11
UART quick command page	12
LED control	13
Find	14
Continuous reading mode	15
Single reading mode	16
Calibration	17
Export calibration	18
Import calibration	19
Temperature compensation	20
Salinity compensation	21
Atmospheric	
pressure compensation	22
Enable/disable parameters	23
Naming device	24
Device information	25
Response codes	26
Reading device status	27
Sleep mode/low power	28
Factory reset	29

Calibration theory	30
Understanding	
D.O. measurements	35
Datasheet change log	38
Firmware updates	39
Warranty	40

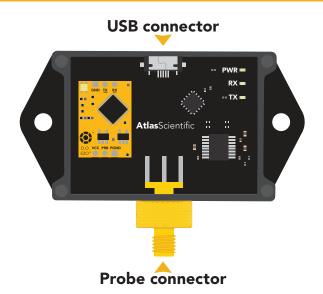
The EZO Complete-DO™ consists of 3 major components.

5V	MAX	STANDBY	SLEEP
USB	37.0 mA	36.8 mA	22.6 mA


Power consumption Absolute max ratings

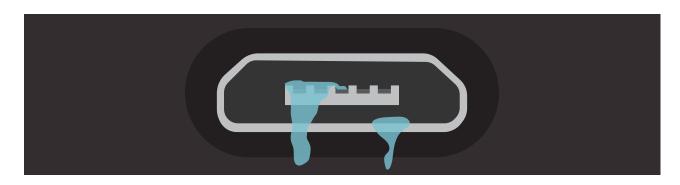
Parameter	MIN	TYP	MAX
Storage temperature	-65 °C		125 °C
Operational temperature	-40 °C	25 °C	85 °C

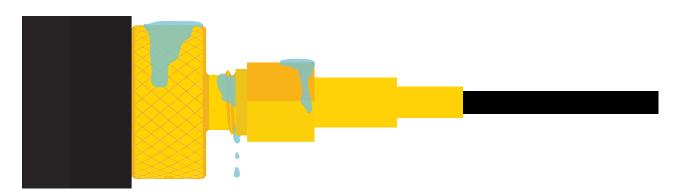
Interference free


The EZO complete readings are unaffected by other sensors in the same water.

Ingress protection – IP62

The EZO Complete-DO $^{\text{\tiny M}}$ is dust proof and resistant to splashing water.


Two areas of concern are the USB connector and the probe connector.

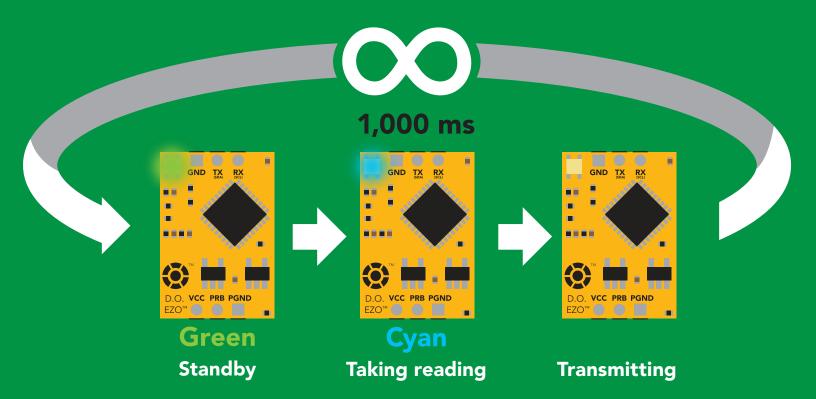


Ingress protection - IP62

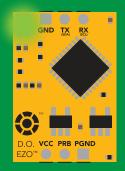
An electrical short can occur if water enters the USB connector. A USB short could permanently damage the EZO-Complete. A USB short is not covered under warranty.

A connector short can occur if water enters the SMA connector. A connector short will cause the DO readings to pin to 0, 35, or the probe will respond slowly to changes in DO. A connector short is reversible and will not damage the EZO-Complete. However, frequent shorts will eventually damage the DO probe.

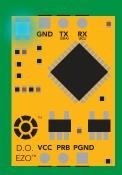
The SMA connector is part of your probe; Nothing should be in contact with this part.

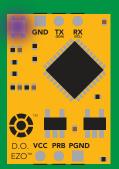


Default state


Baud 9,600

Readings continuous


Speed 1 reading per second


LED color definition

GreenUART standby

CyanTaking reading

Changing baud rate

Command not understood

White Find

5V +2.2 mA 3.3V +0.6 mA

Settings that are retained if power is cut

Baud rate Calibration

Continuous mode

Device name

Enable/disable parameters

Enable/disable response codes

Hardware switch to I²C mode

LED control

Protocol lock

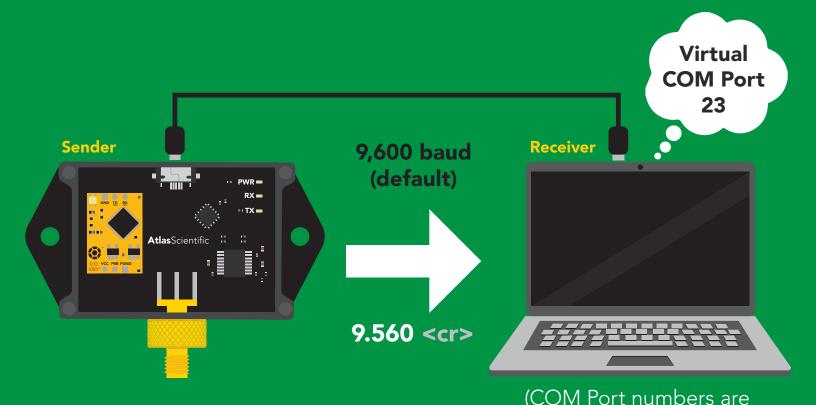
Software switch to I²C mode

Settings that are **NOT** retained if power is cut

Find

Pressure compensation

Salinity compensation


Sleep mode

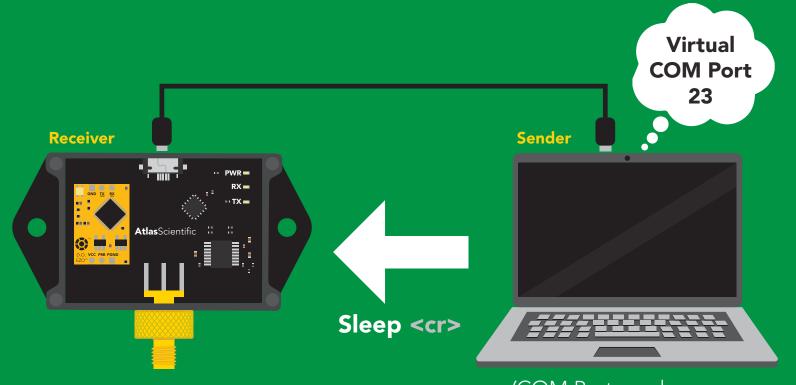
Temperature compensation

Receiving data from device

Advanced

ASCII: 9 . 5 6 0 <cr>

Hex: 39 2E 35 36 30 **0D**


Dec: 57 46 53 54 48 13

determined by the computer)

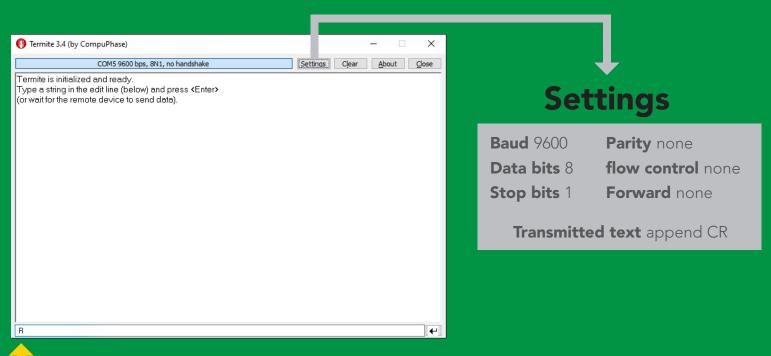
Sending commands to device

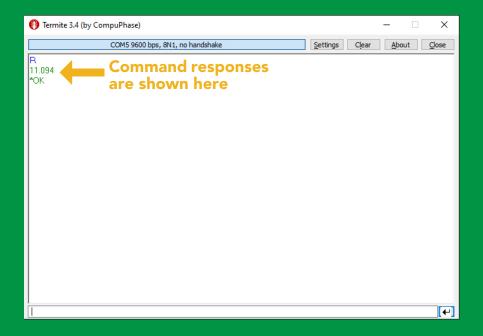
(COM Port numbers are determined by the computer)

Advanced

ASCII: S I e e P

53 6C 65 65 70


83 108 101 101 112


Looking for a simple serial monitor for debugging?

Termite: a simple RS232 terminal

Click here to download

Enter commands here

Command quick reference

All commands are ASCII strings or single ASCII characters.

Command	Function		Default state
С	enable/disable continuous reading	pg. 15	enabled
Cal	performs calibration	pg. 17	n/a
Export	export calibration	pg. 18	n/a
Factory	enable factory reset	pg. 29	n/a
Find	finds device with blinking white LED	pg. 14	n/a
i	device information	pg. 25	n/a
Import	import calibration	pg. 19	n/a
L	enable/disable LED	pg. 13	enabled
Name	set/show name of device	pg. 24	not set
0	enable/disable parameters	pg. 23	mg/L
P	atmospheric pressure compensation	pg. 22	101.3 kPa
R	returns a single reading	pg. 16	n/a
S	salinity compensation	pg. 21	n/a
Sleep	enter sleep mode/low power	pg. 28	n/a
Status	retrieve status information	pg. 27	n/a
T	temperature compensation	pg. 20	20°C
*OK	enable/disable response codes	pg. 26	enable

LED control

Command syntax

L,1 <cr> LED on default

L,0 <cr> LED off

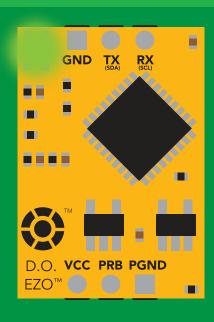
L,? <cr> LED state on/off?

Example

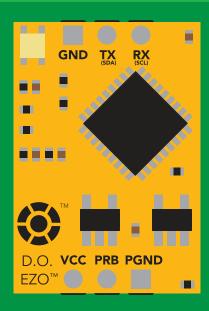
Response

L,1 <cr>

*OK <cr>>


L,0 <cr>

*OK <cr>


L,? <cr>

?L,1 <cr> or ?L,0 <cr>

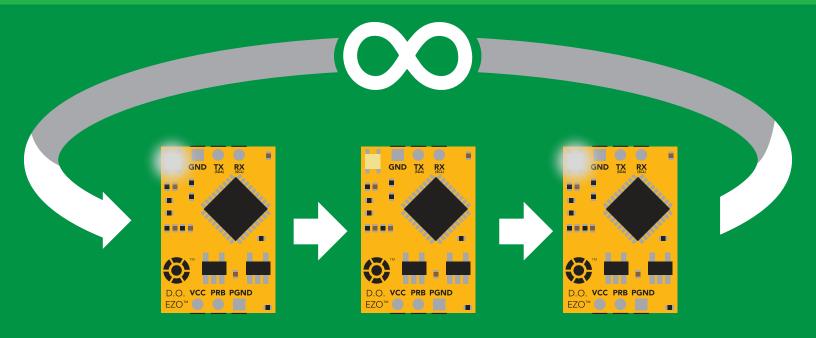
*OK <cr>

L,1

L,0

Find

Command syntax


This command will disable continuous mode Send any character or command to terminate find.

LED rapidly blinks white, used to help find device

Example Response

Find <cr>

*OK <cr>

Continuous reading mode

Command syntax

C,1 <cr> enable continuous readings once per second default

C,n <cr> continuous readings every n seconds (n = 2 to 99 sec)

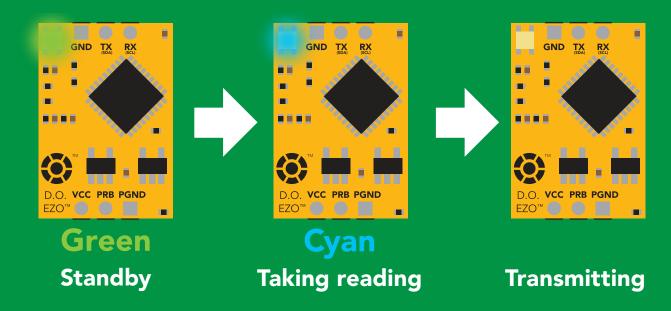
C,0 <cr> disable continuous readings

C,? <cr> continuous reading mode on/off?

Example	Response
C,1 <cr></cr>	*OK <cr> DO (1 sec) <cr> DO (2 sec) <cr> DO (3 sec) <cr></cr></cr></cr></cr>
C,30 <cr></cr>	*OK <cr> DO (30 sec) <cr> DO (60 sec) <cr> DO (90 sec) <cr></cr></cr></cr></cr>
C,0 <cr></cr>	*OK <cr></cr>
C,? <cr></cr>	?C,1 <cr> or ?C,0 <cr> or ?C,30 <cr> *OK <cr></cr></cr></cr></cr>

Single reading mode

Command syntax


R <cr> takes single reading

Example

Response

R <cr>

7.82 <cr> *OK <cr>

Calibration

Command syntax

The EZO™ Dissolved Oxygen circuit uses single and/or two point calibration

<cr> calibrate to atmospheric oxygen levels Cal

Cal,0 <cr> calibrate device to 0 dissolved oxygen

Cal, clear <cr> delete calibration data

Cal,? <cr> device calibrated?

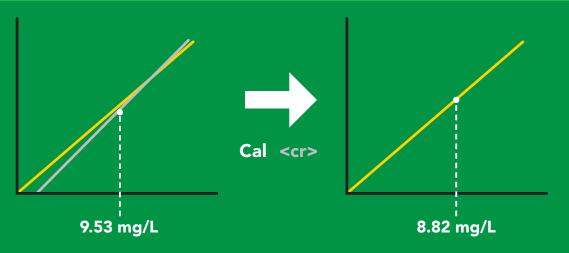
Example

Response

Cal <cr>

*OK <cr>

Cal,0 <cr>


*OK <cr>

Cal, clear < cr>

*OK <cr>

Cal,? <cr>

?Cal,0 <cr> or ?Cal,1 <cr> or ?Cal,2 <cr> single point two point *OK <cr>

Export calibration

Command syntax

Export: Use this command to download calibration settings

Export,? calibration string info <cr>

export calibration string from calibrated device **Export** <cr>

Example

Response

Export,? <cr>

10,120 <cr>

Response breakdown

10, 120

of strings to export # of bytes to export

Export strings can be up to 12 characters long, and is always followed by <cr>

Export <cr>

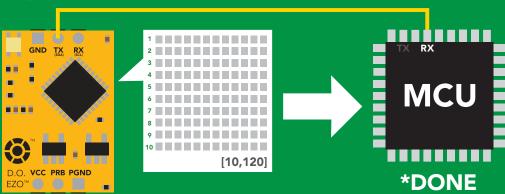
Export <cr>

(7 more)

Export <cr>

Export <cr>

59 6F 75 20 61 72 <cr> (1 of 10)


65 20 61 20 63 6F <cr> (2 of 10)

6F 6C 20 67 75 79 <cr> (10 of 10)

*DONE

Disabling *OK simplifies this process

Export <cr>

Import calibration

Command syntax

Import: Use this command to upload calibration settings to one or more devices.

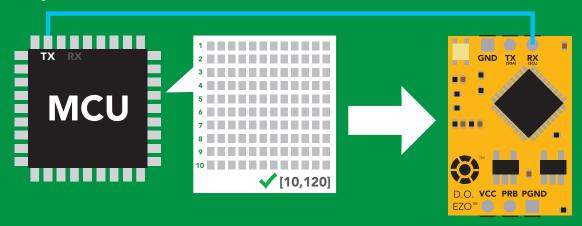
import calibration string to new device Import,n <cr>

Example

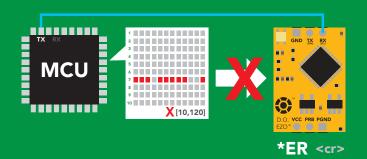
Import, 59 6F 75 20 61 72 <cr> (1 of 10)

Import, 65 20 61 20 63 6F <cr> (2 of 10)

Import, 6F 6C 20 67 75 79 <cr> (10 of 10)</ri>


Response

*OK <cr>


*OK <cr>

*OK <cr>

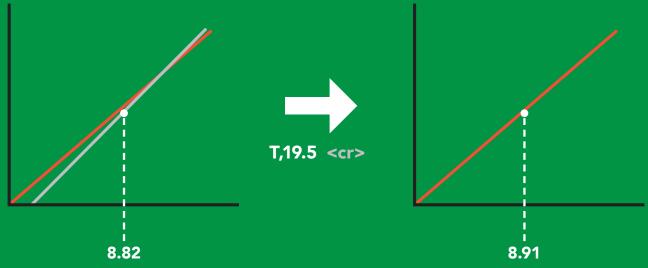
Import,n

*OK <cr> system will reboot

* If one of the imported strings is not correctly entered, the device will not accept the import, respond with *ER and reboot.

Temperature compensation

Command syntax


Default temperature = 20°C Temperature is always in Celsius Temperature is not retained if power is cut

n = any value; floating point or int T_n

T,? compensated temperature value?

set temperature compensation and take a reading RT,n <cr>

Example Response T,19.5 <cr> *OK <cr> *OK <cr> RT,19.5 <cr> 8.91 <cr> **T,?** <cr> ?T,19.5 <cr> *OK <cr>

Salinity compensation

Command syntax

Default value = $0 \mu s$ If the conductivity of your water is less than 2,500µS this command is irrelevant

<cr> n = any value in microsiemens S_in

n = any value in ppt S,n,ppt <cr>

5,? compensated salinity value?

Example

Response

S,50000 <cr>

*OK <cr>

S,37.5,ppt <cr>

*OK <cr>

S.? <cr>

?S,50000,µS <cr> or ?S,37.5,ppt <cr> *OK <cr>

Atmospheric pressure compensation

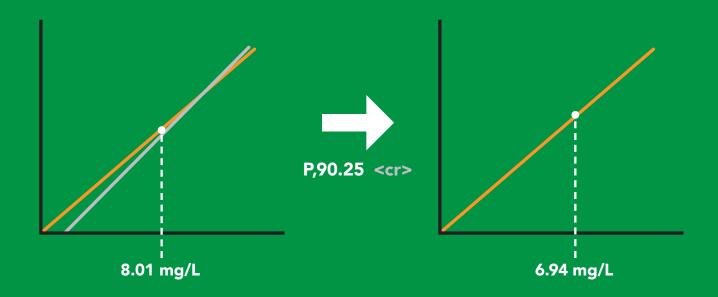
Command syntax

P,n <cr> n = any value in kPa

P,? <cr> compensated pressure value?

Example

Response


P,90.25 <cr>

*OK <cr>

P,? <cr>

?,P,90.25 <cr>

*OK <cr>

Enable/disable parameters from output string

Command syntax

O, [parameter],[1,0] <cr> enable or disable output parameter 0,? <cr> enabled parameter?

Example

O,mg,1 / O,mg,0 <cr>

O,%,1 / O,%,0 <cr>

O,? <cr>

Response

*OK <cr> enable / disable mg/L

*OK <cr> enable / disable percent saturation

?,O,%,mg <cr> if both are enabled

Parameters

mg/L mg

percent saturation %

Followed by 1 or 0

enabled

disabled

* If you disable all possible data types your readings will display "no output".

Naming device

Command syntax

Do not use spaces in the name

Name, n < cr> set name

<cr> clears name Name,

Name,? <cr> show name

```
n =
                            9 10 11 12 13 14 15 16
```

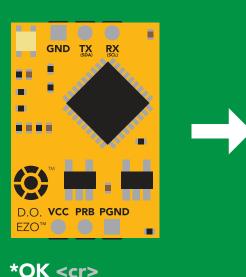
Up to 16 ASCII characters

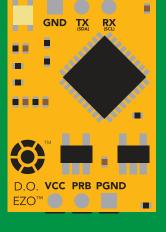
Example

Response

Name, <cr> *OK <cr> name has been cleared

Name,zzt <cr>


*OK <cr>


Name,? <cr>

?Name,zzt <cr> *OK <cr>

Name,zzt

Name,?

?Name,zzt <cr> *OK <cr>

Device information

Command syntax

i <cr> device information

Example

Response

i <cr>

?i,D.O.,1.98 <cr> *OK <cr>>

Response breakdown

?i, D.O., 1.98 Device Firmware

Response codes

Command syntax

*OK,1 <cr> enable response

default

*OK,0 <cr> disable response

*OK,? <cr> response on/off?

Example

Response

R <cr>

7.82 <cr>

*OK <cr>

*OK,0 <cr>

no response, *OK disabled

R <cr>

7.82 <cr> *OK disabled

*OK,? <cr>

?*OK,1 <cr> or ?*OK,0 <cr>

Other response codes

unknown command *ER

*OV over volt (VCC>=5.5V)

*UV under volt (VCC<=3.1V)

*RS reset

*RE boot up complete, ready

entering sleep mode *SL

wake up *WA

These response codes cannot be disabled

Reading device status

Command syntax

Status <cr> voltage at Vcc pin and reason for last restart

Example

Response

Status <cr>

?Status, P, 5.038 < cr>

*OK <cr>

Response breakdown

?Status,

5.038

Reason for restart

Voltage at Vcc

Restart codes

powered off

software reset

brown out

watchdog W

unknown

Sleep mode/low power

Command syntax

Send any character or command to awaken device.

Sleep <cr> enter sleep mode/low power

Example

Response

Sleep <cr>

*OK <cr> *SL <cr>

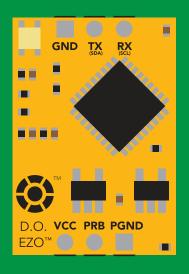
Any command

*WA <cr> wakes up device

5V

STANDBY SLEEP

13.1 mA 0.66 mA


3.3V

12 mA 0.3 mA

Standby 13.1 mA

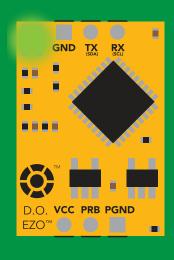
Sleep 0.66 mA

Factory reset

Command syntax

Clears calibration LED on "*OK" enabled

Factory <cr> enable factory reset


Example

Response

Factory <cr>

*OK <cr>>

Factory <cr>

*OK <cr>

*RS <cr>

*RE <cr>

D.O. VCC PRB PGND

EZO™ O

Baud rate will not change



Calibration theory

The accuracy of your readings is directly related to the quality of your calibration. (Calibration is not difficult, and a little bit of care goes a long way).

Confirm the D.O. probe is working correctly

Take readings in air first.

Readings > 10

Readings < 5 or > 25

Refer to probes datasheet for instructions.

Calibrate first, compensate later

Compensating for temperature, pressure, and salinity will change your calibrated readings to a value that cannot easily be predicted. This makes it difficult to know if the probe has been calibrated correctly.

Default compensat	tion values
-------------------	-------------

= 20 °C

Pressure = 101 kPa

Salinity = 0

Temp

Known calibration value

9.09 Mg/L

Temp = 29 °C

Pressure = 93 kPa

Salinity = 5

(too many variables)

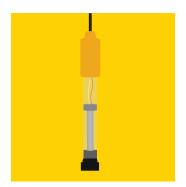
(6.84 Mg/L)


Best practices for calibration

Always watch the readings throughout the calibration process. Issue calibration commands once the readings have stabilized.

⚠ Never do a blind calibration! ⚠

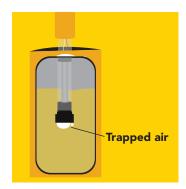
Issuing a calibration command before the readings stabilize will result in drifting readings.



Calibration order

High point calibration

Remove the Dissolved Oxygen probe's cap and let the probe sit, exposed to air until the readings stabilize. (small movement from one reading to the next is normal).



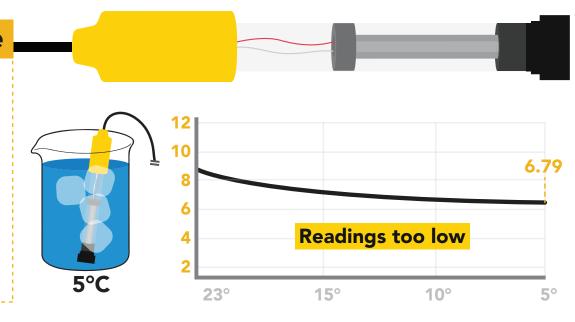
After calibration is complete, you should see readings between 9.09 - 9.1X mg/L. (only if temperature, salinity and pressure compensation are at default values)

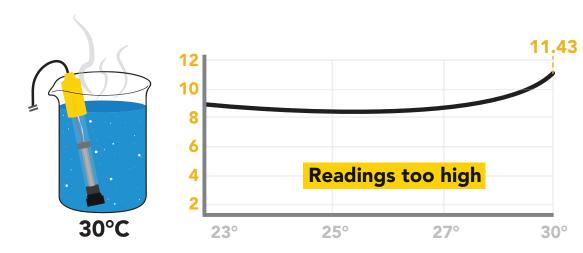
Low point calibration

After you have calibrated the EZO™ Dissolved Oxygen circuit using the "Cal" command; Remove the top of the Zero Dissolved Oxygen calibration solution pouch, and Insert the probe and stir it around to remove any trapped air (which could cause readings to go high). Let the probe sit in Zero D.O. calibration solution until readings stabilize. (small movement from one reading to the next is normal).

Advanced calibration

Probe temperature calibration

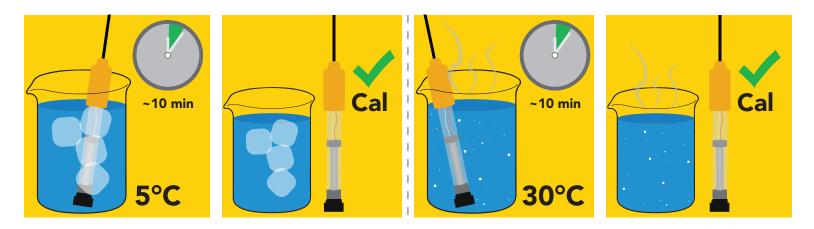

Probe temperature calibration ≠ Temperature compensation.


When a Dissolved Oxygen probe is calibrated, it is calibrated to the oxygen level and ambient temperature. As a D.O. probe is heated or cooled, its response curve will change. A small temperature change (≤ 5 °C) will not affect the probe. However, a large temperature change will be noticeable.

Calibrated probe

Air temperature

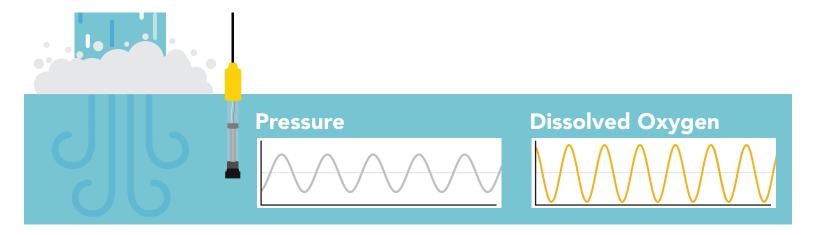
Air Reading



Advanced calibration

What to do:

After the Dissolved Oxygen probe has been properly calibrated, another calibration can be done to account for the probe temperature.



Let the probe acclimate to its operating temperature and then recalibrate. Once the probe has been calibrated at its intended operating temperature, using temperature compensation will give accurate readings.

Understanding D.O. measurements

Most chemical sensors do not directly measure the parameter they are designed for. Dissolved oxygen is no exception. A galvanic D.O. probe is actually an oxygen pressure sensor. It only measures the partial pressure of oxygen.

Keep this in mind when choosing a spot to place the probe.

It just so happens that partial pressure of oxygen is the same in water as it is in air.

(While the pressure is the same, the amount is not. Pure water at sea level can only hold ~9 mg/L of oxygen, while the atmosphere holds ~300mg/L)

By comparing oxygens pressure to its solubility in water, the mg/L are derived.

There are three factors that affect waters ability to hold oxygen.

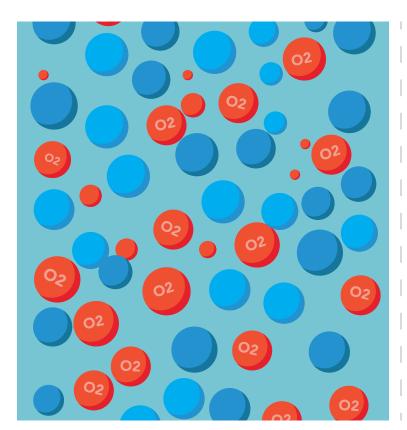
Temperature Salinity **Atmospheric Pressure**

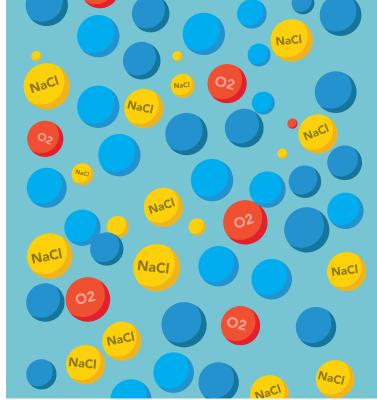
Temperature

Water temperature has the largest effect; the colder the water, the more oxygen it holds. As water heats up, its ability to hold oxygen goes down.

Pure water at 1°C can hold 14.2 mg/L

And at 40°C it can only hold 6.4 mg/L




Understanding D.O. measurements

Salinity

When salt is added to water, it drives out oxygen by competing for the same space.

Sea water at 1°C can only hold 10.7 mg/L Pure water at 1°C can hold 14.2 mg/L

Atmospheric Pressure

A D.O. probe is an oxygen pressure sensor.

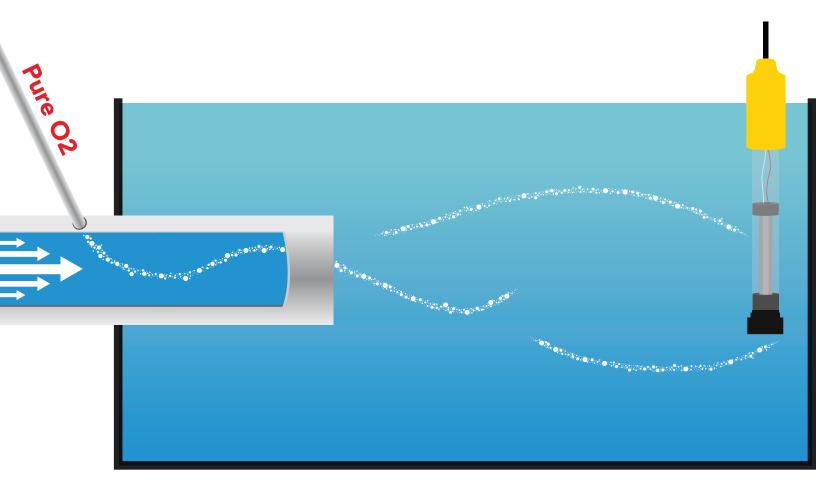
Dissolved oxygen pressure cannot be higher than atmospheric oxygen pressure. This is why the probe is calibrated to the atmosphere; it defines the probe's response to the maximum oxygen pressure available. However, oxygen pressure does not tell us how much oxygen is available to dissolve in the water. That information is derived from atmospheric pressure (where atmospheric pressure = altitude).

As altitude increases, oxygen concentration decreases, and because D.O. readings are expressed in Mg/L, the oxygen concentration must be known.

At sea level, 1°C pure water can hold 14.2 mg/L

At 1,500 meters, 1°C pure water can hold 11.7 mg/L

At -1,200 meters, 1°C pure water can hold 16.2 mg/L



Hyper saturation with pure oxygen

Dissolved oxygen measurements are based on natural occurring oxygen levels. However, some applications may require pure oxygen to achieve extremely high saturation levels. Because injecting pure oxygen into water is not a naturally occurring event, you will need to change some compensation parameters to achieve extremely high readings.

To reach 100mg/L and a saturation of 350%

202 kPa Set pressure compensation to: Set temperature compensation to:

Datasheet change log

Datasheet V 1.1

Revised probe artwork.

Datasheet V 1.0

Revised entire document.

Firmware updates

V1.5 – Baud rate change (Nov 6, 2014)

• Change default baud rate to 9600

Warranty

Atlas Scientific™ Warranties the EZO Complete device to be free of defects during the debugging phase of device implementation or 30 days after receiving the EZO Complete device (whichever comes first).

The debugging phase

As defined by Atlas Scientific[™], the debugging phase is when the EZO Complete device is connected to a computer to evaluate its output and/or is being integrated into custom software.

The following activities will void the EZO Complete device warranty:

- Soldering any part of the EZO™ class device.
- Removing any potting compound.
- **Embedding the EZO Complete device into a custom machine.**

Reasoning behind this warranty

Atlas Scientific™ does not sell consumer electronics. Once the device has been embedded into a custom-made machine, Atlas Scientific[™] cannot possibly warranty the EZO Complete device against the thousands of possible variables that may cause the device to malfunction.

Please keep this in mind:

- 1. All Atlas Scientific™ devices have been designed to be embedded into a custom-made machine by you, the embedded systems engineer.
- 2. All Atlas Scientific devices have been designed to run indefinitely without failure in the field.

Atlas Scientific[™] is simply stating that once the device is being used in your machine or application, Atlas Scientific™ can no longer take responsibility for the device's continued operation. Doing so would be equivalent to Atlas Scientific[™] taking responsibility for the correct operation of your entire machine.

