AtlasScientific Environmental Robotics

V 1.7 Revised 10/24

SurveyorTM Analog isolator

Written by Jordan Press Designed by Noah Press

This is an evolving document, check back for updates.

Surveyor dimensions

42mm (1.6")

Current consumption			5V	3.3V
23mA 5V	15.7mA _{3.3V}	Surveyor [™] Analog pH	26mA	18.7mA
		Surveyor [™] Analog ORP	26mA	18.7mA
		Surveyor [™] Analog D.O.	26mA	18.7mA

Connection pins

The Surveyor[™] Analog Isolator mates with Atlas Scientific Surveyor[™] Analog Sensors / Meters through their 3 pin headers.

Wiring diagram

Operating principle

There is no simple way to isolate an analog signal without converting it to something else; this isolator uses pulse width modulation (PWM) to encode the analog pH readings.

Block diagram of the analog isolator

The output of the analog isolator is a 10.6 Khz square wave. No matter what the reading is, the frequency is always 10.6 kHz. The data is encoded in the width of each square wave, PWM (*pulse width modulation*).

Example PWM	Example Voltage
рН 4 	3 Volts
рН 7	3 Volts pH 7
	0 Volts
рН 10	3 Volts pH 10
	1.5 Volts

*The frequency is always 10.6 kHz; it is only the width of each pulse that changes.