

V 1.3

Revised 10/24

EZO Complete-EC USB Conductivity meter

Datasheet for engineers

ISO 7888 Compliant

(determination of electrical conductivity)

Reads	Conductivity = µS/cm or ms/cm
	Total Dissolved Solids = ppm
	Salinity = PSU (ppt) 0.00-42.00
	Specific gravity = 1.00-1.300
	(sea water only)

0.07 – 500,000+ μS/cm (depending on probe type)

+/- 2% of reading

K 0.01 - K10.2 Supported probes Calibration Recalibration frequecy

Temp compensation

Reading time

3 point Not necessary

600ms

Automatic or manual

Accuracy

Range

PATENT PROTECTED

Table of contents

Conductivity probe range	4
Power consumption	5
Absolute max ratings	5
Interference free	6
Ingress protection – IP62	6
Default state	8

LED color definition	9
Receiving data from device	10
Sending commands to device	11
Simple serial monitor	12
UART quick command page	13
LED control	14
Find	15
Continuous reading mode	16
Single reading mode	17
Calibration	18
Changing the TDS	19
Export calibration	20
Import calibration	21
Setting the probe type	22
Temperature compensation	23
Enable/disable parameters	24
Naming device	25
Device information	26
Response codes	27
Reading device status	28
Sleep mode/low power	29
Factory reset	30

Calibration theory	31
Datasheet change log	39
Firmware updates	40
Warranty	41

The EZO Complete-EC[™] has all the features of this bench top meter.

Isolated Power Supply Calibration Read DRY 23.56 12,880 -Timed Reading 8 µS/cm 1 sec 80,000 EC 25 °C On Off 5 6 Salinity 12 ſDS/ppm Specific gravity Device Name MTC o<mark>f seawate</mark>i Off **0.54** 25 °C Voltage 5.0 1 Variable decimal conductivity reading

- 2 Temperature used for reading
- **3** Readings in µS/cm or mS/cm
- 4 TDS/ ppm readings
- 5 Salinity readings
- 6 Specific gravity readings

- 7 Immediate reading
- 8 Timed readings
- **9** Set device name
- **10** Voltage usage
- **11** Three point calibration
- **12** Temperature compensation

The EZO Complete-EC[™] is compatible with any brand of EC probe from K 0.01–K10.2

Conductivity probe range

The EZO Complete-EC is capable of connecting to any two-conductor conductivity probe, ranging from:

Atlas Scientific[™] has tested three different K value probe types:

Atlas Scientific[™] does not know what the accurate reading range would be for conductivity probes, other than the above mentioned values.

The EZO Complete-EC[™] consists of 3 major components.

5V	MAX	STANDBY	SLEEP
USB	50 mA	35 mA	21 mA

Power consumption Absolute max ratings

Parameter	MIN	ΤΥΡ	MAX
Storage temperature	-65 °C		125 °C
Operational temperature	-40 °C	25 °C	85 °C

Interference free

The EZO complete readings are unaffected by other sensors in the same water.

Ingress protection – IP62

The EZO Complete-EC[™] is dust proof and resistant to splashing water. **Two areas of concern are the USB connector and the probe connector.**

Ingress protection – IP62

An electrical short can occur if water enters the USB connector. A USB short could permanently damage the EZO-Complete. A USB short is not covered under warranty.

A connector short can occur if water enters the SMA connector. A connector short will cause the conductivity readings to go to 0 or to lock on a specific value and not change. A connector short is reversible and will not damage the EZO-Complete. However, frequent shorts will eventually damage the probe.

The SMA connector is part of your probe; Nothing should be in contact with this part.

Default state

Baud

9,600

Readings Speed continuous 1 reading per second

LED color definition

Green **UART standby**

Taking reading

Changing baud rate

Command not understood

White Find

5V	LED ON +2.2 mA
3.3V	+0.6 mA

Settings that are retained if power is cut

Baud rate Calibration Continuous mode Device name Enable/disable parameters Enable/disable response codes Hardware switch to I²C mode LED control Protocol lock Software switch to I²C mode

Settings that are **NOT** retained if power is cut

Find Sleep mode Temperature compensation

Receiving data from device

(COM Port numbers are determined by the computer)

Advanced

Sending commands to device ^{2 parts}

(COM Port numbers are determined by the computer)

Advanced

Looking for a simple serial monitor for debugging?

Termite: a simple RS232 terminal

Click here to download

Enter commands here

Command quick reference

All commands are ASCII strings or single ASCII characters.

Command	Function		Default state
С	enable/disable continuous reading	pg. 16	enabled
Cal	performs calibration	pg. 18	n/a
Export	export calibration	pg. 20	n/a
Factory	enable factory reset	pg. 30	n/a
Find	finds device with blinking white LED	pg. 15	n/a
i	device information	pg. 26	n/a
Import	import calibration	pg. 21	n/a
К	Set probe type	pg. 22	K 1.0
L	enable/disable LED	pg. 14	enabled
Name	set/show name of device	pg. 25	not set
0	enable/disable parameters	pg. 24	all enabled
R	returns a single reading	pg. 17	n/a
Sleep	enter sleep mode/low power	pg. 29	n/a
Status	retrieve status information	pg. 28	enable
т	temperature compensation	pg. 23	25°C
TDS	change the TDS conversion factor	pg. 19	0.54
*OK	enable/disable response codes	pg. 27	enable

LED control

Command syntax

- L,0 <cr>> LED off
- L,? <cr>> LED state on/off?

Example	Response
L,1 <cr></cr>	*OK <cr></cr>
L,0 <cr></cr>	*OK <cr></cr>
L,? <cr></cr>	?L,1 <cr> or ?L,0 <cr> *OK <cr></cr></cr></cr>

L,0

Command syntax

This command will disable continuous mode Send any character or command to terminate find.

Find <cr> LED rapidly blinks white, used to help find device

Continuous reading mode

Command syntax

C,1	<cr></cr>	enable continuous readings once per second	default
C,n	<cr></cr>	continuous readings every n seconds (n = 2 to	99 sec)
C,0	<cr></cr>	disable continuous readings	
C,?	<cr></cr>	continuous reading mode on/off?	

Example	Response
C,1 <cr></cr>	*OK <cr> EC,TDS,SAL,SG (1 sec) <cr> EC,TDS,SAL,SG (2 sec) <cr> EC,TDS,SAL,SG (3 sec) <cr></cr></cr></cr></cr>
C,30 <cr></cr>	*OK <cr> EC,TDS,SAL,SG (30 sec) <cr> EC,TDS,SAL,SG (60 sec) <cr> EC,TDS,SAL,SG (90 sec) <cr></cr></cr></cr></cr>
C,0 <cr></cr>	*OK <cr></cr>
C,? <cr></cr>	?C,1 <cr> or ?C,0 <cr> or ?C,30 <cr> *OK <cr></cr></cr></cr></cr>

Single reading mode

Command syntax

R <cr> takes single reading

ExampleResponseR <cr>1,413 <cr>*OK <cr>

Calibration

Command syntax

Dry calibration must always be done first!

Cal,dry	<cr></cr>	dry calibration
Cal,n	<cr></cr>	single point calibration, where n = any value
Cal,low,n	<cr></cr>	low end calibration, where n = any value
Cal,high,n	<cr></cr>	high end calibration, where n = any value
Cal,clear	<cr></cr>	delete calibration data
Cal,?	<cr></cr>	device calibrated?

Example	Resp	onse
Cal,dry < <r></r>	*0	{ <cr></cr>
Cal,84 <cr></cr>	*0	< <cr></cr>
Cal,low,12880	<cr> *0</cr>	< <cr></cr>
Cal,high,80000	<cr> *0</cr>	< <cr></cr>
Cal,clear <cr></cr>	*0	< <cr></cr>
Cal,? <cr></cr>	?C/ *OI	AL,0 <cr> or ?CAL,1 <cr> or ?CAL,2 two point three point three point < <cr></cr></cr></cr>
Two point calibration: Step 1. "cal,dry" Step 2. "cal,n" Calibration complete!	Three point ca Step 1 "cal,dry" Step 2 "cal,low,n" Step 3 "cal,high.n Calibration comp	alibration: " lete!
18 Copyright © Atlas Scientific LLC		

Changing the TDS (ppm) conversion factor

Com	man	d syntax	There are several different conversion factors used to read TDS(ppm). For some applications, it may be necessary to use a conversion factor other than the default value of 0.54
TDS,n	<cr></cr>	set custom conversion fac	tor, n = any value between 0.01 – 1.00
TDS,?	<cr></cr>	conversion factor being us	sed

Example	Response
TDS,? <cr></cr>	?TDS,0.54 <cr> *OK <cr></cr></cr>
R <cr></cr>	EC TDS ↓ ↓ 100,54 <cr> *OK <cr></cr></cr>
TDS,0.46 <cr></cr>	*OK <cr></cr>
R <cr></cr>	EC TDS ↓ ↓ 100,46 <cr> *OK <cr></cr></cr>

~		1	
Common	convers	lon i	ractors

NaCl	0.47 – 0.50
KCL	0.50 - 0.57
"442"	0.65 – 0.85

Formula

EC x conversion factor = TDS

Export calibration

Command syn	tax		
Export: Use this command to download calibration settingsExport,? <cr>calibration string infoExport<cr>export calibration string from calibrated device</cr></cr>			
Example	Response		
Export,? <cr></cr>	10,120 <cr></cr>	Response breakdown 10, 120	
		Export strings can be up to 12 characters long, and is always followed by <cr></cr>	
Export <cr></cr>	59 6F 75 20 (61 72 <cr> (1 of 10)</cr>	
Export < <r></r>	65 20 61 20	63 6F <cr> (2 of 10)</cr>	
(7 more)	•		
Export < <r></r>	6F 6C 20 67	75 79 <cr> (10 of 10)</cr>	
Export < <r></r>	*DONE	Disabling *OK simplifies this process	
Export < <r></r>			
GND TX RX	1 2 3 4 5 6 6 7 8 9 10 10 10 10 10 10 10 10 10 10		

Atlas**Scientific**

Import calibration

Command syntax

Import: Use this command to upload calibration settings to one or more devices.

Import,n <cr> import calibration string to new device

Example

Response

Import,n <cr>

*OK <<r>
system will reboot

* If one of the imported strings is not correctly entered, the device will not accept the import, respond with *ER and reboot.

Setting the probe type

Command syntax

K 1.0 is the default value

- K,n <cr> n = any value; floating point in ASCII
- K,? <cr> probe K value?

Example	Response
K,10 <cr></cr>	*OK <cr></cr>
K,? <cr></cr>	?K,10 <cr> *OK <cr></cr></cr>

Temperature compensation

Command syntax

Default temperature = 25°C Temperature is always in Celsius Temperature is not retained if power is cut

- T,n <cr> n = any value; floating point or int
- T,? <cr> compensated temperature value?
- RT,n <cr> set temperature compensation and take a reading

Example	Response	
T,19.5 <cr></cr>	*OK <cr></cr>	
RT,19.5 <cr></cr>	*OK <cr> 8.91 <cr></cr></cr>	
T,? <cr></cr>	?T,19.5 <cr></cr>	

Enable/disable parameters from output string

Command syntax

O, [parameter],[1,0]	<cr></cr>	enable or disable output parameter
0,?	<cr></cr>	enabled parameter?

Example	Response
O,EC,1 / O,EC,0 <cr></cr>	*OK <cr> enable / disable conductivity</cr>
O,TDS,1 / O,TDS,0 <cr></cr>	*OK <cr> enable / disable total dissolved solids</cr>
O,S,1 / O,S,0 <cr></cr>	*OK <cr> enable / disable salinity</cr>
O,SG,1 / O,SG,0 <cr></cr>	*OK <cr> enable / disable specific gravity</cr>
O,? <cr></cr>	?,O,EC,TDS,S,SG <cr> if all are enabled</cr>

Parameters

EC

* If you disable all possible data types your readings will display "no output".

- Conductivity = μ S/cm Total dissolved solids = ppm TDS
- Salinity = PSU (ppt) 0.00 42.00S
- Specific gravity (sea water only) = 1.00 1.300SG

Followed by 1 or 0

- enabled 1
- disabled 0

Naming device

Command syntax

Example	Response
Name, <cr></cr>	*OK <cr> name has been cleared</cr>
Name,zzt <cr></cr>	*OK <cr></cr>
Name,? <cr></cr>	?Name,zzt <cr> *OK <cr></cr></cr>

Name,zzt

Name,?

*OK <cr>

Device information

Command syntax

Example	Response
i <cr></cr>	?i,EC,2.16 < <r></r>

Response breakdown

?i,	EC,	2.16
	1	1
	Device	Firmware

Response codes

Command syntax

*OK,1 <	<cr></cr>	enable response	default	
*OK,0 <	<cr></cr>	disable response		
*OK,? <	<cr></cr>	response on/off?		

Example	Response
R <cr></cr>	1,413 <cr> *OK <cr></cr></cr>
*OK,0 <cr></cr>	no response, *OK disabled
R <cr></cr>	1,413 <cr> *OK disabled</cr>
*OK,? <cr></cr>	?*OK,1 <cr> or ?*OK,0 <cr></cr></cr>

Other response codes

- *ER unknown command
- *OV over volt (VCC>=5.5V)
- *UV under volt (VCC<=3.1V)
- *RS reset
- *RE boot up complete, ready
- *SL entering sleep mode
- *WA wake up

These response codes cannot be disabled

Reading device status

Command syntax

Status <cr> voltage at Vcc pin and reason for last restart

Sleep mode/low power

Command syntax

Send any character or command to awaken device.

Factory reset

Command syntax

Clears calibration LED on "*OK" enabled

Factory <cr> enable factory reset

Example
Response

Factory <cr>
*OK <cr>

Factory <cr>

Calibration theory

The accuracy of your readings is directly related to the quality of your calibration. (Calibration is not difficult, and a little bit of care goes a long way)

A properly calibrated conductivity probe will never need recalibration. Once calibrated, you can use the probe continuously year after year without concern. This is because a conductivity probe does not contain any parts that wear out over time.

However, changing the cable length of the probe or moving the EZO-EC circuit from one machine to another may require recalibration. This is because such actions will change the electrical properties of the probe or EC circuit.

Two point or Three point calibration

No calibration

Two point calibration

Low point High point Wide range accuracy

Recommended calibration points

Approximation

When calibrating, Atlas Scientific recommends using the above μS values. However, you can use any μS values you want.

Temperature compensation during calibration

Temperature has a significant effect on conductivity readings. The EZO[™] Conductivity circuit has its temperature compensation set to 25° C as the default. **At no point should you change the default temperature compensation during calibration.**

If the solution is $+/-5^{\circ}$ C (or more), refer to the chart on the bottle, and calibrate to that value.

Temperature compensation example

For this example, we brought the temperature of the solution down to 10° C. Referring to chart on the bottle, you can see the value you should calibrate to is **9,330µS**.

9,330µS

1. Pre-calibration setup

Connect the dry conductivity probe and take continous readings.

2. Set probe type

If your probe \neq K 1.0 (*default*), then set the probe type by using the **"K,n"** command. (where n = K value of your probe) for more information, see page 22.

3. Dry calibration

Perform a dry calibration using the command **"Cal,dry"** Even though you may see readings of 0.00 before issuing the **"Cal,dry"** command, it is still a necessary part of calibration.

4. Calibration

Atlas Scientific recommends performing a three point calibration (*dry, low point & high point*) to obtain the greatest sensing range possible. However, depending on your situation a two point calibration may suffice.

To perform a two or three point calibration, follow the instructions below.

Two point calibration

After completing the dry calibration; Pour a small amount of calibration solution into a cup (μ S value of your choice). Shake the probe to make sure you do not have trapped air in the probe. You should see readings that are off by +/- 40% from the stated value of the calibration solution. Wait for readings to stabilize (small movement from one reading to the next is normal).

Calibration complete!

Three point calibration - low point

- Complete the dry calibration process first.
- Pour a small amount of the low point calibration solution into a cup.
- Shake the probe to remove trapped air.
- Readings may be off by +/- 40%
- Wait for readings to stabilize.

Three point calibration - high point

- Rinse off the probe before calibrating to the high point.
- Pour a small amount of the high point calibration solution into a cup.
- Shake the probe to remove trapped air.
- Readings may be off by +/- 40%
- Wait for readings to stabilize.

Calibration complete!

Best practices for calibration

Always watch the readings throughout the calibration process. Issue calibration commands once the readings have stabilized.

▲ Never do a blind calibration! ▲

Issuing a calibration command before the readings stabilize will result in drifting readings.

Long-term conductivity measurements in stagnant water

Taking continuous conductivity readings in stagnant water:

A small amount of energy must be put into the water to measure conductivity. This small amount of energy will start to affect the readings in stagnant water. Over time, the energy passing through the stagnant water will start to align the dissolved salts along a path of least resistance. Lowering the resistance of the water will increase the water's conductivity.

Moving the probe or the water will disrupt this alignment and cause the readings to suddenly return to normal.

*These are example readings; there is no way to predict how the readings will change over time.

Datasheet change log

Datasheet V 1.3

Revised probe artwork.

Datasheet V 1.2

Added info on Long-term conductivity measurements in stagnant water on pg 38.

Datasheet V 1.1

Revised calibration theory pages 31-38.

Datasheet V 1.0

Revised entire document.

Firmware updates

V1.5 – Baud rate change (Nov 6, 2014)Change default baud rate to 9600

Warranty

Atlas Scientific[™] Warranties the EZO Complete device to be free of defects during the debugging phase of device implementation or 30 days after receiving the EZO Complete device (*whichever comes first*).

The debugging phase

As defined by Atlas Scientific[™], the debugging phase is when the EZO Complete device is connected to a computer to evaluate its output and/or is being integrated into custom software.

The following activities will void the EZO Complete device warranty:

- Soldering any part of the EZO[™] class device.
- Removing any potting compound.
- Embedding the EZO Complete device into a custom machine.

Reasoning behind this warranty

Atlas Scientific[™] does not sell consumer electronics. Once the device has been embedded into a custom-made machine, Atlas Scientific[™] cannot possibly warranty the EZO Complete device against the thousands of possible variables that may cause the device to malfunction.

Please keep this in mind:

- 1. All Atlas Scientific[™] devices have been designed to be embedded into a custom-made machine by you, the embedded systems engineer.
- 2. All Atlas Scientific[™] devices have been designed to run indefinitely without failure in the field.

Atlas Scientific[™] is simply stating that once the device is being used in your machine or application, Atlas Scientific[™] can no longer take responsibility for the device's continued operation. Doing so would be equivalent to Atlas Scientific[™] taking responsibility for the correct operation of your entire machine.

