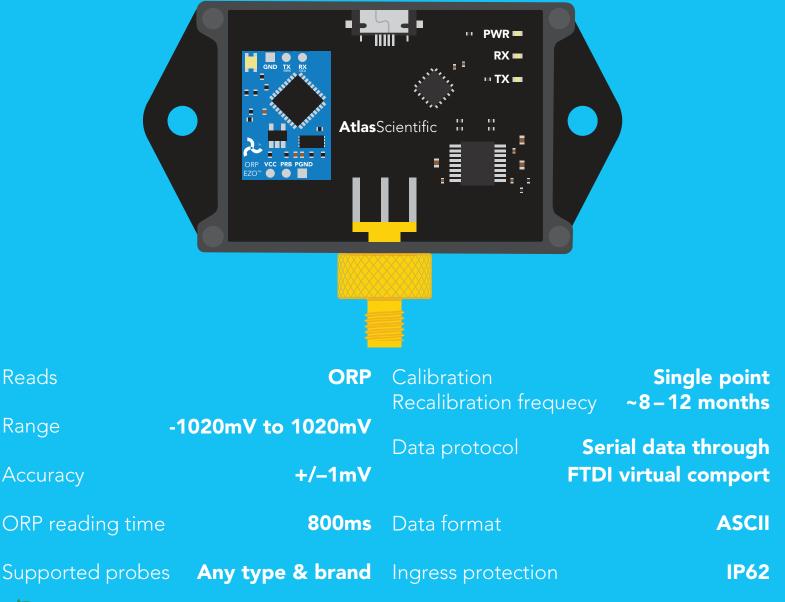
AtlasScientific Environmental Robotics

V 1.2


EZO Complete-ORP[™]

USB ORP meter

Datasheet for engineers

ISO 11271 Compliant

(determination of redox potential)

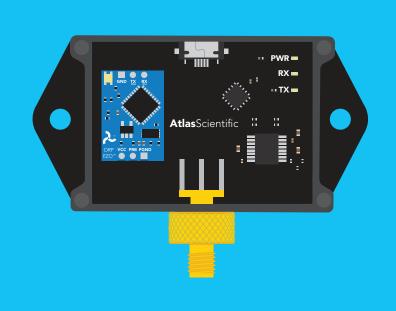
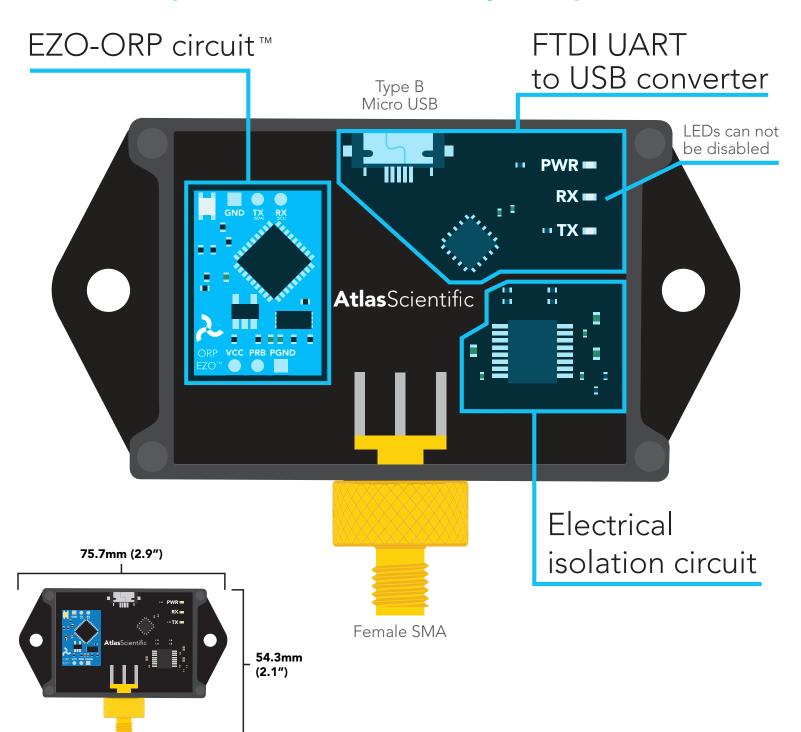

PATENT PROTECTED

Table of contents

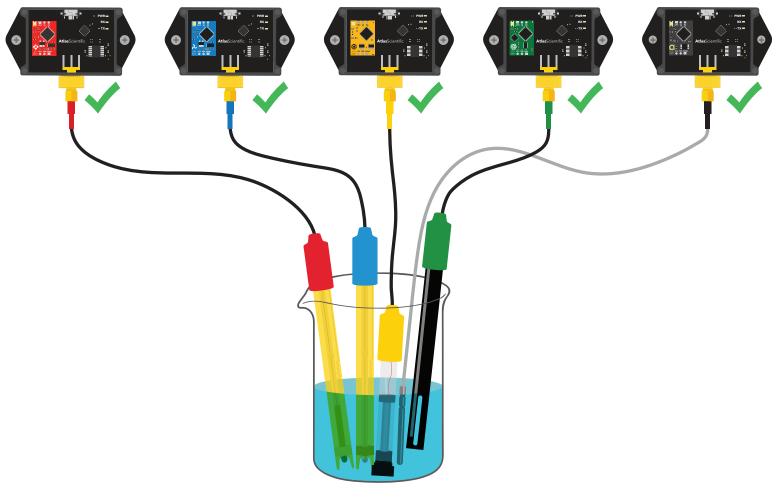
Power consumption	3
Absolute max ratings	3
Interference free	4
Ingress protection – IP62	4
Default state	6


LED color definition	7
Receiving data from device	8
Sending commands to device	9
Simple serial monitor	10
UART quick command page	11
LED control	12
Find	13
Continuous reading mode	14
Single reading mode	15
Calibration	16
Export calibration	17
Import calibration	18
Extended ORP scale	19
Naming device	20
Device information	21
Response codes	22
Reading device status	23
Sleep mode/low power	24
Factory reset	25

Calibration theory	26
Datasheet change log	29
Firmware updates	30
Warranty	31

The EZO Complete-ORP[™] consists of 3 major components.

5V	МАХ	STANDBY	SLEEP
USB	37.0 mA	36.8 mA	22.6 mA

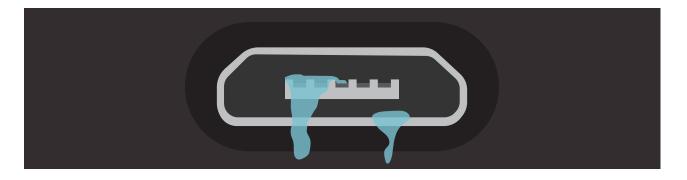

Power consumption Absolute max ratings

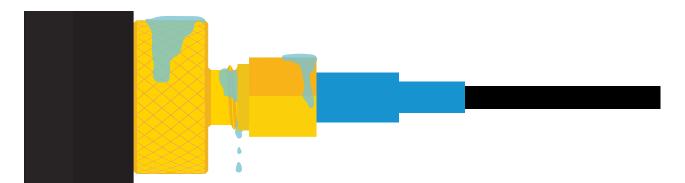
Parameter	MIN	ТҮР	MAX
Storage temperature	-65 °C		125 °C
Operational temperature	-40 °C	25 °C	85 °C

Interference free

The EZO complete readings are unaffected by other sensors in the same water.

Ingress protection – IP62


The EZO Complete-ORP[™] is dust proof and resistant to splashing water. **Two areas of concern are the** *USB connector* and the *probe connector*.

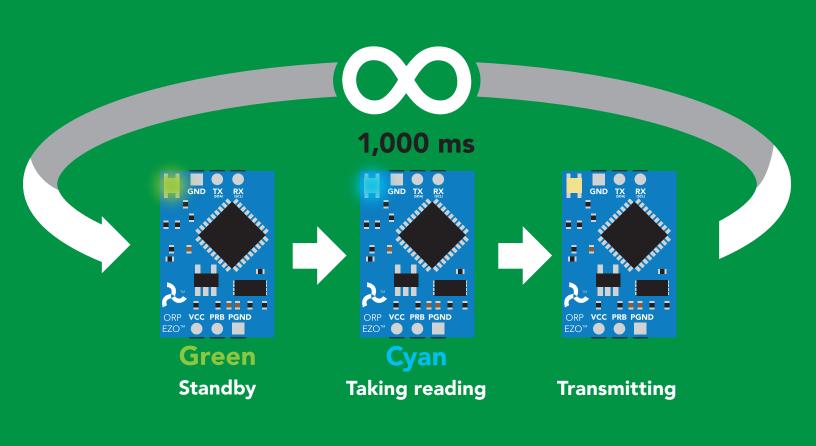


Ingress protection – IP62

An electrical short can occur if water enters the USB connector. A USB short could permanently damage the EZO-Complete. A USB short is not covered under warranty.

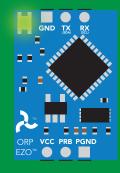
A connector short can occur if water enters the SMA connector. A connector short will cause the ORP readings to pin to -1020, +1020, or the probe will respond slowly to changes in ORP. A connector short is reversible and will not damage the EZO-Complete. However, frequent shorts will eventually damage the ORP probe.

The SMA connector is part of your probe; Nothing should be in contact with this part.

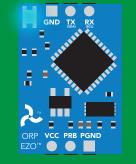


Default state

Baud


9,600

Readings Speed continuous 1 reading per second



LED color definition

Green UART standby

Cyan oy Taking reading

5V	LED ON +2.2 mA
3.3V	+0.6 mA

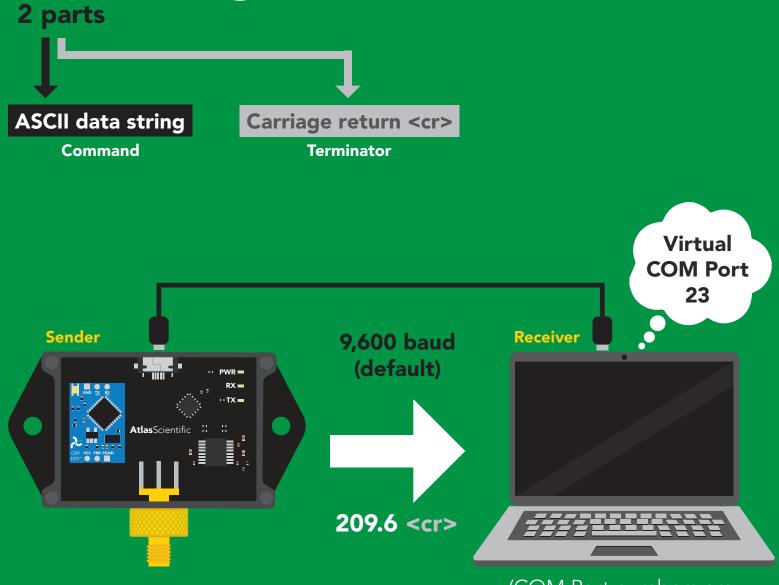
GND IX RX CORP VCC PRB PGND EZO"

Purple Changing baud rate

Red Command not understood

White Find

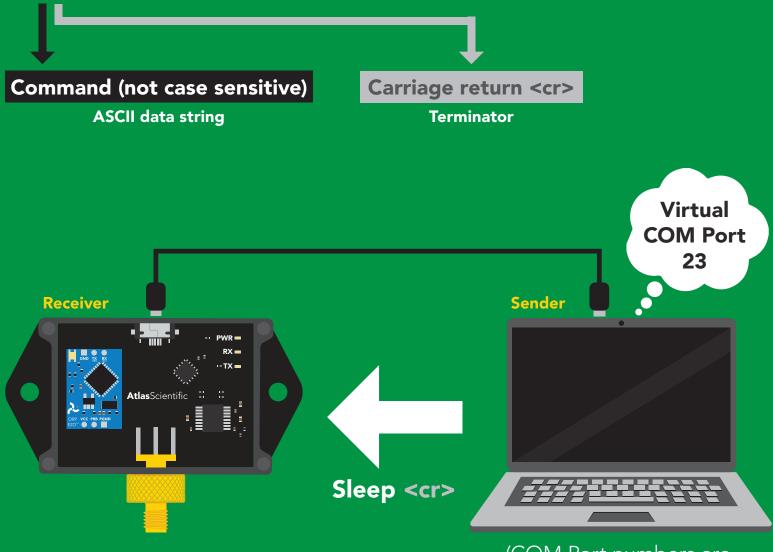
Settings that are retained if power is cut


Calibration Continuous mode Device name Enable/disable response codes LED control Protocol lock

Settings that are **NOT** retained if power is cut

Find Sleep mode Temperature compensation

Receiving data from device

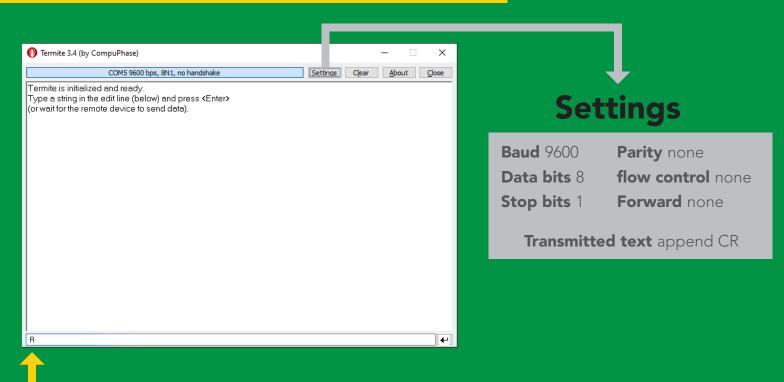

(COM Port numbers are determined by the computer)

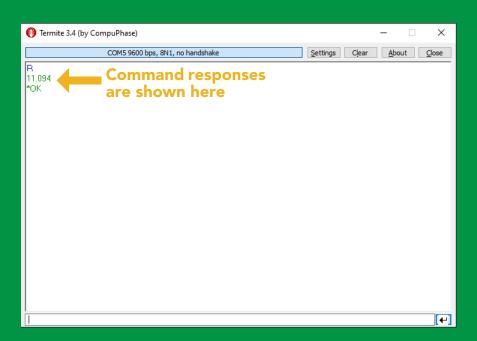
Advanced

Sending commands to device ^{2 parts}

(COM Port numbers are determined by the computer)

Advanced




Looking for a simple serial monitor for debugging?

Termite: a simple RS232 terminal

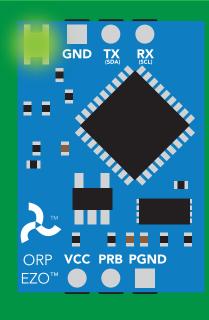
Click here to download

Enter commands here

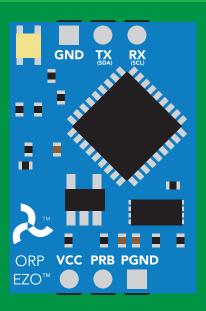
Command quick reference

All commands are ASCII strings or single ASCII characters.

Command	Function		Default state
с	enable/disable continuous reading	pg. 14	enabled
Cal	performs calibration	pg. 16	n/a
Export	export calibration	pg. 17	n/a
Factory	enable factory reset	pg. 25	n/a
Find	finds device with blinking white LED	pg. 13	n/a
i	device information	pg. 21	n/a
Import	import calibration	pg. 18	n/a
L	enable/disable LED	pg. 12	enabled
Name	set/show name of device	pg. 20	not set
ORPext	enable/disable extended ORP scale	pg. 19	disabled
R	returns a single reading	pg. 15	n/a
Sleep	enter sleep mode/low power	pg. 24	n/a
Status	retrieve status information	pg. 23	n/a
*OK	enable/disable response codes	pg. 22	enable



LED control

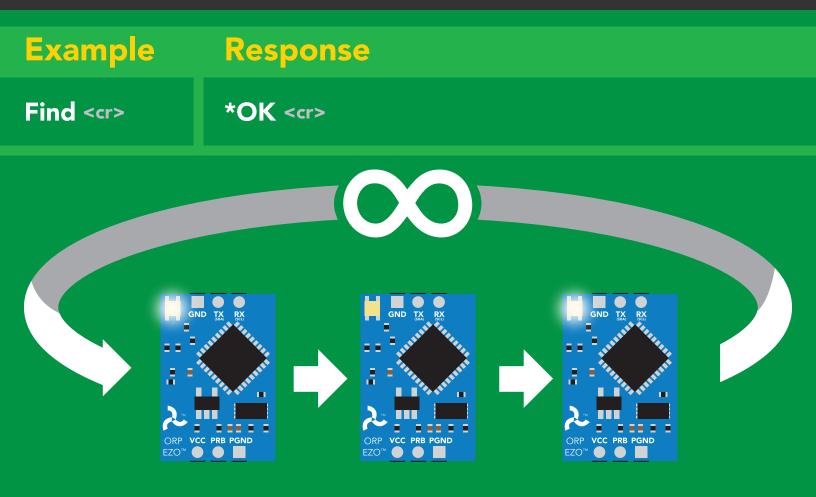

Command syntax

- L,0 <cr>> LED off
- L,? <cr>> LED state on/off?

Example	Response
L,1 <cr></cr>	*OK <cr></cr>
L,0 <cr></cr>	*OK <cr></cr>
L,? <cr></cr>	?L,1 <cr> or ?L,0 <cr> *OK <cr></cr></cr></cr>

L,1

L,0



Command syntax

This command will disable continuous mode Send any character or command to terminate find.

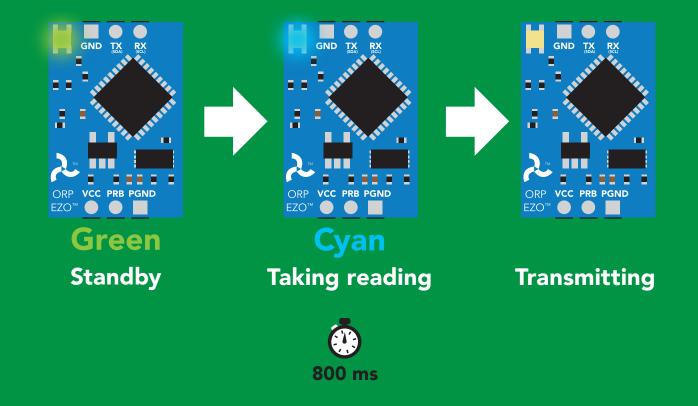
Find <cr> LED rapidly blinks white, used to help find device

Continuous reading mode

Command syntax

- C,1 <cr> enable continuous readings once per second default C,n <cr> continuous readings every n seconds (n = 2 to 99 sec) C,0 <cr> disable continuous readings
- C,? <cr> continuous reading mode on/off?

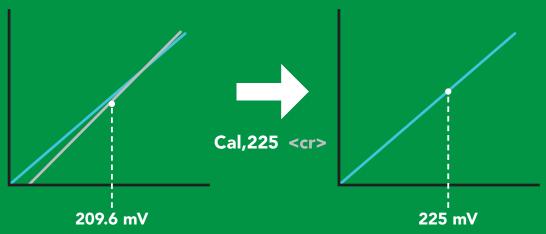
Example	Response
C,1 <cr></cr>	*OK <cr> ORP (1 sec) <cr> ORP (2 sec) <cr> ORP (n sec) <cr></cr></cr></cr></cr>
C,30 <cr></cr>	*OK <cr> ORP (30 sec) <cr> ORP (60 sec) <cr> ORP (90 sec) <cr></cr></cr></cr></cr>
C,0 <cr></cr>	*OK <cr></cr>
C,? <cr></cr>	?C,1 <cr> or ?C,0 <cr> or ?C,30 <cr> *OK <cr></cr></cr></cr></cr>


Single reading mode

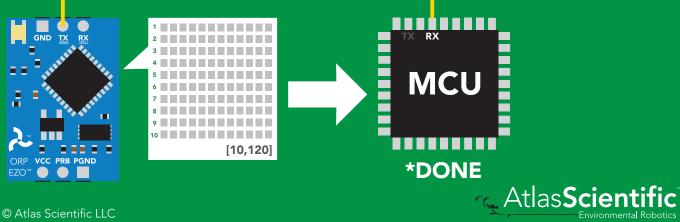
Command syntax

A single reading takes 800ms

R <cr> takes single reading


ExampleResponseR <cr>9.560 <cr>*OK <cr>

Calibration


Command syntax		The EZO Complete-ORP [™] can be calibrated to any known ORP value
Cal,n <cr>calibrates the ORP circuit to a set valueCal,clear<cr>delete calibration dataCal,?<cr>device calibrated?</cr></cr></cr>		
Example	Response	
Cal,225 <cr></cr>	*OK <cr></cr>	
Cal,clear < <r></r>	*OK <cr></cr>	
Cal,? <cr></cr>	?Cal,0 <cr> or ?C *OK <cr></cr></cr>	al,1 <cr></cr>

Export calibration

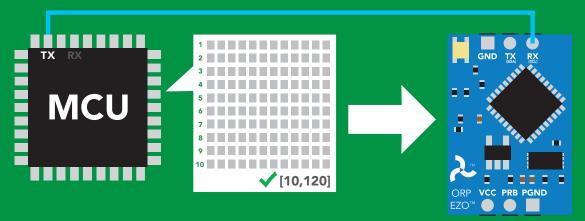
Command syntax		
Export: Use this command to download calibration settings		
Export,? <cr></cr>	alibration strir	ng info
Export <cr></cr>	export calibrat	ion string from calibrated device
Example	Response	
Export,? <cr></cr>	10,120 <cr></cr>	Response breakdown 10, 120
		Export strings can be up to 12 characters long, and is always followed by <cr></cr>
Export <cr></cr>	59 6F 75 20	61 72 <cr> (1 of 10)</cr>
Export <cr></cr>	65 20 61 20	63 6F <cr> (2 of 10)</cr>
(7 more)	•	
Export < <r></r>	6F 6C 20 67	75 79 <cr> (10 of 10)</cr>
Export <cr></cr>	*DONE	Disabling *OK simplifies this process
Export <cr></cr>		

Import calibration

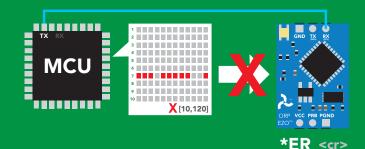
Command syntax

Import: Use this command to upload calibration settings to one or more devices.

Import,n <cr> import calibration string to new device


Example

Response



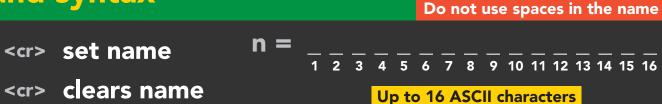
Import,n <cr>

*OK <<r>
system will reboot

* If one of the imported strings is not correctly entered, the device will not accept the import, respond with *ER and reboot.

Extended ORP scale

		Important: You must power the EZO-ORP circuit with 5V, to run the Extended ORP scale.	
Command synt	ax	Lowest possible reading: -2040mV Highest possible reading: 2040mV	
ORPext,0 <cr>extended ORP scale off (-1020mV - 10120mV)defaultORPext,1 <cr>extended ORP scale on (-2040mV - 2040mV)ORPext,? <cr>extended ORP scale on/off?</cr></cr></cr>			
Example	Response		
ORPext,1 < <r></r>	*OK <cr></cr>		
ORPext,0 <cr></cr>	*OK <cr></cr>		
ORPext,? <cr></cr>	?ORPext,1 <	cr> or ?ORPext,0 <cr></cr>	
ORP = -1020mV		ORP = -2040mV ~_ Atlas Scientific	
19 Convright @ Atlas Scientific LLC			

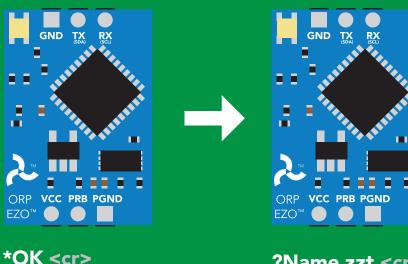

Environmental Robotics

Naming device

Command syntax

Name,n

Name,


Name,? <cr> show name

Up	to 16	ASCII	characters

Example	Response
Name, <cr></cr>	*OK <cr> name has been cleared</cr>
Name,zzt <cr></cr>	*OK <cr></cr>
Name,? <cr></cr>	?Name,zzt <cr> *OK <cr></cr></cr>

Name,zzt

Name,?

?Name,zzt <cr> *OK <cr>

Device information

Command syntax

i <cr> device information

ExampleResponsei <<r>?i,ORP,1.97 <<r>

*OK <cr>

Response breakdown

Response codes

Command syntax

- *OK,1 <cr> enable response default *OK,0 <cr> disable response
- *OK,? <cr> response on/off?

Example	Response
R <cr></cr>	9.560 <cr> *OK <cr></cr></cr>
*OK,0 <cr></cr>	no response, *OK disabled
R <cr></cr>	9.560 <cr> *OK disabled</cr>
*OK,? <cr></cr>	?*OK,1 <cr> or ?*OK,0 <cr></cr></cr>

Other response codes

- *ER unknown command
- *OV over volt (VCC>=5.5V)
- *UV under volt (VCC<=3.1V)
- *RS reset
- *RE boot up complete, ready
- *SL entering sleep mode
- *WA wake up

These response codes cannot be disabled

Reading device status

Command syntax

Status <cr> voltage at Vcc pin and reason for last restart

Exa	mple	Re	sponse	
Statu	JS <cr></cr>		?Status,P,5.038 <cr *OK <cr></cr></cr 	
Res	ponse k	oreak	down	
?Sta	n tus, P, t Reason fc		5.038 ↑ Voltage at Vcc	
Restar P S	r <mark>t codes</mark> powered o ^r software re			

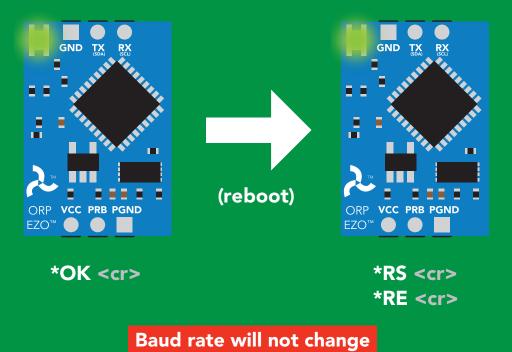
Sleep mode/low power

Command syntax

Send any character or command to awaken device.

Exam	ole	Response	
Sleep <	<cr></cr>	*OK <cr> *SL <cr></cr></cr>	
Any cor	nmand	*WA <cr> wakes up de</cr>	evice
5V	standb 16 mA		
3.3V	13.9 m	A 0.995 mA	
	GND TX P) SOA	Sleep <cr></cr>	GND TX RX FCC FCC FCC FCC FCC FCC FCC FCC FCC FC
	Standby 16 mA	y	Sleep 1.16 mA
24 Copyright	© Atlas Scientific LL	c	Atlas Scientific

Factory reset

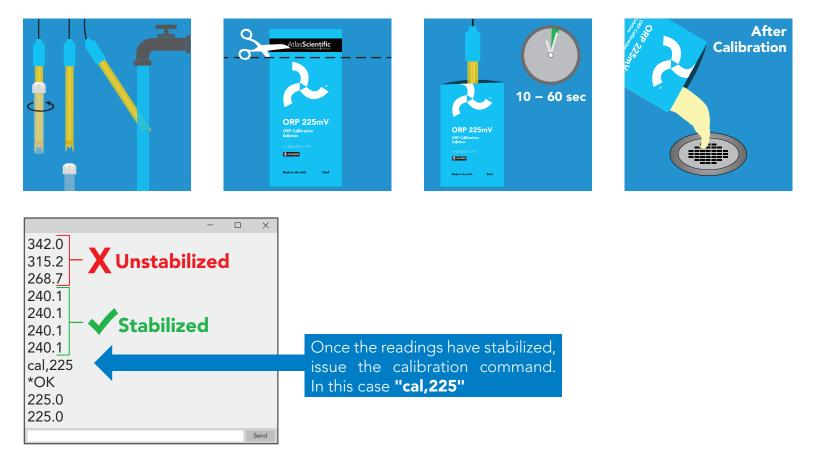

Command syntax

Factory <cr> enable factory reset

Clears calibration LED on "*OK" enabled

ExampleResponseFactory <cr>*OK <cr>

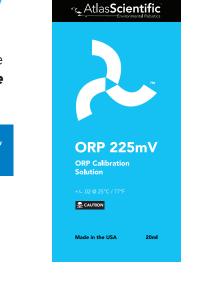
Factory <cr>


Calibration theory

The Atlas Scientific EZO Complete-ORP[™] circuit has a flexible calibration protocol, allowing singlepoint calibration to **any off the shelf calibration solution.**

If this is your first time calibrating the EZO Complete-ORP[™], Atlas Scientific recommends using the 225mv calibration solution.

Calibration


Remove the soaker bottle and rinse off the ORP probe. Remove the top of the **ORP 225mV** calibration solution pouch. Insert the ORP probe directly into the pouch, and let the probe sit in the calibration solution until the readings stabilize (*small movement from one reading to the next is normal*).

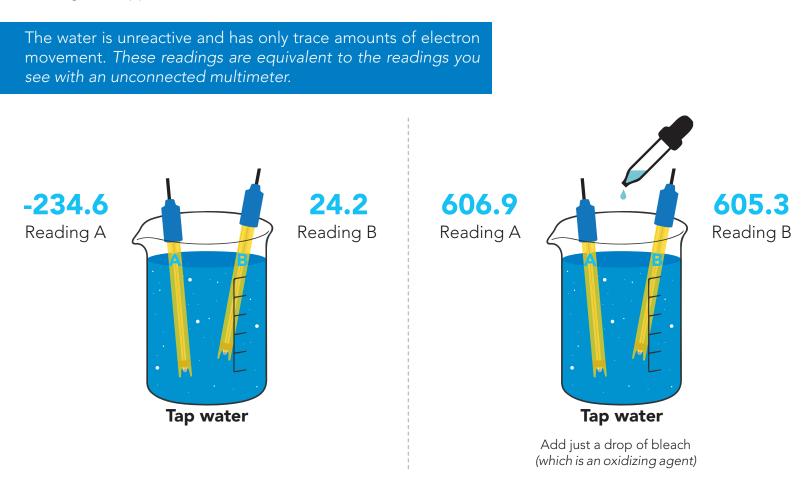
Calibration should be done at least once per year

If the ORP that's being read is continuously on the extremes of the scale (~ -900mV or +900mV) calibration may have to be done more often. The exact frequency of calibration will have to be determined by your engineering team.

Best practices for calibration

Always watch the readings throughout the calibration process. Issue calibration commands once the readings have stabilized.

▲ Never do a blind calibration! ▲


Issuing a calibration command before the readings stabilize will result in drifting readings.

ORP measurement insights

When reading the ORP of a liquid that has very few electrons available for transfer ORP readings can appear to be inconsistent.

An ORP probe has a platinum tip that is connected to a silver wire, surrounded by silver chloride. That silver wire is then connected to a KCL reference solution. Because platinum is an unreactive metal it can "silently observe" the electron activity of the liquid without becoming apart of whatever reaction is occurring in the liquid.

Datasheet change log

Datasheet V 1.2

Added ORP Extended Scale found on page 19.

Datasheet V 1.1

Revised probe artwork.

Datasheet V 1.0

Revised entire document.

Firmware updates

V1.5 – Baud rate change (Nov 6, 2014)

• Change default baud rate to 9600

Warranty

Atlas Scientific[™] Warranties the EZO Complete device to be free of defects during the debugging phase of device implementation or 30 days after receiving the EZO Complete device (*whichever comes first*).

The debugging phase

As defined by Atlas Scientific[™], the debugging phase is when the EZO Complete device is connected to a computer to evaluate its output and/or is being integrated into custom software.

The following activities will void the EZO Complete device warranty:

- Soldering any part of the EZO[™] class device.
- Removing any potting compound.
- Embedding the EZO Complete device into a custom machine.

Reasoning behind this warranty

Atlas Scientific[™] does not sell consumer electronics. Once the device has been embedded into a custom-made machine, Atlas Scientific[™] cannot possibly warranty the EZO Complete device against the thousands of possible variables that may cause the device to malfunction.

Please keep this in mind:

- 1. All Atlas Scientific[™] devices have been designed to be embedded into a custom-made machine by you, the embedded systems engineer.
- 2. All Atlas Scientific[™] devices have been designed to run indefinitely without failure in the field.

Atlas Scientific[™] is simply stating that once the device is being used in your machine or application, Atlas Scientific[™] can no longer take responsibility for the device's continued operation. Doing so would be equivalent to Atlas Scientific[™] taking responsibility for the correct operation of your entire machine.

