

Revised 10/24

EZO Complete-TMPTM

USB Temperature meter

Datasheet for engineers

Reads

Temperature

800ms

Data protocol

Serial data through FTDI virtual comport

Range

-126.000 °C to 1254 °C

Supported probes

Any type & brand PT-100 or PT-1000

Accuracy

 $+/-(0.1 + 0.0017 \times ^{\circ}C)$

Data format

ASCII

Calibration

Single point Ingress protection

IP62

Temp reading time

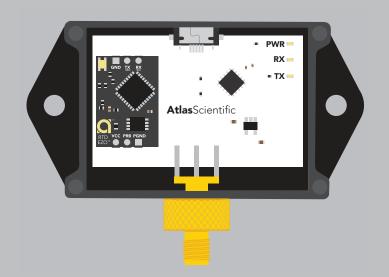
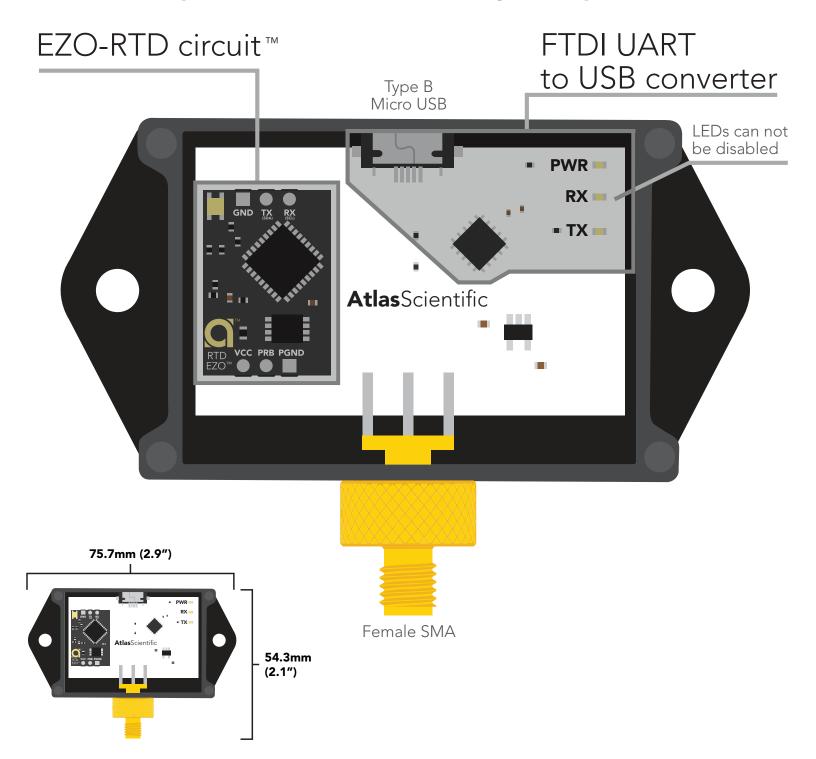

PATENT PROTECTED

Table of contents

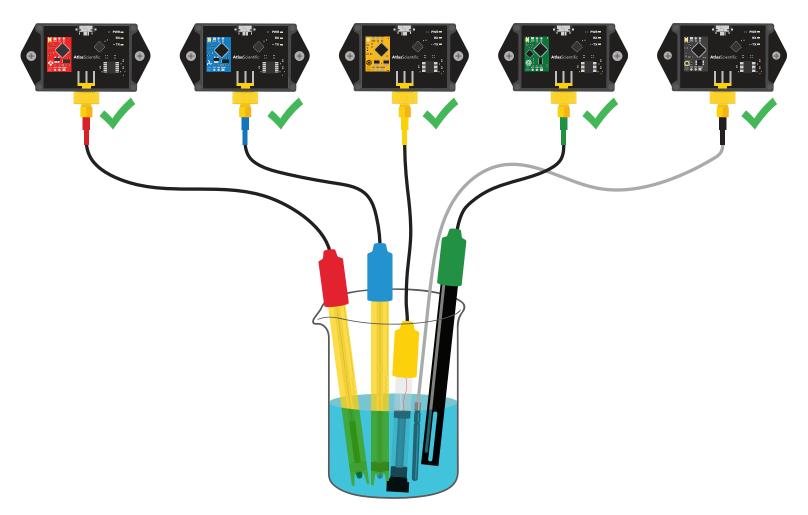

Power consumption	3
Absolute max ratings	3
Interference free	4
Ingress protection – IP62	4
Default state	6

LED color definition	7
Receiving data from device	8
Sending commands to device	9
Simple serial monitor	10
UART quick command page	11
LED control	12
Find	13
Continuous reading mode	14
Single reading mode	15
Calibration	16
	17
Export calibration	
Import calibration	18
Temperature scale	19
Enable/disable data logger	20
Memory recall	21
Memory clear	22
Naming device	23
Device information	24
Response codes	25
Reading device status	26
Sleep mode/low power	27
Factory reset	28

Calibration theory	29
Datasheet change log	31
Firmware updates	32
Warranty	33

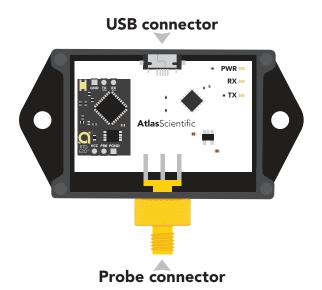
The EZO Complete-TMP™ consists of 2 major components.

5V	MAX	STANDBY	SLEEP
USB _{20 mA}	20 mA	17 mA	4 mA


Power consumption Absolute max ratings

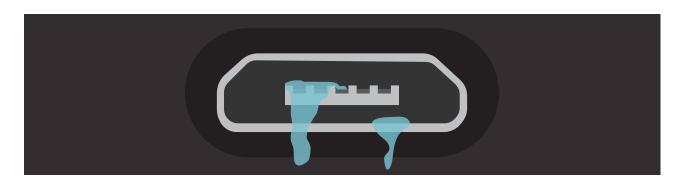
Parameter	MIN	TYP	MAX
Storage temperature	-65 °C		
Operational temperature	-40 °C	25 °C	85 °C

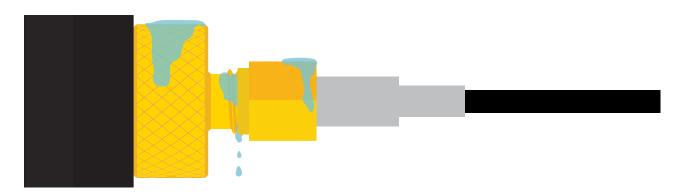
Interference free


The EZO complete readings are unaffected by other sensors in the same water.

Ingress protection – IP62

The EZO Complete-TMP $^{\!\scriptscriptstyle{\mathrm{TM}}}$ is dust proof and resistant to splashing water.


Two areas of concern are the USB connector and the probe connector.



Ingress protection - IP62

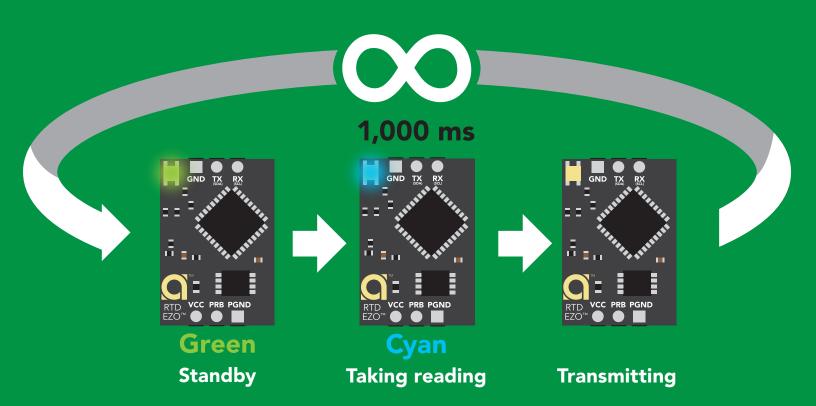
An electrical short can occur if water enters the USB connector. A USB short could permanently damage the EZO-Complete. A USB short is not covered under warranty.

A connector short can occur if water enters the SMA connector. A connector short will cause the temperature readings to pin to -1023, or the probe will respond slowly to changes in temperature. A connector short is reversible and will not damage the EZO-Complete. However, frequent shorts will eventually damage the temperature probe.

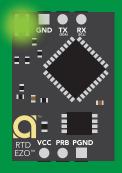
The SMA connector is part of your probe; Nothing should be in contact with this part.

Default state

Baud 9,600

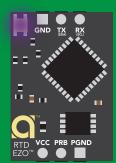

Readings continuous

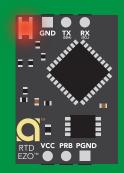
Speed 1 reading per second

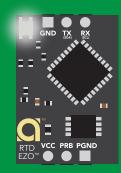

Temperature °C

With probe ttt.ttt

Without probe -1023.000


LED color definition


GreenUART standby


Cyan Taking reading

Changing baud rate

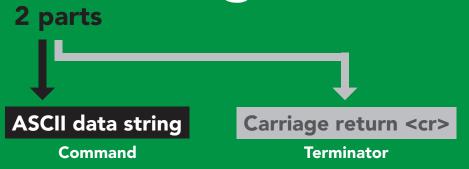
Command not understood

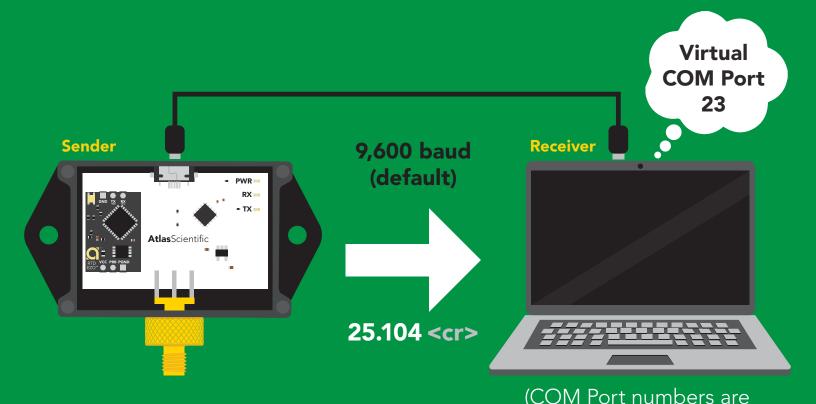
White Find

5V +2.2 mA

3.3V +0.6 mA

Settings that are retained if power is cut


Calibration
Continuous mode
Device name
Enable/disable response codes
LED control
Protocol lock


Settings that are **NOT** retained if power is cut

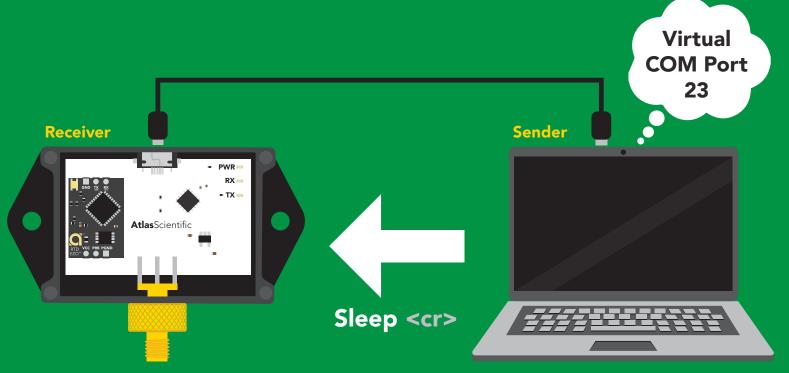
Find Sleep mode Temperature compensation

Receiving data from device

Advanced

ASCII: 2 5 . 1 0 4 <cr>

Hex: 32 35 2E 31 30 34 **OD**


Dec: 50 53 46 49 48 52 **13**

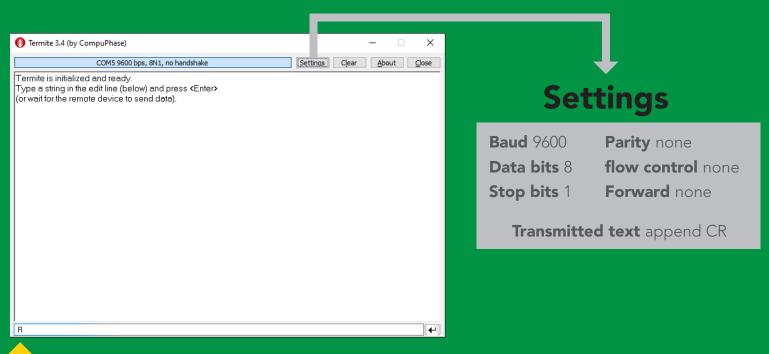
determined by the computer)

Sending commands to device

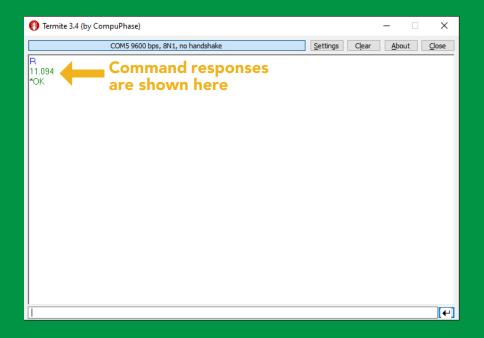
(COM Port numbers are determined by the computer)

Advanced

ASCII: S I e e p <cr>


Hex: 53 6C 65 65 70 **0D**

Dec: 83 108 101 101 112 13


Looking for a simple serial monitor for debugging?

Termite: a simple RS232 terminal

Click here to download

Enter commands here

Command quick reference All commands are ASCII strings or single ASCII characters.

Command	Function		Default state
С	enable/disable continuous reading	pg. 14	enabled
Cal	performs calibration	pg. 16	n/a
D	enable/disable data logger	pg. 20	disabled
Export	export calibration	pg. 17	n/a
Factory	enable factory reset	pg. 28	n/a
Find	finds device with blinking white LED	pg. 23	n/a
i	device information	pg. 24	n/a
Import	import calibration	pg. 18	n/a
L	enable/disable LED	pg. 12	enabled
М	memory recall/clear	pg. 21	n/a
Name	set/show name of device	pg. 23	not set
R	returns a single reading	pg. 15	n/a
S	temperature scale (°C, °K, °F)	pg. 19	celsius
Sleep	enter sleep mode/low power	pg. 27	n/a
Status	retrieve status information	pg. 26	n/a
*OK	enable/disable response codes	pg. 25	enable

LED control

Command syntax

<cr> LED on default

L,0 <cr> LED off

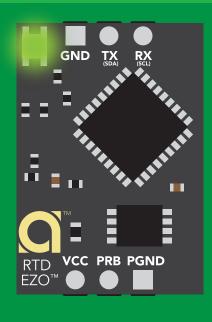
L,? <cr> LED state on/off?

Example

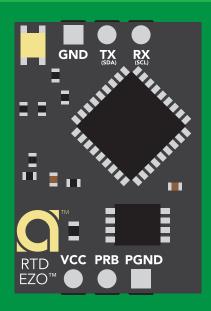
Response

L,1 <cr>

*OK <cr>


L,0 <cr>

*OK <cr>


L,? <cr>

?L,1 <cr> or ?L,0 <cr>>

*OK <cr>

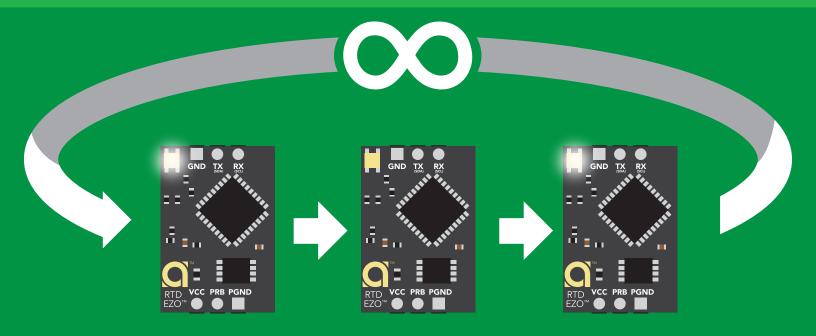
L,1

L,0

Find

Command syntax

This command will disable continuous mode Send any character or command to terminate find.


Find <cr> LED rapidly blinks white, used to help find device

Example

Response

Find <cr>

*OK <cr>

Continuous reading mode

Command syntax

C,1 <cr> enable continuous readings once per second default

C,n <cr> continuous readings every n seconds (n = 2 to 99 sec)

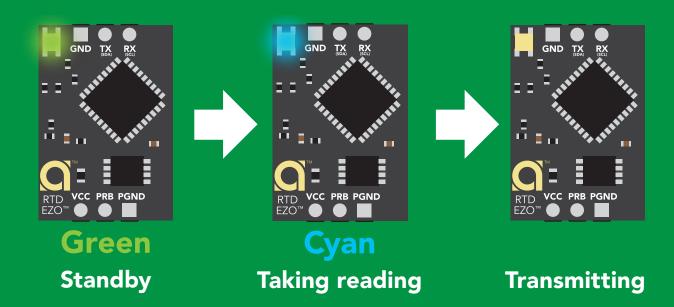
C,0 <cr> disable continuous readings

C,? <cr> continuous reading mode on/off?

Example	Response
C,1 <cr></cr>	*OK <cr> °C (1 sec) <cr> °C (2 sec) <cr> °C (n sec) <cr></cr></cr></cr></cr>
C,30 <cr></cr>	*OK <cr> °C (30 sec) <cr> °C (60 sec) <cr> °C (90 sec) <cr></cr></cr></cr></cr>
C,0 <cr></cr>	*OK <cr></cr>
C,? <cr></cr>	?C,1 <cr> or ?C,0 <cr> or ?C,30 <cr> *OK <cr></cr></cr></cr></cr>

Single reading mode

Command syntax


R <cr> takes single reading

Example

Response

R <cr>

25.104 <cr> *OK <cr>>

Calibration

Command syntax

The EZO™ RTD circuit uses single point calibration.

Cal,t <cr> t = any temperature

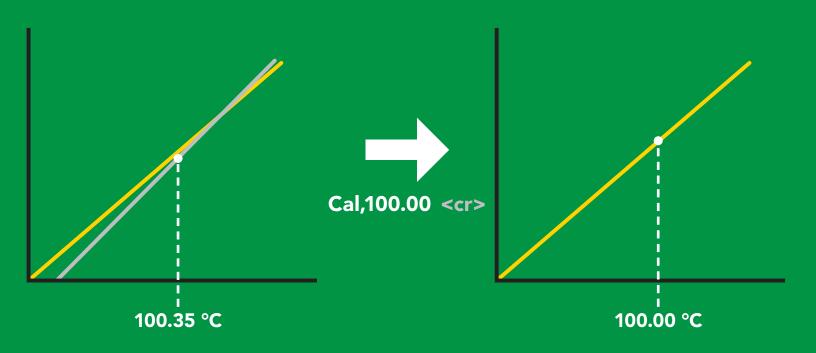
Cal, clear <cr> delete calibration data

Cal,? <cr> device calibrated?

Example

Response

Cal,100.00 <cr>


*OK <cr>

Cal, clear <cr>

*OK <cr>

Cal,? <cr>

?Cal,1 <cr> or ?Cal,0 <cr> *OK <cr>

Export calibration

Command syntax

Export: Use this command to download calibration settings

Export,? calibration string info <cr>

export calibration string from calibrated device **Export** <cr>

Example

Response

Export,? <cr>

10,120 <cr>

Response breakdown

10, 120

of strings to export # of bytes to export

Export strings can be up to 12 characters long, and is always followed by <cr>

Export <cr>

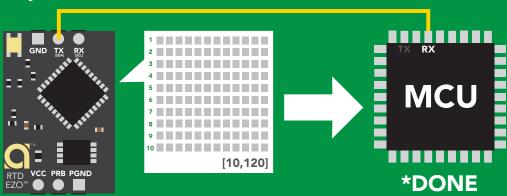
Export <cr>

(7 more)

Export <cr>

Export <cr>

59 6F 75 20 61 72 <cr> (1 of 10)


65 20 61 20 63 6F <cr> (2 of 10)

6F 6C 20 67 75 79 <cr> (10 of 10)

*DONE

Disabling *OK simplifies this process

Export <cr>

Import calibration

Command syntax

Import: Use this command to upload calibration settings to one or more devices.

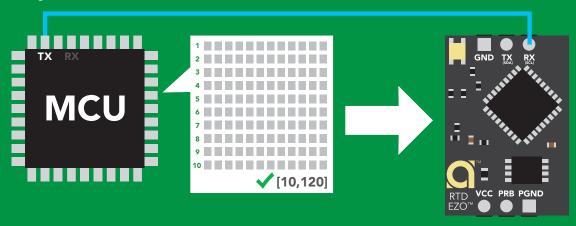
import calibration string to new device Import,n <cr>

Example

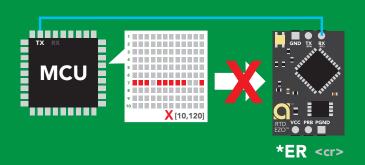
Import, 59 6F 75 20 61 72 <cr> (1 of 10)

Import, 65 20 61 20 63 6F <cr> (2 of 10)

Import, 6F 6C 20 67 75 79 <cr> (10 of 10)</ri>


Response

*OK <cr>


*OK <cr>

*OK <cr>

Import,n <cr>

*OK <cr> system will reboot

* If one of the imported strings is not correctly entered, the device will not accept the import, respond with *ER and reboot.

Temperature scale (°C, °K, °F)

Command syntax

S,c <cr> celsius default

S,k <cr> kelvin

S,f <cr> fahrenheit

S,? <cr> temperature scale?

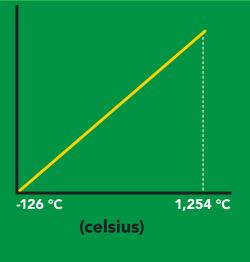
Example

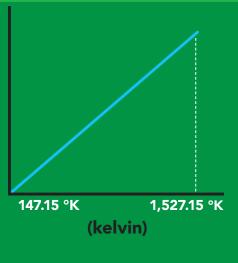
Response

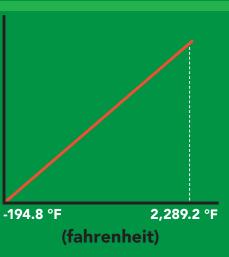
S,c <cr>

*OK <cr>

S,k <cr>


*OK <cr>


S,f <cr>


*OK <cr>

S,? <cr>

?S,c <cr> or ?S,k <cr> or ?S,f <cr> *OK <cr>

👞 Atlas**Scien**

Enable/disable data logger

Command syntax

The time period (n) is in 10 second intervals and can be any value from 1 to 32,000.

 $D_n < cr > n = (n \times 10 \text{ seconds})$

D,0 <cr> disable default

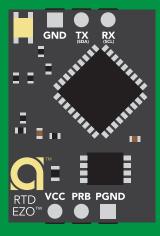
D,? <cr> data logger storage interval?

Example

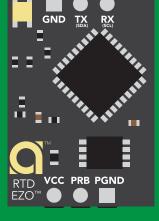
Response

D,6 <cr>

*OK <cr>


D,0 <cr>

*OK <cr>


D,? <cr>

?D,6 <cr>

*OK <cr>

D,6

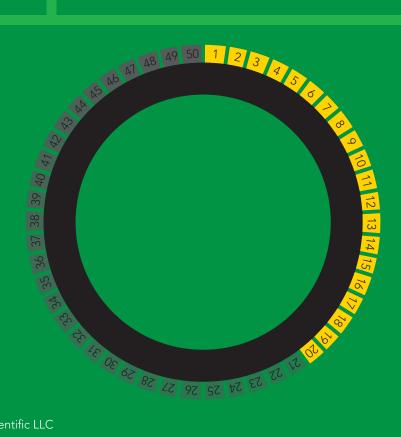
60 seconds

* <cr>

* indicates reading has been logged

Memory recall

Command syntax


Disable data logger to recall memory.

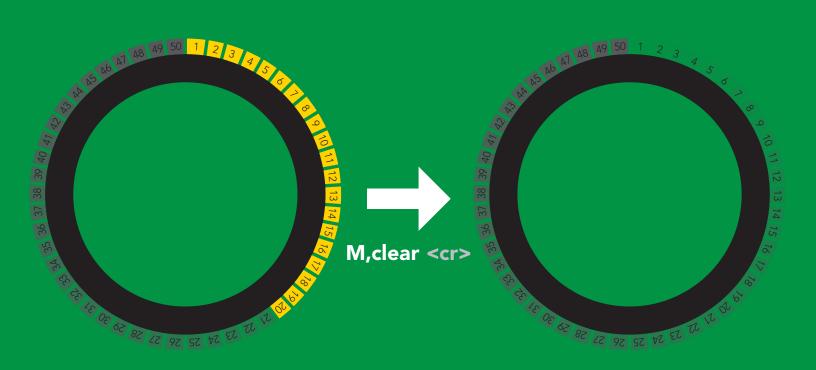
<cr> recall 1 sequential stored reading</ri> M

M, all <cr> recall all readings in a CSV string

M,? <cr> display memory location of last stored reading

Example Response 1,100.00 <cr> 2,104.00 <cr> *OK <cr> M 100.00,104.00,108.00,112.00 <cr> M,all <cr> Oldest **Newest** M,? <cr> ?M,4 < cr> *OK <cr>

Memory clear


Command syntax

M,clear <cr>> clear all stored memory

Example Response

M,clear <cr>

*OK <cr>

Naming device

Command syntax

Do not use spaces in the name

Name, n < cr> set name

Name, <cr> clears name

Name,? <cr> show name

n = 9 10 11 12 13 14 15 16

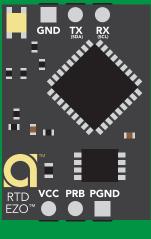
Up to 16 ASCII characters

Example

Response

Name, <cr> *OK <cr> name has been cleared

Name,zzt <cr>


*OK <cr>

Name,? <cr>

?Name,zzt <cr> *OK <cr>

Name,zzt

Name,?

Device information

Command syntax

i <cr> device information

Example

Response

i <cr>

?i,RTD,2.01 <cr> *OK <cr>>

Response breakdown

?i, RTD, 2.11 Device Firmware

Response codes

Command syntax

default *OK,1 <cr> enable response

*OK,0 <cr> disable response

*OK,? <cr> response on/off?

Example

Response

R <cr>

25.104 <cr> *OK <cr>

*OK,0 <cr>

no response, *OK disabled

R <cr>

25.104 <cr> *OK disabled

*OK,? <cr>

?*OK,1 <cr> or ?*OK,0 <cr>

Other response codes

unknown command *ER

*OV over volt (VCC>=5.5V)

*UV under volt (VCC<=3.1V)

*RS reset

*RE boot up complete, ready

entering sleep mode *SL

wake up *WA

These response codes cannot be disabled

Reading device status

Command syntax

Status <cr> voltage at Vcc pin and reason for last restart

Example

Response

Status <cr>

?Status, P, 5.038 < cr>

*OK <cr>

Response breakdown

5.038 ?Status, P, Voltage at Vcc Reason for restart

Restart codes

powered off

software reset

brown out

watchdog W

unknown

Sleep mode/low power

Command syntax

Send any character or command to awaken device.

Sleep <cr> enter sleep mode/low power

Example

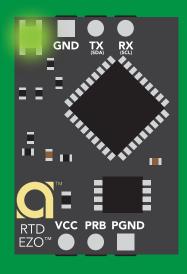
Response

Sleep <cr>

*OK <cr>

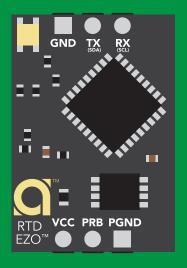
*SL <cr>

Any command


*WA <cr> wakes up device

5V

STANDBY **SLEEP** 15.40 mA 0.4 mA


3.3V

13.80 mA $0.09 \, \text{mA}$

Standby 15.40 mA

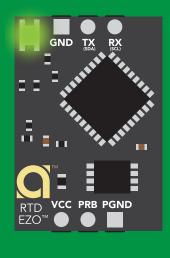
Sleep 3.00 mA

Factory reset

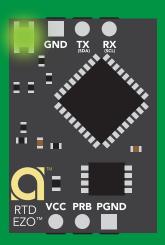
Command syntax

Clears calibration LED on "*OK" enabled Clears data logger

Factory <cr> enable factory reset


Example

Response


Factory <cr>

*OK <cr>

Factory <cr>

*OK <cr>

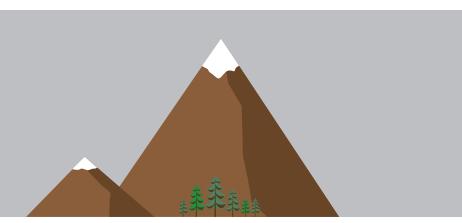
*RS <cr> *RE <cr>

Baud rate will not change

Calibration theory

The most important part of calibration is watching the readings during the calibration process. Calibration can be done at any value, a simple method is to calibrate the probe in boiling water.

100 °C


Atlas Scientific recommends calibration be done every three years.

Elevation and boiling point table

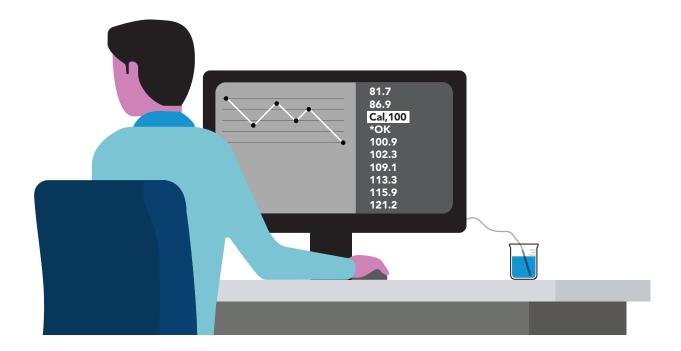
Elevation in meters

-152

Boiling point °C 98.9 99.2 °C 99.5 °C 99.7 °C 100 °C 100.3 °C 100.5 °C

Use purified/distilled water

For accurate calibration using different temperature vaules, you must use a tool called a "dry block calibrator."


Best practices for calibration

Always watch the readings throughout the calibration process. Issue calibration commands once the readings have stabilized.

⚠ Never do a blind calibration! ⚠

Issuing a calibration command before the readings stabilize will result in drifting readings.

Datasheet change log

Datasheet V 1.1

Revised artwork.

Datasheet V 1.0

New document

Firmware updates

V1.5 – Baud rate change (Nov 6, 2014)

• Change default baud rate to 9600

Warranty

Atlas Scientific™ Warranties the EZO Complete device to be free of defects during the debugging phase of device implementation or 30 days after receiving the EZO Complete device (whichever comes first).

The debugging phase

As defined by Atlas Scientific[™], the debugging phase is when the EZO Complete device is connected to a computer to evaluate its output and/or is being integrated into custom software.

The following activities will void the EZO Complete device warranty:

- Soldering any part of the EZO™ class device.
- Removing any potting compound.
- **Embedding the EZO Complete device into a custom machine.**

Reasoning behind this warranty

Atlas Scientific™ does not sell consumer electronics. Once the device has been embedded into a custom-made machine, Atlas Scientific[™] cannot possibly warranty the EZO Complete device against the thousands of possible variables that may cause the device to malfunction.

Please keep this in mind:

- 1. All Atlas Scientific™ devices have been designed to be embedded into a custom-made machine by you, the embedded systems engineer.
- 2. All Atlas Scientific™ devices have been designed to run indefinitely without failure in the field.

Atlas Scientific[™] is simply stating that once the device is being used in your machine or application, Atlas Scientific™ can no longer take responsibility for the device's continued operation. Doing so would be equivalent to Atlas Scientific[™] taking responsibility for the correct operation of your entire machine.

